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Abstract

Genes implicated in bacterial stress responses have been used to construct models that infer the growth
outcome of a bacterium in the presence of antibiotics with the objective to develop novel diagnostic
methods in the clinic. Current models are trained on data specific to a species or type of stress, making
them potentially limited in their application. It is unclear if a generalizable response-signature exists that
can predict bacterial fitness independent of strain, species or type of stress. Here we present a substantial
RNA-Seq and experimental evolution dataset for 9 strains and species, under multiple antibiotic and non-
antibiotic stress conditions. We show that gene panel-based models can accurately predict antibiotic
mechanism of action, as well as the fitness outcome of Streptococcus pneumoniae in the presence of
antibiotics or under nutrient depletion. However, these models quickly become species-specific as gene
homology is limited. Instead, we define a new concept, transcriptomic entropy, which we use to quantify
the amount of transcriptional disruption that occurs in a bacterium when responding to the environment.
With entropy at the center, we train a suite of predictive (machine learning) models enabling generalizable
fitness and antibiotic sensitivity predictions. These entropy-based models that predict bacterial fitness are
validated for 7 Gram-positive and -negative species under antibiotic and non-antibiotic conditions
indicating that transcriptomic entropy can be used as a generalizable stress signature. Moreover, rather
than being a binary indicator of fitness, an entropy-based model was developed and validated to predict
the minimum inhibitory concentration of an antibiotic. Lastly, we show that the inclusion of a varied-set
of multi-omics features of a bacterial stress response further enhances fitness predictions by reducing
ambiguity. By demonstrating the feasibility of generalizable predictions of bacterial fitness, this work
establishes the fundamentals for potentially new approaches in infectious disease diagnostics, including

antibiotic susceptibility testing.


https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/

55
56
57
58
59
60
61
62
63
64

bioRxiv preprint doi: https://doi.org/10.1101/813709; this version posted October 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Significance statement

Accurate predictions of bacterial fitness outcome could potentially have clinical diagnostic value, such as
predicting optimum antibiotic choice and dosage for treating infectious diseases. Existing models of
fitness predictions rely mainly on gene panel approaches, which may be species- and stress-specific due
to a lack of gene and response conservation. In order to overcome this limitation, we generated a
substantial experimental dataset and identified entropy as a universal stress response signature that
quantifies the level of transcriptional disruption that is indicative of fitness outcome under a stressful
condition. We present and validate for Gram-positive and negative species a suite of entropy-based models
that enable accurate predictions of fitness outcome and the level of antibiotic sensitivity in a species and

stress-type independent manner.
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Introduction

It is generally assumed that in order to overcome a stress, bacteria activate a response such as the stringent
response under nutrient deprivation (1) or the SOS response in the presence of DNA damage (2).
Measuring the activation of a specific response, or genes associated with this response, can thereby
function as an indicator of what type of stress is occurring in a bacterium. For instance, /ex4, encoding a
master regulator of the SOS response in Escherichia coli and Salmonella (3, 4) is upregulated in response
to fluoroquinolones, indicative of the DNA damage resulting from this class of antibiotics (4). Moreover,
genes implicated in a stress response can help construct statistical models for predicting growth outcomes
under that stress. For instance, gene panels have been assembled from transcriptomic data to predict

whether E. coli can successfully grow in the presence of antibiotics such as ciprofloxacin (5-7).

While a defined stress-response or a gene-panel can be valuable in identifying the type or sensitivity to a
stress, there are several complications that make one-to-one implementation across strains, species or
environments difficult. For instance, responses such as the stringent or SOS response are only well defined
in a small number of species, genes in a gene-panel may not be conserved across strains or species, and
responses are not necessarily regulated in the same manner in different strains or species (8, 9). This lack
of well-characterized and/or conserved responses limits the potential generalizability of existing models
that attempt to predict stress sensitivity across strains and species. Therefore, identification of a universal
stress response signature would allow for the development of generalizable predictive models that work
for any species under any condition. There is not, however, a generally agreed upon stress response

signature.

We previously showed that a stress response can be captured on at least two organizational levels; with
RNA-Seq genome-wide transcriptional changes upon an environmental perturbation can be described,
while transposon-insertion sequencing (Tn-Seq) characterizes the phenotypic importance of a gene, i.e. a
gene’s contribution to fitness in a specific environment, on a genome-wide scale (16-21). Direct
comparisons of data obtained from these approaches revealed that genes that change in transcription are
poor indicators of what matters phenotypically (16). In other words, phenotypically important and
transcriptionally important genes rarely overlap (16). However, when integrated into a network,
coordinated patterns between these data-sets surface when the organism is challenged with an

evolutionarily familiar stress (i.e. one that has been experienced for many generations), while the response
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becomes less coordinated when the bacterium is challenged with and responds to a relatively new stress,
for instance antibiotics (16). This suggests that a stress signature may exist that is indicative of the degree
to which a bacterium is adapted to a specific stress and is able to overcome the challenge. To determine
whether such a signature exists and whether it is universal we generated and mined a substantial
experimental dataset for the bacterial pathogen Streptococcus pneumoniae. We first demonstrate that both
an antibiotic’s MOA and the bacterium’s fitness under antibiotic or nutrient pressure can be predicted by
expression profiles from two distinct small gene-panels. However, these panels are limited to strains and
species sharing high sequence and response homology. Instead, we develop the concept of entropy and
build a suite of predictive models that accurately predict a bacterium’s fitness outcome under various
nutrient, antibiotic and transcriptional perturbation conditions. Moreover, entropy is quantitatively
correlated with the level of antibiotic sensitivity, enabling MIC predictions. We show the universality of
entropy by validation experiments with 7 Gram-negative and -positive pathogenic species. We further
demonstrate that entropy-based models can be improved in accuracy when different data-types are
combined into a Support Vector Machine. Overall, we develop a large new experimental dataset, a novel
species-independent stress-response concept and a suite of predictive models that accommodate different

amounts and types of data to enable generalizable fitness predictions and antibiotic sensitivity.
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Results

Antibiotic transcriptional responses are distinguishable based on mechanisms of action.

To determine if the transcriptional responses to antibiotics were dependent on their mechanisms of action,
the TIGR4 (T4) and Taiwan-19F (19F) strains of Streptococcus pneumoniae were grown in the presence
or absence of 1x the minimum inhibitory concentration (MIC) of 9 antibiotics representing 4 mechanisms
of action (MOA’s). These include cell wall synthesis inhibitors (CWSI), DNA synthesis inhibitors (DSI),
protein synthesis inhibitors (PSI) and RNA synthesis inhibitors ((RSI); Figure 1A, Supplemental Tables
1, 6). Each strain was exposed to each antibiotic for 2 to 4 hours and cells were harvested for RNA-Seq at
various time points after antibiotic exposure. Previous models have predicted bacterial fitness of
Escherichia coli exposed to specific stressful conditions by relying on differential expression of selected
small gene sets (5-7). Before we set out to determine whether a generalizable feature can predict fitness
across a variety of stress types, we first established if a small gene set can predict the MOA of an antibiotic
and/or fitness of S. pneumoniae (Figure 1A). Principal component analysis (PCA) was performed on the
complete differential transcription datasets, and this indicated that temporal transcriptional responses to

drugs within the same MOA tended to follow similar trajectories over time (Figure 1B, C).

To infer MOA’s from the transcriptional profiles, a regularized logistic regression was used for unbiased
feature selection. Since, the number of genes available to use as features far exceeds the number of RNA-
Seq experiments this results in a high risk of overfitting, which can be overcome by strong regularization.
As previous gene-panel models have used up to 9 genes in any one panel (5, 6), we set the regularization
strength such that up to a total of 10 genes would be selected, with at least one gene for each MOA. This
reduced the data to a set of 8 genes (2 selected for CWSI, 3 for DSI, 2 for PSI and 1 for RSI) that maximally
separate the MOA’s (Figure 1D, Supplemental Tables 2, 3). Notably, several genes in this panel and their
differential transcription patterns are functionally related to the antibiotics’ MOA. First, up-regulation of
the repair DNA polymerase I (SP_0032) is predictive of a DSI which causes double stranded breaks by
trapping DNA topoisomerase IV and DNA gyrase. Second, increased transcription of RNA polymerase
subunit D (SP_1073) predicts a response to the transcription inhibitor rifampicin (RSI) and may also
represent a feedback response to rifampicin to maintain transcription levels. Third, the PSI kanamycin
drastically increases transcription of c/pP (encoding a subunit of Clp protease) by 270-fold and 137-fold
in T4 and 19F, respectively. Aminoglycosides cause protein mistranslation, which leads to protein

aggregate formation that could be relieved by Clp protease (10). A similar response to PSI was observed
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in B. subtilis (11), indicating that this may be diagnostic of a cellular response to remove mistranslated
proteins. Finally, in the presence of CWSI there is up-regulation of the two-component system CiaRH
(ciaR (SP_0798)), which has been associated with preventing lysis triggered by CWSIs in S. pneumoniae
(12, 13). In addition to these genes that are clearly connected to a specific MOA, the panel contains genes
with less clear connections with the MOA, i.e. SP_2107 (maltose metabolism), SP_2141 (glycosyl
hydrolase-like protein), SP_0021 (deoxyuridine 5’-triphosphate nucleotidohydrolase) and SP_2229 (Trp
tRNA synthetase) that allow the set to distinguish MOAs. The presence of such genes, along with well-
characterized genes relevant to the MOA confirms that the gene panel selection is unbiased and

independent of gene function annotations.

To enable MOA predictions from expression data without prior knowledge of the antibiotics used, the 8-
gene panel profiles were used to train a support vector machine (SVM) that classifies the MOA of the
antibiotic, which resulted in accurate prediction of MOAs (0.92) (Figure 1E - Train). The SVM was
validated using an independent transcriptional data-set collected from T4 and 19F treated with cefepime
(CEF), tetracycline (TET) and ciprofloxacin (CIP; Figure 1E - Test, Supplemental Table 1), resulting in
an accuracy of 0.75 (random chance results in an accuracy of 0.25). The lower accuracy in the test set
(compared to the training set) is mostly due to misclassification of ‘early’ exposure time points or
confusion of the model between the PSI and RSI MOA (Supplemental Notes), which can also be seen in
the close resemblance between the RSI and PSI PCA trajectories (Figure 1B). From a biological
perspective, this similarity is likely due to the closely related cellular functions blocked by the two MOAs

(i.e. transcription and translation).

Low and high fitness outcomes after antibiotic exposure or nutrient deprivation of S. pneumoniae
can be represented by a single 10-gene signature.

As T4 and 19F are susceptible to most antibiotics used, the transcriptional profiles in the presence of
antibiotics mostly represent cases of low fitness (Figure 2A, sensitive strain, 1XMICwr). Besides the
MOA -specific responses, we hypothesized that there may also be a single signature of low fitness
outcomes that can be extracted from the transcriptional profiles. In order to find patterns that differentiate
fitness outcomes (presence or absence of growth in a particular environment), we generated strains with
increased fitness in the presence of antibiotics through serial passaging wildtype T4 and 19F in the

presence of increasing amounts of antibiotics. Four independent populations for each strain were selected
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on individual antibiotics to a point that they would grow at 1.5xMIC of the wildtype strain, albeit with a
small growth defect (Supplemental Figure 1A, B). To identify signatures of fitness, the wild type and
adapted clones were exposed for 2 to 4 hours to 1x and 1.5-2xMIC of the antibiotics used for adaptation,
followed by RNA-Seq at different time points after exposure (Figure 2A, Supplemental Figure 1A). In
parallel, RNA-Seq was performed on S. prneumoniae strains D39 and T4 in a chemically defined medium,
and media from which either uracil, Glycine or L-Valine was removed. This allowed for the identification
of a common stress signature that applies to nutrient deprivation as well, as these nutrients are essential
for D39 but not T4. Lastly, D39 was adapted to grow in the absence of each individual nutrient, after
which RNA-Seq was repeated for adapted clones (Supplemental Table 1 lists all 24 strains, 67 populations
and 6 species, and 267 RNA-Seq experiments; visualizable and explorable online at

http://bioinformatics.bc.edu/shiny/ABX).

To determine whether specific transcriptional differences exist that distinguish a strain that successfully
grows in a particular environment (high fitness) from one that does not (low fitness), the dataset was split
into stress-sensitive and stress-insensitive (e.g. adapted) groups. This approach identified three
transcriptional patterns. First, an unadapted, stress-sensitive strain tends to trigger a greater number of
transcriptional changes at 1xMIC or during nutrient deprivation compared to an adapted strain
(Supplemental Figure 2A-C). Second, in response to antibiotic or nutrient deprivation stress, the
magnitude of transcriptional changes in the stress-sensitive strains shows a broad distribution over time
compared to the adapted strains, indicating that there is extensive genome-wide transcriptional change in
sensitive strains (Figure 2A, B; Supplemental Figure 2D-F). Finally, stress-sensitive strains have a
significantly lower Kullback-Leibler divergence (KLD) relative to adapted strains, indicating higher
similarity of differentially expressed (DE) genes compared to the distribution of the entire genome. A
lower KLD therefore indicates a similar function distribution in DE genes and the genome, which can be

interpreted as a lack of functional enrichment in the differentially expressed genes (Figure 2A, C).

Logistic regression was used on the training part of the RNA-Seq dataset (231 experimental conditions;
Supplemental Table 1) to identify a gene panel that could accurately separate stress-sensitive from stress-
insensitive responses in a strain- and environment-independent manner. Similar to the selection of the
MOA -prediction gene panel, regularization was applied such that the number of genes used did not exceed

10. This resulted in a 10-gene-panel (Supplemental Tables 2, 3) that is able to separate and predict low
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and high fitness outcomes with an accuracy of 0.91 for the training set (Figure 3A) and 0.83 for the
independent test set (Figure 3B, Supplemental Table 4; see Supplemental Notes for details on
misclassifications). These 10 genes showed similar DE patterns in low fitness outcomes in all the tested
strains and environments, and remained mostly unchanged in high fitness outcomes (Figure 3C). The
functions of these genes include cell division (ftsZ; SP_1666), metal ion transport (SP_1857 and
SP_1869), competence (SP_0955), cell surface protein (SP_2201), transcriptional regulation (SP_1856
and SP_1800), translation (SP_0929) and metabolism (SP_1478 and SP_0589). Unlike the MOA gene
panel, genes in the fitness gene panel are not obviously related to the antibiotics or depleted nutrients, but

may be pointing to a more general stress-response.

Transcriptional responses can be captured by entropy, a generalizable feature for fitness
predictions.

Although the gene panel-based fitness predictions show high accuracy for the tested conditions in S.
pneumoniae, it is unlikely that a small gene panel model is able to predict fitness outcomes for a wider
variety of conditions or for multiple species. Indeed the 10 S. pneumoniae genes that indicate fitness
outcomes are poorly conserved in E. coli, Salmonella Typhimurium and 3 ESKAPE species, including
Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus (Figure 3D). Similarly,
only 3 out of 5 genes in a published E. coli ciprofloxacin sensitivity gene panel are present in all 6 species,

indicating that a gene panel approach is limited in its generalizability ((5); Figure 3E).

Our analysis indicates that in low-fitness cases, there is a corresponding disruption in transcriptional
regulation compared to a high-fitness scenario. To explore this idea, we leveraged the concept of entropy
to quantify the extent of transcriptomic disruption triggered by a stress. Using the information theory
definition of entropy, this concept captures the amount of chaos in a system, implemented here by
quantifying the variance in differential expression that occurs over time under stress conditions in a gene
or a collection of genes. (Figure 2B, Supplemental Figure 2). Our dataset contains 29 detailed RNA-Seq
time course experiments for which entropy was calculated initially by taking each gene in the system as
an independent entity (Figure 4A, Model 1). The average of the extent of transcriptional perturbation
across all genes in the genome was quantified by defining entropy as the average of the variance in
differential expression over time for all genes (Supplemental Methods, Equation 2; Figure 4A, Model 1).

To enable predictions, a model based on this single feature was trained by finding just one scalar number,
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a threshold for entropy, to distinguish high fitness (below threshold) from low fitness (above threshold)
(Figure 4B, Supplemental Figure 3B). This model performs well, with only 1 false negative, i.e. a sample
with high fitness having an entropy value above the threshold (Figure 4B), but it assumes that each gene
behaves independently. This assumption does not capture biological complexity, as many genes co-vary

in expression, which can lead to over-estimating entropy if these dependencies are not accounted for.

To correct for co-variances in expression and their potentially confounding effects, we consider a gene
co-expression network, where, if the transcription of two genes have high co-variance, these genes are
connected. While the underlying co-transcriptional network is unknown for S. pneumoniae, it can be
inferred using the available temporal RNA-Seq data by computing the inverse of the co-variance matrix
of transcriptional changes among all gene pairs. This approach yielded a complete network, in which all
possible links between gene pairs were present and weighted by the co-variance values. This is equivalent
to considering the differential expression of all genes from all time points to be a multivariate Gaussian
distribution with as many dimensions as there are genes (Supplemental Methods; Equation 3). We
computed entropy for this multivariate distribution and set the appropriate threshold for separating high
and low fitness (Figure 4A, Model 2). All samples with higher entropy than the threshold were instances
of low fitness (Figure 4C, Supplemental Figure 3C), but 5 low fitness samples appeared to have low
entropy as well (false positives). This result is likely a consequence of considering ‘raw’ co-variance
values, which leads to the appearance of spurious links in the network that do not reflect real links between
genes. Therefore, Model 2 may overestimate the number of links between genes. To correct for such
spurious links, regularization was applied on the inverse of the co-variance to obtain a sparse co-
transcriptional network. Note that this model (Figure 4A, Model 3) is equivalent to Model 1 if
regularization is very stringent (all links between genes are dropped), and equivalent to Model 2 if no
regularization is applied (all links are present). By adjusting the level of regularization, we show that
temporal entropy can reach an accuracy of 1 (Figure 4D, Supplemental Figure 3D, E, Supplemental Table

5), demonstrating the utility of this single feature in classifying fitness outcomes.

The time course experiments accurately capture a bacterium’s survival in a test environment, but they are
labor intensive and potentially expensive. Therefore, a single time point prediction model was trained, by
quantifying the variance of the DE magnitude distribution for all single time points as a measure of entropy

(Supplementary Methods, Equation 1). Similar to the temporal models, the only parameter that we fit was
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the threshold for entropy (in this case 2.07), which is the value that maximizes classification accuracy in
the training set. Analogous to the temporal models, low fitness is associated with higher entropy than high
fitness conditions (Figure 4E, Supplemental File 2). Importantly, cases of high and low fitness are better
separated at later time points (accuracy = 0.91 in the training and 0.92 in the test dataset) than at early
time points (accuracy = 0.74 in the training and 0.42 in the test dataset), indicating that time points from
the second half of the time course experiments are more characteristic of fitness outcome than those from
the first half (Figure 4F). Specifically, when applied on an independent test dataset, the single time point
entropy model led to 7 false positive predictions based on the early time points even though the
misclassified low fitness cases have a higher overall entropy than that of high fitness cases (Figure 4G).
This suggests that it is possible to successfully train an early time point-specific model if more training
data were used (Supplemental Figure 3A). In contrast, the single time point entropy predictor, with the
same threshold value of 2.07, performs very well for the late time points on the test dataset, misclassifying

only 1, that was very close to the threshold, out of 12 experiments (Figure 4G).

Entropy-based fitness predictions are strain, species and stress-type independent and can be used
to infer the antibiotic minimum inhibitory concentration (MIC).

To test if the entropy-based approach is generalizable and extends to other S. pneumoniae strains or other
species, a new RNA-Seq dataset was generated to predict fitness outcomes under ciprofloxacin exposure
for Salmonella Typhimurium, S. aureus, E. coli, K. pneumoniae and two additional S. pneumoniae strains
representing serotypes 1 and 23F (Supplemental Table 1). These five species represent both Gram-
negative and Gram-positive bacteria and cover a wide range of ciprofloxacin MICs (Figure SA). The
overall response characteristics are similar to what was observed for S. pneumoniae, with 120 minutes
exposure to 1pg/mL ciprofloxacin triggering an expansion of expression changes from bacterial cultures
having low fitness (S. Typhimurium and S. pneumoniae serotype 1), compared to those with high fitness
(S. pneumoniae serotype 23F, E. coli and K. pneumoniae) (Figure 5B). When exposed to a higher dose
of CIP (strain-specific 1xMICcrp) the organisms with lower CIP-sensitivity were shown to trigger an
increased number of expression changes with a wider magnitude, indicative of their lowered fitness at the
increased concentration (Figure 5B, S. pneumoniae serotype 23F, E. coli and K. pneumoniae). Next, each
transcriptional response was captured by an entropy calculation. Importantly, with the original threshold
of 2.07 we had calibrated with data from S. preumoniae in Figure 4, fitness outcomes could be predicted

for the new organisms with 100% accuracy, indicating that the amount of transcriptional disruption by
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antibiotics is a species-independent generalizable feature for fitness outcome. Therefore, entropy could be

visualized graphically (Figure 5B), and quantified to make high-accuracy predictions.

Interestingly, the entropy measurement of each strain was found to be inversely proportional to the MICcip
(Figure 5C), consistent with transcriptional disruption being proportional to stress sensitivity. The
correlation between entropy and ciprofloxacin sensitivity in Figure 5C (left panel) therefore implies that
the antibiotic sensitivity of any species could be predicted from its transcriptomic entropy. To test this,
entropy was calculated for Acinetobacter baumannii isolates that are either low (ATCC 17978) or high
(LAC-4) virulence, by collecting RNA-Seq profiles after 120 min exposure to 1pug/mL of ciprofloxacin.
Using a linear regression model, the ciprofloxacin MICs of the A. baumannii strains were predicted to be
0.04 and 10.45ug/mL, which are proximate to the measured MIC’s of 0.07 and 8.5ug/mL for ATCC 17978
and LAC-4, respectively (Figure 5D; Supplemental Figure 1D). This demonstrates that entropy can be
applied to determine antibiotic sensitivity for new species, and is not simply a binary indicator of fitness

outcomes.

To explore the applicability of entropy beyond nutrient and antibiotic stress, we performed entropy-based
fitness classification on a published collection of 193 M. tuberculosis transcription factor over-expression
(TFOE) strains (14). Upon TFOE, these strains exhibit fitness changes, ranging from severe growth
defects to small growth advantages (15). Over-expression of a single transcription factor can thereby exert
stress on the bacterium that can result in drastically different fitness outcomes. By calculating entropy
from whole-genome microarray data collected from each TFOE strain, using genome-wide DE under
inducing and noninducing conditions, it is possible to distinguish strains based on their fitness levels at an
accuracy of 0.78, using a newly trained entropy threshold for this dataset (Figure SE). This result
compares favorably with a more complicated approach involving the integration of each TFOE
transcriptional profile into condition-specific metabolic models (14). These data show that entropy has the
potential to be utilized as a strong and generalizable fitness prediction method for both antibiotic and non-

antibiotic stress, using different data types and a large variety of bacterial strains and species.

A systems-level view successfully predicts fitness and is less sensitive to noise from a single feature.
While the transcriptome-based entropy-approach is a strong predictor of fitness, it is a relatively coarse

method as it captures only a single organizational level of the response; the transcriptome. In most
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biological systems, changes occur across multiple levels, which are detected by alternative readouts, such
as identification of phenotypic changes resulting from mutations (16-21). Furthermore, entropy ignores
details present in the data, such as the type of stress and the functional roles of genes, that may increase
the accuracy or widen the applicability of the approach. For instance, within the transcriptomic data,
different gene sets show different levels of perturbation, as witnessed in S. pneumoniae T4, in which genes
in the category "Antibiotic Response and Sensing" show higher entropy than other functional categories
(Figure 6A, Supplemental Figure 4A). In contrast, essential genes are mainly down-regulated and
nonessential genes are evenly distributed as up- and down-regulated in the antibiotic challenge conditions

(Figure 6B, Supplemental Figure 4B).

In order to make use of these detailed observations, we assembled a set of 54 features that describe various
aspects of a response, the organism and the experienced stress. To this end, we considered the type of
stress, such as the MOA of an antibiotic, the phenotypic response to stress as characterized by Tn-Seq,
and the transcriptional response (Figure 7A; Supplemental File 3). This approach yields a large number
of features relative to the number of samples (54 features and 231 samples in the training set), so we
performed a round of feature selection using a regularized logistic regression model (Figure 7A). The six
most informative features (described in Supplemental Methods) were used to train an SVM that is able to
classify the fitness outcomes with high accuracy, by setting a threshold in which a probability >0.5
translates to high fitness, and probability <0.5 to low fitness (Figure 7B, Supplemental File 2,
Supplemental Figure 4C). Importantly, accurate predictions could be made at both early and late time
points for antibiotics that triggered a fast transcriptomic response, as low and high fitness outcomes were
well-separated as early as 20 min after rifampicin exposure and 30-45 min after vancomycin exposure
(Figure 7B). For other antibiotics, accurate predictions could only be made at later time points. For
example, kanamycin treatment resulted in false positives up to and including 120 min, possibly due to a
slow transcriptional response to this drug (Figure 7B; Supplemental Figure 2A, D, E -Kanamycin). The
primary advantage of this model is that it provides less ambiguous predictions compared to the predictive
models based solely on transcriptional entropy, with the prediction probability following a bimodal
distribution that has very few cases near the threshold (= 0.5) in the training or independently generated
test sets (Figure 7C). Furthermore, in the test set all misclassified cases are at the early (30 min) time
point, while 100% of the late time points (120 min) are classified correctly (Figure 7D). This classifier

(test set accuracy = 0.5 and 1 in early and late time points respectively) outperformed the single-time point
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entropy classifier (test set accuracy = 0.42 and 0.92 in early and late time points respectively). Thus, by
increasing data resolution and including multiple data sources, a highly accurate model is achieved that is

robust to noise from a single data source.
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Discussion

A major goal of this work was to determine if there is a quantifiable feature in the bacterial environmental
response that can accurately predict fitness in that environment that is independent of strain, species or
the type of stress. To be generalizable, the selected feature needs to be common across species and
environments. By generating a large experimental dataset we discovered that such a feature exists, namely
transcriptomic entropy, which represents the level of transcriptional disruption that occurs in a system
while responding to the environment. Centering on entropy, we develop a suite of statistical models that
vary in their complexity and that accommodate different types and amounts of input data enabling
predictions on the MOA of a stress, the fitness outcome of bacteria in a variety of different environments,

and the MIC.

The developed fitness prediction models differ in approach and input data required. The first model
extracts a small set of informative features from genome-wide transcriptional profiling data (i.e. a gene
panel). Although we have shown previously that phenotypic change and expression change rarely overlap
on the same genes, there are cases in which a gene can be simultaneously transcriptionally and
phenotypically important under a stressful condition (16). Indeed, several members of the fitness gene
panel are required for bacterial growth. For example, inhibition of the essential cell division gene f¢sZ has
been shown to cause growth inhibition of MRSA (22). Among the non-essential genes, transposon
insertion mutants in SP_0929, SP 0589 and SP_ 1856 resulted in a significant fitness decrease in the
presence of multiple antibiotics (LVX, TET, CIP, CEF and RIF; Supplemental File 1). Therefore, further
characterization of the genes in this panel might reveal potential antimicrobial targets. Second, by applying
a first-principle approach, a single feature (entropy) is defined to capture an intuitive property of a
transcriptome: the extent of perturbation. Since entropy does not rely on responses in specific genes,
entropy-based models extend beyond a single species. Moreover, the single timepoint entropy can be used
in a regression model, offering a finer resolution by predicting the level of sensitivity to a particular stress
(in this case ciprofloxacin) as well. Finally, a third approach is a data-driven one, in which genome-wide
data across multiple biological systems were utilized (i.e. SVM for fitness prediction). Importantly, all
three types of fitness prediction models underscore that a bacterium’s fitness phenotype is predictable,
and accurate predictions can be made in multiple pathogens independent of the mechanisms of stress,

including different classes of antibiotics and nutrient depletion.
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By demonstrating the feasibility of predictions of fitness outcomes and antibiotic sensitivity, we believe
this work could provide novel opportunities to contribute to infectious disease diagnostics such as
antibiotic susceptibility testing (AST). Although AST can be completed in a relatively short amount of
time for many pathogenic species, it remains a lengthy process for slow-growing species such as M.
tuberculosis (23). Therefore, it is desirable to be able to predict the fitness outcome of such slow-growing
species as early as possible, for instance using RNA expression data. RNA-based detection has previously
been applied to correlate antibiotic susceptibility with the expression of several genes (5, 6, 24). However,
due to variability in gene-homology, such approaches can rapidly become species specific, and even when
a gene is present, the way it responds to a stress might not be the same. For instance, among the nine
strains and species we sampled here, the presence/absence of gene’s in the 10-gene panel for fitness
predictions and their expression profiles are highly variable (Supplemental Figure 5A). Additionally, a
published E. coli ciprofloxacin sensitivity panel is highly specific for that species due to variability in
presence/absence and expression patterns (Supplemental Figure 5B; (5)). This indicates, that gene-panel
approaches may indeed quickly become strain, species and stress-type dependent. In contrast, we show
that entropy-based fitness predictions are independent of gene homology, which allows for
generalizability across different species under various stress-types (i.e. antibiotics, nutrient depletion and
transcription induction). Second, rather than being a binary prediction method, entropy can be applied to
predict the level of antibiotic sensitivity in a species-independent manner, which is useful to determine a
bacterium’s level of susceptibility to an antibiotic without performing possibly more extensive growth-
based assays or identifying the resistance genes or mutations by whole-genome sequencing. Importantly,
we show that MIC predictions can be achieved by profiling the transcriptome of a bacterium at a single
time-point and a single concentration of an antibiotic, requiring little prior knowledge of antibiotic MOA
or direct targets in the tested species. Our entropy-based antibiotic sensitivity prediction could therefore

contribute to improving the speed and generalizability of existing AST methods.

Since transcriptional entropy captures information at a single level, several improvements could be
implemented to potentially enhance the fitness prediction model. We show that some antibiotics trigger a
faster response while some trigger a slower response (Supplemental Figure 2A, D, E). Consequently, it
would make more sense to apply a fitness-predictor to the transcriptomic profile at a later timepoint for
antibiotics that trigger a slower response such as kanamycin; but an earlier timepoint can be used for

antibiotics such as rifampicin. Knowing (or predicting) the type of antibiotic being used can therefore
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inform when to use a fitness predictor, i.e. fitness predictions can potentially be enhanced when the MOA
and fitness predictors are used in tandem. As indicated by the data-driven complex feature model, fitness
predictions are improved when fine-grained information on the bacterial stress response is included.
Additional types of data as well as the consideration of more features may thus improve fitness predictions
through the inclusion of more detailed information. Thus, by gathering and integrating information
pertaining to the host environment, for instance by simultaneous transcriptomic profiling via dual RNA-
Seq(25) and cytokine profiling of the host response, our model might be able to infer and monitor disease

progression in vivo.

To conclude, with entropy we present a novel concept that is independent of gene-identity, gene-function,
and type of stress, and can be applied as a fundamental building block for generalizable statistical models

that accurately predict bacterial fitness and MICs for Gram-positive and negative species alike.
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Figure 1. Transcriptional responses separate antibiotics with different mechanisms of action
(MOA’s).

A. Project setup and overview. Wildtype and adapted strains of S. pneumoniae were exposed to different classes of
antibiotics, and their fitness outcomes were determined from growth curves. Temporal RNA-Seq data was used to
train models that predict the MOA of an antibiotic, and the fitness outcome of a strain. The concept of entropy is
developed expanding predictions on fitness to other strains and species and non-antibiotic conditions. CWSI (cell
wall synthesis inhibitors): PEN — penicillin, VNC — vancomycin, CEF — cefepime; DSI (DNA synthesis inhibitors):
CIP — ciprofloxacin, LVX — levofloxacin; RSI (RNA synthesis inhibitor): RIF — rifampicin; PSI (protein synthesis
inhibitors): KAN — kanamycin. TET — tetracycline. B. Principal component analysis (PCA) of differential
expression datasets (log2FoldChange of +/- antibiotic) from sensitive strains depicts antibiotic responses as largely
distinct temporal transcriptional trajectories. C. Pairwise distances between PCA trajectories (see Supplementary
Methods). Transcriptional trajectories to drugs within the same MOA are similar and tend to cluster together
indicated by k-means clustering. D. Heatmap of differential expression of an 8-gene panel. Dendrogram shows
antibiotic MOA’s can be well separated by differential expression of this gene panel. E. Antibiotic MOA prediction
by a support vector machine (SVM) trained on differential expression profiles of the 8-gene panel in a training set
(Train) and test set (Test). Color intensity is proportional to the number of predictions.
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Figure 2. A transcriptional response separates bacteria with different sensitivities to the same
antibiotic.

A. A schematic illustration of temporal RNA-Seq sample collection (i) and data processing (ii-iv) on stress-sensitive
wild-type (WT) and stress—insensitive adapted strains (AD), which are obtained through experimental evolution of
the WT strains. Magnitude distribution of genome-wide differential expression is compared between each pair of
WT and AD strains (ii). Genes in the S. preumoniae genomes are divided over 23 gene function categories (see
figure legend). Kullback-Leibler divergence (KLD) of gene function distributions between genes with significant
expression changes and function distribution of all genes present in the genome (iii). A similar function distribution
to the genome is indicated by a low KLD value, e.g. T4-VNC(1xMIC)-45min, while a dissimilar function
distribution is indicated by a high KLD value, e.g. VNC-adapted T4-VNC(1.5xMIC)-45min (iv).

B. The magnitude of genome-wide differential expression (indicated as log2FoldChange Antibiotic/NDC (no drug
control)) shows significantly wider distributions in antibiotic-sensitive strains (wtTIGR4 and wt19F) compared to
antibiotic-adapted strains in the presence of vancomycin (a cell wall synthesis inhibitor; CWSI) and rifampicin (an
RNA synthesis inhibitor; RSI), respectively in a Kolmogorov-Smirnov test. *: 0.001<p<0.05; **: 0.0001<p<0.001;
**%: p<0.0001. See Supplemental Figure 2D, E for other antibiotics. All histograms are on the same scale of -6 to
6. C. AD have a significantly higher KLLD than WT in the presence of antibiotics or absence of D39-essential
nutrients in an unpaired t-test.
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Figure 3. A 10-gene panel predicts fitness outcomes of S. pneumoniae under antibiotic and nutrient
stress.

A 10-gene panel is generated by logistic regression on 231 RNA-Seq profiles collected from antibiotic exposure or
D39-essential nutrient depletion conditions in stress-sensitive and stress-insensitive strains. Log2fold change (+/-
stress) of the 10-gene panel for fitness is indicated by the heat-map color gradients, which separates high fitness
(blue in the ‘Fitness’ bar) from low fitness (red) in a training (A.) and test set (B.). C. Differential expression of
each gene in the gene panel is depicted as a radar plot, showing a clear difference between low (red) and high (blue)
fitness outcomes. Presence and absence of each gene in the S. pneumoniae fitness panel (D.) or E. coli ciprofloxacin
sensitivity panel (E; (5)) in six pathogenic species is first determined by protein BLAST based on three criteria:
query coverage > 50%, E value < 1E-50 and percent identity > 30%, indicating that genes in a gene panel are poorly
conserved and thus might suffer a limited generalizability across multiple species. S.pn: S. pneumoniae, E.c: E. coli,
S.Ty: S. Typhimurium, S.a: S. aureus, K.p: K. pneumoniae, A.b: A. baumannii


https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

bioRxiv preprint doi: https://doi.org/10.1101/813709; this version posted October 22, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Temporal Prediction - 4 ,
1. Calculate variance of log2Fold Fitness: | a0l [ 2 T A2 T T T T T T T
- 9 .| [Lowss High m 2o 7 =
Change over time for each gene -21 |Entropy threshold: x-axis B /4 B
in 29 temporal RNA-Seq experi- g -2 T
ments. ]
-
> c
g 2
< c Fitness outcome [
: o g Low High £
2. Calculate entropy g S| Low ®
Model 1. Independent model (corresponding to B.) g— -5 ngh L o] 19] @
Assumption: expression of all genes is independent. Accuracy: 0.9655 n
()
Entropy calculatlonmm, a1 = Zln 2no?) = 95% Cl: (0.8224, 0.9991)
g 4 strain 1 gene 1 (') 10 2'0 3'0 -
22 s Number of temporal experiments 0 100 200 0 100 200 0 100 2000 100 200
T o] o, 302 Time (min)
£ genes Fitness: ‘ Test data-set
g gened C. —Low —High
£ . --- Entropy threshold
3 genen
2 Rk
time (min) post antibiotic treatment -75000-
Model 2. Full dependent model (corresponding to C.) F 3{Early time points
Assumption: expression of all genes is dependent. -78043.64
Entropy calculationHeemporar 2 = In(11) wain 3 a, I II - 1
_  strain2 5 strain 2
\ 2. gene 1 o -800004 o .
. nes ene Z Fitness outcome @ E 1 Accuracy: 0.72
£ 5] S L i o) o
Io = 2 ow__High
wsmed | SlLow [[10] 0 | S E=
§ 7
*7 8 850001 Blign ssg)
59 & \gores gene 8 GE, Accuracy: 0.8276 o “E’ Late time points
o E;“"ii"nii,?‘ééinmmen{ 1020304560% . T 22 O (05125 00119) % o 2
ime (min) pos
0 10 20 30 =)
Model 3. Regularized dependent model Number of temporal experiments = c% Accuracy: 0.91
(corresponding to D.) 0
Assumption: expressnon of some genes is dependent.
Entropy calculationHemporar s = In(121) D -2
of,‘.o - @ zo
,A. . .
510 @ 4] 30min 4] 120min
>
g
oie ~o 2 5 £
® 19 ) Q 5 2 2l
= 2100 Fitness outcome 72—
c S P r— 5 C
[0} S Low__High © =
3. Threshold entropy values and scan for the ° Bl Low 10T 0 = I
threshold with fewest errors. © 3. T o
< 5 Elnigh [ 0 [ 19 = E O 0]
Entropy > threshold: predicted low fitness | £ 2000+ Accuracy: 1 b ‘q‘)’
ze ° . i 95% Cl: (0.8806. 1), = 35 f
& <Entropy threshold 0 10 20 30 (‘/—:) 5| Accuracy: 0.42 2 Accuracy: 0.92
“ Entropy < threshold: predicted high fitness Number of temporal experlments 000000000000 550050500500
" Strains: . .

Conditions: [GEE [TET]

Figure 4. Temporal and single time point entropy calculated from a transcriptional response
predicts high and low fitness outcomes.

A. Illustration of the three temporal entropy models (Models 1-3) that are applied on 29 temporal RNA-Seq
experiments. B.-D. Temporal fitness prediction is shown as a ranked plot of entropy in each temporal RNA-Seq
dataset. The y-intercept indicates the entropy threshold, i.e. entropy higher than threshold is predicted as a low
fitness outcome; entropy lower than threshold is predicted as a high fitness outcome. A confusion matrix is
generated for each model by comparing to the actual fitness outcome (High/low fitness: cyan/red bars). E. Single
time point entropy is calculated from differential expression of all genes in an experiment at one time point and
plotted against time post-stress exposure (presence of antibiotics — CEF, CIP, DAP, KAN, LVX, PEN, RIF, TET,
VNC, or absence of nutrients — Glycine-GLY, Uracil-URA, Valine-VAL). Dashed red line indicates the entropy
threshold for this model. Training and test sets are indicated by grey or blue borders respectively. Fitness prediction
is performed at each single time point (231 data points) in the 29 temporal experiments as the training set (F.), and
validated by an independent set of single time point RNA-Seq experiments as the test set (24 data points; G.). In
both training (F.) and test (G.) datasets, fitness prediction is more accurate from late time points than early time
points indicating late time points are more characteristic of a strain’s fitness outcome.
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Figure 5. Entropy based fitness predictions extend to multiple species under antibiotic and non-
antibiotic stress.

A. Six strains representing 5 species are ranked from low to high ciprofloxacin minimal inhibitory concentrations
(MICcrp) tested by growth curve assays. The multi-species CIP RNA-Seq is performed at two CIP concentrations:
1) 1pg/mL for all 6 strains corresponding to 2 low fitness outcomes (red squares) and 4 high fitness outcomes (cyan
squares); 2) MICcrp for strains that are insensitive to 1ug/mL of CIP, i.e. S. pneumoniae serotype 23F, S. aureus
UCSD Mn6, E. coli AR538, and K. pneumoniae AR497, corresponding to 4 additional low fitness outcomes.

The number of genes that change in expression upon exposure to 1 ug/mL CIP (Jlog2FoldChange[>1 and p-adj<0.05)
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as well as their change in magnitude is inversely correlated to their CIP sensitivity (B.) and their entropy (C.).
Additionally, strains with MICcpp higher than 1pg/mL revert to triggering a large number of differential expression
genes (B.) and a high entropy (C.) at their respective 1xMICcrp.

D. Using a linear regression model (black line; error band: 95% CI), MIC’s are predicted for 4. baumannii strains
ATCC 17978 and LAC-4 based on their entropy at 1pug/mL of ciprofloxacin. The predicted (black) and measured
(red) MIC for the two strains are similar for both strains. See Supplemental Figure 1D for MIC determination for
A. baumannii ATCC17978 and LAC-4.

E. Entropy calculated from transcriptional profiles of 193 M. tuberculosis transcription factor over-expression
(TFOE) strains separates strains with a >30% fitness defect upon TFOE induction (red) from strains with a fitness
advantage or <30% fitness defect upon induction (cyan). At the threshold of 0.71 (red dotted line), fitness outcomes
are correctly predicted at an accuracy of 0.78.
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527  Figure 6. Detailed features can be extracted from transcriptomic responses of strains with low and
528  high fitness outcomes.

529

530 A. The entropy of a transcriptional response can be split by gene function to indicate the level of transcriptional
531  perturbation in each cellular system. AA: amino acid metabolism, CP: capsule metabolism, CB: carbohydrate
532  metabolism, CW: cell wall metabolism, CV: cofactors and vitamin metabolism, EN: energy metabolism, LP: lipid
533  metabolism, NT: nucleotide metabolism, VA: various metabolism, DR: DNA repair, FSD: folding, sorting and
534  degradation, ME: mobile elements. RP: replication, TC: transcription, TL: translation, MT: membrane transport,
535  ST: signal transduction, AS: antibiotic sensing, CD: cell division, CGD: cell growth and death, CC: cellular
536  community, SP: structural proteins. B. Essential genes tend to be significantly more down-regulated compared to
537  non-essential genes in stress-sensitive strains (wt-T4; unpaired t-test, *: 0.001<p<0.05; **: 0.0001<p<0.001; ***;
538  p<0.0001).
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Figure 7. A systems-level view of the bacterium further improves fitness predictions.

A. Illustration of the construction of a complex feature classifier (CFC) in three main steps: 1) assembly of all input
features, 2) feature selection and 3) SVM-based fitness predictions.

B. Prediction probabilities generated by the CFC are plotted at each time point for strains with high fitness (cyan
line) and low fitness (red line) in the presence of KAN, LVX, RIF, and VNC. A probability higher than the threshold
(0.50; red dotted line) is predicted as high fitness; while a predictor lower than the threshold is predicted as low
fitness.

C. Performance of the CFC on training and test datasets is shown as frequency distributions of prediction
probabilities separated by actual fitness outcomes and the corresponding confusion matrices.

D. High (cyan) and low (red) fitness outcomes are mostly well separated by the CFC predictor at the threshold of
0.50. Similar to the single time point entropy model (Figure 3), fitness prediction by the CFC achieves a much
higher accuracy of 1.0 at late time points compared to early time points.
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