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Abstract 33 

Genes implicated in bacterial stress responses have been used to construct models that infer the growth 34 

outcome of a bacterium in the presence of antibiotics with the objective to develop novel diagnostic 35 

methods in the clinic. Current models are trained on data specific to a species or type of stress, making 36 

them potentially limited in their application. It is unclear if a generalizable response-signature exists that 37 

can predict bacterial fitness independent of strain, species or type of stress. Here we present a substantial 38 

RNA-Seq and experimental evolution dataset for 9 strains and species, under multiple antibiotic and non-39 

antibiotic stress conditions. We show that gene panel-based models can accurately predict antibiotic 40 

mechanism of action, as well as the fitness outcome of Streptococcus pneumoniae in the presence of 41 

antibiotics or under nutrient depletion. However, these models quickly become species-specific as gene 42 

homology is limited. Instead, we define a new concept, transcriptomic entropy, which we use to quantify 43 

the amount of transcriptional disruption that occurs in a bacterium when responding to the environment. 44 

With entropy at the center, we train a suite of predictive (machine learning) models enabling generalizable 45 

fitness and antibiotic sensitivity predictions. These entropy-based models that predict bacterial fitness are 46 

validated for 7 Gram-positive and -negative species under antibiotic and non-antibiotic conditions 47 

indicating that transcriptomic entropy can be used as a generalizable stress signature. Moreover, rather 48 

than being a binary indicator of fitness, an entropy-based model was developed and validated to predict 49 

the minimum inhibitory concentration of an antibiotic. Lastly, we show that the inclusion of a varied-set 50 

of multi-omics features of a bacterial stress response further enhances fitness predictions by reducing 51 

ambiguity. By demonstrating the feasibility of generalizable predictions of bacterial fitness, this work 52 

establishes the fundamentals for potentially new approaches in infectious disease diagnostics, including 53 

antibiotic susceptibility testing.  54 
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Significance statement 55 

Accurate predictions of bacterial fitness outcome could potentially have clinical diagnostic value, such as 56 

predicting optimum antibiotic choice and dosage for treating infectious diseases. Existing models of 57 

fitness predictions rely mainly on gene panel approaches, which may be species- and stress-specific due 58 

to a lack of gene and response conservation. In order to overcome this limitation, we generated a 59 

substantial experimental dataset and identified entropy as a universal stress response signature that 60 

quantifies the level of transcriptional disruption that is indicative of fitness outcome under a stressful 61 

condition. We present and validate for Gram-positive and negative species a suite of entropy-based models 62 

that enable accurate predictions of fitness outcome and the level of antibiotic sensitivity in a species and 63 

stress-type independent manner.  64 
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Introduction  65 

It is generally assumed that in order to overcome a stress, bacteria activate a response such as the stringent 66 

response under nutrient deprivation (1) or the SOS response in the presence of DNA damage (2). 67 

Measuring the activation of a specific response, or genes associated with this response, can thereby 68 

function as an indicator of what type of stress is occurring in a bacterium. For instance, lexA, encoding a 69 

master regulator of the SOS response in Escherichia coli and Salmonella (3, 4) is upregulated in response 70 

to fluoroquinolones, indicative of the DNA damage resulting from this class of antibiotics (4). Moreover, 71 

genes implicated in a stress response can help construct statistical models for predicting growth outcomes 72 

under that stress. For instance, gene panels have been assembled from transcriptomic data to predict 73 

whether E. coli can successfully grow in the presence of antibiotics such as ciprofloxacin (5-7).  74 

 75 

While a defined stress-response or a gene-panel can be valuable in identifying the type or sensitivity to a 76 

stress, there are several complications that make one-to-one implementation across strains, species or 77 

environments difficult. For instance, responses such as the stringent or SOS response are only well defined 78 

in a small number of species, genes in a gene-panel may not be conserved across strains or species, and 79 

responses are not necessarily regulated in the same manner in different strains or species (8, 9). This lack 80 

of well-characterized and/or conserved responses limits the potential generalizability of existing models 81 

that attempt to predict stress sensitivity across strains and species. Therefore, identification of a universal 82 

stress response signature would allow for the development of generalizable predictive models that work 83 

for any species under any condition. There is not, however, a generally agreed upon stress response 84 

signature. 85 

 86 

We previously showed that a stress response can be captured on at least two organizational levels; with 87 

RNA-Seq genome-wide transcriptional changes upon an environmental perturbation can be described, 88 

while transposon-insertion sequencing (Tn-Seq) characterizes the phenotypic importance of a gene, i.e. a 89 

gene’s contribution to fitness in a specific environment, on a genome-wide scale (16-21). Direct 90 

comparisons of data obtained from these approaches revealed that genes that change in transcription are 91 

poor indicators of what matters phenotypically (16). In other words, phenotypically important and 92 

transcriptionally important genes rarely overlap (16). However, when integrated into a network, 93 

coordinated patterns between these data-sets surface when the organism is challenged with an 94 

evolutionarily familiar stress (i.e. one that has been experienced for many generations), while the response 95 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813709doi: bioRxiv preprint 

https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/


becomes less coordinated when the bacterium is challenged with and responds to a relatively new stress, 96 

for instance antibiotics (16). This suggests that a stress signature may exist that is indicative of the degree 97 

to which a bacterium is adapted to a specific stress and is able to overcome the challenge. To determine 98 

whether such a signature exists and whether it is universal we generated and mined a substantial 99 

experimental dataset for the bacterial pathogen Streptococcus pneumoniae. We first demonstrate that both 100 

an antibiotic’s MOA and the bacterium’s fitness under antibiotic or nutrient pressure can be predicted by 101 

expression profiles from two distinct small gene-panels. However, these panels are limited to strains and 102 

species sharing high sequence and response homology. Instead, we develop the concept of entropy and 103 

build a suite of predictive models that accurately predict a bacterium’s fitness outcome under various 104 

nutrient, antibiotic and transcriptional perturbation conditions. Moreover, entropy is quantitatively 105 

correlated with the level of antibiotic sensitivity, enabling MIC predictions. We show the universality of 106 

entropy by validation experiments with 7 Gram-negative and -positive pathogenic species. We further 107 

demonstrate that entropy-based models can be improved in accuracy when different data-types are 108 

combined into a Support Vector Machine. Overall, we develop a large new experimental dataset, a novel 109 

species-independent stress-response concept and a suite of predictive models that accommodate different 110 

amounts and types of data to enable generalizable fitness predictions and antibiotic sensitivity. 111 

 112 

  113 
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Results 114 

Antibiotic transcriptional responses are distinguishable based on mechanisms of action. 115 

To determine if the transcriptional responses to antibiotics were dependent on their mechanisms of action, 116 

the TIGR4 (T4) and Taiwan-19F (19F) strains of Streptococcus pneumoniae were grown in the presence 117 

or absence of 1x the minimum inhibitory concentration (MIC) of 9 antibiotics representing 4 mechanisms 118 

of action (MOA’s).  These include cell wall synthesis inhibitors (CWSI), DNA synthesis inhibitors (DSI), 119 

protein synthesis inhibitors (PSI) and RNA synthesis inhibitors ((RSI); Figure 1A, Supplemental Tables 120 

1, 6). Each strain was exposed to each antibiotic for 2 to 4 hours and cells were harvested for RNA-Seq at 121 

various time points after antibiotic exposure. Previous models have predicted bacterial fitness of 122 

Escherichia coli exposed to specific stressful conditions by relying on differential expression of selected 123 

small gene sets (5-7). Before we set out to determine whether a generalizable feature can predict fitness 124 

across a variety of stress types, we  first established if a small gene set can predict the MOA of an antibiotic 125 

and/or fitness of S. pneumoniae (Figure 1A). Principal component analysis (PCA) was performed on the 126 

complete differential transcription datasets, and this indicated that temporal transcriptional responses to 127 

drugs within the same MOA tended to follow similar trajectories over time (Figure 1B, C).  128 

 129 

To infer MOA’s from the transcriptional profiles, a regularized logistic regression was used for unbiased 130 

feature selection. Since, the number of genes available to use as features far exceeds the number of RNA-131 

Seq experiments this results in a high risk of overfitting, which can be overcome by strong regularization. 132 

As previous gene-panel models have used up to 9 genes in any one panel (5, 6), we set the regularization 133 

strength such that up to a total of 10 genes would be selected, with at least one gene for each MOA. This 134 

reduced the data to a set of 8 genes (2 selected for CWSI, 3 for DSI, 2 for PSI and 1 for RSI) that maximally 135 

separate the MOA’s (Figure 1D, Supplemental Tables 2, 3). Notably, several genes in this panel and their 136 

differential transcription patterns are functionally related to the antibiotics’ MOA. First, up-regulation of 137 

the repair DNA polymerase I (SP_0032) is predictive of a DSI which causes double stranded breaks by 138 

trapping DNA topoisomerase IV and DNA gyrase. Second, increased transcription of RNA polymerase 139 

subunit D (SP_1073) predicts a response to the transcription inhibitor rifampicin (RSI) and may also 140 

represent a feedback response to rifampicin to maintain transcription levels.  Third, the PSI kanamycin 141 

drastically increases transcription of clpP (encoding a subunit of Clp protease) by 270-fold and 137-fold 142 

in T4 and 19F, respectively. Aminoglycosides cause protein mistranslation, which leads to protein 143 

aggregate formation that could be relieved by Clp protease (10).  A similar response to PSI was observed 144 
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in B. subtilis (11), indicating that this may be diagnostic of a cellular response to remove mistranslated 145 

proteins.  Finally, in the presence of CWSI there is up-regulation of the two-component system CiaRH 146 

(ciaR (SP_0798)), which has been associated with preventing lysis triggered by CWSIs in S. pneumoniae 147 

(12, 13). In addition to these genes that are clearly connected to a specific MOA, the panel contains genes 148 

with less clear connections with the MOA, i.e. SP_2107 (maltose metabolism), SP_2141 (glycosyl 149 

hydrolase-like protein), SP_0021 (deoxyuridine 5’-triphosphate nucleotidohydrolase) and SP_2229 (Trp 150 

tRNA synthetase) that allow the set to distinguish MOAs. The presence of such genes, along with well-151 

characterized genes relevant to the MOA confirms that the gene panel selection is unbiased and 152 

independent of gene function annotations.  153 

 154 

To enable MOA predictions from expression data without prior knowledge of the antibiotics used, the 8-155 

gene panel profiles were used to train a support vector machine (SVM) that classifies the MOA of the 156 

antibiotic, which resulted in accurate prediction of MOAs (0.92) (Figure 1E - Train). The SVM was 157 

validated using an independent transcriptional data-set collected from T4 and 19F treated with cefepime 158 

(CEF), tetracycline (TET) and ciprofloxacin (CIP; Figure 1E - Test, Supplemental Table 1), resulting in 159 

an accuracy of 0.75 (random chance results in an accuracy of 0.25). The lower accuracy in the test set 160 

(compared to the training set) is mostly due to misclassification of ‘early’ exposure time points or 161 

confusion of the model between the PSI and RSI MOA (Supplemental Notes), which can also be seen in 162 

the close resemblance between the RSI and PSI PCA trajectories (Figure 1B). From a biological 163 

perspective, this similarity is likely due to the closely related cellular functions blocked by the two MOAs 164 

(i.e. transcription and translation). 165 

 166 

Low and high fitness outcomes after antibiotic exposure or nutrient deprivation of S. pneumoniae 167 

can be represented by a single 10-gene signature. 168 

As T4 and 19F are susceptible to most antibiotics used, the transcriptional profiles in the presence of 169 

antibiotics mostly represent cases of low fitness (Figure 2A, sensitive strain, 1xMICWT). Besides the 170 

MOA-specific responses, we hypothesized that there may also be a single signature of low fitness 171 

outcomes that can be extracted from the transcriptional profiles. In order to find patterns that differentiate 172 

fitness outcomes (presence or absence of growth in a particular environment), we generated strains with 173 

increased fitness in the presence of antibiotics through serial passaging wildtype T4 and 19F in the 174 

presence of increasing amounts of antibiotics. Four independent populations for each strain were selected 175 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813709doi: bioRxiv preprint 

https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/


on individual antibiotics to a point that they would grow at 1.5xMIC of the wildtype strain, albeit with a 176 

small growth defect (Supplemental Figure 1A, B). To identify signatures of fitness, the wild type and 177 

adapted clones were exposed for 2 to 4 hours to 1x and 1.5-2xMIC of the antibiotics used for adaptation, 178 

followed by RNA-Seq at different time points after exposure (Figure 2A, Supplemental Figure 1A). In 179 

parallel, RNA-Seq was performed on S. pneumoniae strains D39 and T4 in a chemically defined medium, 180 

and media from which either uracil, Glycine or L-Valine was removed.  This allowed for the identification 181 

of a common stress signature that applies to nutrient deprivation as well, as these nutrients are essential 182 

for D39 but not T4. Lastly, D39 was adapted to grow in the absence of each individual nutrient, after 183 

which RNA-Seq was repeated for adapted clones (Supplemental Table 1 lists all 24 strains, 67 populations 184 

and 6 species, and 267 RNA-Seq experiments; visualizable and explorable online at 185 

http://bioinformatics.bc.edu/shiny/ABX). 186 

 187 

To determine whether specific transcriptional differences exist that distinguish a strain that successfully 188 

grows in a particular environment (high fitness) from one that does not (low fitness), the dataset was split 189 

into stress-sensitive and stress-insensitive (e.g. adapted) groups. This approach identified three 190 

transcriptional patterns. First, an unadapted, stress-sensitive strain tends to trigger a greater number of 191 

transcriptional changes at 1xMIC or during nutrient deprivation compared to an adapted strain 192 

(Supplemental Figure 2A-C). Second, in response to antibiotic or nutrient deprivation stress, the 193 

magnitude of transcriptional changes in the stress-sensitive strains shows a broad distribution over time 194 

compared to the adapted strains, indicating that there is extensive genome-wide transcriptional change in 195 

sensitive strains (Figure 2A, B; Supplemental Figure 2D-F). Finally, stress-sensitive strains have a 196 

significantly lower Kullback-Leibler divergence (KLD) relative to adapted strains, indicating higher 197 

similarity of differentially expressed (DE) genes compared to the distribution of the entire genome. A 198 

lower KLD therefore indicates a similar function distribution in DE genes and the genome, which can be 199 

interpreted as a lack of functional enrichment in the differentially expressed genes (Figure 2A, C). 200 

 201 

Logistic regression was used on the training part of the RNA-Seq dataset (231 experimental conditions; 202 

Supplemental Table 1) to identify a gene panel that could accurately separate stress-sensitive from stress-203 

insensitive responses in a strain- and environment-independent manner. Similar to the selection of the 204 

MOA-prediction gene panel, regularization was applied such that the number of genes used did not exceed 205 

10. This resulted in a 10-gene-panel (Supplemental Tables 2, 3) that is able to separate and predict low 206 
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and high fitness outcomes with an accuracy of 0.91 for the training set (Figure 3A) and 0.83 for the 207 

independent test set (Figure 3B, Supplemental Table 4; see Supplemental Notes for details on 208 

misclassifications). These 10 genes showed similar DE patterns in low fitness outcomes in all the tested 209 

strains and environments, and remained mostly unchanged in high fitness outcomes (Figure 3C). The 210 

functions of these genes include cell division (ftsZ; SP_1666), metal ion transport (SP_1857 and 211 

SP_1869), competence (SP_0955), cell surface protein (SP_2201), transcriptional regulation (SP_1856 212 

and SP_1800), translation (SP_0929) and metabolism (SP_1478 and SP_0589). Unlike the MOA gene 213 

panel, genes in the fitness gene panel are not obviously related to the antibiotics or depleted nutrients, but 214 

may be pointing to a more general stress-response. 215 

 216 

Transcriptional responses can be captured by entropy, a generalizable feature for fitness 217 

predictions.  218 

Although the gene panel-based fitness predictions show high accuracy for the tested conditions in S. 219 

pneumoniae, it is unlikely that a small gene panel model is able to predict fitness outcomes for a wider 220 

variety of conditions or for multiple species. Indeed the 10 S. pneumoniae genes that indicate fitness 221 

outcomes are poorly conserved in E. coli, Salmonella Typhimurium and 3 ESKAPE species, including 222 

Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus (Figure 3D). Similarly, 223 

only 3 out of 5 genes in a published E. coli ciprofloxacin sensitivity gene panel are present in all 6 species, 224 

indicating that a gene panel approach is limited in its generalizability ((5); Figure 3E).   225 

 226 

Our analysis indicates that in low-fitness cases, there is a corresponding disruption in transcriptional 227 

regulation compared to a high-fitness scenario. To explore this idea, we leveraged the concept of entropy 228 

to quantify the extent of transcriptomic disruption triggered by a stress. Using the information theory 229 

definition of entropy, this concept captures the amount of chaos in a system, implemented here by 230 

quantifying the variance in differential expression that occurs over time under stress conditions in a gene 231 

or a collection of genes. (Figure 2B, Supplemental Figure 2). Our dataset contains 29 detailed RNA-Seq 232 

time course experiments for which entropy was calculated initially by taking each gene in the system as 233 

an independent entity (Figure 4A, Model 1). The average of the extent of transcriptional perturbation 234 

across all genes in the genome was quantified by defining entropy as the average of the variance in 235 

differential expression over time for all genes (Supplemental Methods, Equation 2; Figure 4A, Model 1). 236 

To enable predictions, a model based on this single feature was trained by finding just one scalar number, 237 
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a threshold for entropy, to distinguish high fitness (below threshold) from low fitness (above threshold) 238 

(Figure 4B, Supplemental Figure 3B). This model performs well, with only 1 false negative, i.e. a sample 239 

with high fitness having an entropy value above the threshold (Figure 4B), but it assumes that each gene 240 

behaves independently. This assumption does not capture biological complexity, as many genes co-vary 241 

in expression, which can lead to over-estimating entropy if these dependencies are not accounted for.  242 

 243 

To correct for co-variances in expression and their potentially confounding effects, we consider a gene 244 

co-expression network, where, if the transcription of two genes have high co-variance, these genes are 245 

connected. While the underlying co-transcriptional network is unknown for S. pneumoniae, it can be 246 

inferred using the available temporal RNA-Seq data by computing the inverse of the co-variance matrix 247 

of transcriptional changes among all gene pairs. This approach yielded a complete network, in which all 248 

possible links between gene pairs were present and weighted by the co-variance values. This is equivalent 249 

to considering the differential expression of all genes from all time points to be a multivariate Gaussian 250 

distribution with as many dimensions as there are genes (Supplemental Methods; Equation 3). We 251 

computed entropy for this multivariate distribution and set the appropriate threshold for separating high 252 

and low fitness (Figure 4A, Model 2). All samples with higher entropy than the threshold were instances 253 

of low fitness (Figure 4C, Supplemental Figure 3C), but 5 low fitness samples appeared to have low 254 

entropy as well (false positives). This result is likely a consequence of considering ‘raw’ co-variance 255 

values, which leads to the appearance of spurious links in the network that do not reflect real links between 256 

genes. Therefore, Model 2 may overestimate the number of links between genes. To correct for such 257 

spurious links, regularization was applied on the inverse of the co-variance to obtain a sparse co-258 

transcriptional network. Note that this model (Figure 4A, Model 3) is equivalent to Model 1 if 259 

regularization is very stringent (all links between genes are dropped), and equivalent to Model 2 if no 260 

regularization is applied (all links are present). By adjusting the level of regularization, we show that 261 

temporal entropy can reach an accuracy of 1 (Figure 4D, Supplemental Figure 3D, E, Supplemental Table 262 

5), demonstrating the utility of this single feature in classifying fitness outcomes. 263 

 264 

The time course experiments accurately capture a bacterium’s survival in a test environment, but they are 265 

labor intensive and potentially expensive. Therefore, a single time point prediction model was trained, by 266 

quantifying the variance of the DE magnitude distribution for all single time points as a measure of entropy 267 

(Supplementary Methods, Equation 1). Similar to the temporal models, the only parameter that we fit was 268 
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the threshold for entropy (in this case 2.07), which is the value that maximizes classification accuracy in 269 

the training set. Analogous to the temporal models, low fitness is associated with higher entropy than high 270 

fitness conditions (Figure 4E, Supplemental File 2). Importantly, cases of high and low fitness are better 271 

separated at later time points (accuracy = 0.91 in the training and 0.92 in the test dataset) than at early 272 

time points (accuracy = 0.74 in the training and 0.42 in the test dataset), indicating that time points from 273 

the second half of the time course experiments are more characteristic of fitness outcome than those from 274 

the first half (Figure 4F). Specifically, when applied on an independent test dataset, the single time point 275 

entropy model led to 7 false positive predictions based on the early time points even though the 276 

misclassified low fitness cases have a higher overall entropy than that of high fitness cases (Figure 4G).  277 

This suggests that it is possible to successfully train an early time point-specific model if more training 278 

data were used (Supplemental Figure 3A). In contrast, the single time point entropy predictor, with the 279 

same threshold value of 2.07, performs very well for the late time points on the test dataset, misclassifying 280 

only 1, that was very close to the threshold, out of 12 experiments (Figure 4G). 281 

 282 

Entropy-based fitness predictions are strain, species and stress-type independent and can be used 283 

to infer the antibiotic minimum inhibitory concentration (MIC). 284 

To test if the entropy-based approach is generalizable and extends to other S. pneumoniae strains or other 285 

species, a new RNA-Seq dataset was generated to predict fitness outcomes under ciprofloxacin exposure 286 

for Salmonella Typhimurium, S. aureus, E. coli, K. pneumoniae and two additional S. pneumoniae strains 287 

representing serotypes 1 and 23F (Supplemental Table 1). These five species represent both Gram-288 

negative and Gram-positive bacteria and cover a wide range of ciprofloxacin MICs (Figure 5A). The 289 

overall response characteristics are similar to what was observed for S. pneumoniae, with 120 minutes 290 

exposure to 1µg/mL ciprofloxacin triggering an expansion of expression changes from bacterial cultures 291 

having low fitness (S. Typhimurium and S. pneumoniae serotype 1), compared to those with high fitness 292 

(S. pneumoniae serotype 23F, E. coli and K. pneumoniae) (Figure 5B). When exposed to a higher dose 293 

of CIP (strain-specific 1xMICCIP) the organisms with lower CIP-sensitivity were shown to trigger an 294 

increased number of expression changes with a wider magnitude, indicative of their lowered fitness at the 295 

increased concentration (Figure 5B, S. pneumoniae serotype 23F, E. coli and K. pneumoniae). Next, each 296 

transcriptional response was captured by an entropy calculation. Importantly, with the original threshold 297 

of 2.07 we had calibrated with data from S. pneumoniae in Figure 4, fitness outcomes could be predicted 298 

for the new organisms with 100% accuracy, indicating that the amount of transcriptional disruption by 299 
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antibiotics is a species-independent generalizable feature for fitness outcome. Therefore, entropy could be 300 

visualized graphically (Figure 5B), and quantified to make high-accuracy predictions. 301 

 302 

Interestingly, the entropy measurement of each strain was found to be inversely proportional to the MICCIP 303 

(Figure 5C), consistent with transcriptional disruption being proportional to stress sensitivity. The 304 

correlation between entropy and ciprofloxacin sensitivity in Figure 5C (left panel) therefore implies that 305 

the antibiotic sensitivity of any species could be predicted from its transcriptomic entropy. To test this, 306 

entropy was calculated for Acinetobacter baumannii isolates that are either low (ATCC 17978) or high 307 

(LAC-4) virulence, by collecting RNA-Seq profiles after 120 min exposure to 1µg/mL of ciprofloxacin. 308 

Using a linear regression model, the ciprofloxacin MICs of the A. baumannii strains were predicted to be 309 

0.04 and 10.45µg/mL, which are proximate to the measured MIC’s of 0.07 and 8.5µg/mL for ATCC 17978 310 

and LAC-4, respectively (Figure 5D; Supplemental Figure 1D). This demonstrates that entropy can be 311 

applied to determine antibiotic sensitivity for new species, and is not simply a binary indicator of fitness 312 

outcomes. 313 

 314 

To explore the applicability of entropy beyond nutrient and antibiotic stress, we performed entropy-based 315 

fitness classification on a published collection of 193 M. tuberculosis transcription factor over-expression 316 

(TFOE) strains (14). Upon TFOE, these strains exhibit fitness changes, ranging from severe growth 317 

defects to small growth advantages (15). Over-expression of a single transcription factor can thereby exert 318 

stress on the bacterium that can result in drastically different fitness outcomes. By calculating entropy 319 

from whole-genome microarray data collected from each TFOE strain, using genome-wide DE under 320 

inducing and noninducing conditions, it is possible to distinguish strains based on their fitness levels at an 321 

accuracy of 0.78, using a newly trained entropy threshold for this dataset (Figure 5E). This result 322 

compares favorably with a more complicated approach involving the integration of each TFOE 323 

transcriptional profile into condition-specific metabolic models (14). These data show that entropy has the 324 

potential to be utilized as a strong and generalizable fitness prediction method for both antibiotic and non-325 

antibiotic stress, using different data types and a large variety of bacterial strains and species. 326 

 327 

A systems-level view successfully predicts fitness and is less sensitive to noise from a single feature. 328 

While the transcriptome-based entropy-approach is a strong predictor of fitness, it is a relatively coarse 329 

method as it captures only a single organizational level of the response; the transcriptome. In most 330 
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biological systems, changes occur across multiple levels, which are detected by alternative readouts, such 331 

as identification of phenotypic changes resulting from mutations (16-21). Furthermore, entropy ignores 332 

details present in the data, such as the type of stress and the functional roles of genes, that may increase 333 

the accuracy or widen the applicability of the approach. For instance, within the transcriptomic data, 334 

different gene sets show different levels of perturbation, as witnessed in S. pneumoniae T4, in which genes 335 

in the category "Antibiotic Response and Sensing" show higher entropy than other functional categories 336 

(Figure 6A, Supplemental Figure 4A). In contrast, essential genes are mainly down-regulated and 337 

nonessential genes are evenly distributed as up- and down-regulated in the antibiotic challenge conditions 338 

(Figure 6B, Supplemental Figure 4B).  339 

 340 

In order to make use of these detailed observations, we assembled a set of 54 features that describe various 341 

aspects of a response, the organism and the experienced stress. To this end, we considered the type of 342 

stress, such as the MOA of an antibiotic, the phenotypic response to stress as characterized by Tn-Seq, 343 

and the transcriptional response (Figure 7A; Supplemental File 3). This approach yields a large number 344 

of features relative to the number of samples (54 features and 231 samples in the training set), so we 345 

performed a round of feature selection using a regularized logistic regression model (Figure 7A). The six 346 

most informative features (described in Supplemental Methods) were used to train an SVM that is able to 347 

classify the fitness outcomes with high accuracy, by setting a threshold in which a probability >0.5 348 

translates to high fitness, and probability <0.5 to low fitness (Figure 7B, Supplemental File 2, 349 

Supplemental Figure 4C). Importantly, accurate predictions could be made at both early and late time 350 

points for antibiotics that triggered a fast transcriptomic response, as low and high fitness outcomes were 351 

well-separated as early as 20 min after rifampicin exposure and 30-45 min after vancomycin exposure 352 

(Figure 7B). For other antibiotics, accurate predictions could only be made at later time points. For 353 

example, kanamycin treatment resulted in false positives up to and including 120 min, possibly due to a 354 

slow transcriptional response to this drug (Figure 7B; Supplemental Figure 2A, D, E -Kanamycin). The 355 

primary advantage of this model is that it provides less ambiguous predictions compared to the predictive 356 

models based solely on transcriptional entropy, with the prediction probability following a bimodal 357 

distribution that has very few cases near the threshold (= 0.5) in the training or independently generated 358 

test sets (Figure 7C). Furthermore, in the test set all misclassified cases are at the early (30 min) time 359 

point, while 100% of the late time points (120 min) are classified correctly (Figure 7D). This classifier 360 

(test set accuracy = 0.5 and 1 in early and late time points respectively) outperformed the single-time point 361 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813709doi: bioRxiv preprint 

https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/


entropy classifier (test set accuracy = 0.42 and 0.92 in early and late time points respectively). Thus, by 362 

increasing data resolution and including multiple data sources, a highly accurate model is achieved that is 363 

robust to noise from a single data source. 364 

365 
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Discussion 366 

A major goal of this work was to determine if there is a quantifiable feature in the bacterial environmental 367 

response that can accurately predict fitness in that environment that is independent of strain, species or 368 

the type of stress. To be generalizable, the selected feature needs to be common across species and 369 

environments. By generating a large experimental dataset we discovered that such a feature exists, namely 370 

transcriptomic entropy, which represents the level of transcriptional disruption that occurs in a system 371 

while responding to the environment. Centering on entropy, we develop a suite of statistical models that 372 

vary in their complexity and that accommodate different types and amounts of input data enabling 373 

predictions on the MOA of a stress, the fitness outcome of bacteria in a variety of different environments, 374 

and the MIC. 375 

 376 

The developed fitness prediction models differ in approach and input data required. The first model 377 

extracts a small set of informative features from genome-wide transcriptional profiling data (i.e. a gene 378 

panel). Although we have shown previously that phenotypic change and expression change rarely overlap 379 

on the same genes, there are cases in which a gene can be simultaneously transcriptionally and 380 

phenotypically important under a stressful condition (16). Indeed, several members of the fitness gene 381 

panel are required for bacterial growth. For example, inhibition of the essential cell division gene ftsZ has 382 

been shown to cause growth inhibition of MRSA (22). Among the non-essential genes, transposon 383 

insertion mutants in SP_0929, SP_0589 and SP_1856 resulted in a significant fitness decrease in the 384 

presence of multiple antibiotics (LVX, TET, CIP, CEF and RIF; Supplemental File 1). Therefore, further 385 

characterization of the genes in this panel might reveal potential antimicrobial targets. Second, by applying 386 

a first-principle approach, a single feature (entropy) is defined to capture an intuitive property of a 387 

transcriptome: the extent of perturbation. Since entropy does not rely on responses in specific genes, 388 

entropy-based models extend beyond a single species. Moreover, the single timepoint entropy can be used 389 

in a regression model, offering a finer resolution by predicting the level of sensitivity to a particular stress 390 

(in this case ciprofloxacin) as well. Finally, a third approach is a data-driven one, in which genome-wide 391 

data across multiple biological systems were utilized (i.e. SVM for fitness prediction). Importantly, all 392 

three types of fitness prediction models underscore that a bacterium’s fitness phenotype is predictable, 393 

and accurate predictions can be made in multiple pathogens independent of the mechanisms of stress, 394 

including different classes of antibiotics and nutrient depletion. 395 

 396 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813709doi: bioRxiv preprint 

https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/


By demonstrating the feasibility of predictions of fitness outcomes and antibiotic sensitivity, we believe 397 

this work could provide novel opportunities to contribute to infectious disease diagnostics such as 398 

antibiotic susceptibility testing (AST). Although AST can be completed in a relatively short amount of 399 

time for many pathogenic species, it remains a lengthy process for slow-growing species such as M. 400 

tuberculosis (23). Therefore, it is desirable to be able to predict the fitness outcome of such slow-growing 401 

species as early as possible, for instance using RNA expression data. RNA-based detection has previously 402 

been applied to correlate antibiotic susceptibility with the expression of several genes (5, 6, 24). However, 403 

due to variability in gene-homology, such approaches can rapidly become species specific, and even when 404 

a gene is present, the way it responds to a stress might not be the same. For instance, among the nine 405 

strains and species we sampled here, the presence/absence of gene’s in the 10-gene panel for fitness 406 

predictions and their expression profiles are highly variable (Supplemental Figure 5A). Additionally, a 407 

published E. coli ciprofloxacin sensitivity panel is highly specific for that species due to variability in 408 

presence/absence and expression patterns (Supplemental Figure 5B; (5)). This indicates, that gene-panel 409 

approaches may indeed quickly become strain, species and stress-type dependent. In contrast, we show 410 

that entropy-based fitness predictions are independent of gene homology, which allows for 411 

generalizability across different species under various stress-types (i.e. antibiotics, nutrient depletion and 412 

transcription induction). Second, rather than being a binary prediction method, entropy can be applied to 413 

predict the level of antibiotic sensitivity in a species-independent manner, which is useful to determine a 414 

bacterium’s level of susceptibility to an antibiotic without performing possibly more extensive growth-415 

based assays or identifying the resistance genes or mutations by whole-genome sequencing. Importantly, 416 

we show that MIC predictions can be achieved by profiling the transcriptome of a bacterium at a single 417 

time-point and a single concentration of an antibiotic, requiring little prior knowledge of antibiotic MOA 418 

or direct targets in the tested species. Our entropy-based antibiotic sensitivity prediction could therefore 419 

contribute to improving the speed and generalizability of existing AST methods.  420 

 421 

Since transcriptional entropy captures information at a single level, several improvements could be 422 

implemented to potentially enhance the fitness prediction model. We show that some antibiotics trigger a 423 

faster response while some trigger a slower response (Supplemental Figure 2A, D, E). Consequently, it 424 

would make more sense to apply a fitness-predictor to the transcriptomic profile at a later timepoint for 425 

antibiotics that trigger a slower response such as kanamycin; but an earlier timepoint can be used for 426 

antibiotics such as rifampicin. Knowing (or predicting) the type of antibiotic being used can therefore 427 
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inform when to use a fitness predictor, i.e. fitness predictions can potentially be enhanced when the MOA 428 

and fitness predictors are used in tandem. As indicated by the data-driven complex feature model, fitness 429 

predictions are improved when fine-grained information on the bacterial stress response is included. 430 

Additional types of data as well as the consideration of more features may thus improve fitness predictions 431 

through the inclusion of more detailed information. Thus, by gathering and integrating information 432 

pertaining to the host environment, for instance by simultaneous transcriptomic profiling via dual RNA-433 

Seq(25) and cytokine profiling of the host response, our model might be able to infer and monitor disease 434 

progression in vivo. 435 

 436 

To conclude, with entropy we present a novel concept that is independent of gene-identity, gene-function, 437 

and type of stress, and can be applied as a fundamental building block for generalizable statistical models 438 

that accurately predict bacterial fitness and MICs for Gram-positive and negative species alike.  439 

  440 
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 441 
Figure 1. Transcriptional responses separate antibiotics with different mechanisms of action 442 
(MOA’s). 443 
A. Project setup and overview. Wildtype and adapted strains of S. pneumoniae were exposed to different classes of 444 
antibiotics, and their fitness outcomes were determined from growth curves. Temporal RNA-Seq data was used to 445 
train models that predict the MOA of an antibiotic, and the fitness outcome of a strain. The concept of entropy is 446 
developed expanding predictions on fitness to other strains and species and non-antibiotic conditions. CWSI (cell 447 
wall synthesis inhibitors): PEN – penicillin, VNC – vancomycin, CEF – cefepime; DSI (DNA synthesis inhibitors): 448 
CIP – ciprofloxacin, LVX – levofloxacin; RSI (RNA synthesis inhibitor): RIF – rifampicin; PSI (protein synthesis 449 
inhibitors): KAN – kanamycin. TET – tetracycline. B. Principal component analysis (PCA) of differential 450 
expression datasets (log2FoldChange of +/- antibiotic) from sensitive strains depicts antibiotic responses as largely 451 
distinct temporal transcriptional trajectories. C. Pairwise distances between PCA trajectories (see Supplementary 452 
Methods). Transcriptional trajectories to drugs within the same MOA are similar and tend to cluster together 453 
indicated by k-means clustering. D. Heatmap of differential expression of an 8-gene panel. Dendrogram shows 454 
antibiotic MOA’s can be well separated by differential expression of this gene panel. E. Antibiotic MOA prediction 455 
by a support vector machine (SVM) trained on differential expression profiles of the 8-gene panel in a training set 456 
(Train) and test set (Test). Color intensity is proportional to the number of predictions.  457 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/813709doi: bioRxiv preprint 

https://doi.org/10.1101/813709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 458 
Figure 2. A transcriptional response separates bacteria with different sensitivities to the same 459 
antibiotic. 460 
A. A schematic illustration of temporal RNA-Seq sample collection (i) and data processing (ii-iv) on stress-sensitive 461 
wild-type (WT) and stress–insensitive adapted strains (AD), which are obtained through experimental evolution of 462 
the WT strains. Magnitude distribution of genome-wide differential expression is compared between each pair of 463 
WT and AD strains (ii). Genes in the S. pneumoniae genomes are divided over 23 gene function categories (see 464 
figure legend). Kullback-Leibler divergence (KLD) of gene function distributions between genes with significant 465 
expression changes and function distribution of all genes present in the genome (iii). A similar function distribution 466 
to the genome is indicated by a low KLD value, e.g. T4-VNC(1xMIC)-45min, while a dissimilar function 467 
distribution is indicated by a high KLD value, e.g. VNC-adapted T4-VNC(1.5xMIC)-45min (iv).  468 
B. The magnitude of genome-wide differential expression (indicated as log2FoldChange Antibiotic/NDC (no drug 469 
control)) shows significantly wider distributions in antibiotic-sensitive strains (wtTIGR4 and wt19F) compared to 470 
antibiotic-adapted strains in the presence of vancomycin (a cell wall synthesis inhibitor; CWSI) and rifampicin (an 471 
RNA synthesis inhibitor; RSI), respectively in a Kolmogorov-Smirnov test. *: 0.001<p<0.05; **: 0.0001<p<0.001; 472 
***: p<0.0001. See Supplemental Figure 2D, E for other antibiotics. All histograms are on the same scale of -6 to 473 
6. C. AD have a significantly higher KLD than WT in the presence of antibiotics or absence of D39-essential 474 
nutrients in an unpaired t-test.  475 
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 476 
Figure 3. A 10-gene panel predicts fitness outcomes of S. pneumoniae under antibiotic and nutrient 477 
stress. 478 
A 10-gene panel is generated by logistic regression on 231 RNA-Seq profiles collected from antibiotic exposure or 479 
D39-essential nutrient depletion conditions in stress-sensitive and stress-insensitive strains. Log2fold change (+/-480 
stress) of the 10-gene panel for fitness is indicated by the heat-map color gradients, which separates high fitness 481 
(blue in the ‘Fitness’ bar) from low fitness (red) in a training (A.) and test set (B.). C. Differential expression of 482 
each gene in the gene panel is depicted as a radar plot, showing a clear difference between low (red) and high (blue) 483 
fitness outcomes. Presence and absence of each gene in the S. pneumoniae fitness panel (D.) or E. coli ciprofloxacin 484 
sensitivity panel (E; (5)) in six pathogenic species is first determined by protein BLAST based on three criteria: 485 
query coverage > 50%, E value < 1E-50 and percent identity > 30%, indicating that genes in a gene panel are poorly 486 
conserved and thus might suffer a limited generalizability across multiple species. S.pn: S. pneumoniae, E.c: E. coli, 487 
S.Ty: S. Typhimurium, S.a: S. aureus, K.p: K. pneumoniae, A.b: A. baumannii   488 
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 489 
Figure 4. Temporal and single time point entropy calculated from a transcriptional response 490 
predicts high and low fitness outcomes. 491 
A. Illustration of the three temporal entropy models (Models 1-3) that are applied on 29 temporal RNA-Seq 492 
experiments. B.-D. Temporal fitness prediction is shown as a ranked plot of entropy in each temporal RNA-Seq 493 
dataset. The y-intercept indicates the entropy threshold, i.e. entropy higher than threshold is predicted as a low 494 
fitness outcome; entropy lower than threshold is predicted as a high fitness outcome. A confusion matrix is 495 
generated for each model by comparing to the actual fitness outcome (High/low fitness: cyan/red bars). E. Single 496 
time point entropy is calculated from differential expression of all genes in an experiment at one time point and 497 
plotted against time post-stress exposure (presence of antibiotics – CEF, CIP, DAP, KAN, LVX, PEN, RIF, TET, 498 
VNC, or absence of nutrients – Glycine-GLY, Uracil-URA, Valine-VAL). Dashed red line indicates the entropy 499 
threshold for this model. Training and test sets are indicated by grey or blue borders respectively. Fitness prediction 500 
is performed at each single time point (231 data points) in the 29 temporal experiments as the training set (F.), and 501 
validated by an independent set of single time point RNA-Seq experiments as the test set (24 data points; G.). In 502 
both training (F.) and test (G.) datasets, fitness prediction is more accurate from late time points than early time 503 
points indicating late time points are more characteristic of a strain’s fitness outcome. 504 
 505 
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 506 
Figure 5. Entropy based fitness predictions extend to multiple species under antibiotic and non-507 
antibiotic stress. 508 
A. Six strains representing 5 species are ranked from low to high ciprofloxacin minimal inhibitory concentrations 509 
(MICCIP) tested by growth curve assays. The multi-species CIP RNA-Seq is performed at two CIP concentrations: 510 
1) 1µg/mL for all 6 strains corresponding to 2 low fitness outcomes (red squares) and 4 high fitness outcomes (cyan 511 
squares); 2) MICCIP for strains that are insensitive to 1µg/mL of CIP, i.e. S. pneumoniae serotype 23F, S. aureus 512 
UCSD Mn6, E. coli AR538, and K. pneumoniae AR497, corresponding to 4 additional low fitness outcomes.  513 
The number of genes that change in expression upon exposure to 1µg/mL CIP (|log2FoldChange|>1 and p-adj<0.05) 514 
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as well as their change in magnitude is inversely correlated to their CIP sensitivity (B.) and their entropy (C.). 515 
Additionally, strains with MICCIP higher than 1µg/mL revert to triggering a large number of differential expression 516 
genes (B.) and a high entropy (C.) at their respective 1xMICCIP.  517 
D. Using a linear regression model (black line; error band: 95% CI), MIC’s are predicted for A. baumannii strains 518 
ATCC 17978 and LAC-4 based on their entropy at 1µg/mL of ciprofloxacin. The predicted (black) and measured 519 
(red) MIC for the two strains are similar for both strains. See Supplemental Figure 1D for MIC determination for 520 
A. baumannii ATCC17978 and LAC-4.  521 
E. Entropy calculated from transcriptional profiles of 193 M. tuberculosis transcription factor over-expression 522 
(TFOE) strains separates strains with a >30% fitness defect upon TFOE induction (red) from strains with a fitness 523 
advantage or <30% fitness defect upon induction (cyan). At the threshold of 0.71 (red dotted line), fitness outcomes 524 
are correctly predicted at an accuracy of 0.78.  525 
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 526 
Figure 6. Detailed features can be extracted from transcriptomic responses of strains with low and 527 
high fitness outcomes. 528 
 529 
A. The entropy of a transcriptional response can be split by gene function to indicate the level of transcriptional 530 
perturbation in each cellular system. AA: amino acid metabolism, CP: capsule metabolism, CB: carbohydrate 531 
metabolism, CW: cell wall metabolism, CV: cofactors and vitamin metabolism, EN: energy metabolism, LP: lipid 532 
metabolism, NT: nucleotide metabolism, VA: various metabolism, DR: DNA repair, FSD: folding, sorting and 533 
degradation, ME: mobile elements. RP: replication, TC: transcription, TL: translation, MT: membrane transport, 534 
ST: signal transduction, AS: antibiotic sensing, CD: cell division, CGD: cell growth and death, CC: cellular 535 
community, SP: structural proteins. B. Essential genes tend to be significantly more down-regulated compared to 536 
non-essential genes in stress-sensitive strains (wt-T4; unpaired t-test, *: 0.001<p<0.05; **: 0.0001<p<0.001; ***: 537 
p<0.0001). 538 
 539 
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 540 
Figure 7. A systems-level view of the bacterium further improves fitness predictions. 541 
A. Illustration of the construction of a complex feature classifier (CFC) in three main steps: 1) assembly of all input 542 
features, 2) feature selection and 3) SVM-based fitness predictions.  543 
B. Prediction probabilities generated by the CFC are plotted at each time point for strains with high fitness (cyan 544 
line) and low fitness (red line) in the presence of KAN, LVX, RIF, and VNC. A probability higher than the threshold 545 
(0.50; red dotted line) is predicted as high fitness; while a predictor lower than the threshold is predicted as low 546 
fitness.  547 
C. Performance of the CFC on training and test datasets is shown as frequency distributions of prediction 548 
probabilities separated by actual fitness outcomes and the corresponding confusion matrices. 549 
D. High (cyan) and low (red) fitness outcomes are mostly well separated by the CFC predictor at the threshold of 550 
0.50. Similar to the single time point entropy model (Figure 3), fitness prediction by the CFC achieves a much 551 
higher accuracy of 1.0 at late time points compared to early time points. 552 

553 
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