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Abstract

Humans can anticipate music and derive pleasure from it. Expectations facilitate movements associated
with anticipated events, and they are linked with reward, which may also facilitate learning of the
anticipated rewarding events. The present study investigates the synergistic effects of predictability and
hedonic responses to music on arousal and motor-learning in a naive population. Novel melodies were
manipulated in their overall predictability (predictable/unpredictable) as objectively defined by a model
of music expectation, and ranked as high/medium/low liked based on participants’ self-reports collected
during an initial listening session. During this session, we also recorded ocular pupil size as an implicit
measure of listeners’ arousal. During the following motor task, participants learned to play target notes
of the melodies on a keyboard (notes were of similar motor and musical complexity across melodies).
Pupil dilation was greater for liked melodies, particularly when predictable. Motor performance was
facilitated in predictable more than unpredictable melodies, but liked melodies were learned even in the
unpredictable condition. Low-liked melodies also showed learning but mostly in participants with higher
scores of task perceived competence. Taken together, these results suggest that effects of predictability
on learning can be overshadowed by effects of stimulus liking or task-related intrinsic motivation.
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1 Introduction

Through passive exposure to music, we implicitly develop models about its structure *2. These models
allow both listeners to generate expectations about upcoming musical events 3, and trained musicians
to better plan and learn musical actions 6. Expectations are also linked to the experience of musical
pleasure %12, 35 neuroimaging evidence shows that musically evoked pleasure relies on the cross-talk
between neural systems responsible for prediction with those responsible for reward 3. Importantly,
rewarding stimuli increase arousal 14, and are also better learned '°. Given the inherent link between
predictability and pleasure in music, here we aim to assess their contributions to learning with the
hypothesis that motor learning in naive population may benefit from the implicit musical expectations
and hedonic responses derived from music.

A large body of theoretical and experimental work suggests that agents use internal psychological
models to make sense of perceptual inputs and respond to them. Through implicit statistical learning,
the brain continuously scans the environment for regularities and acquires probabilistic models of the
world without deliberate effort or awareness 678, For example, based on these internal models, the
brain can compute the statistical distribution of sequential phenomena °%° enabling it to predict
unfolding sensory events, thereby reducing its uncertainty 2%. In particular, according to predictive coding
theory 22, by comparing top-down predictions with the actual sensory input, internal predictive models
contribute to the selection of relevant bottom-up inputs 23, and error signals are used to update
predictions, construct new models, and guide subsequent actions. Internal models can aid motor
planning 242° and it has even been shown that visual statistical learning can inform the motor system to
better predict upcoming actions 26?7,

Similar cognitive mechanisms are likely to play a role in musical perception and performance. When
listening to music, humans entertain a number of predictions, or hypotheses, about future musical
events 28 and these predictions are subject to refinement and learning on different time scales and at
different levels of sophistication. For example, musical predictions vary as a function of the musical
culture one is exposed to 2°73! and can adapt to novel musical styles 32. Furthermore, musical predictions
are optimized by expertise 33, and can even vary across the lifespan 34. With regard to performance, it
has been shown that musical regularities facilitate movement selection 3>3¢. This facilitation is supported
by associations between movement and ensuing effects formed through coupling of motor and sensory
cortices 3673, Moreover, studies in trained musicians show that internal predictive models allow long-
range motor planning of entire musical sequences ®74%3, Thus, motor performance in experts appears
to be guided by predictions based on learned internal models of music, suggesting that also initial stages
of learning may benefit from them.

Expectations are also linked to the experience of musical pleasure 071244 Pleasurable music strikes a
balance between predictable events, which allow listeners to form expectations, and moderately
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unpredictable events that produce surprise. For example, a single repeating note is very predictable, but
may not be very enjoyable, and similarly, transitions to unrelated notes may be perceived as unpleasant
4546 Indeed, musical pleasure seems to vary with stimulus complexity — e.g., harmonic or rhythmical
predictability — as an inverted-U function, with maximum liking occurring at intermediate levels of
complexity 47759, Neural evidence suggests that musical surprises induces liking by engaging the reward

system >!

, via distinct phases of dopamine transmission during the anticipation and enjoyment of
listeners’ favorite musical moments >2. Connectivity analyses suggest that it does so in cooperation with
fronto-auditory systems responsible for predictions during listening 3. The role of dopamine, which has
been widely linked to the ‘wanting’ and ‘learning’ components of reward >3, has been also directly linked
with abstract hedonic responses to music (i.e., liking) °*. Furthermore, a recent study showed that
pleasant musical moments activate the noradrenergic arousal system, as revealed by increased pupil
dilation during passive listening '*. A concomitant increase of arousal and reward systems during
pleasant music seems plausible given the known anatomical and functional link between dopaminergic
and noradrenergic subcortical nuclei °>°%, and may explain findings of better memory for rewarding than
neutral musical excerpts °’. Although rarely used to measure response to long stimuli — such as a melody

839 pupil dilation may thus be powerful to continuously track hedonic responses to unfolding music ©°.

These evidence that musical expectations contribute to increase of arousal and pleasure suggest a
possible link with learning based on the relevance of rewarding stimuli and reward-related dopamine
circuits '°. For example, animal studies show that brain plasticity associated with auditory learning is
greater when the information to be learned is rewarded . Further, pairing a tone with stimulation of
dopamine circuits in the brainstem increased the selectivity of responding in auditory neurons tuned to
the same tone ®2. Importantly, dopamine has also been shown to modulate motor learning in humans
and animals both directly 6354, and indirectly through monetary reward 6>, Based on this body or work,
we test the idea that, by carrying abstract reward, music that is better liked could be associated with
greater arousal and learning.

As the motivation to learn a musical excerpt can derive from perceived pleasure, learning can also be
motivated by its inherent challenge. Psychological and computational accounts of motivation distinguish
extrinsic from intrinsic motivation: whilst the first is based on external reward or pressures outside the
individual, the latter is defined as doing an activity for its inherent satisfactions, that have the appeal of
aesthetic value or challenge for the individual 7%, It is possible that learning becomes pleasant for
actions that lead to decrease of uncertainty and improvement of internal predictive models %71, Beside
this, motivation to learn may be also driven by individual’s feeling of competence in achieving a self-
determined goal just for the challenge entailed by the task 8. Therefore, individual differences in intrinsic
motivation should also be assessed to predict learning.

We tested participants with no-to-little musical training with pupillometry in a listening task, followed
by a melody learning task (Figure 1). We composed novel melodies which varied in their structural
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predictability (from overall predictable to unpredictable melodies). We could formally determine the
complexity of the stimuli by means of a variable-order Markov model of melodic expectation (IDyOM)?:
this model acquires knowledge of musical structure through unsupervised statistical learning and uses
this knowledge to estimate the probability of musical notes in a given melody. The expectedness of each
note in the melody is expressed in units of information content (IC), where high and low IC values
correspond respectively to less and more predictable notes. During the listening task, we recorded the
ocular pupil dilation response, and participants were asked to rate how much they liked each melody on
a seven-point scale. In the melody learning task, participants learned to play the last four notes of the
melodies on a piano-type keyboard (learning phase), and they were tested thereafter (test phase).
Importantly, the last four notes did not differ in predictability or motor requirements (See Figure 1), but
only in the predictability of the preceding musical context.

First, we hypothesized that moderately predictable melodies would be better liked, consistent with the
inverted-U hypothesis. Further, we predicted that sustained pupil dilation would be greater for melodies
that were better liked. For the melody learning task, we expected that predictable musical contexts
would result in better motor implementation of target notes, and that better-liked melodies would
potentially be better learned even in the unpredictable condition. Because there are large inter-
individual differences in music reward sensitivity and intrinsic motivation to perform a task, these
characteristics were assessed via questionnaires: Barcelona Music Reward Questionnaire; 72 and the
Intrinsic Motivation Inventory (with focus on interest/ enjoyment, and perceived competence
subscale)’3.

Figure 1
2 Results

2.1 Liking ratings of the melodies as function of Predictability

Based on theoretical and empirical work 4~%°, we expected an inverted U-shape relationship between
subjective liking and stimulus complexity. Therefore, a parabola was fitted in a model describing
participant’s ratings (scaled by subject) as a function of IC of melodies (averaged across notes). Figure 2
shows the quadratic relationship between melody IC and participants’ liking ratings (x*(1) = 4.513, p =
.033), indicating that liking was higher for moderately predictable melodies, but it decreases when
melodies become more complex (high IC). Possibly because of a relative narrow range of IC across
melodies, a linear model could also fit the relationship between liking and IC (y*(1) = 4.174, p = .041),
which yielded similar model fit to the quadratic term (AAIC = .6).

Figure 2

2.2 Pupil diameter during listening
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During listening, participants provided liking ratings to each of the melodies whilst pupil dilation was
measured. We analyzed the effects of predictability (Predictable/Unpredictable) and liking
(High/Medium/Low) and their interaction on participants’ pupil size change over 13 time-bins,
corresponding to the 13 notes in the melodies (Figure 3). We found an effect of predictability by time
bin on the sustained pupil response (y*(1) = 5.291, p = .021). Although the differential increase over time
did not reach statistical significance after multiple comparisons, post hoc paired t-test showed overall
greater pupil dilation for predictable compared with unpredictable melodies [P-U: t(1,22)= 3.137, p =
.005]. Moreover, we found an interaction of liking and time bin (y*2) = 29.257, p < .001): this indicated
that high-liked melodies induced greater dilation than medium-liked (high-medium: b = 5.942, SE =
1.458, p < .001), or than low-liked melodies (high - low: b = 3.928, SE = 1.469, p = .021). A three-way
interaction of predictability, liking and time bin (y*(2) = 6.152, p = .046) showed that pupil dilation for
the high-liked condition increased more for predictable than unpredictable melodies (P - U: b = 4.846,
SE = 2.107, p = .021). No predictability effect was indeed found in the low-liked (P - U: b =-1.113, SE =
2.05, p = .587), or medium-liked condition (P - U: b = -1.783, SE = 2.19, p = .377). These results suggest
that the increase of pupil dilation as a function of liking was greater when the music was predictable.

Finally, individual scores of music reward sensitivity positively predicted pupil size change across all trials
regardless of condition (rho=.320, p =.005) (Figure 3; right panel), showing that individuals who are more
sensitive to musical reward have a greater physiological response.

Figure 3

2.3 Motor performance

In the motor task participants listened to the first nine context notes of each melody through
headphones and then played the last four target notes on a piano-type keyboard. Accuracy and
asynchrony were entered in separate mixed effects regressions for the training and the following test
phase.

In the training phase, we found increase of accuracy across repetition trials (y*3) = 22.498, p < .001),
and no other effect involving Predictability or Liking (ps > .111). For asynchrony (Figure 4), there was a
main effect of Predictability (y*(1) = 11.677, p < .001), and an interaction with repetition trial (y*(1) =
5.758, p =.016), such that predictable trials were better executed, and that this advantage were greater
in the early trials (P — U across repetition trials: b = 5.883, SE = 2.753, p = .033). An interaction between
Liking and Predictability (x%2) = 9.092, p = .01) indicated that these effect of predictability mainly
regarded the medium-liked melodies (P - U: b =-27.872, SE = 11.454, p = .015), but not the high-liked (P
-U: b=-5.675,SE=11.659, p =.131), and low-liked ones (P - U: b =-17.484, SE = 11.574, p = .131). The
poorer performance for medium-liked melodies in the unpredictable condition suggests that the
unpredictability of the stimulus is compensated when strong (positive or negative) rather than mild
(medium) emotional responses are at play. We indeed found a significant main effect of Liking (x*(2) =

5
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16.755, p <.001), and an interaction with repetition trial (y*(2) = 21.263, p < .001) such that learning was
better for the high-liked and the low-liked melodies when compared with the medium-like ones (across
repetition trials high-medium: b =-12.718, SE = 3.401, p < .001; low-medium: b =-7.998, SE=3.313, p =
.016; high-low: b = -4.720, SE = 3.398, p = .165).

Taken together, these findings indicate that learning of the target-notes was greater after predictable
than unpredictable contexts in presence of mild emotional responses. However, the disadvantage due
to the unpredictable contexts was minimized for high- and low-liked melodies, which showed similar
learning regardless of predictability.

Figure 4

We further investigated the role of other factors than stimulus-induced affective responses in learning,
as inter-individual differences associated with intrinsic motivation. Specifically, we tested the
relationship of the general enjoyment and task-perceived competence IMI scales, with the learning
slopes — measured as reduction of asynchrony across repetition trials— in the high-like and low-like
conditions. To estimate the individual performance improvement across repetition trials as a function of
liking, we ran mixed model testing for only the effect of liking (High/Medium/Low) across repetition
trials, and extracted residual individual slopes for the low-/high-liked condition, after adjustment for the
effects of the performance change in the medium like condition at the intercept. More negative slopes
(faster learning) associated with low-liked condition were predicted by higher scores of individuals’
perceived competence in succeeding the task (Fig. 4 right panel, rho = -.488, p =.015), and there was a
trend with the general enjoyment scale (rho = .393, p =.085). The learning slope for high-liked melodies
did not correlate with perceived-competence scores (rho =-.224, p =.292), nor with general enjoyment
scale (rho = .147, p =.535). Thus, the learning effect observed in low-liked melodies was particularly
driven by participants with high task perceived competence, whilst liked music was learned regardless.
This suggests that perceived competence helped the participants overcome low liking to learn the
melodies, but it didn’t play a role in highly liked stimuli as participants were already motivated by the
pleasure carried by music.

Furthermore, we tested if learning highly liked stimuli was predicted by pupil response to those stimuli.
The correlation between the mean amplitude of pupil diameter in high-like trials and the learning slope
of high-like condition did not yield significant results (rho = .044, p =.84). This may be due to the fact that
the range of liking values was relatively limited.

In the test phase, we didn’t observe any significant effect of liking nor predictability on accuracy and
asynchrony (all ps >.389). This non-finding in the test phase may be explained by the fact that only one
trial per melody was not sufficient for seeing an effect. Also, the increased number of errors committed
in the test phase compared with the last repetition trial of the training phase (pitch and timing errors
combined, mean averaged across participants 10.74 + 26.60 %, in the last repetition trial; 35.51 + 24.04%,

6
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in the test phase; t (25) = -5.940, p < .001, Cohen’s d=-2.376), suggests that more repetitions may be
desirable for stabilization of learning.

3 Discussion

The present study investigated the contribution of predictability and liking on arousal and learning in
non-musicians. First, we found an inverted U-shaped relationship between music complexity and liking,
showing that moderately predictable melodies were more liked than highly predictable and
unpredictable melodies. Further, we showed a synergistic effect of predictability and hedonic response
to music on arousal, as reflected by sustained pupil dilation. We also observed that pupil dilation was
overall greater in individuals with higher sensitivity to musical reward, suggesting that it is a good marker
of responsiveness to music. With regard to melody learning, performance was facilitated for predictable
compared to unpredictable melodies in medium-liked music, indicating that musical expectations can
facilitate auditory-motor predictions and movement preparation, even in non-musicians. This effect of
predictability was overshadowed by musical reward as liked melodies were better learned, even when
unpredictable. Finally, we found that not-liked melodies were also learned and that this effect was
correlated with individuals’ task perceived competence, suggesting that, beyond the musical reward,
other factors carrying reward — such as individual’s task-related intrinsic motivation— contribute to
learning.

Our results link quantitative measures of stimulus complexity (as music predictability) with liking
response of listeners as an inverted-U-shaped function, whereby moderately predictable melodies were
more liked than highly predictable and unpredictable melodies. Importantly, listeners were unfamiliar
with the stimuli, and complexity was objectively characterized by the IDyOM model which has been
shown to optimally predict subjective perceptual expectations 74, and perceived complexity of musical
structure 7°. The inverted-U model was first proposed by Berlyne (1971) to reflect a general relationship
between aesthetic appreciation and structural complexity in art. But, it has also been shown to be a
general property of complex stimuli including visual shapes 7¢, music and rhythm 4%, In line with a
predictive account, liking may derive from an intrinsic reward which occurs whenever an internal
predictive model improves by decreasing uncertainty 997!, Because the potential for decreasing
uncertainty is maximal when music is moderately complex, so it should be for the liking. The inverted-U
model has received empirical support in some music experiments #7480 but not in others 7778, possibly
because it is often difficult to generate ecologically valid stimuli that cover the full range of complexity,
or because other psychological mechanisms triggered by the stimulus such as familiarity, imagery,
memory or associations ¥’ interact with expectation-based emotions.

The effect of liking on subject’s arousal is in line with previous literature 4, in that pupil response during
listening was greater for liked melodies. Importantly, we extend this finding by showing that pupil
dilation increased for high-liked melodies, but only when they were predictable. These results are novel
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because they address for the first time both the effect of subjective pleasure and musical complexity on
sustained pupil response over relatively long stimuli. They are compatible with the interpretation that
sustained pupil dilation is modulated by both changes in attentional engagement due to stimulus
structure tracking 88! and to subjective affective evaluation or reward *#  In support of this
interpretation, electrophysiological evidence has established a link between pupillary response and
norepinephrine activity in the nucleus locus coeruleus 2 that has synergistic connections with subcortical
dopaminergic nuclei involved in reward, and prefrontal areas involved in stimulus evaluation processes
2556 Predictable melodies may thus result in greater attentional engagement — enhanced noradrenergic
activity — as they conform to listeners’ prior expectations and allow them to form precise predictions
about the incoming stimulus *. Such effect of predictability may explain effects of greater sensitivity and
memory of music from one’s own culture, or of simple more than complex excerpts 332, Conversely,
unpredictable melodies may down-weigh predictions from a model that does not match the incoming
stimulus, resulting in attentional disengagement, and lower pupil response. The interaction effect of
liking and melody predictability on pupil dilation suggests that positive evaluative processes build on
successful tracking of the stimulus structure. One proposed mechanism is based on a hypothesized
feedforward loop between forebrain regions associated with reward evaluation and the concerted
action of the noradrenergic and dopaminergic systems >°. As a positive subjective evaluation is formed
throughout the melody, succeeding valid predictions gain greater reward value through dopamine-
mediated response, which in turn boosts norepinephrine-mediated attention. Future investigations
combining pupillometry and brain imaging are necessary to identify this circuit, and the proposed
dynamic interaction during response to music.

Learning of the target notes was facilitated for predictable compared with unpredictable melodic
contexts in medium-liked music, demonstrating that musical structure promotes predictions and motor
encoding in naive performers. Importantly, better learning cannot be explained by differences in
predictability or motor complexity intrinsic to the target notes, because these were similar across all
melodies. They only differed because they were embedded in contexts that allowed better or worse
prediction of the most likely continuation of the melody. Further, learning effects were observed for
temporal accuracy of the movements, not note accuracy — which was high in all conditions. This is
important because the stimuli varied in melodic expectations, but not in timing. Thus, better temporal
accuracy for more predictable melodic contexts indicates that musical structure promotes motor
prediction and planning by heightening the precisions of the movements. This result is in line with the
notion of ‘active inference’ 2224; by relying on models of the environment with a high level of precision
in predictable contexts, the brain can select a narrower set of information to predict the future
sensorimotor state and to reduce uncertainty 8. Given that perception and action are intertwined,
perceptual and motor networks may also interact during the generation of predictions about the most
likely next state 2°. Accordingly, in music models of musical structure inform the sensory system to
anticipate the most predictable sound 2%, and they also drive the motor systems to facilitate the
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movement required to produce it 37394287 Moreover, there is recent evidence that non-musicians
rapidly form sensorimotor representations of anticipated events after short-term motor training 3528,
Our results suggest that even in naive performers, predictions based on experience in the auditory
modality affect predictions in the motor domain, irrespective of previous training linking sounds to
actions. A possible underlying mechanism may be the rapid formation of sensorimotor associations at
the first attempts of execution, which result in facilitated performance in the following repetition trials
89 They may also be based on long-term priors —the so-called SMARC effect (Spatial Musical Association
of Response Codes) — which shows that even for individuals without training, higher pitches facilitate
upward or rightward responses, and low pitches facilitate downward or leftward responses °°.
Alternatively, in line with the view that sensory and motor systems act as independent “emulators” of
upcoming events 2!, predictive models in the motor domain may be independently generated based on
existing models of music built through auditory perception.

Liking a melody reduced the disadvantage in performance due to the unpredictable contexts, suggesting
that music-induced hedonic response promotes learning by overshadowing the effect of predictability.
A possible underlying mechanisms may be an interaction between dopamine-mediated reward induced
by music ’* and dopamine-mediated learning mechanisms *°. This is consistent with work reporting
enhanced motor learning and retention in presence of external incentives, such as monetary reward
6566 |n line with the idea the reward value of music may act as a reinforcement signal for learning >, our
results foster the link between reward and motor learning in a more complex task and for an abstract
stimulus-related incentive.

The motor learning benefit associated with preferred music may be indirectly linked with general greater
attention, as reflected by increase of pupil in liked melodies. The well-known interaction between the
noradrenergic system — underlying pupil dilation — and the dopamine system — associated with reward
—3592 suggest that the concerted action of these two systems may mediate the beneficial effect of music
reward on memory and motor learning. We did not find evidence to relate motor learning and pupil
response to liking ratings, probably because of the limited range of response elicited by the stimuli used
here. Previous studies using stimuli that induce musical chills have shown that they induce greater pupil
dilation 4, and are also better remembered °7, consistent with the key role of the reward system in
stimulus encoding 3. Future studies, likely in trained musicians, could use stimuli which induce more
intense pleasure to examine their effect on learning.

Non-liked melodies were also learned similarly to liked melodies, irrespective of music predictability. The
learning of non-liked melodies was driven by participants with higher task-achievement motivation
(perceived-competence scale), as opposed to a general learning effect of high-liked melodies. This is in
line with the definition of competence where the achieving process, rather than goal being achieved, is
central ®’. Thus, our results suggest that when the music is not rewarding per se, people with greater
general task-related motivation succeed better in learning it.
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Predictability and liking are inherently linked in music. Their intertwined effect was evident in the
pupillary response, which was enhanced both by musical expectations and subjective music reward.
However, what are their contributions to learning when assessed separately? We observed that when
operationalized as information content, effects of predictability on learning can be over-shadowed by
effects of liking or of intrinsic motivation. One implication of this is that liking in music should neither be
reduced to “mere” liking —as it can drive learning, thus acting “as” a reinforcer, nor to mere predictability
— because unpredictable melodies were learned equally well when liked. This may also in part be due to
the fact that subjective liking plausibly involves many dimensions beyond predictability, such as
familiarity, imagery, memory or idiosyncratic associations 7%, These results reinforce the view that
emotional and motivational factors have powerful impact on learning not only for cognitive tasks, but
also for procedural and motor-skill learning 4. In conclusion, this study provides an important first step
in understanding how motor learning benefits from the contributions of implicit musical expectations
and the derived emotional response. Future research in this direction may shed light on their additional
benefits on rehabilitation in clinical populations.

4 Material and methods

4.1 Participants

Twenty-seven individuals with no previous piano training took part in the study (18 female; Age: M=
24.74 + 5.03). Participants had on average less than one year (M = 0.8 years + 1.5) of formal music
training, which did not take place in the last 10 years (note that one participant with 16 years of training
in another instrument was excluded from the analysis). All participants were neurologically normal, were
not taking any medication that could affect motor performance, and had normal hearing, and normal or
corrected to normal visual acuity. All participants were naive with regard to the purpose of the study
and provided written informed consent. The Concordia University Human Research Ethics committee
approved the study (30007730) and conducted adhering to the Canadian Tri-council Policy on ethical
conduct for research involving humans °°.

4.2 Stimuli and Procedure

4.2.1 Stimuli

Sixteen different melodies of 13 notes were newly composed specifically for the experiment according
to the rules of classical Western tonal music. All of them began on the first beat, and were notated with
a time signature of 3/4 that was thought to be easier to count along. In order to focus specifically on
pitch expectations, each note had the same duration and equivalent inter-onset interval of 428 ms (140
bpm). Melodies were created with MuseScore program (version 2.0.2) and synthesized with a piano
sound (generated using Ableton Live 8) with the same loudness for all notes and melodies. Each melody
had a total duration of 6.4 s.
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The predictability of each melody was objectively defined using the information dynamics of music
model, IDyOM *° and based on the average information content values of each note. This model is
trained through a process of unsupervised learning on a large training set of 903 Western tonal melodies.
IDyOM first analyses the statistical structure of the training set, represented as sequences of pitch and
note’s scale degree relative to the key of the melody. In a new sequence, it then estimates the probability
of each note, based on a combination of the training set’s statistics and those of the sequence at hand,
which it learns dynamically. The output is a note-by-note measure of information content (IC, the
negative logarithm, to the base 2, of the probability of an event occurring), which IDyOM uses instead
of raw probability for greater numerical stability and a meaningful information-theoretic interpretation
in terms of redundancy and compression. We manipulated the mean predictability/IC of each melody by
varying the number of out-of-key notes over the first 9 context notes — whereby an out-of-key note
results in high IC (Figure 5A). The predictability/IC of the four target notes designed to be similar across
melodies (Figure 5B). An ANOVA with factors Predictability (P/U) and Note type (Context/Target Notes)
on the IC of each note yielded a significant interaction of Predictability and Note type [F(1,14) = 11.60, p =
.004, ny? = .45], indicating that IC for Context but not Target notes differed significantly between
predictable and unpredictable melodies [Main effect of predictability on context notes only: F, 14) =
52.88, p <0.001, np? = .79; Main effect of predictability on target notes only: F(1,14) = 2.50, p = .136, np? =
.15]. Based on the IC measure the 16 melodies were ranked from high to low probability (M= 4.48 + 1.56,
range = 1.7-9.1), and then they were divided into Predictable or Unpredictable based on the median split
(Figure 5A).

Figure 5

4.2.2 Liking ratings and pupillometry

Participants listened to all 16 melodies, one at a time, and rated how much they liked them using a 7-
point Likert scale (1 being not all and 7 being very much) at the end of each melody. Liking ratings for
each melody were then scaled by subject, and ranked as high, medium and low (Figure 5C).

Pupil dilation was measured during Listening using the Eyelink 1000 head-supported infrared optical
eye-tracking system (running host software ver. 4.56, SR Research, Ottawa, ON, Canada) in binocular
1000Hz sampling configuration, connected to an Apple iMac (Mac OS X 10.12). The EyelLink system was
used in the Pupil-Corneal Reflection tracking mode. Participants were seated in a comfortable chair with
their head stabilized in a chin and forehead rest, facing the computer monitor (View sonic G225fb 21”
CRT, 1024 x 768pixel resolution, 100 Hz refresh rate, linear gamma correction for luminance with mean
luminance = 60 cd/m?) at a distance of 70 cm, in a quiet, moderately lit room (40 cd/m?). To calibrate
the eye-tracker, a circular target (1 degree of angle) appeared in random order at one of 6-points on the
screen (HV6, in the default Eyelink screen locations), followed by a separate validation. Calibration and
validation were repeated until the average error across all calibration targets was below 0.5 degrees of
visual angle, and the maximum error at any one calibration point was below 1 degree of visual angle.
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The order of presentation of the melodies was randomized across participants. Two seconds of baseline
pupil data was acquired before and after each melody was played. After each melody, two seconds were
given for the liking rating, which was followed by a 2-seconds blank grey screen before the next trial.
Participants were instructed to continuously fixate on a cross at the center of the screen (size: 9.4cm x
9.4cm, corresponding to a 4.5¢ visual angle at a viewing distance of 70 cm; RGB: 75,75,75; background
grey color, RGB: 150,150,150), not to move their heads for the duration of the eye tracking component
of the experiment, and to avoid blinking while the melody was playing. The total duration of the Listening
task was approximately 20 minutes.

4.2.3 Melody Learning

In this task participants listened to the first nine context notes of each melody through headphones and
then played the last four target notes on a piano-type keyboard using the four fingers of the right hand:
thumb, index, middle and ring finger which were assigned to a fixed white key to which all notes were
mapped. This ensured that motor demands for the notes to be played were matched across conditions.
Target notes were cued using visual display representing the keyboard (see Figure 1) where a dot
appeared sequentially (IOl 428 ms) to indicate which key to play. Participants heard the notes they
produced through the headphones. To facilitate accurate playback timing, melodies were accompanied
by a metronome beat at the beginning of every bar. The fourth metronome beat cued participants to
begin playing back the target notes. The notes played and their timing were recorded from the keyboard
and used to score accuracy and synchronization. The 16 melodies were presented in a randomized order,
and each melody was repeated 5 times with an ISl of 1 second. At the end of the Learning task,
participants performed a final recall block where each of the sixteen melodies was played back once in
arandom order.

Before training, participants were familiarized with the playback task in a brief practice block of four
trials in which they had to count 3 metronome beats (corresponding to 3 bars), and then perform 4
keypresses cued by the visual display. The familiarization trials contained all finger transitions that were
to be encountered in the Melody Learning task. No auditory feedback was provided. Presentation of the
melodies and recording of the responses was controlled custom-written Python software running on a
PC Linux computer.

At the end of the experiment, each participant’s music reward sensitivity (i.e. how important music is in
his/her life) was assessed via the Barcelona Music Reward Questionnaire 72, Participant’s intrinsic
motivation to perform the task was assessed via the standard, 22-items version of Intrinsic Motivation
Inventory 73. The entire experiment lasted approximately 60 minutes.

4.3 Data analysis
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4.3.1 Analysis of pupil diameter

Pupil diameter was measured in arbitrary units. Blinks were identified by identifying in each trial samples
without data due to blinks, removing 100 ms before and after the edges of the non-data points to make
sure that all artefacts of the pupil size algorithm were removed. For each blink, four equally spaced time
points (t2 = blink onset; t3 = blink offset; t1=t2-t3+t2; t4=t3-t2+t3) were interpolated by using a cubic-
spline fit and the original signal was replaced by the cubic spline, leaving the signal unchanged except
for the blink period. Random sample artefacts were removed using a median Hampel filter (from EEGlab
software, version 14.1), after which data were smoothed using a Savitzky-Golay Filter over an 11-ms
timeframe to remove the high-frequency noise in the pupil without time-delaying the pupil signal. Then,
each trial was baseline-corrected against the median pupil size in the 400 ms before the onset of the
melody, and then divided in 13 bins corresponding to the onset of each note. Trials during which
participants blinked for more than 15% of the total trial duration were excluded (two participants’
datasets, and a mean of 0.92 + 2.53 for the rest of participants). Baseline-corrected pupil size change
was then analyzed by using linear mixed-effects regressions testing for the effects of predictability
(Predictable/Unpredictable), Liking (High/Medium/Low), time-bins (1-13) and their full interaction.

4.3.2 Analysis of motor performance

Participants’ performances were examined off-line to evaluate key errors (MIDI note number) and
response times for the four keystrokes relative to the four last target notes of each melody. Trials were
considered invalid and excluded from the analyses if participants pressed more or fewer than 4 notes
per trial. On these data, two indexes of performance were computed: trial accuracy (i) was quantified
by counting the total number of errors. These were defined either by an incorrect keystroke (key identity
error), or by an absolute response time larger than 428 ms (timing error; for values outside this range,
keystrokes occurred within the range of the note preceding or following the one with which it was
supposed to be synchronized). Asynchrony (ii) was quantified only on correct trials by measuring the
time difference between the actual keystroke of a note and the expected onset of that given note.

Statistical analyses were performed separately for the two performance indexes (i.e., trial accuracy and
asynchrony) and for the training (where each melody was performed for 5 consecutive times) and the
test phase (where each melody was played only one time). We used mixed effects regression analyses
testing for the effects of predictability (Predictable/Unpredictable), liking (High/Medium/Low),
repetition trial (1-4), keystroke (1-4), and the full interaction between liking, predictability and repetition
trial. Keystroke was introduced as an effect of no interest to account for known motor execution
differences between initiation (first key press) and completion (following 3 keypresses) of sequential
movements %6, Keystrokes for the first repetition trial were initially analyzed, but then excluded because
of too many invalid trials (M= 55.04 + 26.60 % of invalid trials across participants). The analysis on the
test phase looked for learning stabilization, and estimated the effects of predictability
(Predictable/Unpredictable) and liking (High/Medium/Low).
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4.3.3 Statistical analysis

All data analyses were conducted in MATLAB R2015b (Mathworks, Natick, MA, USA), except for the linear
mixed model analysis that was implemented in R environment Version 0.99.320 using the ‘Imer’ function
from package Ime4 to build the models ° and the ANOVA function from package car to obtain
significance tests 8. In contrast to a more traditional approach with data aggregation and repeated-
measures ANOVA analysis, linear mixed effects regression allows controlling for the variance associated
with random factors without data aggregation (see °°). By using random effects for subjects and stimuli
item, we controlled for the influence of different mean responses associated with these variables.
Moreover, we also included by-participant random slopes for the effects of interest (predictability, liking
and their interaction), which accounted also for differences in how predictability and liking affected
participants’ responses (random slopes). Contrasts were carried out using the ‘emmeans’ package in R
100 We report unstandardized effect sizes (unstandardized regression coefficients, indicated as ‘b’ for
the statistical tests) which is in line with general recommendations of how to report effect sizes in linear
mixed models 1. Significance of the fixed effects of these models were evaluated with the
Satterthwaite approximation 1%, and p values were adjusted for multiple comparisons using the
multivariate t method.
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Figure 1. Schematic illustration of the experimental paradigm. Stimuli. The musical scores of 2 examples
— 1 more predictable and 1 less predictable based on the information content (IC) of the context notes.
Participants listened to the context notes and then played the target notes as guided by the visual
display. The IC of the context notes (before the dotted line) was manipulated to result in predictable
(low IC) or unpredictable (high IC) contexts. These were followed by four target ending notes with similar
IC between predictable and unpredictable melodies. Fingering for the target notes is indicated by the
numbers on the last two bars. Thumb, index, middle and ring finger were assigned to a fixed white key
to which different expected sounds were artificially mapped to. This ensured that motor demands for
the target ending notes were matched across conditions. Task 1. Listening and pupillometry: pupil
dilation was measured while participants listened to the entire melody and liking ratings (7-point scale)
were collected at the end of each trial. Task 2. Melody Learning: participants listened to the first nine
context notes of the melody and completed the melody by playing the last four target notes on a midi-
keyboard. The notes expected to play were cued by sequential dots drawn onto a keyboard on the
screen. Each note occurred at a tempo of 140 bpm, and a metronome sound at 46 bpm (every three
notes) guided participants’ pace. Each trial was repeated 5 times during training and 1 time in a final
test-phase.
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Figure 2. Inverted-U relationship between mean information content (IC) of each melody (ordered by
increasing mean IC values on the x axis) and subjective liking ratings (scaled by subjects). Each point
represents individual ratings for each melody. Error bars represent 1 s.e.m. of ratings for each melody.
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Figure 3. Pupil size change across 13 time-bins (for each note) for predictable (P) and unpredictable (U)
melodies across different degrees of liking (high, medium and low). Error bars represent 1 s.e.m. of all
trials. (right panel) Scatter Plot showing the mean pupil dilation as a function of reward sensitivity score.
Each data point represents an individual participant. The diagonal indicates the line of best fit.
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729  Figure 4. Training phase. Average asynchrony for 4 repetition trials for the keystroke of target notes in
730  predictable (P) and unpredictable (U) melodies (left panel). Average asynchrony for predictable and
731  unpredictable melodies across different degrees of liking (high, medium and low) (middle panel). Error
732 bars represent 1 s.e.m. of all trials. (right panel) Scatter plot showing the correlation between intrinsic
733 motivation score of perceived competence and learning regression slope for Low Like melodies. Each
734 data point represents an individual participant. The diagonal indicates the line of best fit.
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736 Melody Information Content

737  Figure 5. Stimuli. Median information content A) for each melody, B) for context and target notes of
738  predictable (P) vs. unpredictable (U) melodies. Box = 25th and 75th percentile; bars = min and max
739  values. Grey squares = mean information content across notes. The red vertical line indicates the median
740  split of melodies based on their mean information content C) Stack bar chart with the counts of high,
741  medium and low liking ratings assigned by subjects to each melody (on the x axis ordered by increasing
742 mean IC values).
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