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Abstract 11 

Humans can anticipate music and derive pleasure from it. Expectations facilitate movements associated 12 
with anticipated events, and they are linked with reward, which may also facilitate learning of the 13 
anticipated rewarding events. The present study investigates the synergistic effects of predictability and 14 
hedonic responses to music on arousal and motor-learning in a naïve population. Novel melodies were 15 
manipulated in their overall predictability (predictable/unpredictable) as objectively defined by a model 16 
of music expectation, and ranked as high/medium/low liked based on participants’ self-reports collected 17 
during an initial listening session. During this session, we also recorded ocular pupil size as an implicit 18 
measure of listeners’ arousal. During the following motor task, participants learned to play target notes 19 
of the melodies on a keyboard (notes were of similar motor and musical complexity across melodies). 20 
Pupil dilation was greater for liked melodies, particularly when predictable. Motor performance was 21 
facilitated in predictable more than unpredictable melodies, but liked melodies were learned even in the 22 
unpredictable condition. Low-liked melodies also showed learning but mostly in participants with higher 23 
scores of task perceived competence. Taken together, these results suggest that effects of predictability 24 
on learning can be overshadowed by effects of stimulus liking or task-related intrinsic motivation.  25 
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1 Introduction 26 

Through passive exposure to music, we implicitly develop models about its structure 1,2. These models 27 
allow both listeners to generate expectations about upcoming musical events 3–5, and trained musicians 28 
to better plan and learn musical actions 6–9. Expectations are also linked to the experience of musical 29 
pleasure 10–12, as neuroimaging evidence shows that musically evoked pleasure relies on the cross-talk 30 
between neural systems responsible for prediction with those responsible for reward 13. Importantly, 31 
rewarding stimuli increase arousal 14, and are also better learned 15. Given the inherent link between 32 
predictability and pleasure in music, here we aim to assess their contributions to learning with the 33 
hypothesis that motor learning in naïve population may benefit from the implicit musical expectations 34 
and hedonic responses derived from music. 35 

A large body of theoretical and experimental work suggests that agents use internal psychological 36 
models to make sense of perceptual inputs and respond to them. Through implicit statistical learning, 37 
the brain continuously scans the environment for regularities and acquires probabilistic models of the 38 
world without deliberate effort or awareness 16–18. For example, based on these internal models, the 39 
brain can compute the statistical distribution of sequential phenomena 19,20 enabling it to predict 40 
unfolding sensory events, thereby reducing its uncertainty 21. In particular, according to predictive coding 41 
theory 22, by comparing top-down predictions with the actual sensory input, internal predictive models 42 
contribute to the selection of relevant bottom-up inputs 23, and error signals are used to update 43 
predictions, construct new models, and guide subsequent actions. Internal models can aid motor 44 
planning 24,25 and it has even been shown that visual statistical learning can inform the motor system to 45 
better predict upcoming actions 26,27.  46 

Similar cognitive mechanisms are likely to play a role in musical perception and performance. When 47 
listening to music, humans entertain a number of predictions, or hypotheses, about future musical 48 
events 1,28, and these predictions are subject to refinement and learning on different time scales and at 49 
different levels of sophistication. For example, musical predictions vary as a function of the musical 50 
culture one is exposed to 29–31 and can adapt to novel musical styles 32. Furthermore, musical predictions 51 
are optimized by expertise 33, and can even vary across the lifespan 34. With regard to performance, it 52 
has been shown that musical regularities facilitate movement selection 35,36. This facilitation is supported 53 
by associations between movement and ensuing effects formed through coupling of motor and sensory 54 
cortices 36–39. Moreover, studies in trained musicians show that internal predictive models allow long-55 
range motor planning of entire musical sequences 6,7,40–43. Thus, motor performance in experts appears 56 
to be guided by predictions based on learned internal models of music, suggesting that also initial stages 57 
of learning may benefit from them.   58 

Expectations are also linked to the experience of musical pleasure 10–12,44. Pleasurable music strikes a 59 
balance between predictable events, which allow listeners to form expectations, and moderately 60 
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unpredictable events that produce surprise. For example, a single repeating note is very predictable, but 61 
may not be very enjoyable, and similarly, transitions to unrelated notes may be perceived as unpleasant 62 
45,46. Indeed, musical pleasure seems to vary with stimulus complexity – e.g., harmonic or rhythmical 63 
predictability – as an inverted-U function, with maximum liking occurring at intermediate levels of 64 
complexity 47–50. Neural evidence suggests that musical surprises induces liking by engaging the reward 65 
system 51, via distinct phases of dopamine transmission during the anticipation and enjoyment of 66 
listeners’ favorite musical moments 52. Connectivity analyses suggest that it does so in cooperation with 67 
fronto-auditory systems responsible for predictions during listening 13. The role of dopamine, which has 68 
been widely linked to the  ‘wanting’ and ‘learning’ components of reward 53, has been also directly linked 69 
with abstract hedonic responses to music (i.e., liking) 54. Furthermore, a recent study showed that 70 
pleasant musical moments activate the noradrenergic arousal system, as revealed by increased pupil 71 
dilation during passive listening 14. A concomitant increase of arousal and reward systems during 72 
pleasant music seems plausible given the known anatomical and functional link between dopaminergic 73 
and noradrenergic subcortical nuclei 55,56, and may explain findings of better memory for rewarding than 74 
neutral musical excerpts 57. Although rarely used to measure response to long stimuli – such as a melody 75 
58,59, pupil dilation may thus be powerful to continuously track hedonic responses to unfolding music 60.  76 

These evidence that musical expectations contribute to increase of arousal and pleasure suggest a 77 
possible link with learning based on the relevance of rewarding stimuli and reward-related dopamine 78 
circuits 15. For example, animal studies show that brain plasticity associated with auditory learning is 79 
greater when the information to be learned is rewarded 61. Further, pairing a tone with stimulation of 80 
dopamine circuits in the brainstem increased the selectivity of responding in auditory neurons tuned to 81 
the same tone 62. Importantly, dopamine has also been shown to modulate motor learning in humans 82 
and animals both directly 63,64, and indirectly through monetary reward 65,66. Based on this body or work, 83 
we test the idea that, by carrying abstract reward, music that is better liked could be associated with 84 
greater arousal and learning.  85 

As the motivation to learn a musical excerpt can derive from perceived pleasure, learning can also be 86 
motivated by its inherent challenge. Psychological and computational accounts of motivation distinguish 87 
extrinsic from intrinsic motivation: whilst the first is based on external reward or pressures outside the 88 
individual, the latter is defined as doing an activity for its inherent satisfactions, that have the appeal of 89 
aesthetic value or challenge for the individual 67,68. It is possible that learning becomes pleasant for 90 
actions that lead to decrease of uncertainty and improvement of internal predictive models 69–71. Beside 91 
this, motivation to learn may be also driven by individual’s feeling of competence in achieving a self-92 
determined goal just for the challenge entailed by the task 68. Therefore, individual differences in intrinsic 93 
motivation should also be assessed to predict learning. 94 

We tested participants with no-to-little musical training with pupillometry in a listening task, followed 95 
by a melody learning task (Figure 1). We composed novel melodies which varied in their structural 96 
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predictability (from overall predictable to unpredictable melodies). We could formally determine the 97 
complexity of the stimuli by means of a variable-order Markov model of melodic expectation (IDyOM)1: 98 
this model acquires knowledge of musical structure through unsupervised statistical learning and uses 99 
this knowledge to estimate the probability of musical notes in a given melody. The expectedness of each 100 
note in the melody is expressed in units of information content (IC), where high and low IC values 101 
correspond respectively to less and more predictable notes. During the listening task, we recorded the 102 
ocular pupil dilation response, and participants were asked to rate how much they liked each melody on 103 
a seven-point scale. In the melody learning task, participants learned to play the last four notes of the 104 
melodies on a piano-type keyboard (learning phase), and they were tested thereafter (test phase). 105 
Importantly, the last four notes did not differ in predictability or motor requirements (See Figure 1), but 106 
only in the predictability of the preceding musical context.  107 

First, we hypothesized that moderately predictable melodies would be better liked, consistent with the 108 
inverted-U hypothesis. Further, we predicted that sustained pupil dilation would be greater for melodies 109 
that were better liked. For the melody learning task, we expected that predictable musical contexts 110 
would result in better motor implementation of target notes, and that better-liked melodies would 111 
potentially be better learned even in the unpredictable condition. Because there are large inter-112 
individual differences in music reward sensitivity and intrinsic motivation to perform a task, these 113 
characteristics were assessed via questionnaires: Barcelona Music Reward Questionnaire; 72 and the 114 
Intrinsic Motivation Inventory (with focus on interest/ enjoyment, and perceived competence 115 
subscale)73.  116 

Figure 1 117 

2 Results 118 

2.1 Liking ratings of the melodies as function of Predictability 119 

Based on theoretical and empirical work 47–49, we expected an inverted U-shape relationship between 120 
subjective liking and stimulus complexity. Therefore, a parabola was fitted in a model describing 121 
participant’s ratings (scaled by subject) as a function of IC of melodies (averaged across notes). Figure 2 122 
shows the quadratic relationship between melody IC and participants’ liking ratings (χ²(1) = 4.513, p = 123 
.033), indicating that liking was higher for moderately predictable melodies, but it decreases when 124 
melodies become more complex (high IC). Possibly because of a relative narrow range of IC across 125 
melodies, a linear model could also fit the relationship between liking and IC (χ²(1) = 4.174, p = .041), 126 
which yielded similar model fit to the quadratic term (ΔAIC = .6). 127 

Figure 2 128 

2.2 Pupil diameter during listening 129 
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During listening, participants provided liking ratings to each of the melodies whilst pupil dilation was 130 
measured. We analyzed the effects of predictability (Predictable/Unpredictable) and liking 131 
(High/Medium/Low) and their interaction on participants’ pupil size change over 13 time-bins, 132 
corresponding to the 13 notes in the melodies (Figure 3). We found an effect of predictability by time 133 
bin on the sustained pupil response (χ²(1) = 5.291, p = .021). Although the differential increase over time 134 
did not reach statistical significance after multiple comparisons, post hoc paired t-test showed overall 135 
greater pupil dilation for predictable compared with unpredictable melodies [P-U: t(1,22)= 3.137, p = 136 
.005]. Moreover, we found an interaction of liking and time bin (χ²(2) = 29.257, p < .001): this indicated 137 
that high-liked melodies induced greater dilation than medium-liked (high-medium: b = 5.942, SE = 138 
1.458, p < .001), or than low-liked melodies (high - low: b = 3.928, SE = 1.469, p = .021). A three-way 139 
interaction of predictability, liking and time bin (χ²(2) = 6.152, p = .046) showed that pupil dilation for 140 
the high-liked condition increased more for predictable than unpredictable melodies (P - U: b = 4.846, 141 
SE = 2.107, p = .021). No predictability effect was indeed found in the low-liked (P - U: b = -1.113, SE = 142 
2.05, p = .587), or medium-liked condition (P - U: b = -1.783, SE = 2.19, p = .377). These results suggest 143 
that the increase of pupil dilation as a function of liking was greater when the music was predictable.  144 

Finally, individual scores of music reward sensitivity positively predicted pupil size change across all trials 145 
regardless of condition (rho=.320, p = .005) (Figure 3; right panel), showing that individuals who are more 146 
sensitive to musical reward have a greater physiological response. 147 

Figure 3 148 

2.3 Motor performance 149 

In the motor task participants listened to the first nine context notes of each melody through 150 
headphones and then played the last four target notes on a piano-type keyboard. Accuracy and 151 
asynchrony were entered in separate mixed effects regressions for the training and the following test 152 
phase. 153 

In the training phase, we found increase of accuracy across repetition trials (χ²(3) = 22.498, p < .001), 154 
and no other effect involving Predictability or Liking (ps > .111). For asynchrony (Figure 4), there was a 155 
main effect of Predictability (χ²(1) = 11.677, p < .001), and an interaction with repetition trial (χ²(1) = 156 
5.758, p = .016), such that predictable trials were better executed, and that this advantage were greater 157 
in the early trials (P – U across repetition trials: b = 5.883, SE = 2.753, p = .033). An interaction between 158 
Liking and Predictability (χ²(2) = 9.092, p = .01) indicated that these effect of predictability mainly 159 
regarded the medium-liked melodies (P - U: b = -27.872, SE = 11.454, p = .015), but not the high-liked (P 160 
- U: b = -5.675, SE = 11.659, p = .131), and  low-liked ones (P - U: b = -17.484, SE = 11.574, p = .131). The 161 
poorer performance for medium-liked melodies in the unpredictable condition suggests that the 162 
unpredictability of the stimulus is compensated when strong (positive or negative) rather than mild 163 
(medium) emotional responses are at play. We indeed found a significant main effect of Liking (χ²(2) = 164 
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16.755, p < .001), and an interaction with repetition trial (χ²(2) = 21.263, p < .001) such that learning was 165 
better for the high-liked and the low-liked melodies when compared with the medium-like ones (across 166 
repetition trials high-medium: b = -12.718, SE = 3.401, p < .001; low-medium: b = -7.998, SE = 3.313, p = 167 
.016; high-low: b = -4.720, SE = 3.398, p = .165). 168 

Taken together, these findings indicate that learning of the target-notes was greater after predictable 169 
than unpredictable contexts in presence of mild emotional responses. However, the disadvantage due 170 
to the unpredictable contexts was minimized for high- and low-liked melodies, which showed similar 171 
learning regardless of predictability. 172 

Figure 4 173 

We further investigated the role of other factors than stimulus-induced affective responses in learning, 174 
as inter-individual differences associated with intrinsic motivation. Specifically, we tested the 175 
relationship of the general enjoyment and task-perceived competence IMI scales, with the learning 176 
slopes – measured as reduction of asynchrony across repetition trials– in the high-like and low-like 177 
conditions. To estimate the individual performance improvement across repetition trials as a function of 178 
liking, we ran mixed model testing for only the effect of liking (High/Medium/Low) across repetition 179 
trials, and extracted residual individual slopes for the low-/high-liked condition, after adjustment for the 180 
effects of the performance change in the medium like condition at the intercept. More negative slopes 181 
(faster learning) associated with low-liked condition were predicted by higher scores of individuals’ 182 
perceived competence in succeeding the task (Fig. 4 right panel, rho = -.488, p =.015), and there was a 183 
trend with the general enjoyment scale (rho = .393, p =.085). The learning slope for high-liked melodies 184 
did not correlate with perceived-competence scores (rho = -.224, p =.292), nor with general enjoyment 185 
scale (rho = .147, p =.535). Thus, the learning effect observed in low-liked melodies was particularly 186 
driven by participants with high task perceived competence, whilst liked music was learned regardless. 187 
This suggests that perceived competence helped the participants overcome low liking to learn the 188 
melodies, but it didn’t play a role in highly liked stimuli as participants were already motivated by the 189 
pleasure carried by music. 190 

Furthermore, we tested if learning highly liked stimuli was predicted by pupil response to those stimuli. 191 
The correlation between the mean amplitude of pupil diameter in high-like trials and the learning slope 192 
of high-like condition did not yield significant results (rho = .044, p =.84). This may be due to the fact that 193 
the range of liking values was relatively limited.   194 

In the test phase, we didn’t observe any significant effect of liking nor predictability on accuracy and 195 
asynchrony (all ps >.389). This non-finding in the test phase may be explained by the fact that only one 196 
trial per melody was not sufficient for seeing an effect. Also, the increased number of errors committed 197 
in the test phase compared with the last repetition trial of the training phase (pitch and timing errors 198 
combined, mean averaged across participants 10.74 ± 26.60 %, in the last repetition trial; 35.51 ± 24.04%, 199 
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in the test phase; t (25) = -5.940, p < .001, Cohen’s d=-2.376), suggests that more repetitions may be 200 
desirable for stabilization of learning. 201 

3 Discussion 202 

The present study investigated the contribution of predictability and liking on arousal and learning in 203 
non-musicians. First, we found an inverted U-shaped relationship between music complexity and liking, 204 
showing that moderately predictable melodies were more liked than highly predictable and 205 
unpredictable melodies. Further, we showed a synergistic effect of predictability and hedonic response 206 
to music on arousal, as reflected by sustained pupil dilation. We also observed that pupil dilation was 207 
overall greater in individuals with higher sensitivity to musical reward, suggesting that it is a good marker 208 
of responsiveness to music. With regard to melody learning, performance was facilitated for predictable 209 
compared to unpredictable melodies in medium-liked music, indicating that musical expectations can 210 
facilitate auditory-motor predictions and movement preparation, even in non-musicians. This effect of 211 
predictability was overshadowed by musical reward as liked melodies were better learned, even when 212 
unpredictable. Finally, we found that not-liked melodies were also learned and that this effect was 213 
correlated with individuals’ task perceived competence, suggesting that, beyond the musical reward, 214 
other factors carrying reward — such as individual’s task-related intrinsic motivation— contribute to 215 
learning.  216 

Our results link quantitative measures of stimulus complexity (as music predictability) with liking 217 
response of listeners as an inverted-U-shaped function, whereby moderately predictable melodies were 218 
more liked than highly predictable and unpredictable melodies. Importantly, listeners were unfamiliar 219 
with the stimuli, and complexity was objectively characterized by the IDyOM model which has been 220 
shown to optimally predict subjective perceptual expectations 74, and perceived complexity of musical 221 
structure 75. The inverted-U model was first proposed by Berlyne (1971) to reflect a general relationship 222 
between aesthetic appreciation and structural complexity in art. But, it has also been shown to be a 223 
general property of complex stimuli including visual shapes 76, music and rhythm 44,49. In line with a 224 
predictive account, liking may derive from an intrinsic reward which occurs whenever an internal 225 
predictive model improves by decreasing uncertainty 69,71. Because the potential for decreasing 226 
uncertainty is maximal when music is moderately complex, so it should be for the liking. The inverted-U 227 
model has received empirical support in some music experiments 47,48,50, but not in others 77,78, possibly 228 
because it is often difficult to generate ecologically valid stimuli that cover the full range of complexity, 229 
or because other psychological mechanisms triggered by the stimulus such as familiarity, imagery, 230 
memory or associations 1,79 interact with expectation-based emotions. 231 

The effect of liking on subject’s arousal is in line with previous literature 14, in that pupil response during 232 
listening was greater for liked melodies. Importantly, we extend this finding by showing that pupil 233 
dilation increased for high-liked melodies, but only when they were predictable. These results are novel 234 
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because they address for the first time both the effect of subjective pleasure and musical complexity on 235 
sustained pupil response over relatively long stimuli. They are compatible with the interpretation that 236 
sustained pupil dilation is modulated by both changes in attentional engagement due to stimulus 237 
structure tracking 80,81, and to subjective affective evaluation or reward 14,82. In support of this 238 
interpretation, electrophysiological evidence has established a link between pupillary response and 239 
norepinephrine activity in the nucleus locus coeruleus 83 that has synergistic connections with subcortical 240 
dopaminergic nuclei involved in reward, and prefrontal areas involved in stimulus evaluation processes 241 
55,56. Predictable melodies may thus result in greater attentional engagement – enhanced noradrenergic 242 
activity –  as they conform to listeners’ prior expectations and allow them to form precise predictions 243 
about the incoming stimulus 1. Such effect of predictability may explain effects of greater sensitivity and 244 
memory of music from one’s own culture, or of simple more than complex excerpts 31,32. Conversely, 245 
unpredictable melodies may down-weigh predictions from a model that does not match the incoming 246 
stimulus, resulting in attentional disengagement, and lower pupil response. The interaction effect of 247 
liking and melody predictability on pupil dilation suggests that positive evaluative processes build on 248 
successful tracking of the stimulus structure. One proposed mechanism is based on a hypothesized 249 
feedforward loop between forebrain regions associated with reward evaluation and the concerted 250 
action of the noradrenergic and dopaminergic systems 55. As a positive subjective evaluation is formed 251 
throughout the melody, succeeding valid predictions gain greater reward value through dopamine-252 
mediated response, which in turn boosts norepinephrine-mediated attention. Future investigations 253 
combining pupillometry and brain imaging are necessary to identify this circuit, and the proposed 254 
dynamic interaction during response to music.  255 

Learning of the target notes was facilitated for predictable compared with unpredictable melodic 256 
contexts in medium-liked music, demonstrating that musical structure promotes predictions and motor 257 
encoding in naïve performers. Importantly, better learning cannot be explained by differences in 258 
predictability or motor complexity intrinsic to the target notes, because these were similar across all 259 
melodies. They only differed because they were embedded in contexts that allowed better or worse 260 
prediction of the most likely continuation of the melody. Further, learning effects were observed for 261 
temporal accuracy of the movements, not note accuracy – which was high in all conditions.  This is 262 
important because the stimuli varied in melodic expectations, but not in timing. Thus, better temporal 263 
accuracy for more predictable melodic contexts indicates that musical structure promotes motor 264 
prediction and planning by heightening the precisions of the movements. This result is in line with the 265 
notion of ‘active inference’ 22,24: by relying on models of the environment with a high level of precision 266 
in predictable contexts, the brain can select a narrower set of information to predict the future 267 
sensorimotor state and to reduce uncertainty 84,85. Given that perception and action are intertwined, 268 
perceptual and motor networks may also interact during the generation of predictions about the most 269 
likely next state 26. Accordingly, in music models of musical structure inform the sensory system to 270 
anticipate the most predictable sound 86, and they also drive the motor systems to facilitate the 271 
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movement required to produce it 37,39,42,87. Moreover, there is recent evidence that non-musicians 272 
rapidly form sensorimotor representations of anticipated events after short-term motor training 36,88. 273 
Our results suggest that even in naïve performers, predictions based on experience in the auditory 274 
modality affect predictions in the motor domain, irrespective of previous training linking sounds to 275 
actions. A possible underlying mechanism may be the rapid formation of sensorimotor associations at 276 
the first attempts of execution, which result in facilitated performance in the following repetition trials 277 
89. They may also be based on long-term priors –the so-called SMARC effect (Spatial Musical Association 278 
of Response Codes) – which shows that even for individuals without training, higher pitches facilitate 279 
upward or rightward responses, and low pitches facilitate downward or leftward responses 90. 280 
Alternatively, in line with the view that sensory and motor systems act as independent “emulators” of 281 
upcoming events 91, predictive models in the motor domain may be independently generated based on 282 
existing models of music built through auditory perception.  283 

Liking a melody reduced the disadvantage in performance due to the unpredictable contexts, suggesting 284 
that music-induced hedonic response promotes learning by overshadowing the effect of predictability. 285 
A possible underlying mechanisms may be an interaction between dopamine-mediated reward induced 286 
by music 71 and dopamine-mediated learning mechanisms 15. This is consistent with work reporting 287 
enhanced motor learning and retention in presence of external incentives, such as  monetary reward 288 
65,66. In line with the idea the reward value of music may act as a reinforcement signal for learning 51, our 289 
results foster the link between reward and motor learning in a more complex task and for an abstract 290 
stimulus-related incentive.  291 

The motor learning benefit associated with preferred music may be indirectly linked with general greater 292 
attention, as reflected by increase of pupil in liked melodies. The well-known interaction between the 293 
noradrenergic system – underlying pupil dilation – and the dopamine system – associated with reward 294 
– 55,92, suggest that the concerted action of these two systems may mediate the beneficial effect of music 295 
reward on memory and motor learning. We did not find evidence to relate motor learning and pupil 296 
response to liking ratings, probably because of the limited range of response elicited by the stimuli used 297 
here. Previous studies using stimuli that induce musical chills have shown that they induce greater pupil 298 
dilation 14, and are also better remembered 57, consistent with the key role of the reward system in 299 
stimulus encoding 93. Future studies, likely in trained musicians, could use stimuli which induce more 300 
intense pleasure to examine their effect on learning.  301 

Non-liked melodies were also learned similarly to liked melodies, irrespective of music predictability. The 302 
learning of non-liked melodies was driven by participants with higher task-achievement motivation 303 
(perceived-competence scale), as opposed to a general learning effect of high-liked melodies. This is in 304 
line with the definition of competence where the achieving process, rather than goal being achieved, is 305 
central 67.  Thus, our results suggest that when the music is not rewarding per se, people with greater 306 
general task-related motivation succeed better in learning it.   307 
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Predictability and liking are inherently linked in music. Their intertwined effect was evident in the 308 
pupillary response, which was enhanced both by musical expectations and subjective music reward. 309 
However, what are their contributions to learning when assessed separately? We observed that when 310 
operationalized as information content, effects of predictability on learning can be over-shadowed by 311 
effects of liking or of intrinsic motivation. One implication of this is that liking in music should neither be 312 
reduced to “mere” liking – as it can drive learning, thus acting “as” a reinforcer, nor to mere predictability 313 
– because unpredictable melodies were learned equally well when liked. This may also in part be due to 314 
the fact that subjective liking plausibly involves many dimensions beyond predictability, such as 315 
familiarity, imagery, memory or idiosyncratic associations 1,79. These results reinforce the view that 316 
emotional and motivational factors have powerful impact on learning not only for cognitive tasks, but 317 
also for procedural and motor-skill learning 94. In conclusion, this study provides an important first step 318 
in understanding how motor learning benefits from the contributions of implicit musical expectations 319 
and the derived emotional response. Future research in this direction may shed light on their additional 320 
benefits on rehabilitation in clinical populations.  321 

4 Material and methods 322 

4.1 Participants 323 

Twenty-seven individuals with no previous piano training took part in the study (18 female; Age: M= 324 
24.74 ± 5.03). Participants had on average less than one year (M = 0.8 years + 1.5) of formal music 325 
training, which did not take place in the last 10 years (note that one participant with 16 years of training 326 
in another instrument was excluded from the analysis). All participants were neurologically normal, were 327 
not taking any medication that could affect motor performance, and had normal hearing, and normal or 328 
corrected to normal visual acuity. All participants were naïve with regard to the purpose of the study 329 
and provided written informed consent. The Concordia University Human Research Ethics committee 330 
approved the study (30007730) and conducted adhering to the Canadian Tri-council Policy on ethical 331 
conduct for research involving humans 95. 332 

4.2 Stimuli and Procedure 333 

4.2.1 Stimuli 334 

Sixteen different melodies of 13 notes were newly composed specifically for the experiment according 335 
to the rules of classical Western tonal music. All of them began on the first beat, and were notated with 336 
a time signature of 3/4 that was thought to be easier to count along. In order to focus specifically on 337 
pitch expectations, each note had the same duration and equivalent inter-onset interval of 428 ms (140 338 
bpm). Melodies were created with MuseScore program (version 2.0.2) and synthesized with a piano 339 
sound (generated using Ableton Live 8) with the same loudness for all notes and melodies. Each melody 340 
had a total duration of 6.4 s.  341 
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The predictability of each melody was objectively defined using  the information dynamics of music 342 
model, IDyOM 19 and based on the average information content values of each note. This model is 343 
trained through a process of unsupervised learning on a large training set of 903 Western tonal melodies. 344 
IDyOM first analyses the statistical structure of the training set, represented as sequences of pitch and 345 
note’s scale degree relative to the key of the melody. In a new sequence, it then estimates the probability 346 
of each note, based on a combination of the training set’s statistics and those of the sequence at hand, 347 
which it learns dynamically. The output is a note-by-note measure of information content (IC, the 348 
negative logarithm, to the base 2, of the probability of an event occurring), which IDyOM uses instead 349 
of raw probability for greater numerical stability and a meaningful information-theoretic interpretation 350 
in terms of redundancy and compression. We manipulated the mean predictability/IC of each melody by 351 
varying the number of out-of-key notes over the first 9 context notes – whereby an out-of-key note 352 
results in high IC (Figure 5A). The predictability/IC of the four target notes designed to be similar across 353 
melodies (Figure 5B). An ANOVA with factors Predictability (P/U) and Note type (Context/Target Notes) 354 
on the IC of each note yielded a significant interaction of Predictability and Note type [F(1, 14) = 11.60, p = 355 
.004, ηp2 = .45], indicating that IC for Context but not Target notes differed significantly between 356 
predictable and unpredictable melodies [Main effect of predictability on context notes only: F(1, 14) = 357 
52.88, p < 0.001, ηp2 = .79; Main effect of predictability on target notes only: F(1, 14) = 2.50, p = .136, ηp2 = 358 
.15]. Based on the IC measure the 16 melodies were ranked from high to low probability (M= 4.48 ± 1.56, 359 
range = 1.7-9.1), and then they were divided into Predictable or Unpredictable based on the median split 360 
(Figure 5A).  361 

Figure 5 362 

4.2.2 Liking ratings and pupillometry 363 

Participants listened to all 16 melodies, one at a time, and rated how much they liked them using a 7-364 
point Likert scale (1 being not all and 7 being very much) at the end of each melody. Liking ratings for 365 
each melody were then scaled by subject, and ranked as high, medium and low (Figure 5C). 366 

Pupil dilation was measured during Listening using the EyeLink 1000 head-supported infrared optical 367 
eye-tracking system (running host software ver. 4.56, SR Research, Ottawa, ON, Canada) in binocular 368 
1000Hz sampling configuration, connected to an Apple iMac (Mac OS X 10.12). The EyeLink system was 369 
used in the Pupil-Corneal Reflection tracking mode. Participants were seated in a comfortable chair with 370 
their head stabilized in a chin and forehead rest, facing the computer monitor (View sonic G225fb 21” 371 
CRT, 1024 × 768pixel resolution, 100 Hz refresh rate, linear gamma correction for luminance with mean 372 
luminance = 60 cd/m2) at a distance of 70 cm, in a quiet, moderately lit room (40 cd/m2). To calibrate 373 
the eye-tracker, a circular target (1 degree of angle) appeared in random order at one of 6-points on the 374 
screen (HV6, in the default Eyelink screen locations), followed by a separate validation. Calibration and 375 
validation were repeated until the average error across all calibration targets was below 0.5 degrees of 376 
visual angle, and the maximum error at any one calibration point was below 1 degree of visual angle. 377 
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The order of presentation of the melodies was randomized across participants. Two seconds of baseline 378 
pupil data was acquired before and after each melody was played. After each melody, two seconds were 379 
given for the liking rating, which was followed by a 2-seconds blank grey screen before the next trial. 380 
Participants were instructed to continuously fixate on a cross at the center of the screen (size: 9.4cm x 381 
9.4cm, corresponding to a 4.5◦ visual angle at a viewing distance of 70 cm; RGB: 75,75,75; background 382 
grey color, RGB: 150,150,150), not to move their heads for the duration of the eye tracking component 383 
of the experiment, and to avoid blinking while the melody was playing. The total duration of the Listening 384 
task was approximately 20 minutes.  385 

4.2.3 Melody Learning 386 

In this task participants listened to the first nine context notes of each melody through headphones and 387 
then played the last four target notes on a piano-type keyboard using the four fingers of the right hand: 388 
thumb, index, middle and ring finger which were assigned to a fixed white key to which all notes were 389 
mapped. This ensured that motor demands for the notes to be played were matched across conditions. 390 
Target notes were cued using visual display representing the keyboard (see Figure 1) where a dot 391 
appeared sequentially (IOI 428 ms) to indicate which key to play. Participants heard the notes they 392 
produced through the headphones. To facilitate accurate playback timing, melodies were accompanied 393 
by a metronome beat at the beginning of every bar. The fourth metronome beat cued participants to 394 
begin playing back the target notes. The notes played and their timing were recorded from the keyboard 395 
and used to score accuracy and synchronization. The 16 melodies were presented in a randomized order, 396 
and each melody was repeated 5 times with an ISI of 1 second. At the end of the Learning task, 397 
participants performed a final recall block where each of the sixteen melodies was played back once in 398 
a random order. 399 

Before training, participants were familiarized with the playback task in a brief practice block of four 400 
trials in which they had to count 3 metronome beats (corresponding to 3 bars), and then perform 4 401 
keypresses cued by the visual display.  The familiarization trials contained all finger transitions that were 402 
to be encountered in the Melody Learning task. No auditory feedback was provided. Presentation of the 403 
melodies and recording of the responses was controlled custom-written Python software running on a 404 
PC Linux computer.  405 

At the end of the experiment, each participant’s music reward sensitivity (i.e. how important music is in 406 
his/her life) was assessed via the Barcelona Music Reward Questionnaire 72. Participant’s intrinsic 407 
motivation to perform the task was assessed via the standard, 22-items version of Intrinsic Motivation 408 
Inventory 73. The entire experiment lasted approximately 60 minutes.  409 

4.3 Data analysis 410 
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4.3.1 Analysis of pupil diameter 411 

Pupil diameter was measured in arbitrary units. Blinks were identified by identifying in each trial samples 412 
without data due to blinks, removing 100 ms before and after the edges of the non-data points to make 413 
sure that all artefacts of the pupil size algorithm were removed. For each blink, four equally spaced time 414 
points (t2 = blink onset; t3 = blink offset; t1=t2-t3+t2; t4=t3-t2+t3) were interpolated by using a cubic-415 
spline fit and the original signal was replaced by the cubic spline, leaving the signal unchanged except 416 
for the blink period. Random sample artefacts were removed using a median Hampel filter (from EEGlab 417 
software, version 14.1), after which data were smoothed using a Savitzky-Golay Filter over an 11-ms 418 
timeframe to remove the high-frequency noise in the pupil without time-delaying the pupil signal. Then, 419 
each trial was baseline-corrected against the median pupil size in the 400 ms before the onset of the 420 
melody, and then divided in 13 bins corresponding to the onset of each note. Trials during which 421 
participants blinked for more than 15% of the total trial duration were excluded (two participants’ 422 
datasets, and a mean of 0.92 ± 2.53 for the rest of participants). Baseline-corrected pupil size change 423 
was then analyzed by using linear mixed-effects regressions testing for the effects of predictability 424 
(Predictable/Unpredictable), Liking (High/Medium/Low), time-bins (1-13) and their full interaction. 425 

4.3.2 Analysis of motor performance 426 

Participants’ performances were examined off-line to evaluate key errors (MIDI note number) and 427 
response times for the four keystrokes relative to the four last target notes of each melody. Trials were 428 
considered invalid and excluded from the analyses if participants pressed more or fewer than 4 notes 429 
per trial. On these data, two indexes of performance were computed: trial accuracy (i) was quantified 430 
by counting the total number of errors. These were defined either by an incorrect keystroke (key identity 431 
error), or by an absolute response time larger than 428 ms (timing error; for values outside this range, 432 
keystrokes occurred within the range of the note preceding or following the one with which it was 433 
supposed to be synchronized). Asynchrony (ii) was quantified only on correct trials by measuring the 434 
time difference between the actual keystroke of a note and the expected onset of that given note.  435 

Statistical analyses were performed separately for the two performance indexes (i.e., trial accuracy and 436 
asynchrony) and for the training (where each melody was performed for 5 consecutive times) and the 437 
test phase (where each melody was played only one time). We used mixed effects regression analyses 438 
testing for the effects of predictability (Predictable/Unpredictable), liking (High/Medium/Low), 439 
repetition trial (1-4), keystroke (1-4), and the full interaction between liking, predictability and repetition 440 
trial. Keystroke was introduced as an effect of no interest to account for known motor execution 441 
differences between initiation (first key press) and completion (following 3 keypresses) of sequential 442 
movements 96. Keystrokes for the first repetition trial were initially analyzed, but then excluded because 443 
of too many invalid trials (M= 55.04 ± 26.60 % of invalid trials across participants). The analysis on the 444 
test phase looked for learning stabilization, and estimated the effects of predictability 445 
(Predictable/Unpredictable) and liking (High/Medium/Low). 446 
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4.3.3 Statistical analysis 447 

All data analyses were conducted in MATLAB R2015b (Mathworks, Natick, MA, USA), except for the linear 448 
mixed model analysis that was implemented in R environment Version 0.99.320 using the ‘lmer’ function 449 
from package lme4 to build the models 97 and the ANOVA function from package car to obtain 450 
significance tests 98. In contrast to a more traditional approach with data aggregation and repeated-451 
measures ANOVA analysis, linear mixed effects regression allows controlling for the variance associated 452 
with random factors without data aggregation (see 99). By using random effects for subjects and stimuli 453 
item, we controlled for the influence of different mean responses associated with these variables. 454 
Moreover, we also included by-participant random slopes for the effects of interest (predictability, liking 455 
and their interaction), which accounted also for differences in how predictability and liking affected 456 
participants’ responses (random slopes). Contrasts were carried out using the ‘emmeans’ package in R 457 
100. We report unstandardized effect sizes (unstandardized regression coefficients, indicated as ‘b’ for 458 
the statistical tests) which is in line with general recommendations of how to report effect sizes in linear 459 
mixed models 101. Significance of the fixed effects of these models were evaluated  with the 460 
Satterthwaite approximation 102, and p values were adjusted for multiple comparisons using the 461 
multivariate t method.  462 
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Figures  700 

 701 

Figure 1. Schematic illustration of the experimental paradigm. Stimuli. The musical scores of 2 examples 702 
– 1 more predictable and 1 less predictable based on the information content (IC) of the context notes. 703 
Participants listened to the context notes and then played the target notes as guided by the visual 704 
display.  The IC of the context notes (before the dotted line) was manipulated to result in predictable 705 
(low IC) or unpredictable (high IC) contexts. These were followed by four target ending notes with similar 706 
IC between predictable and unpredictable melodies. Fingering for the target notes is indicated by the 707 
numbers on the last two bars. Thumb, index, middle and ring finger were assigned to a fixed white key 708 
to which different expected sounds were artificially mapped to. This ensured that motor demands for 709 
the target ending notes were matched across conditions. Task 1. Listening and pupillometry: pupil 710 
dilation was measured while participants listened to the entire melody and liking ratings (7-point scale) 711 
were collected at the end of each trial. Task 2. Melody Learning: participants listened to the first nine 712 
context notes of the melody and completed the melody by playing the last four target notes on a midi-713 
keyboard. The notes expected to play were cued by sequential dots drawn onto a keyboard on the 714 
screen. Each note occurred at a tempo of 140 bpm, and a metronome sound at 46 bpm (every three 715 
notes) guided participants’ pace. Each trial was repeated 5 times during training and 1 time in a final 716 
test-phase. 717 
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 718 

Figure 2. Inverted-U relationship between mean information content (IC) of each melody (ordered by 719 
increasing mean IC values on the x axis) and subjective liking ratings (scaled by subjects). Each point 720 
represents individual ratings for each melody. Error bars represent 1 s.e.m. of ratings for each melody. 721 

 722 

 723 

Figure 3. Pupil size change across 13 time-bins (for each note) for predictable (P) and unpredictable (U) 724 
melodies across different degrees of liking (high, medium and low). Error bars represent 1 s.e.m. of all 725 
trials. (right panel) Scatter Plot showing the mean pupil dilation as a function of reward sensitivity score. 726 
Each data point represents an individual participant. The diagonal indicates the line of best fit. 727 
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 728 

Figure 4. Training phase. Average asynchrony for 4 repetition trials for the keystroke of target notes in 729 
predictable (P) and unpredictable (U) melodies (left panel). Average asynchrony for predictable and 730 
unpredictable melodies across different degrees of liking (high, medium and low) (middle panel). Error 731 
bars represent 1 s.e.m. of all trials. (right panel) Scatter plot showing the correlation between intrinsic 732 
motivation score of perceived competence and learning regression slope for Low Like melodies. Each 733 
data point represents an individual participant. The diagonal indicates the line of best fit. 734 

 735 

 736 

Figure 5. Stimuli. Median information content A) for each melody, B) for context and target notes of 737 
predictable (P) vs. unpredictable (U) melodies. Box = 25th and 75th percentile; bars = min and max 738 
values. Grey squares = mean information content across notes. The red vertical line indicates the median 739 
split of melodies based on their mean information content C) Stack bar chart with the counts of high, 740 
medium and low liking ratings assigned by subjects to each melody (on the x axis ordered by increasing 741 
mean IC values). 742 
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