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Abstract24

Modern biological experiments are becoming increasingly complex, and designing these experi-25

ments to yield the greatest possible quantitative insight is an open challenge. Increasingly, compu-26

tational models of complex stochastic biological systems are being used to understand and predict27

biological behaviors or to infer biological parameters. Such quantitative analyses can also help28

to improve experiment designs for particular goals, such as to learn more about specific model29

mechanisms or to reduce prediction errors in certain situations. A classic approach to experiment30

design is to use the Fisher information matrix (FIM), which quantifies the expected information a31

particular experiment will reveal about model parameters. The Finite State Projection based FIM32

(FSP-FIM) was recently developed to compute the FIM for discrete stochastic gene regulatory33

systems, whose complex response distributions do not satisfy standard assumptions of Gaussian34

variations. In this work, we develop the FSP-FIM analysis for a stochastic model of stress response35

genes in S. cerevisae under time-varying MAPK induction. We validate this FSP-FIM analysis36

and use it to optimize the number of cells that should be quantified at particular times to learn as37

much as possible about the model parameters. We then demonstrate how the FSP-FIM approach38

can be extended to explore how different measurement times or genetic modifications can help to39

minimize uncertainty in the sensing of extracellular environments, such as external salinity mod-40

ulations. This work demonstrates the potential of quantitative models to not only make sense of41

modern biological data sets, but to close the loop between quantitative modeling and experimental42

data collection.43
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INTRODUCTION44

The standard approach to design experiments has been to rely entirely on expert knowl-45

edge and intuition. However, as experimental investigations become more complex and46

seek to examine systems with more subtle non-linear interactions, it becomes much harder47

to improve experimental designs using intuition alone. This issue has become especially48

relevant in modern single-cell-single-molecule investigations of gene regulatory processes.49

Performing such powerful, yet complicated experiments involves the selection from among50

a large number of possible experimental designs, and it is often not clear which designs51

will provide the most relevant information. A systematic approach to solve this problem is52

model-driven experiment design, in which one uses an assumed (and potentially incorrect)53

mathematical model of the system to estimate and optimize the value of potential exper-54

imental settings. In recent years, model-driven experiment design has gained traction for55

biological models of gene expression, whether in the Bayesian setting [1] or using Fisher56

information for deterministic models [2], and even in the stochastic, single-cell setting [3–57

6]. Despite the promise and active development of model-driven experiment design from58

the theoretical perspective, more general, yet biologically-inspired approaches are needed to59

make these methods suitable for the experimental community at large. In this work, we60

apply model-driven experiment design to an experimentally validated model of stochastic,61

time-varying High Osmolarity Glycerol (HOG) Mitogen Activated Protein Kinase (MAPK)62

induction of transcription during osmotic stress response in yeast [7–9]. To demonstrate a63

concrete and practical application of model-driven experiment design, we find the optimal64

measurement schedule (i.e., when measurements ought to be taken) and the appropriate65

number of individual cells to be measured at each time point.66

In our computational analyses, we consider the experimental technique of single-mRNA67

Fluorescence in situ Hybridization (smFISH), where specific fluorescent oligonucleotide68

probes are hybridized to mRNA of interest in fixed cells [10, 11]. Cells are then imaged69

and the mRNA abundance in each cell can be counted, either by hand or using automated70

software such as [12]. Such counting can be a cumbersome process, but little thought has71

been given typically to how many cells should be measured and analyzed at each time.72

Furthermore, when a dynamic response is under investigation, the specific times at which73

measurements should be taken (i.e., the times after induction at which cells should be74
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fixed and analyzed) is also unclear. In this work, we use the newly developed finite state75

projection based Fisher information matrix (FSP-FIM, [6]) to optimize these experimental76

quantities for osmotic stress response genes in yeast.77

The HOG-MAPK pathway in yeast is a model system to study dynamics of signal trans-78

duction induced gene regulation in single cells [13–18] and stochastic models of HOG-MAPK79

activated transcription have been used to predict adaptive transcription responses across80

yeast cell populations [8, 9, 19]. In particular, previous studies have measured two stress81

response genes, STL1 and CTT1, and used them to infer the model depicted in Fig. 1a.82

This calibration and uncertainty quantification process required intense experimental effort83

to fix and image tens of thousands of cells at more than a dozen time points and for multi-84

ple biological replicas as well as intense computational effort for both the processing of the85

smFISH images and the fitting of stochastic kinetic models to the quantified experimental86

data. In light of such expenses, we aim to develop methods that can specify experiments that87

are equally or more informative, yet which could minimize experimental and computational88

efforts.89

Toward this goal, the first part of our current study demonstrates the use of FSP based90

Fisher information to optimize experiments to minimize the uncertainty in stochastic model91

parameters for the time varying MAPK-induced gene expression response. In the second92

part of this study, we expand upon this result to find the optimal smFISH measurement93

times and cell numbers to minimize uncertainty about unknown environmental inputs (e.g.,94

salt concentrations) to which the cells are subjected. In this way, we are presenting a95

new methodology by which one can optimally examine behaviors of natural cells to obtain96

accurate estimations of environmental changes.97

BACKGROUND98

Finite State Projection models can predict osmotic stress responses in yeast.99

Gene regulation is the process by which small molecules, chromatin regulators, and gen-100

eral and gene-specific transcription factors interact to regulate the transcription of DNA into101

RNA and the translation of mRNA into proteins. Even within populations of genetically102

identical cells, these single-molecule processes are stochastic and give rise to cell-to-cell vari-103
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ability in gene expression levels. Adequate description of such variable responses can only104

be achieved through the use of stochastic computational models [20–23].105

In this work, we use the chemical master equation framework [24] of stochastic chemical106

kinetics, which has been the workhorse of stochastic modeling of gene expression, whether107

through simulated sample paths of its solution via the stochastic simulation algorithm [25],108

moment approximations [7, 26], or finite state projections (FSP) [27]. Recently, it has come109

to light that for some systems it is critical to consider the full distribution of biomolecules110

across cellular populations when fitting CME-based models [6, 9], which can be done with111

guaranteed errors using the FSP approach [27, 28]. This method truncates a CME into a112

finite state, continuous time Markov chain, for which the set of ordinary differential equa-113

tions, dp
dt

= A(t)p describes the flow of probability among all of the most likely observable114

states for the system. Details of the FSP approach to solving chemical kinetic systems are115

provided in Supplementary Note 1.116

For signal-activated transcription in the HOG-MAPK stress response pathway in yeast,117

an FSP model has been used to fit and predict mRNA distributions at a range of NaCl118

concentrations [8, 9]. This model of osmotic stress response consists of transitions between119

four different gene states, shown in Fig. 1a. The probability of a transition from the ith120

to the jth gene state in the infinitesimal time dt is given by kijdt. Each ith state also121

has a corresponding mRNA transcription rate, kri, but the mRNA degrade with rate γ,122

independent of gene state. Further descriptions and validations of this model are given in123

Supplementary Note 1 and in [8, 9, 19]. To accurately fit and predict mRNA levels across cell124

populations, the authors in [8] cross-validated across a number of different potential models125

with different numbers of gene states and time varying parameters. The most predictive of126

these was the model shown in Fig. 1a, in which the transition rate from the second gene127

activation state to the first gene activation state is a function of nuclear MAPK levels, f(t).128

The nuclear localization of MAPK affects this transition with a threshold function,129

k21(t) = max[0, α− βf(t)], (1)

where α and β set the threshold for k21(t) activation/deactivation. Figure 1b (left) shows130

the nuclear localization dynamics of MAPK (i.e. f(t)) for osmotic stress responses to 0.2M131

and 0.4M NaCl, with simulated nuclear localization dynamics fit to a model (from [9],132
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FIG. 1. Stochastic modeling of osmotic stress response genes in yeast. (a) Four-state model of gene

expression, where each state transcribes mRNA at a different transcription rate, but all mRNA

degrade at a single rate γ. (b) The effect of measured MAPK nuclear localization (depicted as

red dots in the cell) (left) on the the rate of switching from gene activation state S2 to S1 (right)

under 0.2M or 0.4M NaCl osmotic stress. The time at which k21 turns off is denoted with τ1 and

is independent of the NaCl level. The time at which k23 turns back on is given by τNaCl
2 depending

on the level of NACl. (c) Time evolution of the STL1 RNA in response to the 0.2M and 0.4M

NaCl stress.

Supplementary Note 2), and Fig. 1b (right) shows the value of k21(t) for each salinity level.133

This rate results in a time-varying generator A(t) for the master equation dynamics (See134

Supplementary Note 1).135
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LIKELIHOOD OF SMFISH DATA FOR FSP MODELS136

To match FSP model solutions to single-cell data, one needs to compute and maximize137

the likelihood of the smFISH data given the FSP model [8, 9, 19, 28, 29]. We assume138

that measurements at each time point t ≡ [t1, t2, . . . , tNt ] are independent, as justified by139

the fact that fixation of cells for measurement precludes temporal cell-to-cell correlations.140

Measurements of Nc cells can be concatenated into a matrix Dt ≡ [d1,d2, . . . ,dNc ]t of the141

observable mRNA species at each measurement time t.142

The likelihood of making the independent observations for all Nc measured cells is the143

product of the probabilities of observing each cell’s measured state. For most gene expression144

models, however, states are only partially observable, and we define the observed state xLi145

as the marginalization (or lumping) over all full states {xj}i that are indistinguishable from146

xi based on the observation. For example, the model of STL1 transcription consists of four147

gene states (S1-S4, shown in Fig. 1a), which are unobserved, and the measured number of148

mRNA, which is observed. If we let index i denote the number of mRNA, then the observed149

state xLi would lump together the full states (S1,i), (S2,i), (S3,i), and (S4,i). We next define150

yi as the number of experimental cells that match xLi at time t. Under these definitions, the151

likelihood of the observed data (and its logarithm) given the model can be written:152

`(D|θ) = M

tNt∏
t=t1

∏
i∈JD

p(xLi , t|θ)yi

log `(D|θ) =

tNt∑
t=t1

∑
i∈JD

yi log(p(xLi , t|θ)) + logM, (2)

where JD is the set of states observed in the data, M is a combinatorial prefactor (i.e. from153

a multinomial distribution) that comes from the arbitrary reordering of measured data, and154

p(xLi ) is the marginalized probability mass of the observable species,155

p(xLi ) =
∑

xj∈xL
i

p(xj).

Neglecting the term logM , which is independent of the model, the summation in Eq. 2 can156

be rewritten as a product y logpL, where y ≡ [y0, y1, . . .] is a vector of the binned data157

and pL = [p(xL0 ), p(xL1 ), . . .]T is the corresponding marginalized probability mass vector.158
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One may then maximize Eq. 2 with respect to θ to find the maximum likelihood estimates159

(MLE) of the parameters, θ̂, which will vary depending on each new set of experimental160

data. We next demonstrate how this likelihood function and the FSP model of the HOG-161

MAPK system can be used to design optimal smFISH experiments using the FSP-based162

FIM [6].163

The Finite State Projection based Fisher information for models of signal-activated164

stochastic gene expression.165

The Fisher information matrix (FIM), is a common tool in engineering and statistics166

to estimate parameter uncertainties prior to collecting data, and which allows one to find167

experimental settings that can make these uncertainties as small as possible [3, 4, 30–33].168

Recently, it has been applied to biological systems to estimate kinetic rate parameters in169

stochastic gene expression systems [3–6, 34]. In general, the FIM for a single measurement170

is defined:171

I(θ) = E
{

(∇θ logp(θ))T (∇θ logp(θ))
}
, (3)

where logp(θ) is the log-likelihood of observing that measurement, and the expectation is172

taken across over the probability distribution of states p(θ) assuming the specific parameter173

set θ. As the number of measurements, Nc, is increased such that maximum likelihood174

estimates (MLE) of parameters are unbiased, the distribution of MLE estimates is known175

to approach a multivariate Gaussian distribution with a covariance given by the inverse of176

the Fisher information matrix, i.e.,177

√
Nc(θ̂ − θ∗)

dist−−→ N (0, I(θ∗)−1). (4)

In [6], we developed the FSP-based Fisher information matrix (FSP-FIM), which allows one178

to use the FSP solution, p(t), and the sensitivity matrix, S(t), to find the Fisher information179

matrix for stochastic gene expression systems. The dynamics of the sensitivity of each state180

in the process to the jth kinetic parameter dp
dθj

is given by:181
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d

dt

 p

sθj

 =

 A(t) 0

Aθj(t) A(t)

 p

sθj

 , (5)

where Aj = ∂A
∂θj

. The FSP-FIM at a single time t is then given by:182

F(θ, t)j,k =
∑
i

1

p(xi; t,θ)
siθj(t)s

i
θk

(t), (6)

where the summation is taken over all states, {xi}, included in the FSP analysis (or over183

all observed states, {xLi }, in the case of lumped observations). The FIM for a sequence of184

measurements taken independently (e.g., for smFISH data) at times t = [t1, t2, . . . , tNt ] is185

then given by the sum across the measurement times:186

I(θ, t, c) =
Nt∑
l=1

clF(θ, t = tl), (7)

where c = [c1, c2, . . . , cNt ] is the number of cells measured at each lth measurement time.187

For smFISH experiments, the vector c plays an important role in the design of the study.188

By optimizing over all vectors c that sum to Ntotal, one can find how many cells should be189

measured at each time point and which time points should be skipped entirely, (i.e., cl = 0).190

We next verify the FSP-FIM for this stochastic model with a time-varying parameter, and191

later find the optimal c for STL1 mRNA in yeast cells.192

RESULTS193

The FSP-FIM can quantify experimental information for stochastic gene expression194

under time-varying inputs195

Our work in [6] was limited to models of stochastic gene expression that had piecewise196

constant reaction rates. Here, we extend this to time-varying reaction rates that affect the197

promoter switching in the system and which lead to time-varying A(t) in Eqn. 5. In our198

model, the temporal addition of osmotic shock causes nuclear translocation of HOG-MAPK,199

according to the time-varying function in Eq. 1.200
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FIG. 2. Verification of the FSP-FIM for the time-varying HOG-MAPK model.(a) Scatter plots

and density plots of the spread of MLE estimates for 50 simulated data sets for a subset of model

parameters. All parameters are shown in logarithmic scale. The ellipses show the 95% CI for the

inverse of the FIM (purple) and covariance of scatter plot (orange). The yellow dots indicate the

parameters at which the FIM and simulated data sets were generated. (b) Rank-paired eigenvalues

(vi) for the covariance of MLE estimates (orange) and inverse of the FIM (blue). The angles between

corresponding rank-paired eigenvectors (φi) are shown in degrees.

Model parameters simultaneously fit to experimentally measured 0.2M and 0.4M STL1201

mRNA were adopted from [9] and used as a reference set of parameters (yellow dots in Fig.202

2a and S1), which we define as θ∗. These reference parameters were used to generate 50203

unique and independent simulated data sets, and each nth simulated data set was fit to204

find the parameter set, θ̂n, that maximizes the likelihood for that simulated data set. This205

process was repeated for two different experiment designs, including the original intuitive206

design from [9] (results shown in Fig. 2) and an optimized design discussed below (results207

shown in Fig. S1). To ease the computational burden of this fitting, the four parameters208

with the smallest sensitivities and largest uncertainties (i.e., those parameters that had the209
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least effect on the model predictions and which were most difficult to identify) were fixed210

at their baseline values. The resulting MLE estimates for the remaining five parameters211

were collected into a set of {θ̂n} and are shown as yellow dots in Figs. 2 and S1. Using the212

asymptotic normality of the maximum likelihood estimator and its relationship to the FIM213

(Eq. 4), we then compared the 95% confidence intervals (CIs) of the inverse of the Fisher214

information (i.e. the Cramér Rao bound) to those of the MLE estimates (compare the purple215

and orange ellipses in Figs. 2a and S1a). We also compared the eigenvalues of the inverse216

of the Fisher information, {vi}, to the correspondingly ranked eigenvalues of the covariance217

matrix of MLE estimates, ΣMLE, in Figs. 2b and S1b. For further validation, we noted that218

the principle directions of the ellipses in Figs. 2a and S1a also match for the FIM and MLE219

analyses, as quantified by the angle between the paired FIM and ΣMLE eigenvectors (Figs.220

2b and S1b). For comparison, the angles between rank-matched eigenvectors of the FIM221

and ΣMLE were all less than 12◦, whereas non rank-matched eigenvectors were all greater222

than 79.9◦. With the FSP-FIM verified for the HOG-MAPK model, we next explore how223

the FIM can be used to optimally allocate the number of cells to measure at each time after224

osmotic shock.225

Designing optimal measurements for the HOG-MAPK pathway in S. cerevisae226

To explore the use of the FSP-FIM for experiment design in a realistic context of MAPK-227

activated gene expression, we again utilize simulated time-course smFISH data for the os-228

motic stress response in yeast.229

We start with a known set of underlying model parameters that were taken from simulta-230

neous fits to 0.2M and 0.4M data in [9] (non-spatial model) to establish a baseline parameter231

set that is experimentally realistic. These baseline parameters are then used to optimize the232

allocation of measurements at different time points t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]233

minutes after NaCl induction. Specifically, we ask what fraction of the total number of cells234

should be measured at each time to maximize the information about a specific subset of235

important model parameters. We use a specific experiment design objective criteria referred236

to as Ds-optimality, which corresponds to minimizing the expected volume of the param-237

eter space uncertainty for the specific parameters of interest [34], and which is found by238

maximizing the product of the eigenvalues of the FIM for those same parameters.239
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Mathematically, our goal is to find the optimal cell measurement allocation,240

copt = arg max
c
|I(c;θ)|Ds such that

Nt∑
l=1

cl = 1, (8)

where cl is the fraction of total measurements to be allocated at t = tl, and the metric241

|I(c;θ)|Ds refers to the product of the eigenvalues for the total FIM (Eqn. 7). The fraction242

of cells to be measured at each time point, c was optimized using a greedy search, in which243

single-cell measurements were chosen one at a time according to which time point predicted244

the greatest improvement in the optimization criteria (see Supplementary Note 3 for more245

information).246

To illustrate our approach, we first allocated cell measurements according to Ds-247

optimality as found through this greedy search. Figure 3 shows the optimal fraction of248

cells to be measured at each time following a 0.2M NaCl input and compares these fractions249

to the experimentally measured number of cells from [9]. While each available time point250

was allocated a non-zero fraction of measurements, three time points at t = [10, 15, 30]251

minutes were vastly more informative than the other potential time points. To verify this252

result, we simulated 50 data sets of 1,000 cells each and found the MLE estimates for each253

sub-sampled data set. We compared the spread of these MLE estimates to the inverse of254

the optimized FIM, shown in Fig. S1.255

Comparing Figs. S1 with Fig. 2 illustrates the increase in information of the optimal256

0.2M experiment compared to the intuitively designed experiment from [9]. In addition to257

providing much higher Fisher information, the optimal experiment requires measurement of258

only three time points compared to the 16 time points that were measured in the original259

experiment. Furthermore, we note that the FIM prediction of the MLE uncertainty is more260

accurate for the simpler optimal design, which is likely related to our observation that MLE261

estimates converge more easily for the optimized experiment design than they do for original262

intuitive design.263

Figure 4 next compares the Ds-optimality criteria for the optimal (solid horizontal lines)264

and intuitive ([9], dashed horizontal lines) experiment designs to 1,000 randomly designed265

experiments for the 0.2M (black) and 0.4M (gray) conditions. To generate these random266

experiment designs, we selected a random subset of the measurement times, and allocated267

the total 1,000 cells among chosen time points using multinomial distribution with equal268
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FIG. 3. Optimizing the allocation of cell measurements at different time points. (a) Diagonal

entries of the Fisher information at different measurement times. The optimal measurement times

t = [10, 15, 30] minutes are highlighted in orange. (b) Comparison of optimal fractions cells to

measure (blue) at different time points determined by the FSP-FIM compared to experimentally

measured numbers of cells at 0.2 M NaCl (purple) from our work in [9]. (c) Probability distributions

of STL1 mRNA at several of measurement times. The blue boxes denote the time points of optimal

measurements.

probability for each time point. Figures 4a-b show that the intuitive experiment is more269

informative than most random experiments, but is still substantially less informative than270

the optimal experiment. To explore the importance of knowing the exact process input271

dynamics prior to designing the experiment, we next asked how well an experiment design272

optimized for a 0.2M osmotic shock would do to estimate parameters using an 0.4M experi-273
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FIG. 4. Information gained by performing optimal experiments compared to actual experiments

(a) Ds-optimality for optimal design using three time points compared to the intuitive experiment

design made using 16 time points (purple, 0.2M and blue, 0.4M). Dashed lines represent intuitive

experiment designs. Randomly designed experiments with 0.2 M and 0.4 M NaCl are shown in

black and gray. For the random experiments, the time points were selected by sampling them from

the experimental measurement times, and then a random number of measurements were assigned

to each selected time point. The inset shows the first 50 randomly designed experiments. (b) The

Ds-optimality for different experiment designs (y-axis) computed using the Fisher information for

either the 0.2 M perturbation or the 0.4 M NaCl perturbation.

ment and vice-versa. Figure 4b shows that the simpler optimal experiment designs perform274

better than the intuitive designs in all cases, even when the design was found assuming a275

different environmental condition.276

Using the FSP-FIM to design optimal biosensor measurements.277

Thus far, and throughout our previous work in [6], we have sought to find the optimal278

set of experiments to reduce uncertainty in the estimates of model parameters. In this279

section, we discuss how the FSP-FIM allows for the optimization of experiment designs to280

address a more general problem of inferring environmental variables from cellular responses.281
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FIG. 5. Overview of optimal design for biosensing experiments for the osmotic stress response

in yeast. (a) Unknown salt concentrations (purple dots) in the environment give rise to different

reactivation times, τ2, which affect the gene expression in the model through the rate k21. These

different reactivation times cause downstream STL1 expression dynamics to behave differently as

shown in panel (b). (c) Different responses can be used to resolve experiments that reduce the

uncertainty in τ2.

Toward this end, we assume a known and parametrized model (i.e., the model defined above,282

which was identified previously in [9]), but which is now subject to unknown environmental283

influences. We explore what would be the optimal experimental measurements to take to284

characterize these influences. Specifically, we ask how many cells should be measured using285

smFISH, and at what times, to determine the specific concentration of NaCl to which the286

cells have been subjected at t = 0 – or, equivalently, we ask what experiments would be287

best suited to measure the effective stress induction level caused by addition of an unknown288

solution to the cells.289

In the HOG-MAPK transcription model, extracellular osmolarity ultimately affects stress290

response gene transcription levels through the time-varying parameter k21(t) in Eq. 1, and291

Fig. 1b shows the effect 0.2M and 0.4M salt concentrations on k21 activation. Higher salt292

concentrations delay the time at which k21(t) returns to its nonzero value, and the function293

in Eq. 1 is well-approximated by a the sum of three Heaviside step functions, u(t− τi) as:294

k21(t) = k021 (u(t)− u(t− τ1) + u(t− τ2)) , (9)

where τ1 is the fixed delay of the time it takes for nuclear kinase levels to reach the k21295
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deactivation threshold (about 1 minute or less, [8, 9]), and τ2 is the variable time it takes296

for the nuclear kinase to drop back below that threshold. In practice, the threshold-crossing297

time, τ2, is directly related to the salt concentration experienced by the cell under reasonable298

salinity levels. This relationship is shown in Fig. 1b and 5b, where a 0.2M NaCl input exhibits299

a shorter τ2 than does a 0.4M input. For our analyses, we assume a prior uncertainty such300

that time τ2 can be any value uniformly distributed between τmin
2 = 6 and τmax

2 = 31 minutes,301

and our goal is to find the experiment that best reduces the posterior uncertainty in τ2 (and302

therefore the concentration of NaCl).303

To reformulate the FSP-FIM to estimate uncertainty in τ2 given our model, the first304

step is to compute the sensitivity of the distribution of mRNA abundance to changes in the305

variable τ2 using Eqn. 5, in which Aθj(t) is replaced with Aτ2(t) = ∂A
∂τ2

as follows:306

d

dt

 p

sτ2

 =

 A(t) 0

Aτ2(t) A(t)

 p

sτ2

 . (10)

As k21(t) is the only parameter in A that depends explicitly on τ2, all entries of ∂A
∂τ2

are zero307

except for those which depend on k21(t), and308

Aτ2(t) =
∂A

∂k21

∂k21
∂τ2

= Ak21k
0
21δ(τ2), (11)

and therefore Aτ2 = ∂A
∂τ2

is non-zero only at t = τ2. Using this fact, the equation for the309

sensitivity dynamics is uncoupled from the FSP dynamics for t 6= τ2, and can be written310

simply as:311

d

dt
sτ2 =

 0 for t < τ2 with s(0) = 0

A(t)sτ2 for t > τ2 with sτ2(τ2) = k021Ak21p(τ2)
. (12)

If the Fisher information at each measurement time is written into a vector f =312

[f1, f2, . . . , fNt ] (noting that the Fisher information at any time tl is the scalar quantity,313

fl), and the number of measurements per time point is the vector, c = [c1, c2, . . . , cNt ], then314

the total information for a given value of τ2 can be computed as the dot product of these315

two vectors,316
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I(τ2) =
Nt∑
l=1

clfl = cT f . (13)

Our goal is to find an experiment that is optimal to determine the value of τ2, given an317

assumed prior that τ2 is sampled from a uniform distribution between τmin
2 and τmax

2 . To318

find the experiment copt that will reduce our posterior uncertainty in τ2, we integrate the319

inverse of the FIM in Eq. 13 over the prior uncertainty in τ2,320

copt = arg min
c,
∑
cl=1

∫ τmax
2

τmin
2

1

τmax
2 − τmin

2

I−1(c; τ2 = τ,θ)dτ (14)

= arg min
c,
∑
cl=1

∫ τmax
2

τmin
2

I−1(c; τ2 = τ,θ)dτ. (15)

For later convenience, we define the integral in Eq. 14 (i.e., the objective function of the321

minimization) by the symbol J , which corresponds to the expected uncertainty about the322

value of τ2 for a given c.323

Next, we apply the greedy search from above to solve the minimization problem in Eqn.324

15 to find the experiment design copt that minimizes the estimation error of τ2. Figure 6325

shows examples of seven different experiments to accomplish this task, ranked according326

to the FSP-FIM value J from most informative (top left) to least informative (bottom327

right), but all using the same number of measured cells. For each experiment, the FSP-FIM328

was used to estimate the posterior uncertainty (i.e., expected standard deviation) in the329

estimation of τ2, which is shown by the orange bars in Fig. 6. To verify these estimates, we330

then chose 64 uniformly spaced values of τ2, which we denote as the set {τ true2 }, and for each331

τ true2 , we simulated 50 random data sets of 1,000 cells distributed according to the specified332

experiment designs. For each of the 64×50 simulated data sets, we then determined the value333

τMLE
2 between τmin

2 and τmax
2 that maximized the likelihood of the simulated data according334

to Eq. 2. The root mean squared estimate (RMSE) error over all random values of τ true2 and335

estimates,
√
〈(τMLE

2 − τ true2 )2〉, was then computed for each of the six different experiment336

designs. Figure 6 shows that the FIM-based estimation of uncertainty and the actual MLE-337

based uncertainty are in excellent agreement for all experiments (compare purple and orange338

bars). Moreover, it is clear that the optimal design selected by the FIM-analysis performed339

much better to estimate τ2 than did the uniform or random experimental designs. A slightly340
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FIG. 6. Verification of the uncertainty in τ2 for different experiment designs. The left panel shows

various experiment designs, where the sum of the bars (i.e., the total number of measurements)

is 1,000. Gray bars represent the measurements of CTT1 and black bars STL1. The right panel

shows the value of the objective function in Eq. 14 for each experiment design in orange, and the

MSE values for verification are shown in purple.

simplified design, which uses the same time points as the optimal, but with equal numbers341

of measurements at each time, performed nearly as well as the optimal design.342
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The set of experiment designs shown in Fig. 6 includes the best design that only uses343

STL1 (second from top), the best design that uses only CTT1 (fourth from top), and the best344

designs that uses some cells with CTT1 and some with STL1 (top design). To find the best345

experiment design for measurement of two different genes, we assumed that at each time,346

either STL1 mRNA or CTT1 mRNA (but not both) could be measured, corresponding to347

using smFISH oligonucleotides for either STL1 or CTT1. To determine which gene should348

be measured at each time, we compute the Fisher information for CTT1 and STL1 for every349

measurement time and averaged this value over the range of τ2. For each measurement time350

tl, the gene is selected that has the higher average Fisher information for τ2. The number351

of cells per measurement time were then optimized as before, except the choice to measure352

CTT1 or STL1 was based on which mRNA had the larger Fisher information (Eq. 13) at that353

specific point in time. The best STL1-only experiment design was found to yield uncertainty354

of 10.5 seconds (standard deviation); the best CTT1-only experiment was found to yield an355

uncertainty of 15.2 seconds and the best mixed STL1/CTT1 experiment design was found356

to yield an uncertainty of 10.4 seconds. In other words, for this case the STL1 gene was357

found to be much more informative of the environmental condition than was CTT1, and the358

use of both STL1 and CTT1 provides only minimal improvement beyond the use of STL1359

alone. We note that although measurement times in the optimized experiment design were360

restricted to a resolution of five minutes or more, the value of τ2 could be estimated with361

an error of only 10 seconds, corresponding to a roughly 30-fold improvement of temporal362

resolution beyond the allowable sampling rate.363

DISCUSSION364

The methods developed in this work present a principled, model-driven approach to365

allocate how many snapshot single-cell measurements should be taken at each time during366

analysis of a time-varying stochastic gene regulation system. We demonstrate and verify367

these theories on a well-established model of osmotic stress response in yeast cells, which368

is activated upon the nuclear localization of phosphorylated HOG1 [8, 9]. For this system,369

we showed how to optimally allocate the number of cells measured at each time so as to370

maximize the information about a subset of model parameters. We found that the optimal371

experiment design to estimate model parameters for the STL1 gene only required three time372
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points. Moreover, these three time points (t = [10, 15, 30] minutes, highlighted by blue in373

Fig. 3b) are at biologically meaningful time points. At t = 10 and 15 minutes, the system is374

increasing to maximal expression, and the probability of measuring a cell with elevated of375

RNA is high, which helps reduce uncertainty about the parameters in the model that control376

maximal expression. Similarly, at the final experiment time of t = 30 minutes, the system377

is starting to shut down gene expression, and therefore this time is valuable to learn about378

the time scale of deactivation in the system as well as the mRNA degradation rate. These379

effects are clearly illustrated in Fig. 3a, which shows that times t = 10 and t = 15 minutes380

provide the most information about parameters k12, k23 and k43, whereas measurements at381

t = 30 minutes provide the most information about γ. Because γ is the easiest parameter to382

estimate (e.g., its information is greater), not as many cells are needed at t = 30 minutes to383

constrain that parameter. Similarly, because kr2 is the most difficult parameter to estimate384

(e.g., it has the lowest information across all experiments), and because t = 10 minutes385

is one of the few time points to provide information about kr2, the optimal experimental386

design selects a large number of cells at the time t = 10 minutes. This analysis demonstrates387

that the optimal experiment design can change depending upon which parameters are most388

important to determine (e.g., γ or kr2 in this case), a fact that we expect will be important389

to consider in future experiment designs.390

Because we constrained all potential experiment designs to be within the subset of ex-391

periments performed in our previous work [9], we are able to compare the information of392

optimal experiment designs to intuitive designs that have actually been performed. We393

found that while the intuitive experiments performed were almost always better than could394

be expected by random chance, they still provided several orders of magnitude lower Fisher395

information than would be possible with optimal experiments (Fig. 4a). Moreover, in our396

analyses, we found that optimal designs could require far fewer time points than those de-397

signed by intuition (e.g., only three time points were needed in Fig. 3), and therefore these398

designs can be much easier and less expensive to conduct. We also found that utility of399

optimal experiment designs could be relatively insensitive to variation in the experimental400

conditions compared to assumptions used in the experiments design (Fig. 4b), a fact that401

allows for effective experiment designs despite inaccurate prior assumptions.402

In addition to suggesting optimal experiments to identify model parameters, we showed403

that the FSP-FIM combined with an existing model could be used to design optimal exper-404
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FIG. 7. Optimal mRNA degradation rates to reduce uncertainty about the extracellular environ-

ment. Uncertainty in the time at which the STL1 gene turns off, τ2, as a function of mRNA

degradation rate (purple). The black dot corresponds to the degradation rate that was quantified

from experimental data.

iments to learn about fluctuating extracellular environments (Figs. 5 and 6). Along a very405

similar line of reasoning, one can also adapt the FSP-FIM analysis to learn what biological406

design parameters would be optimal to reduce uncertainty in the estimate of important envi-407

ronmental variables. For example, Fig. 7 shows the expected uncertainty in τ2 as a function408

of the degradation rate of the STL1 gene assuming that 50 cells could be measured at each409

experimental measurement time t = [1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55] minutes410

using the smFISH approach. We found that the best choice for STL1 degradation rate to411

most accurately determine the extracellular fluctuations would be 2.4 × 10−3 mRNA/min,412

which is about half of the experimentally determined value of 5.3× 10−3 ± 5.9× 10−5 from413

[9]. This result is consistent with our earlier finding that the faster degrading STL1 mRNA414

is a much better determinant of the HOG1 dynamics than is the slower-degrading CTT1415

mRNA, and suggests that other less stable mRNA could be more effective still. We ex-416

pect that similar, future applications of the FSP-based Fisher information to be valuable in417

other systems and synthetic biology contexts where scientists seek to explore how different418

cellular properties affect the transmission of information between cells or from cells to hu-419

man observers. Indeed, similar ideas have been explored recently using classical information420

theory in [35–37], and recent work in [38] has noted the close relationship between Fisher421
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information and the channel capacity of biochemical signaling networks.422

We expect that computing optimal experiment designs for time-varying stochastic gene423

expression creates opportunities that could extend well beyond the examples presented in424

this work. Modern experimental systems are making it much easier for scientists and engi-425

neers to precisely perturb cellular environments using chemical induction [39–41] or optoge-426

netic control [42–44]. Many such experiments involve stochastic bursting behaviors at the427

mRNA or protein level [7–9, 43], and precise optimal experiment design will be crucial to428

understand the properties of stochastic variations in such systems. A related field that is429

also likely to benefit from such approaches is biomolecular image processing and feedback430

control, for which one may need to decide in real time which measurements to make and in431

what conditions.432
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