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2 Abstract

25 Modern biological experiments are becoming increasingly complex, and designing these experi-
26 ments to yield the greatest possible quantitative insight is an open challenge. Increasingly, compu-
27 tational models of complex stochastic biological systems are being used to understand and predict
23 biological behaviors or to infer biological parameters. Such quantitative analyses can also help
20 to improve experiment designs for particular goals, such as to learn more about specific model
s mechanisms or to reduce prediction errors in certain situations. A classic approach to experiment
a1 design is to use the Fisher information matrix (FIM), which quantifies the expected information a
32 particular experiment will reveal about model parameters. The Finite State Projection based FIM
33 (FSP-FIM) was recently developed to compute the FIM for discrete stochastic gene regulatory
3¢ systems, whose complex response distributions do not satisfy standard assumptions of Gaussian
35 variations. In this work, we develop the FSP-FIM analysis for a stochastic model of stress response
3 genes in S. cerevisae under time-varying MAPK induction. We validate this FSP-FIM analysis
37 and use it to optimize the number of cells that should be quantified at particular times to learn as
33 much as possible about the model parameters. We then demonstrate how the FSP-FIM approach
30 can be extended to explore how different measurement times or genetic modifications can help to
s0 minimize uncertainty in the sensing of extracellular environments, such as external salinity mod-
a1 ulations. This work demonstrates the potential of quantitative models to not only make sense of
22 modern biological data sets, but to close the loop between quantitative modeling and experimental

43 data collection.
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«# INTRODUCTION

15 The standard approach to design experiments has been to rely entirely on expert knowl-
s edge and intuition. However, as experimental investigations become more complex and
s seek to examine systems with more subtle non-linear interactions, it becomes much harder
s to improve experimental designs using intuition alone. This issue has become especially
s relevant in modern single-cell-single-molecule investigations of gene regulatory processes.
so Performing such powerful, yet complicated experiments involves the selection from among
51 a large number of possible experimental designs, and it is often not clear which designs
s will provide the most relevant information. A systematic approach to solve this problem is
53 model-driven experiment design, in which one uses an assumed (and potentially incorrect)
s« mathematical model of the system to estimate and optimize the value of potential exper-
ss imental settings. In recent years, model-driven experiment design has gained traction for
ss  biological models of gene expression, whether in the Bayesian setting [1] or using Fisher
7 information for deterministic models [2], and even in the stochastic, single-cell setting [3—
ss 6]. Despite the promise and active development of model-driven experiment design from
so the theoretical perspective, more general, yet biologically-inspired approaches are needed to
s make these methods suitable for the experimental community at large. In this work, we
&1 apply model-driven experiment design to an experimentally validated model of stochastic,
2 time-varying High Osmolarity Glycerol (HOG) Mitogen Activated Protein Kinase (MAPK)
e3 induction of transcription during osmotic stress response in yeast [7-9]. To demonstrate a
s« concrete and practical application of model-driven experiment design, we find the optimal
s measurement schedule (i.e., when measurements ought to be taken) and the appropriate

s number of individual cells to be measured at each time point.

67 In our computational analyses, we consider the experimental technique of singlemRNA
¢ Fluorescence in situ Hybridization (smFISH), where specific fluorescent oligonucleotide
o probes are hybridized to mRNA of interest in fixed cells [10, 11]. Cells are then imaged
7o and the mRNA abundance in each cell can be counted, either by hand or using automated
n software such as [12]. Such counting can be a cumbersome process, but little thought has
72 been given typically to how many cells should be measured and analyzed at each time.
73 Furthermore, when a dynamic response is under investigation, the specific times at which

7+ measurements should be taken (i.e., the times after induction at which cells should be
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5 fixed and analyzed) is also unclear. In this work, we use the newly developed finite state
76 projection based Fisher information matrix (FSP-FIM, [6]) to optimize these experimental
77 quantities for osmotic stress response genes in yeast.

78 The HOG-MAPK pathway in yeast is a model system to study dynamics of signal trans-
79 duction induced gene regulation in single cells [13-18] and stochastic models of HOG-MAPK
s activated transcription have been used to predict adaptive transcription responses across
s yeast cell populations [8, 9, 19]. In particular, previous studies have measured two stress
g2 response genes, STLI and CTT1, and used them to infer the model depicted in Fig. 1a.
&z 'This calibration and uncertainty quantification process required intense experimental effort
s« to fix and image tens of thousands of cells at more than a dozen time points and for multi-
s ple biological replicas as well as intense computational effort for both the processing of the
s SMFISH images and the fitting of stochastic kinetic models to the quantified experimental
sz data. In light of such expenses, we aim to develop methods that can specify experiments that
ss are equally or more informative, yet which could minimize experimental and computational
s efforts.

% Toward this goal, the first part of our current study demonstrates the use of FSP based
a1 Fisher information to optimize experiments to minimize the uncertainty in stochastic model
o parameters for the time varying MAPK-induced gene expression response. In the second
o3 part of this study, we expand upon this result to find the optimal smFISH measurement
o times and cell numbers to minimize uncertainty about unknown environmental inputs (e.g.,
s salt concentrations) to which the cells are subjected. In this way, we are presenting a
o new methodology by which one can optimally examine behaviors of natural cells to obtain

o7 accurate estimations of environmental changes.

s BACKGROUND

99 Finite State Projection models can predict osmotic stress responses in yeast.

100 Gene regulation is the process by which small molecules, chromatin regulators, and gen-
w1 eral and gene-specific transcription factors interact to regulate the transcription of DNA into
102 RNA and the translation of mRNA into proteins. Even within populations of genetically

103 identical cells, these single-molecule processes are stochastic and give rise to cell-to-cell vari-
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s ability in gene expression levels. Adequate description of such variable responses can only
s be achieved through the use of stochastic computational models [20-23].

106 In this work, we use the chemical master equation framework [24] of stochastic chemical
w7 Kkinetics, which has been the workhorse of stochastic modeling of gene expression, whether
s through simulated sample paths of its solution via the stochastic simulation algorithm [25],
0o moment approximations [7, 26|, or finite state projections (FSP) [27]. Recently, it has come
o to light that for some systems it is critical to consider the full distribution of biomolecules
- across cellular populations when fitting CME-based models [6, 9], which can be done with
2 guaranteed errors using the FSP approach [27, 28]. This method truncates a CME into a
us  finite state, continuous time Markov chain, for which the set of ordinary differential equa-

d _ A(t)p describes the flow of probability among all of the most likely observable

us  tions,

us states for the system. Details of the FSP approach to solving chemical kinetic systems are
us provided in Supplementary Note 1.

17 For signal-activated transcription in the HOG-MAPK stress response pathway in yeast,
us an FSP model has been used to fit and predict mRNA distributions at a range of NaCl
1o concentrations [8, 9]. This model of osmotic stress response consists of transitions between
120 four different gene states, shown in Fig. 1a. The probability of a transition from the ih
21 to the j™ gene state in the infinitesimal time dt is given by k;;dt. Each i*" state also
122 has a corresponding mRNA transcription rate, k;, but the mRNA degrade with rate ~,
123 independent of gene state. Further descriptions and validations of this model are given in
e Supplementary Note 1 and in [8, 9, 19]. To accurately fit and predict mRNA levels across cell
15 populations, the authors in [8] cross-validated across a number of different potential models
e with different numbers of gene states and time varying parameters. The most predictive of
127 these was the model shown in Fig. 1a, in which the transition rate from the second gene
123 activation state to the first gene activation state is a function of nuclear MAPK levels, f(¢).

120 The nuclear localization of MAPK affects this transition with a threshold function,

k21(t) = max[(), a — Bf(t)]v (1)

10 where o and [ set the threshold for ko (¢) activation/deactivation. Figure 1b (left) shows
13 the nuclear localization dynamics of MAPK (i.e. f(t)) for osmotic stress responses to 0.2M

132 and 0.4M NaCl, with simulated nuclear localization dynamics fit to a model (from [9],
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a) 4-State Model of Gene Expression b) Nuclear localization of MAPK
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FIG. 1. Stochastic modeling of osmotic stress response genes in yeast. (a) Four-state model of gene
expression, where each state transcribes mRNA at a different transcription rate, but all mRNA
degrade at a single rate v. (b) The effect of measured MAPK nuclear localization (depicted as
red dots in the cell) (left) on the the rate of switching from gene activation state S2 to S1 (right)
under 0.2M or 0.4M NaCl osmotic stress. The time at which k9 turns off is denoted with 7 and
is independent of the NaCl level. The time at which ko3 turns back on is given by 732! depending

on the level of NACL. (c) Time evolution of the STLI RNA in response to the 0.2M and 0.4M

NaCl stress.

133 Supplementary Note 2), and Fig. 1b (right) shows the value of ks (t) for each salinity level.
13« This rate results in a time-varying generator A(t) for the master equation dynamics (See

135 Supplementary Note 1).
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136 LIKELIHOOD OF SMFISH DATA FOR FSP MODELS

137 To match FSP model solutions to single-cell data, one needs to compute and maximize
38 the likelihood of the smFISH data given the FSP model [8, 9, 19, 28, 29]. We assume
130 that measurements at each time point t = [t,t,...,tx,] are independent, as justified by
uo the fact that fixation of cells for measurement precludes temporal cell-to-cell correlations.
11 Measurements of N, cells can be concatenated into a matrix D, = [dy,ds,...,dy,]; of the
12 observable mRNA species at each measurement time .

143 The likelihood of making the independent observations for all N, measured cells is the
s product of the probabilities of observing each cell’s measured state. For most gene expression
s models, however, states are only partially observable, and we define the observed state x*
us as the marginalization (or lumping) over all full states {x;}; that are indistinguishable from
w7 X; based on the observation. For example, the model of STLI transcription consists of four
g gene states (S1-S4, shown in Fig. 1a), which are unobserved, and the measured number of
1w mMRNA, which is observed. If we let index i denote the number of mRNA, then the observed
150 state x¥ would lump together the full states (S1,), (S2,i), (S3,i), and (S4,i). We next define
151 ; as the number of experimental cells that match x at time ¢. Under these definitions, the

152 likelihood of the observed data (and its logarithm) given the model can be written:

tNt
((DI|6) = MH prz,t\e
t=t1 i€JIp
tNt
log ¢(D|6@) = Z Z y; log(p(xF,0)) + log M, (2)
t=t1 i€Jp

155 where Jp is the set of states observed in the data, M is a combinatorial prefactor (i.e. from
15« a multinomial distribution) that comes from the arbitrary reordering of measured data, and

155 p(xF) is the marginalized probability mass of the observable species,

p(xf) =Y plx).

X EXZL
156 Neglecting the term log M, which is independent of the model, the summation in Eq. 2 can
157 be rewritten as a product ylogp’, where y = [yo,y1,...] is a vector of the binned data

s and pf = [p(xt),p(xl),...]7 is the corresponding marginalized probability mass vector.

7
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159 One may then maximize Eq. 2 with respect to 0 to find the mazimum likelihood estimates
o (MLE) of the parameters, 6, which will vary depending on each new set of experimental
11 data. We next demonstrate how this likelihood function and the FSP model of the HOG-
12 MAPK system can be used to design optimal smFISH experiments using the FSP-based
s FIM [6].

164 The Finite State Projection based Fisher information for models of signal-activated

165 stochastic gene expression.

166 The Fisher information matrix (FIM), is a common tool in engineering and statistics
17 to estimate parameter uncertainties prior to collecting data, and which allows one to find
168 experimental settings that can make these uncertainties as small as possible [3, 4, 30-33].
1o Recently, it has been applied to biological systems to estimate kinetic rate parameters in
o stochastic gene expression systems [3-6, 34]. In general, the FIM for a single measurement

i1 1s defined:

T(0) = E{(Vologp(6))" (Vologp(8))} . (3)

12 where log p(6) is the log-likelihood of observing that measurement, and the expectation is
113 taken across over the probability distribution of states p(€) assuming the specific parameter
s set 6. As the number of measurements, N, is increased such that maximum likelihood
s estimates (MLE) of parameters are unbiased, the distribution of MLE estimates is known
e to approach a multivariate Gaussian distribution with a covariance given by the inverse of

177 the Fisher information matrix, i.e.,

VN6 — 6%) I N(0,Z(6%)7Y). (4)

s In [6], we developed the FSP-based Fisher information matrix (FSP-FIM), which allows one
170 to use the FSP solution, p(t), and the sensitivity matrix, S(¢), to find the Fisher information
180 matrix for stochastic gene expression systems. The dynamics of the sensitivity of each state

121 in the process to the ;™ kinetic parameter % is given by:
J
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d | p At) 0 P
— — , 5
dt |s,, Ay, (t) A(t)| s, ©)

J

12 where A = %. The FSP-FIM at a single time ¢ is then given by:

(0. =3 gy 05,0 )

183 where the summation is taken over all states, {x;}, included in the FSP analysis (or over
1ss  all observed states, {xF}, in the case of lumped observations). The FIM for a sequence of
155 measurements taken independently (e.g., for smFISH data) at times t = [t1,t2,...,tn,] iS

15 then given by the sum across the measurement times:

7(6,t,c) E:q 0,t=t), (7)

I*h measurement time.

157 where ¢ = [c1,¢a,...,cp,| is the number of cells measured at each
188 For smFISH experiments, the vector ¢ plays an important role in the design of the study.
189 By optimizing over all vectors ¢ that sum to Ny, one can find how many cells should be
1o measured at each time point and which time points should be skipped entirely, (i.e., ¢; = 0).
11 We next verify the FSP-FIM for this stochastic model with a time-varying parameter, and

12 later find the optimal ¢ for STLI mRNA in yeast cells.

s RESULTS

104 The FSP-FIM can quantify experimental information for stochastic gene expression

105 under time-varying inputs

196 Our work in [6] was limited to models of stochastic gene expression that had piecewise
17 constant reaction rates. Here, we extend this to time-varying reaction rates that affect the
s promoter switching in the system and which lead to time-varying A(¢) in Eqn. 5. In our
19 model, the temporal addition of osmotic shock causes nuclear translocation of HOG-MAPK,

200 according to the time-varying function in Eq. 1.
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FIG. 2. Verification of the FSP-FIM for the time-varying HOG-MAPK model.(a) Scatter plots
and density plots of the spread of MLE estimates for 50 simulated data sets for a subset of model
parameters. All parameters are shown in logarithmic scale. The ellipses show the 95% CI for the
inverse of the FIM (purple) and covariance of scatter plot (orange). The yellow dots indicate the
parameters at which the FIM and simulated data sets were generated. (b) Rank-paired eigenvalues
(v;) for the covariance of MLE estimates (orange) and inverse of the FIM (blue). The angles between

corresponding rank-paired eigenvectors (¢;) are shown in degrees.

Model parameters simultaneously fit to experimentally measured 0.2M and 0.4M STL1
mRNA were adopted from [9] and used as a reference set of parameters (yellow dots in Fig.
2a and S1), which we define as 8*. These reference parameters were used to generate 50
unique and independent simulated data sets, and each n'" simulated data set was fit to
find the parameter set, 9n, that maximizes the likelihood for that simulated data set. This
process was repeated for two different experiment designs, including the original intuitive
design from [9] (results shown in Fig. 2) and an optimized design discussed below (results
shown in Fig. S1). To ease the computational burden of this fitting, the four parameters

with the smallest sensitivities and largest uncertainties (i.e., those parameters that had the

10
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20 least effect on the model predictions and which were most difficult to identify) were fixed
o at their baseline values. The resulting MLE estimates for the remaining five parameters
a1z were collected into a set of {én} and are shown as yellow dots in Figs. 2 and S1. Using the
213 asymptotic normality of the maximum likelihood estimator and its relationship to the FIM
2u (Eq. 4), we then compared the 95% confidence intervals (Cls) of the inverse of the Fisher
25 information (i.e. the Cramér Rao bound) to those of the MLE estimates (compare the purple
26 and orange ellipses in Figs. 2a and Sla). We also compared the eigenvalues of the inverse
27 of the Fisher information, {v;}, to the correspondingly ranked eigenvalues of the covariance
218 matrix of MLE estimates, YXyg, in Figs. 2b and S1b. For further validation, we noted that
210 the principle directions of the ellipses in Figs. 2a and Sla also match for the FIM and MLE
20 analyses, as quantified by the angle between the paired FIM and ¥y g eigenvectors (Figs.
21 2b and S1b). For comparison, the angles between rank-matched eigenvectors of the FIM
222 and Yypg were all less than 12°) whereas non rank-matched eigenvectors were all greater
23 than 79.9°. With the FSP-FIM verified for the HOG-MAPK model, we next explore how
24 the FIM can be used to optimally allocate the number of cells to measure at each time after

25 osmotic shock.

226 Designing optimal measurements for the HOG-MAPK pathway in S. cerevisae

227 To explore the use of the FSP-FIM for experiment design in a realistic context of MAPK-
28 activated gene expression, we again utilize simulated time-course smFISH data for the os-
220 Mmotic stress response in yeast.

230 We start with a known set of underlying model parameters that were taken from simulta-
a1 neous fits to 0.2M and 0.4M data in [9] (non-spatial model) to establish a baseline parameter
22 set that is experimentally realistic. These baseline parameters are then used to optimize the
2 allocation of measurements at different time points t = [1,2, 4,6, 8,10, 15, 20, 25, 30, 35, 40, 45, 50, 55]
2 minutes after NaCl induction. Specifically, we ask what fraction of the total number of cells
235 should be measured at each time to maximize the information about a specific subset of
23 important model parameters. We use a specific experiment design objective criteria referred
27 to as Dg-optimality, which corresponds to minimizing the expected volume of the param-
23 eter space uncertainty for the specific parameters of interest [34], and which is found by

230 maximizing the product of the eigenvalues of the FIM for those same parameters.

11
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240 Mathematically, our goal is to find the optimal cell measurement allocation,
Nt
Copt = argmax |Z(c; 0)|p, such that Z o =1, (8)
Cc

=1
21 where ¢; is the fraction of total measurements to be allocated at t = ¢;, and the metric

242 |I(C; 0)

p, refers to the product of the eigenvalues for the total FIM (Eqn. 7). The fraction
a3 of cells to be measured at each time point, ¢ was optimized using a greedy search, in which
a4 single-cell measurements were chosen one at a time according to which time point predicted
25 the greatest improvement in the optimization criteria (see Supplementary Note 3 for more
26 information).

247 To illustrate our approach, we first allocated cell measurements according to D;-
xs  optimality as found through this greedy search. Figure 3 shows the optimal fraction of
a9 cells to be measured at each time following a 0.2M NaCl input and compares these fractions
250 to the experimentally measured number of cells from [9]. While each available time point
»1 was allocated a non-zero fraction of measurements, three time points at ¢ = [10, 15, 30]
2 minutes were vastly more informative than the other potential time points. To verify this
3 result, we simulated 50 data sets of 1,000 cells each and found the MLE estimates for each
4 sub-sampled data set. We compared the spread of these MLE estimates to the inverse of
25 the optimized FIM, shown in Fig. S1.

256 Comparing Figs. S1 with Fig. 2 illustrates the increase in information of the optimal
7 0.2M experiment compared to the intuitively designed experiment from [9]. In addition to
s providing much higher Fisher information, the optimal experiment requires measurement of
0 only three time points compared to the 16 time points that were measured in the original
x%0 experiment. Furthermore, we note that the FIM prediction of the MLE uncertainty is more
1 accurate for the simpler optimal design, which is likely related to our observation that MLE
x2  estimates converge more easily for the optimized experiment design than they do for original
23 intuitive design.

264 Figure 4 next compares the Dg-optimality criteria for the optimal (solid horizontal lines)
265 and intuitive ([9], dashed horizontal lines) experiment designs to 1,000 randomly designed
26 experiments for the 0.2M (black) and 0.4M (gray) conditions. To generate these random
7 experiment designs, we selected a random subset of the measurement times, and allocated

s the total 1,000 cells among chosen time points using multinomial distribution with equal

12
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FIG. 3. Optimizing the allocation of cell measurements at different time points. (a) Diagonal
entries of the Fisher information at different measurement times. The optimal measurement times
t = [10,15,30] minutes are highlighted in orange. (b) Comparison of optimal fractions cells to
measure (blue) at different time points determined by the FSP-FIM compared to experimentally
measured numbers of cells at 0.2 M NaCl (purple) from our work in [9]. (c) Probability distributions
of STL1 mRNA at several of measurement times. The blue boxes denote the time points of optimal

measurements.

0 probability for each time point. Figures 4a-b show that the intuitive experiment is more
o0 informative than most random experiments, but is still substantially less informative than
on the optimal experiment. To explore the importance of knowing the exact process input
o2 dynamics prior to designing the experiment, we next asked how well an experiment design

o713 optimized for a 0.2M osmotic shock would do to estimate parameters using an 0.4M experi-
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FIG. 4. Information gained by performing optimal experiments compared to actual experiments
(a) Ds-optimality for optimal design using three time points compared to the intuitive experiment
design made using 16 time points (purple, 0.2M and blue, 0.4M). Dashed lines represent intuitive
experiment designs. Randomly designed experiments with 0.2 M and 0.4 M NaCl are shown in
black and gray. For the random experiments, the time points were selected by sampling them from
the experimental measurement times, and then a random number of measurements were assigned
to each selected time point. The inset shows the first 50 randomly designed experiments. (b) The
D;-optimality for different experiment designs (y-axis) computed using the Fisher information for

either the 0.2 M perturbation or the 0.4 M NaCl perturbation.

o2 ment and vice-versa. Figure 4b shows that the simpler optimal experiment designs perform
s better than the intuitive designs in all cases, even when the design was found assuming a

a6 different environmental condition.

277 Using the FSP-FIM to design optimal biosensor measurements.

278 Thus far, and throughout our previous work in [6], we have sought to find the optimal
o9 set of experiments to reduce uncertainty in the estimates of model parameters. In this
80 section, we discuss how the FSP-FIM allows for the optimization of experiment designs to

21 address a more general problem of inferring environmental variables from cellular responses.
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in yeast. (a) Unknown salt concentrations (purple dots) in the environment give rise to different
reactivation times, 7o, which affect the gene expression in the model through the rate ko;. These
different reactivation times cause downstream STL1 expression dynamics to behave differently as
shown in panel (b). (c) Different responses can be used to resolve experiments that reduce the

uncertainty in 7o.

22 Toward this end, we assume a known and parametrized model (i.e., the model defined above,
23 which was identified previously in [9]), but which is now subject to unknown environmental
s influences. We explore what would be the optimal experimental measurements to take to
s characterize these influences. Specifically, we ask how many cells should be measured using
26 sMFISH, and at what times, to determine the specific concentration of NaCl to which the
27 cells have been subjected at t = 0 — or, equivalently, we ask what experiments would be
288 best suited to measure the effective stress induction level caused by addition of an unknown
20 solution to the cells.

200 In the HOG-MAPK transcription model, extracellular osmolarity ultimately affects stress
201 Tesponse gene transcription levels through the time-varying parameter ko (t) in Eq. 1, and
22 Fig. 1b shows the effect 0.2M and 0.4M salt concentrations on ko; activation. Higher salt
203 concentrations delay the time at which ko () returns to its nonzero value, and the function

20 in Eq. 1 is well-approximated by a the sum of three Heaviside step functions, u(t — 7;) as:

kar (t) = ko (u(t) —u(t — ) +u(t — 1)), (9)
25 where 7y is the fixed delay of the time it takes for nuclear kinase levels to reach the ko

15
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206 deactivation threshold (about 1 minute or less, [8, 9]), and 7 is the variable time it takes
207 for the nuclear kinase to drop back below that threshold. In practice, the threshold-crossing
208 time, 7y, is directly related to the salt concentration experienced by the cell under reasonable
200 salinity levels. This relationship is shown in Fig. 1b and 5b, where a 0.2M NaCl input exhibits
s0 a shorter 7, than does a 0.4M input. For our analyses, we assume a prior uncertainty such
;1 that time 75 can be any value uniformly distributed between 73" = 6 and 75* = 31 minutes,
s2 and our goal is to find the experiment that best reduces the posterior uncertainty in 7, (and
303 therefore the concentration of NaCl).

304 To reformulate the FSP-FIM to estimate uncertainty in 75 given our model, the first
305 step is to compute the sensitivity of the distribution of mRNA abundance to changes in the

_ 9A

wo variable 7, using Eqn. 5, in which Ay, (¢) is replaced with A, (t) = 5 as follows:

d Alt 0
d|p|_| A Pl (10)
dt Sty A (t) A(t)| [sn

207 As kop(t) is the only parameter in A that depends explicitly on 73, all entries of % are zero

28 except for those which depend on ko (t), and

 OA Oky
N 81{:21 87'2

A7—2 (t) = Ak21 k315(72)7 (11>

300 and therefore A, = g—f; is non-zero only at ¢t = 75. Using this fact, the equation for the

s sensitivity dynamics is uncoupled from the FSP dynamics for ¢ # 75, and can be written

s simply as:

d 0 for t < 7 with s(0) =0

dg _ . (12)

dt A(t)s,, for t > 5 with s,,(12) = kY A, P(T2)
312 If the Fisher information at each measurement time is written into a vector f =
ns [f1, fa, ..., fn,] (noting that the Fisher information at any time ¢; is the scalar quantity,
s f1), and the number of measurements per time point is the vector, ¢ = [¢1, ¢a, .. ., cp,], then

a5 the total information for a given value of 75 can be computed as the dot product of these

316 tWO vectors,
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N¢

I(n) =Y afi=c"f. (13)

1=1
sz Our goal is to find an experiment that is optimal to determine the value of 75, given an
ns assumed prior that 7 is sampled from a uniform distribution between 73" and 7i"*. To
sw find the experiment c,p that will reduce our posterior uncertainty in 7, we integrate the

»0 inverse of the FIM in Eq. 13 over the prior uncertainty in 7,

Copt = aIg Il'llIl/ ml—il(c; To =T, e)dT (14.)
072 Cl:1 Ténin 7_2 - 7—2
= arg min/ I Y (c;m = 7,0)dr. (15)
C,Z c=1 Ténin

s For later convenience, we define the integral in Eq. 14 (i.e., the objective function of the
2 minimization) by the symbol 7, which corresponds to the expected uncertainty about the
23 value of 7, for a given c.

32 Next, we apply the greedy search from above to solve the minimization problem in Eqn.
225 15 to find the experiment design c,p¢ that minimizes the estimation error of 7. Figure 6
16 shows examples of seven different experiments to accomplish this task, ranked according
27 to the FSP-FIM value J from most informative (top left) to least informative (bottom
»s right), but all using the same number of measured cells. For each experiment, the FSP-FIM
2o was used to estimate the posterior uncertainty (i.e., expected standard deviation) in the
30 estimation of 75, which is shown by the orange bars in Fig. 6. To verify these estimates, we

T;rue

s then chose 64 uniformly spaced values of 75, which we denote as the set { }, and for each

s T4 we simulated 50 random data sets of 1,000 cells distributed according to the specified

;3 experiment designs. For each of the 64 x50 simulated data sets, we then determined the value

s ToE between 7" and 74" that maximized the likelihood of the simulated data according

15 to Eq. 2. The root mean squared estimate (RMSE) error over all random values of 74™¢ and

s estimates, \/((79™F — 73™°)2)  was then computed for each of the six different experiment
;37 designs. Figure 6 shows that the FIM-based estimation of uncertainty and the actual MLE-
133 based uncertainty are in excellent agreement for all experiments (compare purple and orange
10 bars). Moreover, it is clear that the optimal design selected by the FIM-analysis performed

a0 much better to estimate 7, than did the uniform or random experimental designs. A slightly
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FIG. 6. Verification of the uncertainty in 1o for different experiment designs. The left panel shows
various experiment designs, where the sum of the bars (i.e., the total number of measurements)
is 1,000. Gray bars represent the measurements of CTT'1 and black bars STLI. The right panel
shows the value of the objective function in Eq. 14 for each experiment design in orange, and the

MSE values for verification are shown in purple.

s simplified design, which uses the same time points as the optimal, but with equal numbers

w2 of measurements at each time, performed nearly as well as the optimal design.
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343 The set of experiment designs shown in Fig. 6 includes the best design that only uses
s STL1 (second from top), the best design that uses only CT'T1 (fourth from top), and the best
15 designs that uses some cells with CTT1 and some with STL1 (top design). To find the best
us experiment design for measurement of two different genes, we assumed that at each time,
a7 either STLI mRNA or CTT1 mRNA (but not both) could be measured, corresponding to
us  using smFISH oligonucleotides for either STL1 or CTT1. To determine which gene should
s be measured at each time, we compute the Fisher information for CTT1 and STL1 for every
0  Mmeasurement time and averaged this value over the range of 7. For each measurement time
1 17, the gene is selected that has the higher average Fisher information for 7. The number
2 of cells per measurement time were then optimized as before, except the choice to measure
33 CTT1or STL1 was based on which mRNA had the larger Fisher information (Eq. 13) at that
s+ specific point in time. The best STL1-only experiment design was found to yield uncertainty
355 of 10.5 seconds (standard deviation); the best C'TTI-only experiment was found to yield an
36 uncertainty of 15.2 seconds and the best mixed STL1/CTT1 experiment design was found
7 to yield an uncertainty of 10.4 seconds. In other words, for this case the STL1 gene was
s found to be much more informative of the environmental condition than was C'T'T1, and the
0 use of both STL1 and CTT1 provides only minimal improvement beyond the use of STL1
w0 alone. We note that although measurement times in the optimized experiment design were
;61 restricted to a resolution of five minutes or more, the value of 7 could be estimated with
sz an error of only 10 seconds, corresponding to a roughly 30-fold improvement of temporal

33 resolution beyond the allowable sampling rate.

s DISCUSSION

365 The methods developed in this work present a principled, model-driven approach to
w6 allocate how many snapshot single-cell measurements should be taken at each time during
sz analysis of a time-varying stochastic gene regulation system. We demonstrate and verify
e these theories on a well-established model of osmotic stress response in yeast cells, which
30 1S activated upon the nuclear localization of phosphorylated HOG1 [8, 9]. For this system,
s we showed how to optimally allocate the number of cells measured at each time so as to
sn maximize the information about a subset of model parameters. We found that the optimal

s experiment design to estimate model parameters for the STL1 gene only required three time
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w3 points. Moreover, these three time points (¢ = [10, 15,30] minutes, highlighted by blue in
s Fig. 3b) are at biologically meaningful time points. At ¢ = 10 and 15 minutes, the system is
s increasing to maximal expression, and the probability of measuring a cell with elevated of
ss - RNA is high, which helps reduce uncertainty about the parameters in the model that control
;7 maximal expression. Similarly, at the final experiment time of ¢ = 30 minutes, the system
ws 1S starting to shut down gene expression, and therefore this time is valuable to learn about
w9 the time scale of deactivation in the system as well as the mRNA degradation rate. These
;0 effects are clearly illustrated in Fig. 3a, which shows that times ¢ = 10 and ¢ = 15 minutes
;1 provide the most information about parameters k1o, ko3 and k43, whereas measurements at
s2 t = 30 minutes provide the most information about . Because 7 is the easiest parameter to
33 estimate (e.g., its information is greater), not as many cells are needed at ¢t = 30 minutes to
;s constrain that parameter. Similarly, because k,s is the most difficult parameter to estimate
35 (e.g., it has the lowest information across all experiments), and because ¢ = 10 minutes
;6 1s one of the few time points to provide information about k,5, the optimal experimental
se7  design selects a large number of cells at the time ¢ = 10 minutes. This analysis demonstrates
;s that the optimal experiment design can change depending upon which parameters are most
30 important to determine (e.g., v or k. in this case), a fact that we expect will be important

30 to consider in future experiment designs.

301 Because we constrained all potential experiment designs to be within the subset of ex-
32 periments performed in our previous work [9], we are able to compare the information of
33 optimal experiment designs to intuitive designs that have actually been performed. We
s found that while the intuitive experiments performed were almost always better than could
35 be expected by random chance, they still provided several orders of magnitude lower Fisher
w6 information than would be possible with optimal experiments (Fig. 4a). Moreover, in our
;07 analyses, we found that optimal designs could require far fewer time points than those de-
w8 signed by intuition (e.g., only three time points were needed in Fig. 3), and therefore these
309 designs can be much easier and less expensive to conduct. We also found that utility of
w0 optimal experiment designs could be relatively insensitive to variation in the experimental
s conditions compared to assumptions used in the experiments design (Fig. 4b), a fact that

w2 allows for effective experiment designs despite inaccurate prior assumptions.

403 In addition to suggesting optimal experiments to identify model parameters, we showed

s that the FSP-FIM combined with an existing model could be used to design optimal exper-
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FIG. 7. Optimal mRNA degradation rates to reduce uncertainty about the extracellular environ-
ment. Uncertainty in the time at which the STL1 gene turns off, 7, as a function of mRNA
degradation rate (purple). The black dot corresponds to the degradation rate that was quantified

from experimental data.

ws iments to learn about fluctuating extracellular environments (Figs. 5 and 6). Along a very
ws similar line of reasoning, one can also adapt the FSP-FIM analysis to learn what biological
w7 design parameters would be optimal to reduce uncertainty in the estimate of important envi-
ws ronmental variables. For example, Fig. 7 shows the expected uncertainty in 75 as a function
w0 of the degradation rate of the STL1 gene assuming that 50 cells could be measured at each
a0 experimental measurement time t = [1,2,4,6,8, 10, 15,20, 25, 30, 35,40, 45, 50, 55] minutes
an  using the smFISH approach. We found that the best choice for STLI degradation rate to
a2 most accurately determine the extracellular fluctuations would be 2.4 x 1072 mRNA /min,
s3 which is about half of the experimentally determined value of 5.3 x 1072 £ 5.9 x 107° from
sa [9]. This result is consistent with our earlier finding that the faster degrading STL1 mRNA
a5 is a much better determinant of the HOG1 dynamics than is the slower-degrading CT'T1
s mMRNA, and suggests that other less stable mRNA could be more effective still. We ex-
a7 pect that similar, future applications of the FSP-based Fisher information to be valuable in
sz other systems and synthetic biology contexts where scientists seek to explore how different
a0 cellular properties affect the transmission of information between cells or from cells to hu-
w20 man observers. Indeed, similar ideas have been explored recently using classical information

a1 theory in [35-37], and recent work in [38] has noted the close relationship between Fisher
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222 information and the channel capacity of biochemical signaling networks.

423 We expect that computing optimal experiment designs for time-varying stochastic gene
w20 expression creates opportunities that could extend well beyond the examples presented in
a5 this work. Modern experimental systems are making it much easier for scientists and engi-
w6 neers to precisely perturb cellular environments using chemical induction [39-41] or optoge-
27 netic control [42-44]. Many such experiments involve stochastic bursting behaviors at the
2 mMRNA or protein level [7-9, 43|, and precise optimal experiment design will be crucial to
»o understand the properties of stochastic variations in such systems. A related field that is
a0 also likely to benefit from such approaches is biomolecular image processing and feedback
a1 control, for which one may need to decide in real time which measurements to make and in

42 what conditions.
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