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Abstract

Over the last two decades, GWAS (Genome-Wide Association Study) has become a canonical tool for
exploratory genetic research, generating countless gene-phenotype associations. Despite its
accomplishments, several limitations and drawbacks still hinder its success, including low statistical
power and obscurity about the causality of implicated variants. We introduce PWAS (Proteome-Wide
Association Study), a new method for detecting protein-coding genes associated with phenotypes
through protein function alterations. PWAS aggregates the signal of all variants jointly affecting a
protein-coding gene and assesses their overall impact on the protein’s function using machine-learning
and probabilistic models. Subsequently, it tests whether the gene exhibits functional variability between
individuals that correlates with the phenotype of interest. By collecting the genetic signal across many
variants in light of their rich proteomic context, PWAS can detect subtle patterns that standard GWAS
and other methods overlook. It can also capture more complex modes of heritability, including recessive
inheritance. Furthermore, the discovered associations are supported by a concrete molecular model,
thus reducing the gap to inferring causality. To demonstrate its applicability for a wide range of human
traits, we applied PWAS on a cohort derived from the UK Biobank (~¥330K individuals) and evaluated it
on 49 prominent phenotypes. We compared PWAS to existing methods, proving its capacity to recover
causal protein-coding genes and highlighting new associations with plausible biological mechanism.
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Main

Genome-wide association studies (GWAS) seek to robustly link genetic loci with diseases and other
heritable traits¥™. In the past decade, the method has implicated numerous variant-phenotype
associations® and driven important scientific discovery®’. Nowadays, thanks to the rapid development of
large-scale biobanks with well-genotyped and well-phenotyped cohorts, conducting case-control studies
has become easier than ever. The UK Biobank (UKBB) is a flagship project of these efforts, having
recruited a cohort of over 500,000 individuals, each with a full genotype and thousands of curated
phenotypes (including medical history, lab tests, a variety of physical measures and comprehensive life-
style questionnaires)®®.

Despite the enormous impact of GWAS, inherent difficulties still limit its success>'°. Among the key
factors are its limited statistical power, which is partly caused by the large number of tested variants
across the genome. This limiting factor is especially crucial when dealing with rare variants of small
effect sizes'®. Due to Linkage Disequilibrium (LD) and population stratification, even when a genomic
locus is robustly implicated with a phenotype, pinning the exact causal variant(s) is a convoluted task®.

Three major strategies are commonly used for prioritizing the most likely causal entities (e.g. variants or
genes) affecting the phenotype. The most common strategy is fine-mapping of the raw GWAS results'!~
13, Fine-mapping of GWAS summary statistics often relies on functional annotations of the genome,
under the assumption that functional entities are more likely to be causal. However, even following fine-
mapping, many of the significant GWAS associations remain without any known biological mechanistic
interpretation.

To arrive at more interpretable, actionable discoveries, another commonly used strategy is to prioritize
genes (or other functional entities) rather than variants. There are numerous methods that aggregate
GWAS summary statistics at the level of genes, often by combining them with data from expression
quantitative trait locus (eQTL) studies or functional annotations of genes and pathways*?’.

A third strategy seeks to implicate genes directly, by carrying the association tests at the level of
annotated functional elements in the first place. The most commonly used gene-level method is SKAT,
which aggregates the signal across an entire genomic region, be it a gene or any other functional entity
(or just a collection of SNPs)'®1°, Another approach, recently explored by methods such as PrediXcan®
and TWASZ, tests whether the studied phenotypes correlate with gene expression levels predicted from
genetic variants. Under this paradigm, the association test is comprised of two stages. First, an
independent reference panel is used to train a prediction model of gene expression (in a particular
tissue) as a function of the genetic makeup of a sample. The learned model is then applied on the
phenotyped dataset, and the predicted gene expression levels are tested against phenotypes of interest.
The advantages of this approach include a reduced burden of multiple testing, as well as more concrete
and interpretable discoveries.

A natural enhancement to these approaches would be a protein-centric method that considers the
effects of genetic variants on the functionality of genes, rather than affecting their abundance (be it at
the transcript or protein level).

We present PWAS: Proteome Wide Association Study (Fig. 1). PWAS is based on the premise that causal
variants in coding regions affect phenotypes by altering the biochemical functions of the genes’ protein


https://doi.org/10.1101/812289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/812289; this version posted October 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

products (Fig. 1a). Such functional alterations could be, for example, changes to a protein’s enzymatic
activity or binding capacity (e.g. of a ligand, DNA/RNA molecule, or another protein). To capture these
effects, PWAS quantifies the extent to which proteins are damaged given an individual’s genotype.
Specifically, PWAS considers any variant that affects the coding-regions of genes (e.g. missense,
nonsense, frameshift). It quantifies the impact of these variants on the function of the affected proteins
using FIRM, a machine-learning model that considers the rich proteomic context each affecting variant?.
These predicted effects are then combined with the genotyping data of the cohort and aggregated into
per-gene functional predictions, where each protein-coding gene is assigned functional effect scores
(Fig. 1b). For each gene (in the context of a specific individual) PWAS assigns two scores, to cover the
two elementary modes of heritability: dominant and recessive inheritance (other modes of heritability
can also be represented as a composition of the two). Intuitively, the dominant effect score is intended
to express the probability of at least one hit damaging the protein function, while the recessive score
attempts to express the probability of at least two damaging hits. PWAS then tests, using routine
statistical analysis, if a gene’s effect scores are associated with the phenotype. In the case of a binary
phenotype, a significant correlation would mean that the effect scores of cases are different than those
of controls, namely that the protein is more (or less) damaged in affected individuals.

Like other gene-based approaches, PWAS enjoys a reduced burden for multiple-testing correction. In
addition, it provides concrete functional interpretations for the protein-coding genes it discovers (Fig.
1a). By aggregating the signal spread across all the variants affecting the same gene, it can uncover
associations that would remain undetectable at per-variant resolution, especially when rare variants are
involved.

To examine the properties of PWAS, we first test it on simulated data, analyzing its statistical power
across different settings. We then test it on real data derived from the UKBB, to demonstrate its wide
applicability across a diverse set of phenotypes. We further compare the results of PWAS to established
methods, specifically to standard GWAS and SKAT. Finally, we highlight associations uniquely discovered
by PWAS.
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(a) The causal model that PWAS attempts to capture: genetic variants (within a coding region) affect the function
of a protein, whose altered function influences a phenotype. PWAS identifies protein-coding genes whose overall
genetic functional alterations are associated with the studied phenotype by explicitly modeling and quantifying
those functional alterations. In contrast, GWAS seeks direct associations between individual variants and the
phenotype. (b) Overview of the PWAS framework. PWAS takes the same inputs as GWAS: i) called genotypes of m
variants across n individuals, ii) a vector of n phenotype values (could be either binary or continuous), and iii) a
covariate matrix for the n individuals (e.g. sex, age, principal components, batch). By exploiting a rich proteomic
knowledgebase, a pre-trained machine-learning model estimates the extent of damage caused to each of the k
proteins in the human proteome, as a result of the m observed variants, for each of the n individuals (typically k <<
m). These estimations are stored as protein function effect score matrices. PWAS generates two such matrices,
reflecting either a dominant or a recessive effect on phenotypes. PWAS identifies significant associations between
the phenotype values to the effect score values in the columns of the matrices (where each column represents a
distinct protein-coding gene), while taking into account the provided covariates. Each gene can be tested by the
dominant model, the recessive model, or a generalized model that uses both the dominant and recessive values.
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Results

Functional effect scores

We analyzed a cohort derived from the UKBB. Of ~18K analyzed protein-coding genes, 17,843 were
affected by at least one non-synonymous variant reported in the UKBB. On average, each of these genes
was affected by 35.9 such variants (Fig. 2a).

The derivation of the gene effect score matrices is comprised of two steps. First, FIRM is used to predict
an effect score for each protein-affecting variant (Fig. 2b). Intuitively, these predicted effect scores can
be interpreted as the probability of the variant-affected protein to retain its function. The variant scores
are then integrated with the cohort genotypes and aggregated together to derive per-sample dominant
and recessive effect scores at the gene level (Fig. 2c-d). As expected, dominant genetic effects (capturing
single hits) are more prevalent than recessive effects (of double hits). The derived gene scores capture
genetic variability in the UKBB population observed even within a small number of samples. The
objective of PWAS is to test whether this functional genetic variability correlates with phenotypes.
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Fig. 2: Predicted genetic functional effect scores in the UKBB cohort

(a) The distribution of the number of non-synonymous variants per gene that affect its coding region (in log scale),
according to the (imputed) genetic data of the UKBB. (b) The distribution of the ~640K variant effect scores. Each
score is a number between 0 (complete loss of function) to 1 (no damage to the protein product). (c-d) Aggregated
gene scores according to the dominant (c) and recessive (d) inheritance models. Top panels: the mean (solid line)
and standard deviation (shaded area) of the effect scores of the 18,053 analyzed protein-coding genes across the
entire UKBB cohort (sorted by the mean score). Bottom panel: z-values of the gene effect scores across 10
randomly selected samples (of the entire ~500K samples in the UKBB). Each of the 10 samples is shown in a distinct
color.

Simulation analysis

To examine the discovery potential of PWAS compared to GWAS and SKAT, we conducted a simulation
analysis (Fig. 3). The simulation was carried on real genetic data (from the UKBB cohort), with
phenotypes simulated by mixing genetic signal and noise. To test the sensitivity of PWAS to the
inevitable inaccuracies of FIRM, we examined the effect of a noise parameter (€) influencing its
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predictions. It appears that under the modeling assumptions of the simulation, PWAS is not very
sensitive to limited inaccuracies of the underlying machine-learning predictor.

Based on the simulation results, we expect the advantage of PWAS to be the most substantial when
dealing with recessive inheritance. We find that with small effect size (8 = 0.01), at least 100K samples
are required to obtain sufficient statistical power (given 173 covariates). When the effect size is higher
(B = 0.05), cohorts of 10K samples could be sufficient.

It is important to state that phenotypes were simulated from the genetic data by a modelling scheme
compatible with the assumptions of PWAS. Therefore, these results should not be seen as evidence for
the dominance of PWAS over GWAS or SKAT in the real world. Rather, these simulations simply examine
the method’s range of applicability and assess the amount of data required for sufficient statistical
power under the settings for which it was designed. In addition to this protein-centric modeling scheme,
we also examined phenotypes simulated under a standard linear model, as well as binary phenotypes
(Supplementary Fig. S1).
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Fig. 3: Simulation analysis

Results of a simulation analysis comparing between GWAS, SKAT and PWAS. The statistical power of each method
is shown as a function of cohort size (1,000, 10,000, 50,000, 100,000 or all 332,709 filtered UKBB samples, shown
in log scale). Estimated values are shown as solid lines, with flanking 95% confidence intervals as semi-transparent
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area bands. Each iteration of the simulation considered a single protein-coding gene affecting a simulated
continuous phenotype of the form y = Bx + g, where x is the effect of the gene on the phenotype (normalized to
have mean 0 and standard-deviation 1 across the UKBB population), § € {0.01,0.05} is the gene’s effect size, and
0~N(0,1) is a random Gaussian noise. The gene effect x was simulated according to the PWAS model, with either
a dominant, recessive or additive inheritance. A noise parameter € € {0,0.25} was introduced to FIRM, the
underlying machine-learning model that estimates the damage of variants. Gene architectures, genotyping data
and the 173 included covariates were taken from the UKBB cohort.

Case study: colorectal cancer

To examine PWAS on real phenotypes, we begin with a case-study of colorectal cancer. A cohort of
259,121 controls and 2,814 cases was derived from the UKBB to detect predisposition genes leading to
increased risk of colorectal cancer through germline variants.

To exemplify how PWAS works, we begin with a demonstration of the analysis over a specific gene —
MUTYH (Fig. 4a), a well-known predisposition gene for colorectal cancer?. In the studied cohort, there
are 47 non-synonymous variants affecting the gene’s protein sequence. When considered by standard
per-variant GWAS, the most significant of these variants yields a p-value of 1.2E-03. Even if the entire
flanking region of the gene is considered (up to 500,000 bp from each side of its open reading frame),
the strongest significance obtained is still only p = 6.3E-04, far from the exome-wide significance
threshold (5E-07). When analyzed by PWAS, on the other hand, this association exhibits overwhelming
significance (FDR g-value = 2.3E-06), far beyond the commonly used FDR significance threshold (q <
0.05).

PWAS was able to uncover the association by aggregating signal spread across a large number of
different variants, with 5 of the 47 protein-affecting variants showing mild associations (p < 0.05). As
these 5 variants show consistent directionality (all risk increasing), and as most of them are predicted to
be likely-damaging, they were effectively aggregated into gene scores that significantly differ between
cases and controls. Specifically, the MUTYH gene is significantly more damaged in cases than in controls
according to the PWAS framework. The association is only significant according to the recessive model,
with an estimated effect size of d = -0.079 (standardized mean difference in the gene effect scores
between cases to controls). This observation is consistent with previous reports about MUTYH, claiming
a recessive inheritance mode?®.

To recover all protein-coding genes associated with colorectal cancer according to PWAS, we analyzed
18,053 genes (Fig. 4b), discovering 6 significant associations (Table 1). Of these 6 associations, 5 are
supported by some literature evidence, 3 of which with level of evidence we consider strong. In 4 of the
5 supported associations, the directionality of the association reported in literature (i.e. protective or
risk gene) agrees with the effect size (Cohen’s d) detected by PWAS (only in POU5F1B it is inversed). Of
the 6 genes, only POU5F1B is affected by a variant exceeding the exome-wide significance (rs6998061, p
= 1.4E-07). The 5 other genes are not discovered by GWAS, even when considering all the variants in the
gene’s region (up to 500,000 bp away from the gene).
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Fig. 4: Colorectal cancer case study

(a) Demonstration of a specific gene-phenotype association: MUTYH and colorectal cancer. Variants that affect the
protein sequence are shown on top of the gene’s exons. As expected, variants within domains tend to be more
damaging. While none of the variants that affect the protein are close to the exome-wide significance threshold (p
< 5e-07), the association is very significant by PWAS (FDR g-value = 2.3E-6). The full summary statistics of the 47

variants are presented in Supplementary Table S1. (b) PWAS QQ plot of all 18,053 genes tested for association with
colorectal cancer.

Table 1: Significant colorectal cancer genes detected by PWAS

Symbol  Name Chrom Most Most Generalized Dominant Dominant Recessive  Recessive Literature evidence
significant significant PWAS q- PWAS qg- PWAS PWAS g- PWAS
variant in the protein value value Cohen's d value Cohen's d
region affecting
variant
MUTYH  mutY DNA 1 rs12139364 rs36053993  2.3E-6 (***) 0.34 n.s. 1.2E-4 (***) -0.079 Strong, biallelic mutations
glycosylase p=6.3E-4 p=1.2E-3 increase colorectal cancer risk
by a factor of 17-4423
FHL3 fourand a halfLIM 1 rs147339918 rs145496383 0.01 (*) 0.92 n.s. 0.024 (*) -0.037 Moderate, acts as tumor
domains 3 p=1.5E-3 p =0.016 suppressor in breast and other
cancer types?®
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0OSTC oligosaccharyltransf 4 rs17038839  rs202168879 0.01 (*) 0.96 n.s. 0.024 (*) 0.018 Weak, subunit of the OST
erase complex non- p=9.1E-4 p=0.016 complex which has been
catalytic subunit associated with lung and ovarian

cancer?:26

CDK2AP2 cyclin dependent 11 rs147242558 rs530762126 0.025 (*) 1 n.s. 8E-3 (¥*) -5.3E-3  Strong, inhibits CDK2 and G1/S
/ DOC-1R kinase 2 associated p=2.7E-3 p=0.4 phase transition, a paralog of
protein 2 p14 and CDK2AP1, binds
CDK2AP1%7:28
POUSF1B POU class 5 8 *rs6983267  *rs6998061 0.027 (*) 0.02 (*) 0.09 1 n.s. Strong, promotes proliferation
/ BRN4 homeobox 1B p=5.9E-9 p=1.4E-7 in several cancer types, GWAS
hit in colorectal cancer?®-3!
CCDC172 coiled-coil domain 10 rs200485970 rs532636333 0.035 (*) 0.96 n.s. 0.059 n.s. None
containing 172 p=1.6E-4 p =0.055

n.s. Non-significant

Applicability of PWAS across 49 different phenotypes

Having case studied PWAS for a specific phenotype, we turn to consider its applicability for a diverse set
of 49 prominent phenotypes (Fig. 5a). We applied both standard GWAS and PWAS across the 49
phenotypes on the same UKBB cohort (~¥330K samples), obtaining a rich collection of associations (Fig.
5b-c). Altogether, PWAS discovered 12,896 gene-phenotype associations, only 5,338 of which (41%)
contain a GWAS-significant non-synonymous variant in the gene’s coding region (Fig. 5b). In other
words, although PWAS considers the exact same set of variants, in 59% of the associations it is able to
recover an aggregated signal that is overlooked by GWAS when considering each of the variants
individually. Even when considering all the variants in proximity of the gene to account for LD (up to
500,000 bp to each side of the coding region), 2,998 of the 12,896 PWAS associations (23%) are still
missed by GWAS (Fig. 5c-d).

Full summary of all 49 tested phenotypes, with complete per-gene summary statistics, is available in
Supplementary Table S2 (for all the significant PWAS associations) and Supplementary Table S3 (with all
18,053 tested protein-coding genes). QQ plots of all 49 phenotypes are available in Supplementary Fig.
S2.

To confirm the importance of the predicted functional effect scores assigned to variants, we tested the
performance of a version of PWAS where the effect scores of non-synonymous variants were shuffled
prior to their aggregation into gene scores. Indeed, we find that the original version of PWAS (capturing
gene function) outperforms the shuffled version (Supplementary Fig. S3).
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(a) We analyzed 23 binary phenotypes, 25 continuous phenotypes and 1 categorical phenotype (male-balding
patterns) derived from ~330K UK Biobank samples. Within binary phenotypes, the number of cases spans orders of
magnitude (from only 127 in systemic sclerosis to 62K in hypertension). (b-c) Partition of the significant protein-
coding genes, across the different phenotypes, that were detected by GWAS, PWAS or both. The total number of
significant genes is shown in brackets. In (b) a gene was considered significant by GWAS if a non-synonymous
variant within the coding region of the gene passed the exome-wide significance threshold (p < 5E-07). In (c) a
relaxed criterion was taken, considering all variants within 500,000 bp to each side of the coding region of the gene
(here showing only the PWAS significant genes). (d) The number of significant genes per phenotype found by
PWAS alone, according to the relaxed criterion of GWAS, as defined in (c) (i.e. without any significant variant
within 500,000 bp).

Comparison with SKAT

Having established the discovery power of PWAS beyond standard GWAS, we also compare it to SKAT®,
the most commonly used method for detecting genetic associations at the gene level. Importantly,
whereas SKAT attempts to recover all existing genetic associations, PWAS focuses specifically on
protein-coding genes that are associated with a phenotype through protein function.

We find that PWAS is superior to SKAT in the number of discovered associations for most phenotypes
(Fig. 6a). We also examined the extent of overlap between the results reported by each of the two
methods (the consensus associations in Fig. 6a). It appears that PWAS and SKAT tend to recover distinct
sets of genes, so the two methods can be considered as largely complementary.

To assess the quality of discoveries, we appeal to Open Targets Platform (OTP)32, an exhaustive resource
curating established gene-disease associations based on multiple layers of evidence, and OMIM?33, the
most prominent catalogue of human genes implicated in genetic disorders. We compared the quality of
associations discovered by the two methods, according to OTP-derived evidence scores, across the 24
tested diseases that are recorded in OTP (Fig. 6b). According to this metric, the results of PWAS and
SKAT appear to be largely comparable, with consensus genes showing stronger evidence.

We further investigate how the two methods (PWAS and SKAT) recover externally validated associations
provided by OTP (Fig. 6¢c) and OMIM (Fig. 6d). Of 4,944 associations with strong support by OTP, 9 were
recovered by SKAT compared to 6 recovered by PWAS. In the case of OMIM, which provides an even
more restricted list of 202 high-quality gene-disease associations with known molecular basis, PWAS
was somewhat superior (12 compared to 7 recovered associations, with the 7 being a subset of the 12).
We observe no obvious trend between the types of phenotypes (e.g. cancer or other diseases) to the
significance of associations obtained by the two methods (see colors in Fig. 6¢-d).

Based on this comparative analysis, we conclude that PWAS and SKAT are complementary, and that it
may be advantageous to use both in association studies. We stress that the two methods are very
distinct in the type of associations they seek and how they model them.
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Fig. 6: PWAS and SKAT provide complementary results
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(a) Number of significant genes detected by PWAS, SKAT and the consensus of both, across the 49 tested
phenotypes (over the same cohorts derived from the UKBB). Phenotypes are sorted by the highest of the three
numbers. (b) An evidence score of gene-phenotype associations (derived from Open Targets Platform) is shown
across phenotypes by its average over the significant genes detected by PWAS, SKAT or the consensus of both. The
numbers of significant genes (over which the averaging is performed) are shown over the bars. (c) Comparison of
the FDR g-values obtained by PWAS and SKAT over 4,944 gene-phenotype associations with strong support by
Open Targets Platform. (d) A similar comparison over 202 associations reported by OMIM to have a known
molecular basis. The right plot (marked by red frames) is a zoom-in of the left.

Highly-significant associations not dominated by single variants

Among all the discovered associations, we seek to highlight those that are particularly characteristic to
our new method, namely results that are uniquely discovered by PWAS and show strong evidence of
being causal. To this end, we filtered associations by highly strict criteria: i) strong significance (FDR g-
value £ 0.01), ii) no other significant genes in the region, and iii) no single dominating variant
association. Of the 2,998 gene-phenotype associations uniquely found by PWAS (Fig. 5c), 53 meet these
criteria, and are referred to as “PWAS-exclusive” associations (Table 2; the full list is provided in
Supplementary Table S4).

As expected, the PWAS-exclusive genes show no GWAS signal at all, and the PWAS associations are
constrained to the associated genes (Fig. 7a). When considered by SKAT, only 3 of the 53 associations
come up as significant (Fig. 7b), even though SKAT was not included in the criteria for defining those
associations.

Many of the listed associations are strongly support by literature. For example, POU3F4 (also known as
BRN4) was found by PWAS to be associated with type 2 diabetes (FDR g-value = 0.0016), apparently as a
protective gene (Cohen’s d of 0.04 and 0.033 according to the dominant and recessive models,
respectively). BRN4 is an essential gene for the development of pancreatic a-cells, whose excess
glucagon secretion is implicated in type-2 diabetes®*. In other words, impairment of the gene is expected
to reduce glucagon levels, making it protective of the disease.

MLLT3, appearing to be associated with red blood cell distribution width through recessive inheritance
according to PWAS (FDR g-value = 7.9E-06, r = -0.01), has been reported to be a key regulatory gene in
the bone marrow?. Likewise, CD80, which PWAS associates with eosinophil counts through recessive
inheritance (FDR g-value = 1.1E-06, r = -0.01), has an important role in antigen presentation by
eosinophils®®.

In other cases, while there is no clear indication for the reported association, there does exist a strong
molecular plausibility. FOXG1, for example, plays a key role in the development of the retina (a function
conserved in all vertebrates)®’, and was shown to be associated with visual impairment in both mice and
human cohorts®. However, it has never been implicated in intraocular pressure, an association that we
observe here with extraordinary significance (FDR g-value = 2.6E-15) according to the PWAS recessive
model. Specifically, normal function of the gene (i.e. lack of damaging variants) appears to be positively
correlated (r = 0.031) with intraocular pressure.

In some instances, we find little to no literature evidence for reported PWAS-exclusive associations (e.g.
C4orf36 and Hip circumference, FAM160B1 and leukemia, USP26 and type 2 diabetes), yet the strong
associations established by PWAS provide strong evidence for these associations.
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Table 2: Selected PWAS-exclusive associations

Phenotype Gene Symbol  Chrom Generalized Dominant Dominant r Recessive Recessive r
g-value g-value /Cohen'sd gq-value /Cohen'sd

Intraocular pressure FOXG1 14 2.3E-14 1 n.s. 2.6E-15 0.031
Hip circumference SEMA3D 7 6.3E-07 7.4E-05 0.0035 0.001 0.00034
Hip circumference ARHGAP12 10 2.1E-06 7.1E-07  -0.00073 0.37 n.s.
Colorectal cancer MUTYH 1 2.3E-06 0.34 n.s. 0.00012 -0.079
Eosinophil counts CD80 3 3E-06 0.97 n.s. 1.1E-06 -0.01
Red cell distribution width MLLT3 9 1.1E-05 0.76 n.s. 7.9E-06 -0.01
Hip circumference CSGALNACT2 10 3.7E-05 0.00018 -0.002 0.009 -0.0021
Hip circumference C4orf36 4 4.8E-05 2.3E-05 -0.0019 0.00014 0.0038
Type 2 diabetes POU3F4 X 0.0016 0.00052 0.04 N/A N/A
Type 2 diabetes USP26 X 0.0016 0.015 0.049 N/A N/A
Chronic lymphocytic leukemia FAM160B1 10 0.0033 0.99 n.s. 0.048 0.06

n.s. Non-significant; N/A not applicable (X-linked recessive inheritance)
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Fig. 7: PWAS-exclusive associations

(a) Exemplifying the 53 PWAS-exclusive associations with the 4 genes associated with the hip circumference
phenotype. The 4 genes demonstrate a complete lack of any GWAS pattern in proximity of the genes (up to
500,000 bp to both directions of each gene). Each of the 4 depicted gene regions was divided into 200 bins,
displaying the most significant variant in each bin. Also shown are the PWAS FDR g-values of all analyzed protein-
coding genes in those chromosomal regions. (b) Comparison of the FDR g-values obtained by PWAS and SKAT for
the 53 associations.
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In this work, we have introduced a new functional protein-centric approach to association studies. We
have demonstrated its applicability to a broad range of prominent human phenotypes, and established
its utility in supplementing existing methods and highlighting novel associations.

Due to its explicit gene-based functional model, PWAS provides more interpretable results than other
methods. Like other gene-based approaches seeking to establish associations of concrete genes, it
requires no post-analysis fine-mapping. Furthermore, as PWAS relies on an explicit functional model, it
is better posed to suggest causal relationships. Specifically, a significant PWAS association would suggest
that variants disrupting the function of the implicated protein might influence the studied phenotype (in
the case of a disease, increase or decrease one’s risk). Furthermore, PWAS can determine whether the
proposed causal effect appears to be dominant, recessive or some mixture of the two (e.g. additive).
Yet, while PWAS is more suggestive of causality than other methods, significant results are still
susceptible to spurious correlations. In particular, the problem of LD’ is still far from being resolved, and
significant PWAS associations, like any genetic associations, should be interpreted with caution.

By aggregating all variants affecting the same gene into unified statistics, PWAS is able to detect signal
that is too weak and spread to appear in per-variant GWAS (Fig. 7, Table 2). It is particularly important in
the case of rare variants, which account for much of the heritability®. In fact, PWAS can successfully
handle even variants that occur only once in the cohort (including, in principle, de-novo variants). As
long as the observed variants fit the overall trend observed in the studied gene (e.g. that they are more
damaging in cases compared to controls), even singletons can increase the statistical power of the
method. In this work, however, we relied on imputed genotypes which cannot capture variants that are
too rare. As a result, some biological signals have probably been missed (e.g. damaged genes that were
mistaken to be intact due to ungenotyped variants). We therefore anticipate that PWAS can
substantially benefit from exome sequencing (as opposed to SNP-array genotypes). It should be noted
that while more accurate genotyping should indeed enhance its statistical power, the reliance of PWAS
on rigorous statistics keeps it insensitive to false discoveries even with imperfect genotyping.

A rather unique feature of PWAS is its separate dominant and recessive inheritance models. Although
there are strong indications that the commonly used additive model can capture most of the heritability
of complex human traits*°, non-additive and epistatic effects play key role in many phenotypes*'. While
there have been efforts to address epistatic effects in GWAS*, the special case of recessive inheritance
in complex traits has been largely neglected. Our results show that recessive inheritance is indeed
substantial in a variety of phenotypes. 23% of the recovered PWAS associations are significant by the
recessive but not the dominant model. PWAS is uniquely posed, among present methods, to handle
recessive inheritance, as per-gene recessive inheritance is much more sensible than per-variant.
Specifically, PWAS is able to capture the prevalent instances of compound heterozygosity (due to its per-
gene aggregation), whereas per-variant GWAS would fail to detect such recessive effects®.

Another important advantage of PWAS over existing methods is its reduced computational burden in
multi-phenotype datasets (such as the UKBB). PWAS aggregates all the genetic data into compact gene
score matrices, whose size is much smaller than the raw genotyping data (as there are typically
substantially fewer genes than variants). These matrices store all of the relevant genetic information
(encompassing the assessed functional state of the proteome in each of the cohort samples), and can be
independently tested against each phenotype.
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PWAS belongs to the growing family of methods that seek genetic associations through modeling of
functional genomic properties. While methods such as PrediXcan?® and TWAS?! model gene expression,
PWAS models protein function, which, in principle, is completely orthogonal to the signal of gene
abundance. We purposefully employ a very abstract definition of the term “protein function” to
encapsulate anything the protein is supposed to do in the cell such that disturbing it (by variants altering
the protein sequence) could lead to phenotypic effects (e.g. missense variants affecting a membrane
receptor protein could interfere with its signal transduction function and result in predisposition to
cancer). We consider PWAS complementary to methods that model other functional aspects of the
genome.

Contrary to expression-based methods, PWAS assigns protein effect scores in a deterministic, consistent
manner. Gene expression is highly volatile, with substantial variability between tissues, epigenetic
conditions and many other non-genetic factors. In contrast, protein products are mostly a direct result
of one’s genetic makeup. This benefits PWAS in two major ways. First, it offers reduced computational
complexity, since it is sufficient to compute the gene score matrices only once. More importantly, it
relieves us from the need to select a specific tissue or expression profile for the analysis. Indeed, most
human traits are not confined to specific tissues, let alone specific cellular conditions, making the
selection of a relevant reference panel for expression-based methods a daunting task.

A potential limitation of PWAS is its reliance on the complete cohort data (including the full genotype
and phenotype information). Unlike other methods, it is unable to analyze summary GWAS statistics
alone. This reliance on raw data is due to the non-linear nature of the aggregation algorithm used to
derive gene effect scores from variant effect scores (see Methods). It remains open whether a simplified
linear version of PWAS could be derived, or at least a version simple enough that can be applied on
summary statistics. On the positive side, with modern biobanks and genetic cohorts (e.g. UKBB, SFARI*),
large-scale datasets are becoming increasingly available for direct modeling and analysis.

In conclusion, we have presented PWAS as a novel protein-centric method for genetic association
studies providing functionally interpretable gene results. We have demonstrated the validity of PWAS
through comparison to multiple external resources, and shown its added value to commonly used
methods across a wide range of prominent phenotypes, including numerous new discoveries. We argue
that integrating rich machine-learning models based on prior-knowledge, as exemplified in this work, is
a promising avenue to novel insight and discovery in human genetics.

Methods

UK Biobank cohort

Throughout this work we used genetic and phenotypic data from the UK Biobank (UKBB) resource®®
(application ID 26664).

From the entire UKBB cohort of 502,539 samples, we filtered 409,600 labeled as Whites/Caucasians
according to both self-reported ethnicity and their genetics. We removed 312 samples with mismatching
self-reported and genetics-derived sex. We also removed 726 samples without imputed genotypes.
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Finally, we removed 75,853 samples to keep only one representative of each kinship group of related
individuals, obtaining a final cohort of 332,709 samples.

Specification of the 49 phenotypes used in this work is available in Supplementary Table S5. The table
specifies how each phenotype was defined (based on either a UKBB field or ICD-10 codes), and whether
it was restricted to a specific gender. The set of all ICD-10 codes associated with a sample were derived
from the following UKBB fields: 41202, 41204, 40006, 40001, 40002, 41201.

When testing a specific phenotype, we also filtered out samples with missing values in that phenotype
(e.g. for height we filtered out 686 samples, obtaining a cohort of 332,023 samples). When testing
phenotypes defined by ICD-10 codes, we filtered out all samples without any recorded ICD-10 code. This
further removed 70,335 samples from the cohort, leaving 262,374 samples in those phenotypes. The
final cohort size used for testing each phenotype is listed in Supplementary Table S2. In the rare cases
where samples had multiple records of the same continuous phenotype (e.g. from different visits to the
UKBB assessment centers), we took the maximum value.

All the association tests carried out in this work (with either of the three used methods, i.e. GWAS,
PWAS or SKAT) included the following covariates: sex (binary), year of birth (numeric), the 40 principal
components of the genetic data provided by the UKBB (numeric), the UKBB genotyping batch (one-hot-
encoding with 105 categories) and the UKBB assessment centers associated with each sample (binary,
with 25 categories). Altogether, 173 covariates (including a constant intercept) were included. For
specific phenotypes, additional covariates were included as part of the phenotype’s definition (e.g. “Hip
circumference adjusted for BMI” included BMI as an additional covariate; see Supplementary Table S5).

Variant functional effect scores

The gene effect scores used by PWAS are derived from aggregation of per-variant effect scores (Fig. 2b).
Each non-synonymous variant in the coding region of a gene which affects the resulted protein
sequence is assigned a functional effect score that aims to capture its propensity to damage the protein
product of the gene. Specifically, PWAS considers the following types of variants as affecting protein
sequence: missense, nonsense, frameshift, in-frame indel and canonical splice-site variants. The
predicted effect score of a variant is a number between 0 (complete loss of function) to 1 (no functional
effect). Intuitively, it reflects the probability that the affected gene retains its function given the variant.

To predict the effect of missense variants, PWAS employs a machine-learning model. Specifically, the
FIRM predictor is used?%. Unlike commonly used prediction tools assessing mutation pathogenicity (e.g.
CADD?, SIFT*, Polyphen2*’, MutationTaster2*), FIRM is designed to assess the damage of variants at
the molecular level (rather than clinical outcome at the organism level). This distinction is particularly
important when PWAS is used for phenotypes without clinical significance (e.g. height). FIRM attempts
to capture gene function in its broadest sense (e.g. enzymatic reaction, molecular interaction, cellular
pathways), thereby allowing PWAS, in principle, to model any protein-phenotype effect.

To assess the impact of a missense variant on gene function, FIRM considers its rich proteomic context,
which it encodes as a set of 1,109 numerical features (which are used by the underlying machine-
learning model to predict its effect score). The full specification of the features used by FIRM is
described elsewhere??. They include: i) the position of the variant within the protein sequence, ii) the
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identity of the reference and alternative amino-acids and the amino-acid composition of the protein in
various regions of the protein with respect to the variant, iii) abundance of annotations extracted from
UniProt* (e.g. phosphorylation and other post-translational modifications, active sites, secondary
structure), and iv) details of Pfam domains®? in proximity of the variant.

Missense variants comprise the vast majority of non-synonymous variants®'. For other variant types,
effect scores were derived through rougher, rule-based formulas. Specifically, nonsense, frameshift and
canonical splice-site variants (i.e. variants affecting the first or last two letters of an intron) were
assumed to be loss-of-function variants and assigned a score of 0. In-frame indels were assigned an
effect score based on the numbers of substituted, inserted and deleted amino-acids (see Supplementary
Methods).

Gene functional effect scores

To calculate gene effect scores (Fig. 1b, Fig. 2c-d), PWAS aggregates variant effect scores (see previous
section) integrated with the genotyping data. Unlike variant-level scores, gene scores are sample specific
(i.e. depending on each sample’s genotype). PWAS supports two aggregation schemes, resulting in
“dominant” and “recessive” gene scores. Intuitively, dominant scores reflect the probability of at least
one damaging event, whereas recessive scores reflect the probability for at least two.

Let s4, ..., Sk be the functional effect scores assigned to the k variants potentially affecting a protein-
coding gene by the scheme detailed in the previous section. For a given variant i € [k] (in the context of
a given sample), let 0 < p((,i),pf),pg) < 1 (satisfying ¥5_, p](.L)

probabilities of the variant (i.e. pj(.i) is the probability of variant i to occur j times in the given sample).

= 1) indicate the genotyping

Recall that we intuitively interpret s; as the probability that the gene retains its function following the
variant effect.

A question arises how to estimate the probability of the gene to retain its functions if variant i occurs

twice (an event of probability pgi)). A possible approach would be to treat the two occurrences of the
variant as independent, so the probability would be sl-z. Another approach is to treat the two
occurrences as fully dependent (i.e. either the variant is damaging or it isn’t), taking the probability to be
simply s; like in the heterozygous case. To accommodate this uncertainty, we chose to introduce a
parameter u € [0,1] and take the effect to be us; + (1 — u)siz. The parameter u can be thought of as
the probability of the homozygous effect to be dependent (i.e. when u = 0 it is completely
independent, and when u = 1 it is fully dependent). Overall, the probability that the gene retains its

function considering variant i (in the context of that sample) would be x; := péi) -1+ pii) -5+ péi) .

(us; + (1 — w)s?).

Note that in reality the scores s; are not purely probabilistic entities. More likely, they capture both the
probability of gene damage and its extent (so s; and x; can be more realistically interpreted as damage
expectations rather than probabilities). That is another reason why the independent case (41 = 0) might
be more appropriate than the dependent case (4 = 1), as two hits of a variant often cause more
damage than a single hit. Taking the same expression (s;) to estimate the outcome of these two events
would miss this effect.
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We want the dominant effect score of the gene to reflect the probability that it retains its function
(given the sample’s genotyping of the k variants and their effect scores). If we simplistically assume that
the k variants independently affect the gene, then it retains its function with probability x; -+ x;. Here
too, some degree of dependence might better reflect the dominant effect of the gene. Under full
dependence, we would take the score to be min{xy, ..., x; } (i.e. the overall effect on the gene is the
effect of the most damaging variant). To allow a more refined dependence model, let us write the

e 1 1.
multiplication [T, x; as exp (— K log;). The term ¥¥_, log; is the £1 norm of the vector
L L

(logxl, ) logxi). We introduce another parameter 1 < p < o and take the dominant score to be D
1 k

=exp| — || (logi, s logi) ” . Note that when p = oo we get the full independence score
X1 Xk p
min{xy, ..., Xz }.

For deriving the recessive effect score of the gene, we would like to express the probability of at most
one damaging event (so its complementary event would represent the probability of at least two
damaging events). Assuming independence, that probability would be x; -+ x;, + Zi-‘=1 X1 Xi—1YiXit1
-+ X, Wwhere y; expresses the probability of variant i damaging exactly one copy of the gene. Specifically,
we define y; := pf) -(1-s)+ pgi) (1 —pw) - 25;(1 —s;). The second coefficient is explained by
25;(1 — s;) being the probability of variant i introducing exactly one hit, given that each of its two
copies are independent; when they are fully dependent, that is not possible for the two copies to

introduce exactly one hit. When all x; # 0, we can rewrite that expression as (x; - xi) (1 + Z{Ll%).
L

Like with the dominant score, we parameterize (x; -+ xi) into D, := exp <— ” (logxi, ...,logxi) ” >,
1 k
P

and Z;‘ﬂ% into { := ” (% %)” for some parameter values 1 < p, q < . The recessive effect
i 1 k q
score is then taken to be (1 + {;)D,,. However, this term is not well-defined when there is x; = 0. To
derive the recessive score in that case, we can calculate lirr(1) (1 + (q)Dp (see Supplementary Methods
Xi—

for details) and obtain:

( 0 Eliij,xl-=xj=0
Vi Ali,x; =0,p>1
R:= yil_[xj El!i,xl-=0,p=1
J#i
(1+2,)D, Vi, x; # 0

To summarize, the aggregation scheme takes as input the individual variant scores s, ..., S (which are
sample independent) and the genotyping probabilities of the k variants within the given sample

péi), pii), pgi) (i € [k]), to produce the dominant and recessive gene scores of the gene. The dominant
score D relies on two parameters (4 and p), whereas the recessive score R depends on three
parameters (i, p and q). Note that the parameters p and p used by the two scoring schemes need not
take the same values in the two contexts (despite sharing a similar purpose). For clarity, we denote the
parameters of D by up and pp, and the parameters of R by ug, pr and qg. Overall, the effect score

aggregation scheme of PWAS is parameterized by 5 distinct parameters.
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To find optimal parameter values, we fit the aggregation scheme on known gene-phenotype
associations derived from OMIM33, taking the combination of 5 parameters that optimize the recovered
significance of these associations (see Supplementary Methods). Importantly, the gene-phenotype
associations used to find the optimal parameters do not overlap with the associations used to evaluate
PWAS throughout this work (e.g. Fig. 6¢). In particular, they involve other phenotypes that were not
studied in the primary analysis. The obtained parameter values used throughout the analyses presented
in this work are: up, = 1, pp = 1.25, ug = 0.5, pg = ©, g = 3.

Non-modeled genomic properties

In its current form, PWAS does not consider structural and copy number variations, as they do not
naturally fit into the framework of dominant and recessive heritability modes. Non-canonical splicing
effects are also not considered at present, as they are not supported by FIRM. In general, the effects of
splicing events are considered to be hard to model*?. Furthermore, weak splicing events are often
associated with alternative splicing of non-canonical protein isoforms. To allow simple modeling and
interpretation of the results, PWAS considers only canonical protein isoforms (see Supplementary
Methods).

It should also be noted that the recessive model assumes standard autosomal inheritance, and PWAS
does not properly address recessive inheritance in sex and mitochondrial chromosomes. Another
current limitation of the recessive model has to do with the absence of phased genotypes in the UKBB
resource. For a recessive genetic effect to take place, both copies of a gene (on the two copies of the
relevant chromosome) should be affected. Due to the lack of phased genotypes, PWAS is unable to
determine if different variants affect the same or different copies of the gene. Therefore, our modeling
choice was to assume that different variants affect different gene copies (see previous section).

Importantly, these non-modeled genomic properties can only affect the statistical power of PWAS, but
should not lead to false discoveries (see next section).

Statistical analysis

To test whether a gene is associated with a phenotype, PWAS conducts linear or logistic regression
(depending on whether the phenotype is continuous or binary, respectively). A categorical phenotype is
split into multiple binary phenotypes (each isolating one of the categories in a one-vs.-rest manner). The
regression model includes all 173 covariates (see the “UK Biobank dataset” section), and the relevant
gene scores (dominant, recessive, or both). Specifically, when testing for dominant inheritance, the term
Bp - D is included in the regression model, where D is the dominant score of the gene, and [, is the
corresponding regression coefficient. The null hypothesis of the regression under dominant inheritance
is Hy: Bp = 0. Similarly, when testing for recessive inheritance, the term 5 - R is included, and the null
hypothesis is Hy: B = 0. When the test is carried according to the generalized model, both terms are
included in the regression, and the tested null hypothesis is Hy: fp = Bg = 0. Unless stated explicitly
that the dominant or recessive model is used, all the p-values reported in this work refer to the
generalized model.

22


https://doi.org/10.1101/812289
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/812289; this version posted October 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

As PWAS relies on routine statistical analysis to calculate significance, its results are valid (in terms of
avoiding false discoveries) regardless of how accurately the calculated gene scores reflect the true
underlying biology. While better scoring schemes are expected to provide increased statistical power,
protection against type-I errors is guaranteed irrespectively.

To provide a fair comparison to PWAS, the results of GWAS and SKAT reported in this work were
performed using identical statistical analysis over the same data (see Supplementary Methods).

Source code availability

An effort is currently underway to organize and document the source code of PWAS and provide it as an
open-source project in GitHub with command-line interface. We expect this effort to be completed
shortly. Meanwhile, the source code is available upon request.
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