

1 **A virus-encoded protein suppresses methylation of the viral genome through its
2 interaction with AGO4 in the Cajal body**

3 Liping Wang^{1,2}, Yi Ding^{1,2}, Li He¹, Guiping Zhang¹, Jian-Kang Zhu¹, Rosa Lozano-Duran¹

4 ¹Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602,
5 China; Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences.

6 ²University of the Chinese Academy of Sciences, Beijing 100049, China

7

8 **ABSTRACT**

9 DNA methylation is a eukaryotic anti-viral defence mechanism. In plants, establishment of *de*
10 *novo* DNA methylation is regulated by the RNA-directed DNA methylation pathway, which
11 requires AGO4 function. The genome of the plant DNA viruses geminiviruses replicates in the
12 nuclei of infected cells through not yet fully understood mechanisms and is subjected to
13 methylation, a modification that negatively impacts infectivity. In *Tomato yellow leaf curl virus*, the
14 virus-encoded V2 protein suppresses methylation of the viral DNA. Here, we identify AGO4 as a
15 physical interactor of V2. AGO4 mediates methylation of the viral genome, which is countered by
16 V2. Accordingly, virulence of a V2 mutant virus is partially restored by AGO4 silencing, hinting at
17 the inhibition of AGO4 as a crucial virulence function of V2. Virus-produced V2 does not affect
18 accumulation of viral small interfering RNA nor prevents their loading into AGO4, but impairs
19 binding of this protein to the viral DNA. Importantly, the association between V2 and AGO4 occurs
20 in the Cajal body, uncovering this subnuclear compartment as a crucial site in the viral cycle.

21

22 **Running title:** V2 inhibits AGO4 in the Cajal body

23

24 **Keywords:** Geminivirus, AGO4, Cajal body, DNA methylation, virus.

25

26

27

28 INTRODUCTION

29 DNA methylation in cytosine residues is a conserved epigenetic mark essential for protecting the
30 eukaryotic genome against invading nucleic acids, namely viruses and transposable elements. In
31 plants, establishment of *de novo* DNA methylation is believed to be regulated by the RNA-directed
32 DNA methylation (RdDM) pathway. The canonical RdDM pathway requires the activity of two
33 plant-specific RNA polymerase II-related enzymes, Pol IV and Pol V, and leads to cytosine
34 methylation in a sequence-specific manner. In brief, the current understanding of RdDM is as
35 follows: Pol IV generates RNA transcripts subsequently converted to double-stranded RNA
36 (dsRNA) by RDR2 (Haag et al., 2012, Law et al., 2011), and then diced into 24-nt siRNAs by
37 DCL3 (Xie et al., 2004); the resulting 24-nt siRNAs are loaded into AGO4 (Zilberman et al., 2003),
38 which is guided to scaffold RNA molecules generated by Pol V via sequence complementarity
39 and recruits the *de novo* methyl transferase DRM2 (Böhmdorfer et al., 2014, Chan et al., 2005,
40 Gao et al., 2010, Zhong et al., 2014), which in turn catalyses methylation of adjacent DNA
41 sequences. RdDM generally creates a chromatin environment refractive to gene expression.

42 Geminiviruses are a family of plant viruses with circular single-stranded (ss) DNA genomes
43 infecting multiple crops and causing dramatic yield losses worldwide. The geminiviral genome
44 replicates in the nucleus of the infected cell by using the host DNA replication machinery, made
45 available following the viral re-programming of the cell cycle (reviewed in Hanley-Bowdoin et al.,
46 2013). During viral multiplication, the ssDNA genome generates a double-stranded (ds) DNA
47 intermediate, which then undergoes rolling-circle replication (reviewed in Hanley-Bowdoin et al.,
48 2013). However, the cellular and molecular details underlying these essential initial steps of the
49 viral infection cycle, including the subnuclear localization of viral ss and ds DNA accumulation
50 and of the processes leading to their production, are to date mostly unknown.

51 Notably, the geminiviral genome forms minichromosomes and is subjected to epigenetic
52 modifications, including cytosine DNA methylation and histone modifications (Ceniceros-Ojeda et
53 al., 2016, Deuschle et al., 2016, Jackel et al., 2016, Kushwaha et al., 2017, Raja et al., 2008,
54 Wang et al., 2018). The findings that methylation of viral DNA negatively impacts viral replication
55 (Brough et al., 1992, Ermak et al., 1993), that different geminivirus-encoded proteins have evolved
56 to suppress DNA methylation (Buchmann et al., 2009, Ismayil et al., 2018, Raja et al., 2008,
57 Rodriguez-Negrete et al., 2013, Tu et al., 2017, Wang et al., 2018, Yang et al., 2013, Yang et al.,
58 2011, Zhang et al., 2011), and that methylation of the viral genome correlates with host resistance
59 or recovery (Butterbach et al., 2014, Ceniceros-Ojeda et al., 2016, Raja et al., 2008, Torchetti et
60 al., 2016, Yadav & Chattopadhyay, 2011) strongly support the idea that the plant-mediated

61 methylation of the viral DNA acts as an anti-viral defence mechanism, underscoring DNA
62 methylation as an active plant-virus battlefield.

63 During the infection by the geminivirus *Tomato yellow leaf curl virus* (TYLCV), the essential virus-
64 encoded protein V2 has been shown to suppress DNA methylation of the viral genome (Wang et
65 al., 2014). V2 interacts with the histone deacetylase HDA6 in *Nicotiana benthamiana*, competing
66 with the recruitment of the maintenance CG methyltransferase MET1 (Woo et al., 2008) and
67 ultimately reducing viral DNA methylation (Wang et al., 2018). However, silencing of *HDA6* results
68 in limited complementation of a V2 null mutation in the virus and in only a partial reduction in viral
69 DNA methylation (Wang et al., 2018), suggesting that V2 might counter methylation through
70 additional interactions with host factors.

71 In this work, we show that V2 from TYLCV interacts with the central RdDM component AGO4;
72 that AGO4 plays a role in anti-TYLCV defence; and that V2 and AGO4 have opposite effects on
73 the methylation of the viral genome. Our results indicate that the viral DNA gets methylated in the
74 absence of V2, and that increased methylation and reduced accumulation of a V2-defective virus
75 can be countered by silencing of AGO4. The presence of V2 does not affect production of viral
76 small interfering RNAs (vsiRNA) or prevent their loading into AGO4, but impairs binding of this
77 protein to the viral genome. Importantly, the physical interaction between V2 and AGO4 occurs
78 mostly in the Cajal body, unveiling this subnuclear compartment as a crucial site in the viral cycle
79 and in anti-viral DNA methylation. In summary, this work not only describes AGO4 as a target of
80 the viral suppressor of DNA methylation V2, but also hints at a functional relevance of subnuclear
81 compartmentalization of viral processes and components, and suggests a prominent role of the
82 Cajal body in the viral infection.

83

84 **RESULTS**

85 **V2 from TYLCV interacts with AGO4 from *Nicotiana benthamiana* and tomato in the Cajal 86 body**

87 With the aim of gaining insight into the functions of V2 from TYLCV in the plant cell, we used
88 transient expression of GFP-tagged V2 in infected leaf patches of *N. benthamiana* followed by
89 affinity purification and mass spectrometry (AP-MS) to identify plant interactors of this viral protein
90 in the context of the infection (Wang et al., 2017a). Interestingly, we identified the two AGO4
91 paralogs in *N. benthamiana* (NbAGO4-1 and NbAGO4-2) as associated to V2-GFP (Figure 1A;

92 Wang et al., 2017a); these interactions were confirmed by co-immunoprecipitation and split-
93 luciferase assays (Figure 1B,C).

94 There are four AGO4 orthologues in tomato (*SIAGO4a-d*) (Bai et al., 2012), the natural and
95 economically relevant host of TYLCV (Figure 2A,B). All four *SIAGO4*-encoding genes are
96 expressed in basal conditions in tomato leaves, although *SIAGO4c* and *d* show low expression
97 levels; *SIAGO4b*, *c*, and *d* are slightly up-regulated by TYLCV infection (Supplementary figure 1).
98 *SIAGO4a*, *SIAGO4b*, and *SIAGO4d* were cloned and the encoded proteins confirmed as
99 interactors of V2 in co-IP and split-luciferase assays (Figure 2C,D).

100 In *Arabidopsis*, AGO4 has been shown to co-localize with its interactor NRPE1 (NRPD1b), a
101 subunit of Pol V, in the Cajal body, which was then suggested to be a center for the assembly of
102 AGO4/NRPE1/siRNA complexes, enabling RdDM at target loci (Li et al., 2008, Li et al., 2006).
103 Interestingly, both V2-GFP and the different RFP-AGO4 orthologues from *N. benthamiana* and
104 tomato co-localize in a distinct subnuclear compartment, identified as the Cajal body by the
105 accumulation of the nucleolus and Cajal body marker fibrillarin (Barneche et al., 2000), upon
106 transient expression in *N. benthamiana* (Figure 3A). Of note, most of nuclear V2-GFP
107 accumulates in the Cajal body, although some fluorescence can be detected in the nucleoplasm.
108 All AGO4 orthologues are distributed throughout the nucleoplasm and absent from the nucleolus;
109 clear Cajal body localization can be detected for NbAGO4-1, NbAGO4-2, *SIAGO4a*, and
110 *SIAGO4b*, while Cajal body localization of *SIAGO4d* is less conspicuous (Figure 3A). Analysis of
111 the V2/AGO4 interaction by bimolecular fluorescence complementation (BiFC), which is based
112 on visualization and hence provides spatial information, unveiled that, strikingly, the association
113 between these two proteins occurs mostly or exclusively in the Cajal body, where V2 homotypic
114 interactions also occur (Figure 3B).

115

116 **V2 counters the AGO4-dependent methylation of the viral genome to promote virulence**

117 In order to evaluate the contribution of V2 to the viral infection, we generated an infectious TYLCV
118 clone carrying a G-to-A mutation in the fifth nucleotide of the V2 open reading frame (ORF), which
119 converts the second codon (encoding tryptophan) to a stop codon (Supplementary figure 2A),
120 making it unable to produce the V2 protein (TYLCV-V2null). In agreement with previous results
121 (Wartig et al., 1997), V2 is required for full infectivity in both tomato and *N. benthamiana*, since
122 the V2 null mutant accumulates to very low levels and produces no noticeable symptoms
123 (Supplementary figure 2).

124 Next, we sought out to test whether knock-down of AGO4 could partially complement the lack of
125 V2 during the TYLCV infection. For this purpose, we employed virus-induced gene silencing
126 (VIGS) to silence both *NbAGO4-1* and *NbAGO4-2*. VIGS efficiently knocked-down both *NbAGO4*
127 orthologues, but did not affect accumulation of the transcript of the close homologue *NbAGO6*
128 (Figure 4A); AGO4-silenced plants did not display any obvious developmental abnormalities
129 (Figure 4B). Expression of *NbAGO4-1* or *NbAGO4-2* was not affected by TYLCV infection, neither
130 in silenced nor in non-silenced plants (Figure 4C,D). Mutation in V2 does not affect viral replication
131 (Wartig et al., 1997), and therefore viral accumulation in local infections in *N. benthamiana* (leaf
132 patch agroinfiltration assays; see Supplementary figure 3) was not different between the WT virus
133 and the V2 null mutant virus (Figure 4E); in both cases, AGO4 silencing led to a slight increase in
134 viral accumulation, suggesting an anti-viral role for AGO4 (Figure 4E). Interestingly, in systemic
135 infections (see Supplementary figure 3), AGO4 silencing mildly increased viral accumulation of
136 the WT TYLCV (1.33-fold), but dramatically improved performance of the V2 null mutant virus
137 (3.23-fold), suggesting that one of the main roles of V2 during the viral infection is the suppression
138 of AGO4 function (Figure 4F).

139 In light of the role of AGO4 in RdDM and to directly assess the impact of V2 and AGO4 on the
140 methyl-state of the viral DNA, we used bisulfite sequencing (BS-seq) to measure DNA methylation
141 of the intergenic region of the viral genome, which presents the highest methylation levels during
142 the infection (Piedra-Aguilera et al., 2019). As shown in Figure 5A, cytosine methylation in this
143 region in all contexts (CG, CHG, and CHH) was almost undetectable in the WT viral genome in
144 local infections at 3 or 9 days post-inoculation (dpi), while it reached ~60% and ~80%, respectively,
145 in the V2 null mutant (Figure 5A; Supplementary figure 4). These results indicate that V2 can
146 prevent or revert methylation of the viral genome during the infection, which occurs rapidly in the
147 absence of this protein.

148 We then compared the percentage of cytosine methylation in the intergenic region in local
149 infections with the V2 null mutant TYLCV in basal conditions or upon AGO4 silencing. Strikingly,
150 AGO4 silencing resulted in a ~23% decrease in the percentage of methylated cytosines in all
151 contexts (Figure 5B; Supplementary figure 5), indicating that knock-down of AGO4 can partially
152 complement the lack of V2 at the level of the viral methylation state. This complementation
153 suggests that a) methylation of the viral DNA at least partially depends on AGO4 function; and b)
154 V2 can at least partially counter AGO4-dependent methylation of the viral DNA.

155 As opposed to short-timed local infections, in systemic infections in *N. benthamiana*, which require
156 longer timespans and involve viral cell-to-cell and long-distance movement, methylation of the

157 WT viral genome could be detected at ~15% decrease in all contexts (Figure 5C; Supplementary
158 figure 6). Interestingly, the methylation level tends to decrease upon AGO4 silencing; this
159 reduction (~22%) is more prominent in the V2 null mutant genome, again supporting the idea that
160 AGO4-dependent methylation of the viral genome occurs during the infection and is partially
161 countered by V2. Notably, the detected decrease in methylation correlates with the enhanced
162 viral accumulation in the AGO4-silenced plants (Figure 4F).

163

164 **V2 does not hamper production or loading of vsiRNA but interferes with AGO4 binding to**
165 **the viral genome**

166 The canonical function of AGO4 in the RdDM pathway requires loading of siRNA and association
167 to Pol V, and results in the recruitment of DRM2 to the target loci and the subsequent methylation
168 of the adjacent DNA (Matzke et al., 2015, Matzke & Mosher, 2014). Through physical interaction,
169 V2 could affect AGO4 function on the viral genome in different ways, for example by impairing
170 loading of viral siRNA (vsiRNA) onto this protein or by displacing endogenous interactors, such
171 as Pol V or DRM2; our previous results demonstrate that V2 does not affect AGO4 accumulation
172 or localization (Figures 1 and 2). In order to shed light on the molecular mechanism underlying
173 the V2-mediated interference of AGO4-dependent methylation of the viral genome, we tested
174 binding of AGO4 to the viral DNA in the presence or absence of V2 in local infections with TYLCV
175 WT and V2 null mutant, respectively, by Chromatin immunoprecipitation (ChIP). As shown in
176 Figure 6A, 3xFLAG-NbAGO4 could bind both the intergenic (IR) and the V2-encoding region of
177 the viral genome in the absence of V2 (TYLCV-V2null), but the signal decreased to background
178 levels when V2 was present (TYLCV). Therefore, AGO4 has the capacity to bind the viral DNA
179 molecule, but this binding is impaired by the virus-encoded V2 protein. AGO4 binding in the
180 TYLCV V2 null mutant hence correlates with the detected increase in viral DNA methylation
181 (Figure 5A).

182 Several viral silencing suppressors encoded by different viruses have been shown to inhibit
183 formation of AGO/sRNA complexes (e.g. Burgýán et al., 2011, Rawlings et al., 2011, Schott et al.,
184 2012). To test whether this strategy is also employed by V2, we immunoprecipitated 3xFLAG-
185 NbAGO4 co-expressed with WT or V2 null mutant TYLCV in local infection assays in *N.*
186 *benthamiana*, and visualized AGO4-bound vsiRNA by sRNA northern blotting. While infected
187 samples contained both 21- and 24-nt vsiRNA, and the occurrence and accumulation of these
188 sRNA species was not affected by the presence of virus-encoded V2, mostly 24-nt vsiRNA co-

189 immunoprecipitated with AGO4 (Figure 6B). Interestingly, a higher amount of vsiRNA associated
190 to AGO4 in the samples infected with the WT virus (Figure 6B). Taken together, these results
191 demonstrate that V2 does not affect the production or accumulation of vsiRNA, nor does it hamper
192 loading of these vsiRNA molecules into AGO4, but interferes with binding of this protein to the
193 viral genome in order to suppress DNA methylation and promote virulence.

194

195 **DISCUSSION**

196 The plant DNA viruses geminiviruses and pararetroviruses are both targets and suppressors of
197 DNA methylation; this possibly extends to the third family of plant DNA viruses, nanoviruses,
198 although experimental evidence is lacking (reviewed in Poogin, 2013; Pumplin and Voinnet, 2013).
199 The independent evolution of viral suppressors of DNA methylation argues for an anti-viral effect
200 of this epigenetic modification. Indeed, seminal experiments by Brough et al. (1992) and Ermak
201 et al. (1993) demonstrated that methylation of the geminivirus genome interferes with its
202 replication in transformed protoplasts, likely due to a dual effect on viral gene expression and
203 function of the replication complex. More specifically, RdDM seems to play a prominent role in
204 plant defence against geminiviruses, since RdDM mutants or silenced plants display increased
205 susceptibility to geminivirus infection (Raja et al., 2008, Zhong et al., 2017), and DNA methylation
206 and repressive histone marks typical of RdDM are deposited on the viral genome (Castillo-
207 Gonzalez et al., 2015, Ceniceros-Ojeda et al., 2016, Coursey et al., 2018, Dogar et al., 2006,
208 Jackel et al., 2016, Kushwaha et al., 2017, Wang et al., 2018).

209 AGO4 is a central component of the canonical RdDM pathway, and as such an obvious target for
210 viral inhibition. However, AGO4 also affects susceptibility to RNA viruses and viroids, and is
211 targeted by proteins encoded by RNA viruses, which raises the idea that either RdDM on the host
212 genome plays a role in modulating plant-virus interactions broadly, or AGO4 has an anti-viral role
213 beyond RdDM (Brosseau et al., 2016, Ma et al., 2015, Minoia et al., 2014). Supporting the latter,
214 AGO4-dependent defences against a potexvirus are independent of other RdDM components
215 and do not require nuclear localization of AGO4 (Brosseau et al., 2016).

216 The geminivirus TYLCV encodes the essential, multifunctional V2 protein, which acts as a
217 suppressor of viral DNA methylation (Wang et al., 2014). Here, we show that V2 binds to the plant
218 AGO4 in the Cajal body, and suppresses the AGO4-dependent methylation of the viral genome
219 (Figures 1,2,3,5) and the AGO4-mediated restriction of viral accumulation (Figure 4E,F). Our
220 results indicate that AGO4-dependent methylation of viral DNA occurs quickly in the absence of

221 V2 (Figure 5A,B). Nevertheless, AGO4 silencing still has a detectable, if minor, positive impact
222 on the accumulation of the WT virus, which correlates with decreased viral DNA methylation
223 (Figure 4E,F; Figure 5C), suggesting that the V2-mediated suppression of AGO4 function is not
224 complete. On the other hand, WT levels of viral DNA methylation are not restored in the V2 mutant
225 upon AGO4 silencing, which raises the idea that AGO4 might not be the only methylation-related
226 target of V2. In agreement with this, V2 has been shown to bind HDA6 and interfere with its
227 promotion of MET1-dependent methylation of the viral DNA (Wang et al., 2018).

228 Recently, V2 encoded by the geminivirus *Cotton leaf curl Multan virus* (CLCuMV) was found to
229 interact with AGO4 in *N. benthamiana*, leading to enhanced viral accumulation and a reduction in
230 viral DNA methylation (Wang et al., 2019). It should be noted that the V2 proteins encoded by
231 CLCuMV and TYLCV are only 65% identical (Supplementary figure 7A), and they might have
232 evolved independently to target AGO4. Supporting this notion, mutation of a conserved residue,
233 L76, abolishes the interaction between CLCuMV V2 and NbAGO4 (Wang et al., 2019), but does
234 not affect the interaction between TYLCV V2 and NbAGO4 or SIAGO4, which still occurs in the
235 Cajal body (Supplementary figure 7). This mutation, however, negatively affects V2 self-
236 interaction in the Cajal body (Supplementary figure 7).

237 The finding that the physical association between TYLCV V2 and AGO4 takes places in a specific
238 nuclear body, the Cajal body, and has an impact on the methyl-state of the viral population in the
239 cell, suggests that all or most viral DNA molecules must localize in this subnuclear compartment
240 at some point of the viral cycle. This observation hints at a functional role of the Cajal body during
241 the infection; whether such a role is linked to gene expression, DNA replication, or some other
242 process remains to be investigated. Interestingly, the Cajal body has been connected to systemic
243 infection of plant RNA viruses, and proteins encoded by RNA viruses can bind coilin, the signature
244 protein of this compartment, which impacts plant-virus interactions (Kim et al., 2007a, Kim et al.,
245 2007b, Semashko et al., 2012, Shaw et al., 2014).

246 Based on our results, we propose a scenario in which V2 is required to interfere with AGO4
247 binding to the viral genome, impairing DNA methylation and promoting viral accumulation;
248 whether this effect is linked to the canonical RdDM pathway will require further investigation. In
249 the context of the arms race between host and virus, TYLCV has evolved V2 to target AGO4,
250 impairing its association to the viral DNA and hence suppressing methylation of the viral genome
251 and promoting virulence (Supplementary figure 8). Although the exact molecular mechanism
252 underlying this function of V2 is at present unknown, we hypothesize that the virus-encoded
253 protein might mask a surface required for AGO4 recruitment to the viral DNA through the

254 association with an endogenous interactor (e.g. NRPE1; Li et al., 2006), or interfere with the
255 complementarity-based pairing to the nascent Pol V transcript. Further work will be necessary to
256 fully elucidate the connections between the Cajal body, DNA methylation, and the geminiviral
257 infection.

258

259 **MATERIALS AND METHODS**

260 **Plasmids and cloning**

261 To generate binary vectors to express AGO4 from *N. benthamiana* and tomato (cv. Money maker),
262 the full-length coding sequence of AGO4 genes was amplified using cDNA as template. *NbAGO4-1*,
263 *NbAGO4-2*, *SiAGO4a*, *SiAGO4b*, *SiAGO4d*, and *SiWRKY75* were cloned into pENTR-D/TOPO
264 (Invitrogen) following the manufacturer's instructions. The binary plasmids to express RFP and
265 3xHA N-terminal fusions were generated by Gateway cloning the AGO4 coding sequence into
266 pGWB555 and pGWB515, respectively (Nakagawa et al., 2007). V2-GFP and the TYLCV
267 infectious clone have been previously described (Rosas-Diaz et al., 2018, Wang et al., 2017a).
268 The V2 null TYLCV mutant was generated with the QuickChange Lightning Site-Directed
269 Mutagenesis Kit (Agilent Technologies, Cat #210518) using the WT infectious clone as template.
270 For the plasmids used for biomolecular fluorescence complementation (BiFC), *NbAGO4*, *SiAGO4*,
271 *V2/V2_{L76S}* were cloned into entry vector pDONR221-P1P4/pDONR221-P3P2 (Invitrogen) and
272 then Gateway-cloned into the pBiFC-2in1-CN vector (Grefen & Blatt, 2012) as shown in
273 Supplementary table 2. The binary plasmids for split-luciferase complementation imaging assay
274 were generated by Gateway cloning the *NbAGO4*, *SiAGO4*, *SiWRKY75* or V2 from pENTR-
275 D/TOPO entry vector into pGWB-N-luc and pGWB-C-luc (Yu et al., 2019). To generate
276 pCAMBIA1300-3xFLAG-NbAGO4-1, pCAMBIA1300 was digested with *Xba*I and *Xma*I, and then
277 the 3xFLAG and NbAGO4-1 coding sequences were amplified by PCR and Infusion-cloned into
278 pCAMBIA1300 with ClonExpress® MultiS One Step Cloning Kit (Vazyme). pDONR207-*Fibrillarin*
279 (Kim et al., 2007b) was used to Gateway-clone *Fibrillarin* to pGWB545 (Nakagawa et al., 2007).
280 All primers and plasmids used for cloning are summarized in Supplementary tables 1 and 2,
281 respectively.

282 **Plant materials and growth conditions**

283 *N. benthamiana* and tomato plants (cv. Money maker) were grown in a controlled growth chamber
284 under long day conditions (LD, 16 h light/8 h dark) at 25°C.

285 **Agrobacterium-mediated transient gene expression in *N. benthamiana***

286 All binary plasmids were transformed into *Agrobacterium tumefaciens* strain GV3101, with the
287 exception of pBINTRA6, which was transformed into *A. tumefaciens* strain C58c1. *A. tumefaciens*
288 clones carrying the constructs of interest were liquid-cultured in LB with appropriate antibiotics at
289 28°C overnight. Bacterial cultures were then centrifuged at 4,000 g for 10 min and resuspended
290 in the infiltration buffer (10 mM MgCl₂, 10 mM MES pH 5.6, 150 µM acetosyringone) and adjusted
291 to an OD₆₀₀ = 0.5. Next, the bacterial suspensions were incubated in the buffer at room
292 temperature and in the dark for 2-4 hours and then infiltrated 3-4-week-old *N. benthamiana* plants.
293 For co-expression experiments, the different agrobacterium suspensions were mixed at 1:1 ratio
294 before infiltration.

295 **Protein extraction and immunoprecipitation assays**

296 Protein extraction and co-immunoprecipitation assays were performed as described in Wang et
297 al., 2017a. Protein extracts were immunoprecipitated with GFP-Trap beads (Chromotek,
298 Germany), and analyzed by western blot with anti-GFP (Abiocode, M0802-3a) and anti-HA
299 (12CA5) (Roche, Cat. No. 11 583 816 001) antibodies.

300 For 3xFLAG-NbAGO4 IP followed by vsiRNA extraction, 6 grams of *N. benthamiana* leaves
301 transiently expressing 3xFLAG-NbAGO4 were collected, ground in liquid nitrogen and
302 homogenized in 6x (w:v) extraction buffer (20mM Tris HCl pH7.5, 25mM MgCl₂, 300mM NaCl,
303 5mM DTT, 0.5% NP-40, 1x complete™ Protease Inhibitor Cocktail (Roche)) at 4°C with rotation
304 for 30 minutes. The extract was subjected to centrifugation (14,000 rpm, 25min) at 4°C. 5 µg anti-
305 FLAG antibody (Sigma, F3165) per gram of tissue were added to the supernatant in a new tube
306 and incubated at 4°C overnight. The next day, 20 µl of slurry Protein G beads (Invitrogen) per
307 gram of tissue were added and subjected to a further incubation for 2 hours with rotation at 4°C.
308 After incubation, Protein G beads were washed three times in 3x (v:v) homogenate wash buffer
309 (20mM Tris pH7.5, 25mM MgCl₂, 300mM NaCl, 0.5% NP-40). The quality of purification was
310 examined by SDS-PAGE followed by immunoblotting.

311 **Split-luciferase complementation imaging assay**

312 Split-luciferase complementation imaging assays were performed as described (Chen et al.,
313 2008). Equal volumes of *A. tumefaciens* harboring V2-N-luc or C-luc-NbAGO4-1/2, C-luc-
314 SIAGO4a/b, or C-luc-SIWRKY75 at OD₆₀₀=0.5 were mixed at 1:1 ratio. Three different
315 combinations of *A. tumefaciens* were infiltrated on the same *N. benthamiana* leaf. 1mM luciferin

316 (in H₂O) was infiltrated into the inoculated leaves 2 days after agrobacterium infiltration. A low-
317 light cooled CCD imaging apparatus (NightShade LB985 with IndiGO software) was used to
318 capture and analyse the luciferase signal at 2 dpi.

319 **Confocal imaging**

320 Confocal imaging for co-localization of V2-GFP, RFP-AGO4, and CFP-Fibrillarin upon transient
321 expression in *N. benthamiana* epidermal cells was performed on a Leica TCS SP8 point scanning
322 confocal microscope using the pre-set sequential scan settings for GFP (Ex:488 nm, Em:500–
323 550 nm), RFP (Ex:561 nm, Em:600–650 nm), and CFP (Ex:442 nm, Em:452–482 nm).

324 **Bimolecular Fluorescence Complementation**

325 For bimolecular fluorescence complementation (BiFC) analyses, *A. tumefaciens* clones carrying
326 pBiFC-2in1-CN binary constructs (Grefen and Blat, 2012) and CFP-Fibrillarin were mixed at 1:1
327 ratio and infiltrated on 3-4-week-old *N. benthamiana* plants. Imaging was performed 2 days later
328 under a Leica TCS SP8 confocal microscope by using the pre-set sequential scan settings for
329 YFP (Ex: 514 nm, Em: 525–575 nm) and for CFP (Ex:442 nm, Em:452–500 nm).

330 **Virus-induced gene silencing**

331 The vectors used for virus-induced gene silencing (VIGS) were pBINTRA6 (Ratcliff et al., 2001)
332 and pTRV2-GW (Taylor et al., 2012). A 362-bp fragment of *NbAGO4-1* cDNA (from nt 1920 to
333 2281) was amplified using primers shown in Supplementary table 1, cloned into pENTR/D-TOPO
334 (Invitrogen), and subcloned into pTRV2-GW through an LR reaction (Invitrogen) to yield TRV-
335 *NbAGO4*. VIGS assays were performed as described in Lozano-Duran et al., 2011. For TYLCV
336 local infection assays, *A. tumefaciens* carrying pBINTRA6 and TRV-*NbAGO4* or TRV-EV were
337 mixed and inoculated into 18-day-old *N. benthamiana* plants. Two weeks later, fully expanded
338 young leaves were infiltrated with *A. tumefaciens* carrying the TYLCV infectious clone and
339 samples were collected at 3, 4 or 9 days post-inoculation (dpi) to detect viral accumulation. For
340 TYLCV systemic infection assays, *A. tumefaciens* carrying pBINTRA6 and TRV-*NbAGO4* or TRV-
341 EV (empty vector) and the TYLCV infectious clone were mixed and inoculated on 18-day-old *N.*
342 *benthamiana* plants. The three most apical leaves of each plant were collected at 3 weeks post-
343 inoculation (wpi) to detect viral accumulation.

344 **Quantitative PCR (qPCR) and Reverse Transcription PCR (RT-qPCR)**

345 To determine viral accumulation, total DNA was extracted from *N. benthamiana* leaves (from
346 infiltrated leaves in local infection assays and from apical leaves in systemic infection assays)

347 using the CTAB method (Minas et al., 2011). Quantitative PCR (qPCR) was performed with
348 primers to amplify Rep (Wang et al., 2017b). As internal reference for DNA detection, the 25S
349 ribosomal DNA interspacer (ITS) was used (Mason et al., 2008). To detect *NbAGO4-1*, *NbAGO4-2*,
350 and *NbAGO6* transcripts, total RNA was extracted from *N. benthamiana* leaves by using Plant
351 RNA kit (OMEGA Bio-tek # R6827). RNA was reverse-transcribed into cDNA by using the
352 iScriptTM cDNA Synthesis Kit (Bio-Rad #1708890) according to the manufacturer's instructions.
353 *NbTubulin* was used as reference gene (Liu et al., 2012). Relative expression was calculated by
354 the comparative Ct method (2- $\Delta\Delta Ct$). qPCR and RT-qPCR were performed in a BioRad CFX96
355 real-time system as described previously (Wang et al., 2017b). Total RNA was extracted from the
356 leaves of tomato plants mock-inoculated or infected with TYLCV at 3 weeks post-inoculation (wpi).
357 *SlActin* was used as reference gene (Exposito-Rodriguez et al., 2008). Similarly, RT-qPCR was
358 performed on RNA extracted from tomato to detect the expression of *SlAGO4a/d/c/d*. All primers
359 used for qPCR and qRT-PCR are listed in Supplementary Table 3.

360 **DNA bisulfite sequencing analysis**

361 DNA from virus-infected plant tissues was extracted by Dneasy Plant Mini Kit (QIAGEN, Cat. No.
362 69104), and 500 ng of purified DNA was subjected to bisulfite treatment using EpiTect Plus DNA
363 Bisulfite Kit (QIAGEN, Cat. No. 59124) according to the manufacturer's handbook. The selected
364 fragment (viral IR) of the bisulfite-treated DNA was amplified by PCR (Fw:
365 TTTGATGTATTTTTATTTGTTGGGGTTT, Rv: CCCTTACAACARATATAARATCCCT);
366 amplified fragments were cloned into the pMD18-T vector by TA ligation and sequenced (>15
367 clones per experiment). Cytosine methylation analysis was performed with Kismeth
368 (<http://katahdin.mssm.edu/kismeth/revpage.pl>) (Gruntman et al., 2008).

369 **Chromatin immunoprecipitation (ChIP) assay**

370 The agrobacterium clone carrying the binary vector to express 3xFLAG-NbAGO4-1 was co-
371 infiltrated with those carrying the TYLCV or TYLCV-V2null infectious clones in *N. benthamiana*
372 leaves, and tissues were collected at 2 dpi. Chromatin immunoprecipitation (ChIP) assays were
373 performed as described (He et al., 2018). In brief, the cross-linking of 2 grams of leaves was
374 performed with 1% formaldehyde in 1xPBS buffer and stopped with 1/15 volume of 2 M glycine
375 by vacuum infiltration. Then the tissue was ground to powder and resuspended in HB buffer (2.5%
376 Ficoll 400, 5% Dextran T40, 0.4 M Sucrose, 25 mM Tris pH 7.4, 10 mM MgCl₂, 0.035% β -
377 mercaptoethanol, 1% Protease Inhibitor Cocktail (Sigma)), homogenized and filtered through
378 Miraclot (Milli-pore). Triton x-100 was added to the supernatant until final concentration was

379 0.5%. After spinning at 2,000×g for 20 min at 4°C, the pellet was re-suspended in HB buffer
380 containing 0.1% Triton x-100 and spun at 2,000×g for 10 min at 4°C. Isolated nuclei were re-
381 suspended in 500 µl of Nuclei Lysis buffer and sonicated by BioruptorTM UCD-200 sonicator
382 (diagenode) for 30 min. Following centrifugation at 21,130×g for 5 min at 4°C, the supernatant
383 was separated and used for input and immunoprecipitation. After adding 9 volume of ChIP dilution
384 buffer to the supernatant, this was pre-cleared with 10 µl of Dynabeads Protein G (Invirogen) for
385 1 h at 4°C. After removing the beads from the mixture, the supernatant was incubated with anti-
386 FLAG antibody (Sigma, F3165), or anti-IgG antibody (Sigma, I5006) overnight at 4°C. The
387 following day, after adding 20 µl of Dynabeads Protein G, the mixture was incubated for 2 h at
388 4°C. Beads were sequentially washed with 1 ml of the following buffers: Low Salt Wash buffer
389 (150 mM NaCl, 0.1% SDS, 1% Triton x-100, 2 mM EDTA, 20 mM Tris pH 8.0), High Salt Wash
390 buffer (500 mM NaCl, 0.1% SDS, 1% Triton x-100, 2 mM EDTA, 20 mM Tris pH 8.0), LiCl wash
391 buffer (250 mM LiCl, 1% Igepal, 1% Sodium Deoxycholate, 1 mM EDTA, 10 mM Tris pH 8.0), TE
392 buffer (10 mM Tris pH 8.0, 1 mM EDTA). Immunocomplexes were eluted with 250 µl of Elution
393 buffer (1% SDS, 0.1 M NaHCO₃) at 65°C for 15 min. After reverse crosslinking, 10 µl of 0.5 M
394 EDTA, 20 µl of 1 M Tris pH 6.5 and 1 µl of proteinase K (Invitrogen) were added to each sample,
395 which was incubated at 45 °C for 2 h. DNA was then purified using QIAquick PCR Purification Kit
396 (QIAGEN, Cat. No. 28106). The products were eluted into 200 µl of ddH₂O, and analysed by
397 qPCR. The primers used in this experiment are listed in Supplementary Table 3; the primers for
398 *Actin* are taken from Maimbo et al., 2010.

399 **Small RNA (sRNA) extraction and northern blot analysis**

400 Small RNA (sRNA) extraction and northern blot was performed as described (Yang et al., 2015).
401 Briefly, sRNAs were purified from total extracts or AGO4 immunoprecipitates and subjected to
402 northern blot analysis. For each sample, sRNAs were separated on a 17% polyacrylamide gel,
403 which was electrotransferred to a Hybond N+ membrane (GE Lifesciences). Membranes were
404 cross-linked, incubated for 2 hours at 65°C, and hybridized overnight at 38°C with ³²P-labeled
405 probes for the intergenic region (IR) of the viral genome amplified by PCR (Fw:
406 TCCTCTTAGAGAGAGAACATTGGGA, Rv: ACAACGAAATCCGTGACAG) or
407 oligonucleotides in PerfectHyb buffer (Sigma). Washed membranes were exposed to X-ray films
408 at -80 °C for 3 days.

409

410

411 **ACKNOWLEDGEMENTS**

412 The authors thank Xinyu Jian, Aurora Luque, and Yujing (Ada) Liu for technical assistance, Gang
413 Yu and Alberto Macho for sharing materials, and all members in Rosa Lozano-Duran's and
414 Alberto Macho's groups for stimulating discussions and helpful suggestions. The authors are
415 grateful to Alberto Macho, Huang Tan, and Tamara Jimenez-Gongora for critical reading of the
416 manuscript. This research was supported by the Strategic Priority Research Program of the
417 Chinese Academy of Sciences (Grant No. XDB27040206), and by the National Natural Science
418 Foundation of China (NSFC) (grant numbers 31671994 and 31870250). Research in RL-D's lab
419 is funded by the Shanghai Center for Plant Stress Biology of the Chinese Academy of Sciences
420 and the 100 Talent Program of the Chinese Academy of Sciences.

421

422 **AUTHOR CONTRIBUTIONS**

423 RL-D and LW conceived the project; LW, DY, LH, and GZ performed experiments and analyzed
424 results; all authors intellectually contributed to the project; RL-D wrote the manuscript, with input
425 from all authors.

426

427 **CONFLICT OF INTEREST**

428 The authors declare no conflict of interest.

429

430

431

432

433 **REFERENCES**

434 Böhmdorfer G, Rowley MJ, Kuciński J, Zhu Y, Amies I, Wierzbicki AT (2014) RNA-directed DNA
435 methylation requires stepwise binding of silencing factors to long non-coding RNA. *The Plant
436 Journal* 79: 181-191

437

438 Bai M, Yang GS, Chen WT, Mao ZC, Kang HX, Chen GH, Yang YH, Xie BY (2012) Genome-wide
439 identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and
440 their expression analyses in response to viral infection and abiotic stresses in *Solanum
441 lycopersicum*. *Gene* 501: 52-62

442

443 Barneche F, Steinmetz F, Echeverria M (2000) Fibrillarin genes encode both a conserved
444 nucleolar protein and a novel small nucleolar RNA involved in ribosomal RNA methylation in
445 *Arabidopsis thaliana*. *The Journal of biological chemistry* 275: 27212-20

446

447 Brosseau C, El Oirdi M, Adurogbangba A, Ma X, Moffett P (2016) Antiviral Defense Involves
448 AGO4 in an *Arabidopsis*-Potexvirus Interaction. *Molecular plant-microbe interactions : MPMI* 29:
449 878-888

450

451 Brough CL, Gardiner WE, Inamdar NM, Zhang XY, Ehrlich M, Bisaro DM (1992) DNA methylation
452 inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. *Plant Mol Biol*
453 18: 703-12

454

455 Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2
456 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine
457 methylation. *Journal of virology* 83: 5005-13

458

459 Burgýán J, Havelda Z (2011) Viral suppressors of RNA silencing. *Trends Plant Science* 16(5):265-
460 72.

461

462 Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, Kormelink R (2014) Tomato
463 yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes
464 and is compromised by cucumber mosaic virus infection. *Proceedings of the National Academy
465 of Sciences of the United States of America* 111: 12942-7

466

467 Castillo-Gonzalez C, Liu X, Huang C, Zhao C, Ma Z, Hu T, Sun F, Zhou Y, Zhou X, Wang XJ,
468 Zhang X (2015) Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase
469 SUVH4/KYP to counter host defense. *eLife* 4

470

471 Ceniceros-Ojeda EA, Rodriguez-Negrete EA, Rivera-Bustamante RF (2016) Two Populations of
472 Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom
473 Remission (Recovery). *Journal of virology* 90: 3828-3838

474

475 Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in
476 *Arabidopsis thaliana*. *Nature reviews Genetics* 6: 351-60

477

478 Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou JM (2008) Firefly luciferase
479 complementation imaging assay for protein-protein interactions in plants. *Plant physiology* 146:
480 368-76

481

482 Coursey T, Regedanz E, Bisaro DM (2018) *Arabidopsis* RNA Polymerase V Mediates Enhanced
483 Compaction and Silencing of Geminivirus and Transposon Chromatin during Host Recovery from
484 Infection. 92

485

486 Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building
487 datasets for phylogenetic analysis. *BMC evolutionary biology* 10: 8

488

489 Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort
490 V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the
491 non-specialist. *Nucleic acids research* 36: W465-9

492

493 Deuschle K, Kepp G, Jeske H (2016) Differential methylation of the circular DNA in geminiviral
494 minichromosomes. *Virology* 499: 243-258

495

496 Dogar AM (2006) RNAi dependent epigenetic marks on a geminivirus promoter. *Virology journal*
497 3: 5

498

499 Ermak G, Paszkowski U, Wohlmuth M, Mittelsten Scheid O, Paszkowski J (1993) Cytosine
500 methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms.
501 *Nucleic acids research* 21: 3445-50

502

503 Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2008) Selection of internal control
504 genes for quantitative real-time RT-PCR studies during tomato development process. *BMC plant*
505 *biology* 8: 131

506

507 Gao Z, Liu H-L, Daxinger L, Pontes O, He X, Qian W, Lin H, Xie M, Lorkovic ZJ, Zhang S (2010)
508 An RNA polymerase II-and AGO4-associated protein acts in RNA-directed DNA methylation.
509 *Nature* 465: 106

510

511 Grefen C, Blatt MR (2012) A 2in1 cloning system enables ratiometric bimolecular fluorescence
512 complementation (rBiFC). *BioTechniques* 53: 311-14

513

514 Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth:
515 analyzer of plant methylation states through bisulfite sequencing. *BMC bioinformatics* 9: 371

516

517 Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, Pikaard CS (2012) In
518 vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for
519 dsRNA synthesis in plant RNA silencing. *Molecular cell* 48: 811-818

520

521 Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at
522 redirecting and reprogramming plant processes. *Nature reviews Microbiology* 11: 777-88

523

524 He L, Wu W, Zinta G, Yang L, Wang D, Liu R, Zhang H, Zheng Z, Huang H, Zhang Q, Zhu J-K
525 (2018) A naturally occurring epiallele associates with leaf senescence and local climate
526 adaptation in *Arabidopsis* accessions. *Nature communications* 9: 460

527

528 Ismayil A, Haxim Y, Wang Y, Li H, Qian L, Han T, Chen T, Jia Q, Yihao Liu A, Zhu S, Deng H,
529 Gorovits R, Hong Y, Hanley-Bowdoin L, Liu Y (2018) Cotton Leaf Curl Multan virus C4 protein
530 suppresses both transcriptional and post-transcriptional gene silencing by interacting with SAM
531 synthetase. *PLoS pathogens* 14: e1007282

532

533 Jackel JN, Storer JM, Coursey T, Bisaro DM (2016) Arabidopsis RNA Polymerases IV and V Are
534 Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus
535 Chromatin. *Journal of virology* 90: 7529-40

536

537 Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW,
538 Taliantsky M (2007a) Interaction of a plant virus-encoded protein with the major nucleolar protein
539 fibrillarin is required for systemic virus infection. *Proceedings of the National Academy of Sciences*
540 *of the United States of America* 104: 11115-20

541

542 Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JW,
543 Taliantsky M (2007b) Cajal bodies and the nucleolus are required for a plant virus systemic
544 infection. *The EMBO journal* 26: 2169-79

545

546 Kushwaha NK, Mansi, Chakraborty S (2017) The replication initiator protein of a geminivirus
547 interacts with host monoubiquitination machinery and stimulates transcription of the viral genome.
548 *PLoS pathogens* 13: e1006587

549

550 Law JA, Vashisht AA, Wohlschlegel JA, Jacobsen SE (2011) SHH1, a homeodomain protein
551 required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors,
552 associate with RNA polymerase IV. *PLoS genetics* 7: e1002195

553

554 Li CF, Henderson IR, Song L, Fedoroff N, Lagrange T, Jacobsen SE (2008) Dynamic regulation
555 of ARGONAUTE4 within multiple nuclear bodies in *Arabidopsis thaliana*. *PLoS genetics* 4: e27

556

557 Li CF, Pontes O, El-Shami M, Henderson IR, Bernatavichute YV, Chan SW, Lagrange T, Pikaard
558 CS, Jacobsen SE (2006) An ARGONAUTE4-containing nuclear processing center colocalized
559 with Cajal bodies in *Arabidopsis thaliana*. *Cell* 126: 93-106

560

561 Liu D, Shi L, Han C, Yu J, Li D, Zhang Y (2012) Validation of reference genes for gene expression
562 studies in virus-infected *Nicotiana benthamiana* using quantitative real-time PCR. *PloS one* 7:
563 e46451

564

565 Lozano-Duran R, Rosas-Diaz T, Luna AP, Bejarano ER (2011) Identification of host genes
566 involved in geminivirus infection using a reverse genetics approach. *PloS one* 6: e22383

567

568 Ma X, Nicole MC, Meteignier LV, Hong N, Wang G, Moffett P (2015) Different roles for RNA
569 silencing and RNA processing components in virus recovery and virus-induced gene silencing in
570 plants. *Journal of experimental botany* 66: 919-32

571

572 Maimbo M, Ohnishi K, Hikichi Y, Yoshioka H, Kiba A (2010) S-glycoprotein-like protein regulates
573 defense responses in Nicotiana plants against Ralstonia solanacearum. *Plant physiology* 152:
574 2023-35

575

576 Mason G, Caciagli P, Accotto GP, Noris E (2008) Real-time PCR for the quantitation of Tomato
577 yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. *Journal of virological
578 methods* 147: 282-9

579

580 Matzke MA, Kanno T, Matzke AJ (2015) RNA-Directed DNA Methylation: The Evolution of a
581 Complex Epigenetic Pathway in Flowering Plants. *Annual review of plant biology* 66: 243-67

582

583 Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of
584 increasing complexity. *Nature reviews Genetics* 15: 394-408

585

586 Minas K, McEwan NR, Newbold CJ, Scott KP (2011) Optimization of a high-throughput CTAB-
587 based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure
588 cultures. *FEMS microbiology letters* 325: 162-9

589

590 Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC, Navarro B, Flores R (2014) Specific
591 argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate
592 viroid accumulation in vivo. *Journal of virology* 88: 11933-45

593

594 Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K,
595 Niwa Y, Watanabe Y, Nakamura K, Kimura T, Ishiguro S (2007) Improved Gateway binary vectors:
596 high-performance vectors for creation of fusion constructs in transgenic analysis of plants.
597 *Bioscience, biotechnology, and biochemistry* 71: 2095-100

598

599 Piedra-Aguilera A, Jiao C, Luna AP, Villanueva F, Dabad M, Esteve-Codina A, Diaz-Pendon JA,
600 Fei Z, Bejarano ER, Castillo AG (2019) Integrated single-base resolution maps of transcriptome,

601 sRNAome and methylome of Tomato yellow leaf curl virus (TYLCV) in tomato. *Scientific reports*
602 9: 2863

603

604 Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic
605 defense against geminiviruses. *Journal of virology* 82: 8997-9007

606

607 Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance. Tobacco rattle virus
608 as a vector for analysis of gene function by silencing. *The Plant journal : for cell and molecular*
609 *biology* 25: 237-45

610

611 Rawlings RA, Krishnan V, Walter NG (2011) Viral RNAi suppressor reversibly binds siRNA to
612 outcompete Dicer and RISC via multiple turnover. *Journal of Molecular Biology* 408(2):262-76.

613

614 Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG
615 (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and
616 suppresses transcriptional gene silencing. *The New phytologist* 199: 464-75

617

618 Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, Jimenez-Gongora T, Medina-Puche L,
619 Zhao X, Feng Z, Zhang G, Liu X, Bejarano ER, Tan L, Zhang H, Zhu JK, Xing W, Faulkner C,
620 Nagawa S, Lozano-Duran R (2018) A virus-targeted plant receptor-like kinase promotes cell-to-
621 cell spread of RNAi. *Proceedings of the National Academy of Sciences of the United States of*
622 *America* 115: 1388-1393

623

624 Schott G, Mari-Ordonez A, Himber C, Alioua A, Voinnet O, Dunoyer P (2012) Differential effects
625 of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct
626 cellular pools of ARGONAUTE1. *The EMBO journal* 31: 2553-65

627

628 Semashko MA, Rakitina DV, Gonzalez I, Canto T, Kalinina NO, Taliantsky ME (2012) Movement
629 protein of hordeivirus interacts in vitro and in vivo with coilin, a major structural protein of Cajal
630 bodies. *Doklady Biochemistry and biophysics* 442: 57-60

631

632 Shaw J, Love AJ, Makarova SS, Kalinina NO, Harrison BD, Taliantsky ME (2014) Coilin, the
633 signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in
634 widely different taxa. *Nucleus* 5: 85-94

635

636 Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012) Tomato TFT1
637 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from
638 binding to TFT1 attenuate *Xanthomonas* virulence. *PLoS pathogens* 8: e1002768

639

640 Torchetti EM, Pegoraro M, Navarro B, Catoni M, Di Serio F, Noris E (2016) A nuclear-replicating
641 viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-
642 related genes and inducing hypermethylation of viral DNA. *Scientific reports* 6: 35101

643

644 Tu YC, Tsai WS, Wei JY, Chang KY, Tien CC, Hsiao HY, Fu SF (2017) The C2 protein of tomato
645 leaf curl Taiwan virus is a pathogenicity determinant that interferes with expression of host genes
646 encoding chromomethylases. *Physiologia plantarum* 161: 515-531

647

648 Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, Zhou X (2014) V2 of tomato yellow leaf curl virus
649 can suppress methylation-mediated transcriptional gene silencing in plants. *The Journal of
650 general virology* 95: 225-30

651

652 Wang B, Yang X, Wang Y, Xie Y, Zhou X (2018) Tomato Yellow Leaf Curl Virus V2 Interacts with
653 Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing
654 in Plants. *Journal of virology* 92

655

656 Wang L, Ding X, Xiao J, Jimenez-Gomicrongora T, Liu R, Lozano-Duran R (2017a) Inference of
657 a Geminivirus-Host Protein-Protein Interaction Network through Affinity Purification and Mass
658 Spectrometry Analysis. *Viruses* 9

659

660 Wang L, Tan H, Wu M, Jimenez-Gongora T, Tan L, Lozano-Duran R (2017b) Dynamic Virus-
661 Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus. *Frontiers in plant
662 science* 8: 2165

663

664 Wang Y, Wu Y, Gong Q, Ismayil A, Yuan Y, Lian B, Jia Q, Han M, Deng H, Hong Y, Hanley-
665 Bowdoin L, Qi Y, Liu Y (2019) Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing
666 through Interaction with AGO4. *Journal of virology* 93

667

668 Wartig L, Kheyr-Pour A, Noris E, De Kouchkovsky F, Jouanneau F, Gronenborn B, Jupin I (1997)
669 Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2, and C2
670 ORFs in viral pathogenesis. *Virology* 228: 132-40
671
672 Woo HR, Dittmer TA, Richards EJ (2008) Three SRA-domain methylcytosine-binding proteins
673 cooperate to maintain global CpG methylation and epigenetic silencing in *Arabidopsis*. *PLoS*
674 *genetics* 4: e1000156
675
676 Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE,
677 Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants.
678 *PLoS biology* 2: e104
679
680 Yadav RK, Chattopadhyay D (2011) Enhanced viral intergenic region-specific short interfering
681 RNA accumulation and DNA methylation correlates with resistance against a geminivirus.
682 *Molecular plant-microbe interactions : MPMI* 24: 1189-97
683
684 Yang D-L, Zhang G, Tang K, Li J, Yang L, Huang H, Zhang H, Zhu J-K (2015) Dicer-independent
685 RNA-directed DNA methylation in *Arabidopsis*. *Cell research*
686
687 Yang LP, Fang YY, An CP, Dong L, Zhang ZH, Chen H, Xie Q, Guo HS (2013) C2-mediated
688 decrease in DNA methylation, accumulation of siRNAs, and increase in expression for genes
689 involved in defense pathways in plants infected with beet severe curly top virus. *The Plant journal :
690 for cell and molecular biology* 73: 910-7
691
692 Yang X, Xie Y, Raja P, Li S, Wolf JN, Shen Q, Bisaro DM, Zhou X (2011) Suppression of
693 methylation-mediated transcriptional gene silencing by betaC1-SAHH protein interaction during
694 geminivirus-betasatellite infection. *PLoS pathogens* 7: e1002329
695
696 Yu G, Xian L, Xue H, Yu W, Rufian J, Sang Y, Morcillo R, Wang Y, Macho AP (2019) A bacterial
697 effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity.
698 *bioRxiv*: 641241
699 Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H,
700 Xie Q (2011) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-
701 mediated gene silencing in *Arabidopsis*. *The Plant cell* 23: 273-88

702

703 Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, Chory J, Wohlschlegel JA,

704 Patel DJ, Jacobsen SE (2014) Molecular mechanism of action of plant DRM de novo DNA

705 methyltransferases. *Cell* 157: 1050-1060

706

707 Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X (2017) iTRAQ analysis of the tobacco leaf

708 proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense

709 against geminivirus-betasatellite infection. *Journal of proteomics* 152: 88-101

710

711 Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA

712 accumulation and DNA and histone methylation. *Science (New York, NY)* 299: 716-719

713

714

715 **FIGURE LEGENDS**

716 **Figure 1. V2 interacts with AGO4 from *N. benthamiana*.**

717 A Unique peptide count, protein coverage, and best Mascot Score of NbAGO4-1 and NbAGO4-
718 2 co-immunoprecipitated with V2-GFP, as identified by affinity purification followed by mass
719 spectrometry (AP-MS). Results from three independent biological repeats are shown. “-”
720 indicates no peptide was detected.

721 B 3xHA-NbAGO4-1 and 3xHA-NbAGO4-2 specifically interact with V2-GFP in co-
722 immunoprecipitation (co-IP) assays upon transient expression in *N. benthamiana*. Free GFP
723 was used as negative control. CBB, Coomassie brilliant blue staining. Three independent
724 biological replicates were performed with similar results.

725 C NbAGO4-1 and NbAGO4-2 interact with V2 in split-luciferase assays. V2-N-luc and C-luc-
726 NbAGO4-1/2 were transiently co-expressed in *N. benthamiana*; C-luc-SIWRKY75 is used as
727 negative control. The luciferase bioluminescence from at least three independent leaves per
728 experiment was imaged two days after infiltration. The average bioluminescence, measured
729 in counts per second (cps), as well as an image of a representative leaf are shown. Values
730 represent the mean of three independent biological replicates; error bars indicate SEM.
731 Asterisks indicate a statistically significant difference (according to a Student's *t*-test, **:
732 P<0.01, ***: P<0.001.) compared to the negative control.

733

734 **Figure 2. V2 interacts with AGO4 from tomato.**

735 A Phylogenetic tree of AtAGO4, NbAGO4, and SIAGO4 proteins. The phylogenetic analysis
736 was performed with phylogeny.fr (Dereeper et al., 2010, Dereeper et al., 2008).

737 B Pairwise identity and genetic distance matrix among AtAGO4, NbAGO4 and SIAGO4 proteins.
738 The analysis was performed by Geneious (<https://www.geneious.com>).

739 C 3xHA-SIAGO4a, 3xHA-SIAGO4b, and 3xHA-SIAGO4d specifically interact with V2-GFP in
740 co-immunoprecipitation (co-IP) assays upon transient expression in *N. benthamiana*. Free
741 GFP was used as negative control. CBB, Coomassie brilliant blue staining. Three
742 independent biological replicates were performed with similar results.

743 D SIAGO4a and SIAGO4b interact with V2 in split-luciferase assays. V2-N-luc and C-luc-
744 SIAGO4a/b were transiently co-expressed in *N. benthamiana*; C-luc-SIWRKY75 is used as

745 negative control. The luciferase bioluminescence from at least three independent leaves per
746 experiment was imaged two days after infiltration. The average bioluminescence, measured
747 in counts per second (cps), as well as an image of a representative leaf are shown. Values
748 represent the mean of three independent biological replicates; error bars indicate SEM.
749 Asterisks indicate a statistically significant difference (according to a Student's *t*-test, ***:
750 P<0.001.) compared to the negative control.

751

752 **Figure 3. V2 interacts with AGO4 in the Cajal body.**

753 A V2-GFP and RFP-AGO4 co-localize in the Cajal body. CFP-Fibrillarin, V2-GFP and RFP-
754 NbAGO4-1/2 or RFP-SIAGO4a/b/d were transiently co-expressed in *N. benthamiana*
755 epidermal cells. CFP-Fibrillarin is used as a nucleolus and Cajal body marker. Confocal
756 images were taken at two days after infiltration . Arrowheads indicate the position of the Cajal
757 body. Bar, 5 μ m. This experiment was repeated more than three times with similar results.

758 B V2 interacts with AGO4 in the Cajal body. The N-terminal half of the YFP fused to V2 (V2-
759 nYFP) was transiently co-expressed with the C-terminal half of the YFP alone (cYFP, as a
760 negative control), or cYFP-NbAGO4, cYFP-SIAGO4, or cYFP-V2 (as a positive control) in *N.*
761 *benthamiana* leaves. CFP-Fibrillarin was used as a nucleolus and Cajal body marker.
762 Confocal images were taken at two days after infiltration. Yellow fluorescence indicates a
763 positive interaction. Arrowheads indicate the position of the Cajal body. Bar, 5 μ m. This
764 experiment was repeated more than three times with similar results.

765

766 **Figure 4. V2 counters the AGO4-dependent defence to promote virulence**

767 A Expression of *NbAGO4-1*, *NbAGO4-2*, and *NbAGO6* in *N. benthamiana* plants infected with
768 TRV-EV (empty vector) or TRV-*NbAGO4*, measured by reverse transcription quantitative real-
769 time PCR (RT-qPCR). Gene expression was normalized to *NbTubulin*. Values are the mean
770 of four independent biological replicates; error bars indicate SEM. Asterisks indicate a
771 statistically significant difference according to Student's *t*-test. **: P<0.01, ***: P<0.001, ns:
772 not significant.

773 B Representative pictures of *N. benthamiana* plants infected with the indicated combinations of
774 viruses. Photographs were taken at 3 weeks post-inoculation (wpi).

775 C *NbAGO4-1* expression in *NbAGO4*-silenced plants and control plants infected with TYLCV,
776 TYLCV-V2null, or mock-inoculated at 3 wpi measured by RT-qPCR. Gene expression was
777 normalized to *NbTubulin*. Values are the mean of six independent biological replicates; error
778 bars indicate SEM. Asterisks indicate a statistically significant difference according to
779 Student's *t*-test. *: P<0.05, **: P<0.01, ****: P<0.0001.

780 D *NbAGO4-2* expression in *NbAGO4*-silenced plants and control plants infected by TYLCV,
781 TYLCV-V2null or mock-inoculated at 3 wpi measured by RT-qPCR. Gene expression was
782 normalized to *Tubulin*. Values are the mean of six independent biological replicates; error bars
783 indicate SEM. Asterisks indicate a statistically significant difference according to Student's *t*-
784 test. *: P<0.05, **: P<0.01, ***: P<0.001.

785 E Viral (TYLCV) accumulation in local infections in *NbAGO4*-silenced or control plants,
786 measured by qPCR. Infiltrated leaf patches from different plants were collected at 4 dpi. The
787 experimental design is shown in Figure S3A. The accumulation of viral DNA is normalized to
788 the 25S ribosomal RNA interspacer (ITS). Values are the mean of eight independent biological
789 replicates; error bars indicate SEM.

790 F Viral (TYLCV) accumulation in systemic infections in *NbAGO4*-silenced or control plants,
791 measured by qPCR. Apical leaves from six plants were collected at 3 wpi. The experimental
792 design is shown in Figure S3B. The accumulation of viral DNA is normalized to the 25S
793 ribosomal RNA interspacer (ITS). Four independent biological replicates were performed with
794 similar results; one representative result is shown. Values are the mean of six independent
795 biological replicates; error bars indicate SEM. Asterisks indicate a statistically significant
796 difference according to Student's *t*-test. *: P<0.05, ***: P<0.001. The relative fold change of
797 viral accumulation between *NbAGO4*-silenced plants and control plants is shown above each
798 column.

799

800 **Figure 5. V2 suppresses the AGO4-dependent methylation of viral DNA.**

801 A Percentage of methylated cytosines in the intergenic region (IR) of TYLCV in local infection
802 assays with TYLCV WT or V2 null mutant (TYLCV-V2null) in *N. benthamiana* at 3 or 9 days
803 post-inoculation (dpi), as detected by bisulfite sequencing. The original single-base resolution
804 bisulfite sequencing data are shown in Figure S4. Values are the mean of three independent
805 biological replicates; error bars indicate SEM. Asterisks indicate a statistically significant

806 difference according to Student's *t*-test. ***: P<0.001.

807 B Percentage of methylated cytosines in the intergenic region (IR) of TYLCV in local infection
808 assays with the V2 null mutant TYLCV (TYLCV-V2null) in AGO4-silenced (TRV-*NbAGO4*) or
809 control (TRV-EV) *N. benthamiana* plants at 4 dpi, as detected by bisulfite sequencing.
810 Samples come from the same plants used in Figure 4E. The original single-base resolution
811 bisulfite sequencing data are shown in Figure S5. Values are the mean of four independent
812 biological replicates; error bars indicate SEM. Asterisks indicate a statistically significant
813 difference according to Student's *t*-test. *: P<0.05.

814 C Percentage of methylated cytosines in the intergenic region (IR) of TYLCV in systemic
815 infection assays with TYLCV WT or V2 null mutant (TYLCV-V2null) in AGO4-silenced (TRV-
816 *NbAGO4*) or control (TRV-EV) *N. benthamiana* plants at 3 weeks post-inoculation (wpi), as
817 detected by bisulfite sequencing. Samples come from the same plants used in Figure 4F.
818 The original single-base resolution bisulfite sequencing data are shown in Figure S6. Values
819 are the mean of four independent biological replicates; error bars indicate SEM. Asterisks
820 indicate a statistically significant difference according to Student's *t*-test. *: P<0.05.

821

822 **Figure 6. V2 interferes with AGO4 binding to the viral genome but does not hamper
823 production or loading of vsiRNA.**

824 A 3xFLAG-*NbAGO4*-1 binds the viral (TYLCV) genome. Binding was detected by chromatin
825 immunoprecipitation (ChIP) upon transient expression in *N. benthamiana* followed by qPCR.
826 Two regions of the viral genome, the IR and the V2 ORF, were analyzed; *ACTIN* was used
827 as negative control. Values represent the mean of four independent biological replicates;
828 error bars represent SEM. Asterisks indicate a significant difference according to a Student's
829 *t*-test; the *P*-value for the different comparisons is shown. *: P<0.05.

830 B *NbAGO4*-1 binds viral small interfering RNA (vsiRNA) independently of V2. Northern blot of
831 vsiRNA in total extracts or 3xFLAG-*NbAGO4* immunoprecipitates (*NbAGO4*-IP) of *N.*
832 *benthamiana* leaf patches infiltrated with TYLCV WT or V2 null mutant infectious clones
833 (TYLCV, TYLCV-V2null) at two days after infiltration. Detection was performed with a ³²P-
834 labeled DNA probe for the intergenic region (IR).

835

836

837 **SUPPLEMENTARY MATERIALS**

838 **Supplemental Table S1. List of primers used for cloning in this study.**

839 **Supplemental Table S2. List of plasmids used in this study.**

840 **Supplemental Table S3. List of primers used for qPCR and qRT-PCR in this study.**

841

842 **SUPPLEMENTARY FIGURE LEGENDS**

843 **Figure S1. *SIAGO4* expression in TYLCV-infected and control tomato plants.**

844 *SIAGO4a/b/c/d* expression in TYLCV-infected or control (mock-inoculated) tomato plants at 3
845 weeks post-inoculation (wpi), as measured by qRT-PCR. Gene expression was normalized to
846 *SIActin*. Values are the mean of three independent biological replicates; error bars indicate SEM.

847

848 **Figure S2. V2 is essential for systemic infection in tomato and *N. benthamiana*.**

849 A Design of the V2 null TYLCV mutant used in this work. The second codon of the V2 ORF,
850 originally encoding a Trp (TGG), is mutated to STOP codon (TAG).

851 B Representative pictures of tomato plants infected with TYLCV WT or V2 null mutant (TYLCV-
852 V2null) or mock-inoculated. Photographs were taken at 3 weeks post-inoculation (wpi). Bar,
853 5cm.

854 C Height of tomato plants infected with TYLCV WT or V2 null mutant (TYLCV-V2null) or mock-
855 inoculated at 3 wpi. Values are the mean of five independent biological replicates; error bars
856 indicate SEM.

857 D Viral (TYLCV) accumulation in tomato plants infected with TYLCV WT or V2 null mutant
858 (TYLCV-V2null) or mock-inoculated at 3 wpi, measured by qPCR. Each sample corresponds
859 to the apical leaves from six plants. The accumulation of viral DNA is normalized to the 25S
860 *ribosomal RNA interspacer (ITS)*. Values are the mean of six independent biological
861 replicates; error bars indicate SEM.

862 E Representative pictures of *N. benthamiana* plants infected with TYLCV WT or V2 null mutant
863 (TYLCV-V2null) or mock-inoculated. Photographs were taken at 3 weeks post-inoculation
864 (wpi). Bar, 5cm.

865 F Viral (TYLCV) accumulation in *N. benthamiana* plants infected with TYLCV WT or V2 null
866 mutant (TYLCV-V2null) or mock-inoculated at 3 wpi, measured by qPCR. Each sample
867 corresponds to the apical leaves from six plants. The accumulation of viral DNA is normalized
868 to the 25S ribosomal RNA interspacer (ITS). Values are the mean of six independent
869 biological replicates; error bars indicate SEM.

870

871 **Figure S3. Experimental design for local and systemic TYLCV infection assays in *NbAGO4*-**
872 **silenced *N. benthamiana* plants.**

873 A Experimental design for local TYLCV infection assays. *A. tumefaciens* carrying the TRV-EV
874 or TRV-*NbAGO4* infectious clones were inoculated on 18-day-old *N. benthamiana* cotyledons.
875 2 weeks later, young leaves were infiltrated with *A. tumefaciens* carrying the TYLCV infectious
876 clone (WT or V2null) and leaf patches were collected at 3, 4, or 9 days post-inoculation (dpi).

877 B Experimental design for systemic TYLCV infection assays. *A. tumefaciens* carrying the TRV-
878 EV or TRV-*NbAGO4* infectious clones were inoculated on 18-day-old *N. benthamiana*
879 cotyledons. At the same time, *A. tumefaciens* carrying the TYLCV infectious clone (WT or
880 V2null) were injected into plant stems. The top three leaves were collected at 3 weeks post-
881 inoculation (wpi).

882

883 **Figure S4. Original single-base resolution bisulfite sequencing data of the intergenic**
884 **region (IR) of TYLCV in local infection assays at 3 dpi or 9 dpi (Figure 5A).**

885 At least 5 individual clones were sequenced per replicate and sample at 3 dpi, and >18 individual
886 were sequenced per replicate and sample at 9 dpi. Each single circle, corresponding to a cytosine,
887 is colored in blue, red, or green, representing the CHG, CG or CHH contexts, respectively.
888 Methylated cytosines are represented by filled circles, while unmethylated cytosines are
889 represented by empty circles.

890

891 **Figure S5. Original single-base resolution bisulfite sequencing data of the intergenic**
892 **region (IR) of TYLCV-V2null in local infection assays at 4 dpi in *NbAGO4*-silenced plants**
893 **(Figure 5B).** At least 7 individual clones were sequenced per sample in the first replicate, and >
894 15 individual clones were sequenced per sample in replicates second to fourth. Each single circle,

895 corresponding to a cytosine, is colored in blue, red, or green, representing the CHG, CG or CHH
896 contexts, respectively. Methylated cytosines are represented by filled circles, while unmethylated
897 cytosines are represented by empty circles.

898

899 **Figure S6. Original single-base resolution bisulfite sequencing data of the intergenic**
900 **region (IR) of TYLCV and TYLCV-V2null in systemic infection assays in *NbAGO4*-silenced**
901 **plants (Figure 5C).**

902 > 14 individual clones were sequenced per sample and replicate. Each single circle,
903 corresponding to a cytosine, is colored in blue, red, or green, representing the CHG, CG or CHH
904 contexts, respectively. Methylated cytosines are represented by filled circles, while unmethylated
905 cytosines are represented by empty circles.

906

907 **Figure S7. TYLCV V2_{L76S} interacts with AGO4 in the Cajal body.**

908 A Alignment of the amino acid sequences of V2 from *Cotton Leaf Curl Multan virus* (CLCuMuV)
909 and V2 from TYLCV. The alignment was performed by Geneious (<https://www.geneious.com>).
910 Black background indicates conservation. The identity of these two proteins is 65%.

911 B V2_{L76S}-GFP and RFP-AGO4 co-localize in the Cajal body. CFP-Fibrillarin, V2_{L76S}-GFP and
912 RFP-NbAGO4-1/2 or RFP-SIAGO4a/b/d were transiently co-expressed in *N. benthamiana*
913 epidermal cells. CFP-Fibrillarin is used as a nucleolus and Cajal body marker. Confocal
914 images were taken at two days after infiltration. Arrowheads indicate the position of the Cajal
915 body. Bar, 5µm. This experiment was repeated three times with similar results.

916 C 3xHA-NbAGO4-1 interacts with V2-GFP and V2_{L76S}-GFP in co-immunoprecipitation (co-IP)
917 assays upon transient expression in *N. benthamiana*. Free GFP was used as negative control.
918 CBB, Coomassie brilliant blue staining. The V2-GFP sample was diluted 1/20 for western blot
919 to reach a protein amount comparable to that of V2_{L76S}-GFP. Three independent biological
920 replicates were performed with similar results.

921 D V2_{L76S} interacts with AGO4 in the Cajal body. The N-terminal half of the YFP fused to V2_{L76S}
922 (V2_{L76S}-nYFP) was transiently co-expressed with the C-terminal half of the YFP alone (cYFP,
923 as a negative control), or cYFP-NbAGO4, cYFP-SIAGO4, or cYFP- V2_{L76S} in *N. benthamiana*
924 leaves. CFP-Fibrillarin was used as a nucleolus and Cajal body marker. V2 was used as a

925 control. Yellow fluorescence indicates a positive interaction. Arrowheads indicate the position
926 of the Cajal body. Bar, 5 μ m. This experiment was repeated three times with similar results.

927

928 **Figure S8. Model for the V2-mediated inhibition of the AGO4-dependent methylation of the**
929 **viral DNA.**

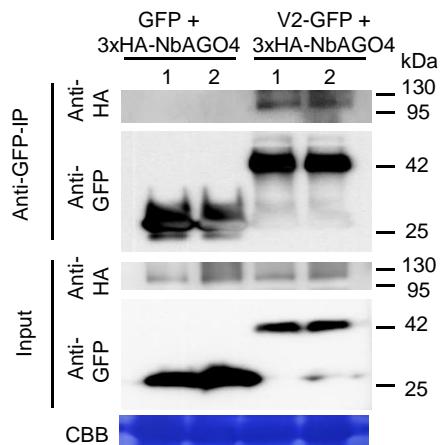
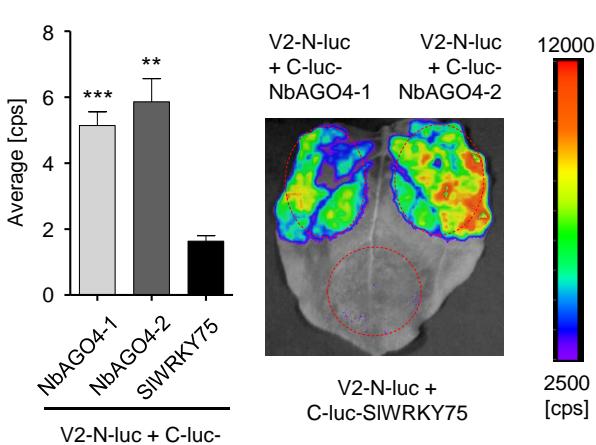
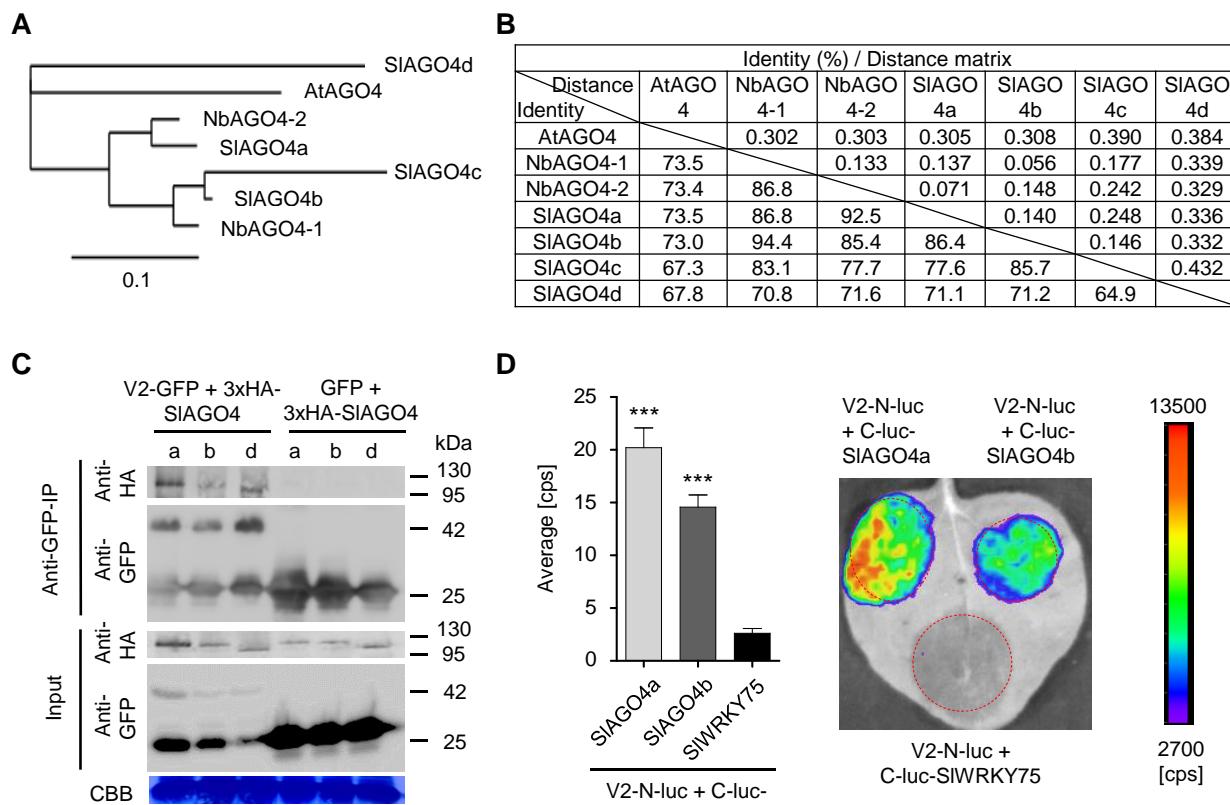
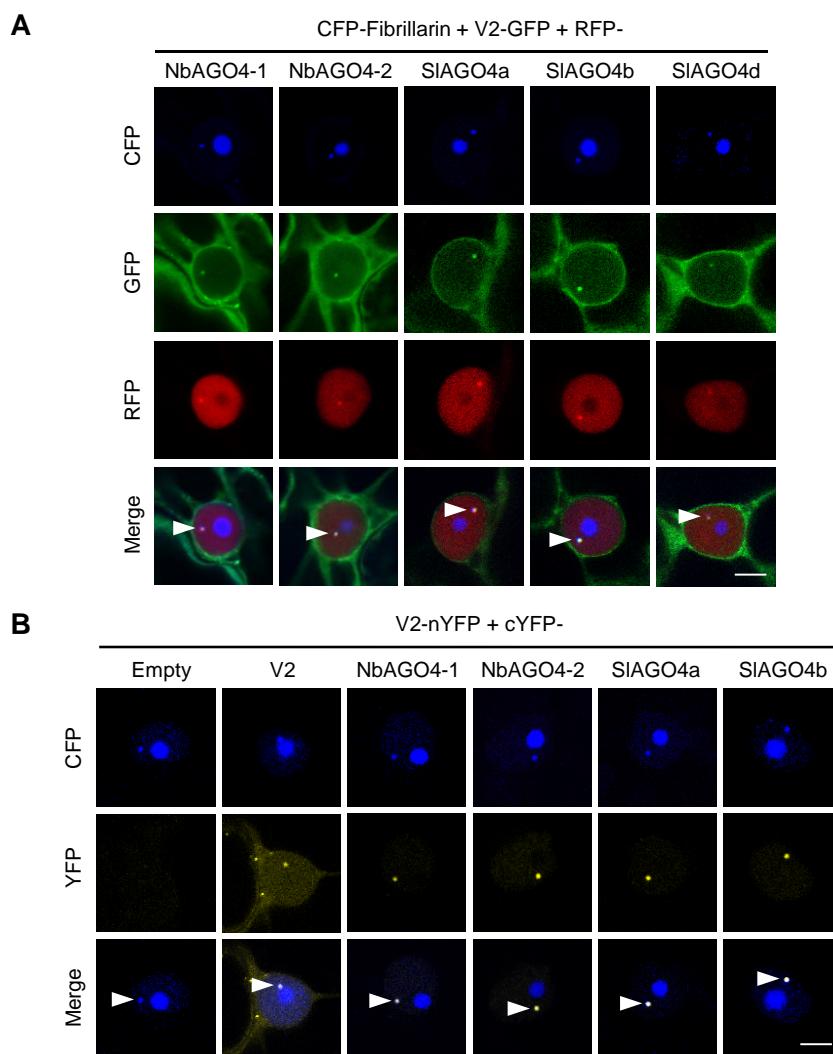

930 During the viral infection, the ssDNA TYLCV genome forms dsDNA replicative intermediates,
931 which could be targeted by the host AGO4-dependent RNA-directed DNA methylation (RdDM)
932 pathway as an antiviral defence mechanism. Viral small interfering RNA (vsiRNA) are generated
933 and loaded into AGO4. In the absence of the virus-encoded V2 protein, the AGO4-vsiRNA
934 complex could be effectively guided towards the viral genome by complementary base pairing to
935 the scaffold RNA and association with Pol V, and recruit the methyl transferase DRM2 to catalyze
936 methylation of the viral genome. When V2 is present, however, V2 interacts with AGO4 and
937 interferes with the binding of this protein to the viral DNA, enabling viral evasion from the AGO4-
938 dependent DNA methylation.

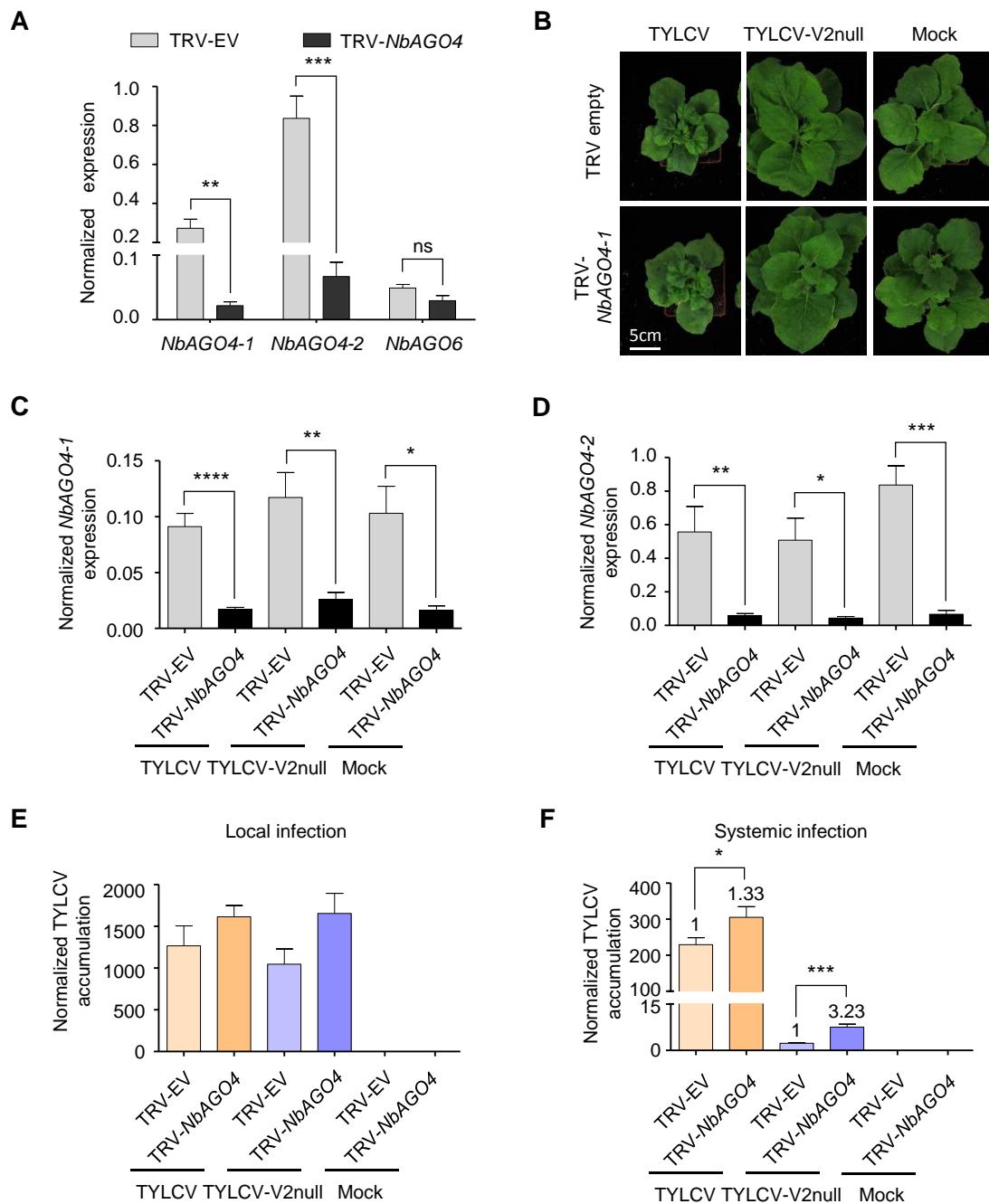
Figure 1


A

Identified protein name	Identified protein ID	Bait protein name	Exclusive unique peptide count	Identified protein coverage (%)	Best Mascot Score
NbAGO4-1	NbS00018144g003.1	GFP	- / - / -	- / - / -	- / - / -
		V2-GFP	3 / - / -	6.1 / - / -	44.9 / - / -
NbAGO4-2	NbS00007950g0008.1	GFP	- / - / -	- / - / -	- / - / -
		V2-GFP	16 / 1 / 1	23 / 1.8 / 1.2	116.2 / 35.7 / 59.2


B


C


Figure 2

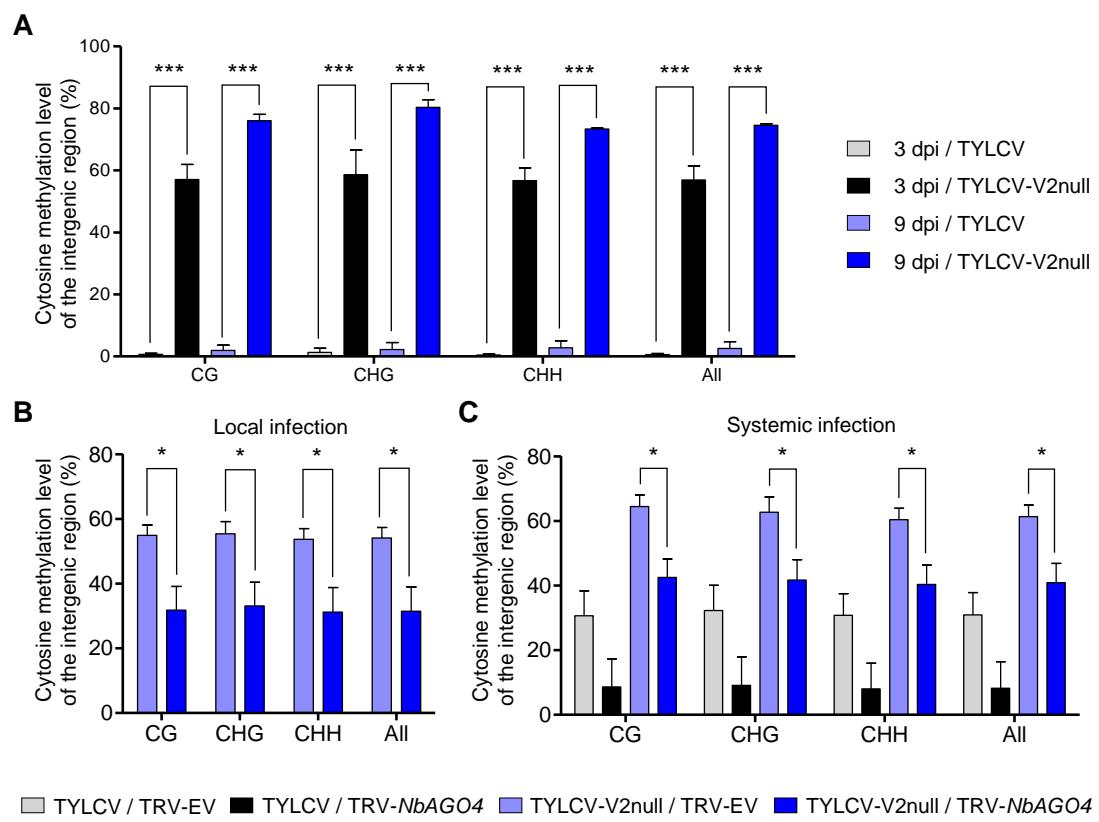

Figure 3

Figure 4

Figure 5

Figure 6

