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ABSTRACT

Recent development of various spatially resolved transcriptomic techniques has
enabled gene expression profiling on complex tissues with spatial localization
information. Identifying genes that display spatial expression pattern in these
studies is an important first step towards characterizing the spatial transcriptomic
landscape. Detecting spatially expressed genes requires the development of
statistical methods that can properly model spatial count data, provide effective
type | error control, have sufficient statistical power, and are computationally
efficient. Here, we developed such a method, SPARK. SPARK directly models
count data generated from various spatial resolved transcriptomic techniques
through generalized linear spatial models. With a new efficient penalized quasi-
likelihood based algorithm, SPARK is scalable to data sets with tens of
thousands of genes measured on tens of thousands of samples. Importantly,
SPARK relies on newly developed statistical formulas for hypothesis testing,
producing well-calibrated p-values and vyielding high statistical power. We
illustrate the benefits of SPARK through extensive simulations and in-depth
analysis of four published spatially resolved transcriptomic data sets. In the real
data applications, SPARKis up to ten times more powerful than existing
approaches. The high power of SPARK allows us to identify new genes and
pathways that reveal new biology in the data that otherwise cannot be revealed
by existing approaches.


https://doi.org/10.1101/810903
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/810903; this version posted October 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

INTRODUCTION

Recent emergence of various spatially resolved transcriptomic technologies has
enabled gene expression profiling with spatial localization information in tissues
or cell cultures. Some of these techniques, such as MERFISH! and seqFISH?,
are based on single-molecular fluorescence in situ hybridization (smFISH)°.
These smFISH based techniques can measure expression level for hundreds of
genes with subcellular spatial resolution in a single cell. Some of these
techniques, such as TIVA® LCM® Tomo-Seq® and spatial transcriptomics
through spatial barcoding’, are based on the next generation DNA sequencing.
These DNA sequencing-based techniques can measure expression level for tens
of thousands of genes on spatially organized tissue regions, each of which
potentially consists of a couple hundred single cells. Some of these techniques,
such as targeted in situ sequencing (ISS)® and FISSEQ®, are based on in situ
RNA sequencing. These RNA sequencing-based techniques can measure
expression levels for the entire transcriptome with spatial information at a single
cell resolution. These different spatially resolved transcriptomic techniques
altogether have made it possible to study the spatial organization of
transcriptomic landscape across tissue sections or within single cells, catalyzing
new discoveries in many areas of biology*® **.

In spatially resolved transcriptomic studies, identifying genes that display spatial
expression pattern, which we simply refer to as SE analysis, is an important first
step towards characterizing the spatial transcriptomic landscape. However,
identifying SE genes is challenging both from a statistical perspective and from a
computational perspective. From a statistical perspective, identifying SE genes
requires the development of spatial statistical methods that can directly model
raw count data generated from both smFISH based techniques and sequencing
based techniques. Unfortunately, count based SE analysis methods are currently
lacking. The only two existing approaches for SE analysis, SpatialDE'* and
Trendsceek™®, both transform count data into normalized data before analysis.
However, analyzing normalized expression data can be suboptimal as this
approach fails to account for the mean-variance relationship existed in raw
counts, leading to a potential loss of power*. Indeed, similar loss of power has
been well documented for methods that can only analyze normalized data in
many other omics sequencing studies™ *°. Besides direct modeling of count data,
identifying SE genes also requires the development of statistical methods that
can produce well calibrated p-values to ensure proper control of type | error.
However, some existing methods for SE analysis, such as SpatialDE*?, rely on
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asymptotic normality and minimal p-value combination rule for constructing their
hypothesis tests. Subsequently, these methods may fail to control for type | error
at small p-values that are essential for detecting SE genes at the transcriptome-
wide significance level. Failure of type | error control can lead to excessive false
positives and/or substantial loss of power. From a computational perspective,
while some spatial methods such as SpatialDE are based on linear models and
are computationally efficient, some other spatial methods, in particular
Trendsceek™, are built without a data generative model and compute non-
parametric test statistics through computationally expensive permutation
strategies that are not scalable to spatial transcriptomics data which are
becoming increasingly large. Consequently, analyzing even moderate sized
spatial transcriptomics data with hundreds of genes across hundreds of spatial
locations can be a daunting task for these methods.

Here, we present a new method that address the above statistical and
computational challenges. We refer to our method as Spatial PAttern Recognition
via Kernels (SPARK). SPARK builds upon a generalized linear spatial model
(GLSM)'" *® with a variety of spatial kernels to accommodate count data
generated from smFISH based or sequencing based spatial transcriptomics
studies. With a newly developed penalized quasi-likelihood (PQL) algorithm™® %°,
SPARK is scalable to analyzing tens of thousands genes across tens of
thousands samples. Importantly, SPARK relies on a mixture of Chi-square
distributions to serve as the exact test statistics distribution and further takes
advantage of a recently developed Cauchy combination rule® % to combine
information across multiple spatial kernels for calibrated p-value calculation. As a
result, SPARK properly controls for type | error at the transcriptome-wide level
and is more powerful for identifying SE genes than existing approaches. We
illustrate the benefits of SPARK through extensive simulations and applications
to four published spatial transcriptomics studies. In the analysis of the real data
sets, we show how SPARK can be used to identify new SE genes that reveal the
importance of neuronal migration in the formation of the olfactory system as well
as reveal the importance of immune system and cytoskeleton in tumor
progression and metastasis.
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RESULTS
Simulations

We provide an overview of SPARK in Materials and Methods, with technical
details provided in Supplementary Text and a method schematic shown in Fig.
1A. Unlike Trendsceek, SPARK has an underlying data generative model which
can be viewed as an extension of SpatialDE. However, unlike SpatialDE, SPARK
models count data directly and relies on a proper statistical procedure to obtain
calibrated p-values. A more detailed description of these methods is provided in
Supplementary Text. We performed two sets of simulations to evaluate the
performance of SPARK and compared it with two existing approaches, SpatialDE
and Trendsceek. Simulation details are provided in Materials and Methods.
Briefly, in the first set of simulations, for each scenario, we simulated 10,000
genes on 260 spatial locations (a.k.a. spots) in the mouse olfactory bulb data
using parameters inferred from the real data. We examined both type | error
control under the null hypothesis and power for identifying SE genes under
common alternatives. In the null simulations, all genes are non-SE genes with
expression levels randomly distributed across spatial locations without any
spatial patterns (Fig. 1B). In the alternative simulations, 9,000 genes are non-SE
genes, while 1,000 genes are SE genes whose expression levels display one of
the three observed spatial patterns in the data (named as spatial pattern I, Il and
llI; Fig. 1C). In the simulations, we varied noise variance to be either low,
moderate or high, and varied the SE strength for SE genes to be either weak,
moderate or strong.

In the null simulations, we found that SPARK produces well-calibrated p-values
at transcriptome-wide significance levels (Fig. 1B). Some Trendsceek test
statistics (e.g. markvario and Vmark) also produce reasonably calibrated p-
values while others (e.g. Emark statistics and markcorr statistics) yield slightly
conservative p-values. In contrast, SpatialDE produces overly conservative p-
values (Fig. 1B). The failure of SpatialDE in type | error control presumably is due
to its use of an asymptotic Chi-square distribution in place of an exact distribution
for p-value computation and/or its use of the ad hoc minimal p-value combination
rule. The p-value calibration results for different methods are consistent across
simulation settings and across a range of noise variance levels (Fig. S1).
Because some methods fail to control for type | error, in the alternative
simulations, we measured power based on false discovery rate (FDR) to ensure
fair comparison among methods. In the alternative simulations, we found that
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SPARK is more powerful than the other two methods across a range of FDR
cutoffs (Fig. 1C) and across a range of parameter settings (Figs. S2 and S3). The
power performance of SPARK is followed by SpatialDE, while Trendsceek does
not fare well in any of the alternative simulations. For example, in the easy
setting where the noise variance is moderate and the spatial expression pattern
strength is moderate, SPARK identified 860, 968, 1000 SE genes at an FDR of 5%
for spatial patterns I-1ll, respectively (Fig. 1C). The power of SPARK is 16.5%,
168.1% and 5.5% higher than that of SpatialDE (which identified 738, 361 and
948 SE genes), for the three spatial patterns, respectively. In contrast,
Trendsceek was only capable of identifying less than three SE genes (with the
detailed number varying depending on the spatial pattern and the random seed
Trendsceek used). In the more challenging setting where the noise variance is
high and the spatial expression pattern strength is moderate, SPARK identified
540, 872, 982 SE genes at an FDR of 5% for spatial patterns I-lll, respectively
(Fig. S3). The power of SPARK is 38.8%, 685.6% and 36.6% higher than that of
SpatialDE (which identified 389, 111 and 719 SE genes), for the three spatial
patterns, respectively. In contrast, Trendsceek was only capable of identifying
less than two SE genes.

Because of the extremely poor performance of Trendsceek in the first set of
simulations, to rule out the possibility that our first simulations were somehow
biased against Trendsceek, we compared different methods on a second set of
simulations performed fully based on the original Trendsceek paper'®. Simulation
details are provided in Materials and Methods. Briefly, we first randomly
simulated the spatial locations for a fixed number of cells through a spatial
Poisson process. We then generated 1,000 genes in the simulated data, which
were all non-SE genes in the null simulations and consisted of 100 SE genes and
900 non-SE genes in the alternative simulations. For non-SE genes, the
expression measurements from the real data were randomly assigned to the
simulated cells regardless of their spatial locations (Fig. 1D). For SE genes, the
expression measurements from the real data were assigned to the simulated
cells to display three distinct spatial patterns (Fig.1E): cells in a focal area
showed higher expression measurements than the remaining cells (Hotspot
pattern), cells in a streak area showed higher expression measurements than the
remaining cells (Streak pattern), or cells tend to show gradually reduced
expression measurements when they are further away from the streak (Gradient
pattern). In the simulations, we varied the number of cells (n = 100, 200 or 500),
the SE strength (low, moderate or high; measured by the fold change between
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cells inside and outside the focal/streak area in the first two spatial patterns and
by the fraction of cells displaying expression gradient for the third spatial pattern),
as well as the fraction of cells in the focal/streak area for the first two spatial
patterns. We applied all three methods to the simulated data. The comparison
results are largely consistent with the results obtained from the first set of
simulations. Specifically, under the null, both SPARK and Trendsceek produce
well-calibrated p-values, while SpatialDE does not (Fig. 1D). Under the
alternative, SPARK is more powerful than the other two methods across a range
of FDR cutoffs (Fig. 1E) in almost all parameter settings (Figs. S4-S7). The
power performance of SPARK is followed by SpatialDE, while Trendsceek does
not fare well, even though the power of Trendsceek is largely consistent with its
performance shown in the original Trendsceek paper'®. For example, when the
SE strength is moderate and the cell number equals to 200, SPARK identified 94,
78 and 96 SE genes at an FDR of 5% for the Hotspot, Streak and Gradient
patterns, respectively (Fig. 1E). The power of SPARK is 20.5%, 31.7% and 9%
higher than that of SpatialDE (which identified 78, 60 and 88 SE genes) for the
three patterns, respectively. In contrast, Trendsceek was only capable of
identifying less than two SE genes, consistent with original study3. As expected,
the power of all methods increases with increasing SE strength and increasing
sample size. For example, when SE strength is high and the cell number is large
(n = 500), consistent with'®, Trendsceek detected 9, 7 and 12 SE genes for the
Hotspot, Streak and Gradient patterns (Figs. S7 and S8), respectively, again
consistent with*3. However, in such setting, both SPARK and SpatialDE reach
100% power and can detect all SE genes. Overall, the two sets of simulations
suggest that SPARK produces well-calibrated p-values while being more
powerful than the other two methods in detecting SE genes.

Olfactory Bulb Data

We applied SPARK to analyze four published data, including two data obtained
through spatial transcriptomics sequencing and two data through smFISH
(details in Materials and Methods). The first data we examined is a mouse
olfactory bulb data’, consisting of gene expression measurements for 11,274
genes on 260 spots. Consistent with simulations, both SPARK and Trendsceek
produce calibrated p-values under permuted null, while SpatialDE does not
(Fig.2A). SPARK also identified more SE genes compared to SpatialDE and
Trendsceek across a range of FDRs (Figs. 2B and S9). For example, at an FDR
of 5%, SPARK identified 772 SE genes, which is ~10-fold more than that
detected by SpatialDE (which identified 67, among which 62 are overlapped with
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SPARK; Figs. 2B and 2E); Trendsceek was unable to detect any SE genes in the
data, even though we tried ten different random seeds for the method.

We carefully examined the SE genes and found that most SE genes only
detected by SpatialDE tend to have close to zero expression levels (Fig. S10)
and appear to locate on either one or two spots (Fig. S11), suggesting potentially
false signals. In contrast, the SE genes detected only by SPARK generally have
comparable expression levels to the SE genes detected by both methods (Fig.
S10). To assess the quality of the SE genes identified by SPARK, we performed
clustering on the 772 SE genes and obtained three major spatial expression
patterns (dendrogram in Fig. 2D; UMAP visualization in Fig. S12). one
representing the mitral cell layer (Pattern I); one representing the glomerular
layer (Pattern Il); and one representing the granular cell layer (Pattern Ill); all
clearly visualized via three previously known marker genes for the three layers,
Doc2g, Kctd12 and Penk’ (Fig. 2C). For each spatial pattern, we ranked genes
only detected by SPARK based on their p-values and obtained 20 genes with
increasing p-values from the ranked list as representative examples (Figs. S13-
S15). Almost all these genes show clear spatial expression pattern, cross
validated by in situ hybridization data provided by the Allen Brain Atlas (Fig. 2C),
confirming the higher power of SPARK.

We provide three additional lines of evidence to validate the SE genes detected
by SPARK. First, we examined the highlighted marker genes in the olfactory
system presented in the original study. The list of highlighted marker genes,
while is not necessarily the complete list of all marker genes, at least represents
the likely best set of genes one can obtain that are both biologically important for
the data and are detectable in the data. Importantly, SPARK detected 8 of 10
such highlighted mitral cell layer (MCL) enriched genes; while SpatialDE only
detected 3 and Trendsceek detected none (Fig. S16). Second, we obtained a list
of 2,030 cell type specific marker genes identified in a recent single cell RNAseq
study in the olfactory bulb?®. Reassuringly, 55% of the unique SE genes identified
by SPARK are in the marker list, while only 20% of the unique SE genes
identified by SpatialDE are in the same list (Fig. 2E). Third, we obtained a list of
3,262 genes that are related to the olfactory system from the Harmonizome
database®. Again, 26% of the unique SE genes identified by SPARK are in the
Harmonizome list, while only 20% of the unique SE genes identified by SpatialDE
are in the same list (Fig. 2E). These three additional validation analyses provide
convergence support for the higher power of SPARK.
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Finally, we performed functional enrichment analyses of SE genes identified by
SPARK and SpatialDE (details in Materials and Methods). A total of 1,023 GO
terms (Fig. 2F) and 79 KEGG pathways were enriched in the SE genes identified
by SPARK at an FDR of 5%, while only 87 GO terms (overlap = 64; Fig. S17A)
and 2 KEGG pathways (overlap = 2; Fig. S17B) were enriched in the SE genes
identified by SpatialDE (Table S1; Fig. S17C). Many enriched GO terms or
KEGG pathways identified only by SPARK are directly related to the synaptic
organization and olfactory bulb development. For example, olfactory lobe
development is a highly enriched GO term detected only by SPARK
(G0:0021988; SPARK: p-value = 5.81x107% SpatialDE: p-value = 1.21x107h.
Oxytocin signaling pathway is a highly enriched KEGG pathway detected only by
SPARK (KEGG: mmu04921; SPARK: p-value = 1.59x10%; SpatialDE: p-value =
2.15x107") and is known to modify olfactory response®. The newly identified GO
term and KEGG pathway enrichment highlights the benefits of running SE
analysis with SPARK.

A further enrichment analysis using SE genes in Patterns I-1ll separately provide
additional biological insights. SPARK identified a total of 489, 714, and 684
enriched GO terms for Patterns I-lll, respectively; while SpatialDE only identified
171 (overlap = 96), 275 (overlap = 177), and 22 (overlap = 22; Fig. S18, Table
S1). For example, in Pattern |, the enriched GO term of glutamatergic synaptic
transmission is only detected by SPARK (GO0:0035249; SPARK: p-value =
1.06x107°; SpatialDE: p-value = 2.14x107%; Fig. S19; Table S1), and supports the
functional role of the synaptic organization in the mitral cell layer?’. One
representative gene in this GO term is Reln, which is only identified by SPARK
(Fig. 2C). Reln encodes the protein Reelin expressed in mitral cells and
promotes tangential to radial migration transition®. In Pattern II, the enriched GO
term of cell junction assembly is only detected by SPARK (G0:0034329; SPARK:
p-value = 1.22x10% SpatialDE: p-value = 1.48x107%; Fig. S20; Table S1), and
supports the critical role of cell junction and synaptic connection in the nerve
layer?®. One representative gene in this GO term is Cldn5, which is only identified
by SPARK (Fig. 2C). Cldn5 is known to be enriched in the olfactory nerve layer
and is critical for cell-cell adhesion®’. In Pattern lil, the enriched GO term of
dendrite morphogenesis is only detected by SPARK (G0:0048813; SPARK: p-
value = 6.53x107**; SpatialDE: p-value = 8.39x107%; Fig. S21; Table S1), and
supports the importance of dendritic morphogenesis in the development of
granular layer®’. One representative gene in this GO term is Camk2a, which is
again only identified by SPARK (Fig. 2C). Camk2a is enriched in the granular
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cell layer and encodes a protein that belongs to the Ca(2+)/calmodulin-
dependent protein kinases subfamily which is crucial for several key aspects of
synaptic and dendritic plasticity®’. Overall, these new GO terms/KEGG pathways
and SE genes that are only identified by SPARK reveal new biology in the data
that otherwise cannot be discovered by existing methods.

Breast Cancer Data

The second data we examined is a human breast cancer biopsy study’, which
contains 5,262 genes measured on 250 spots. Consistent with simulations, both
SPARK and Trendsceek produce calibrated p-values under permuted null, while
SpatialDE does not (Fig. 3A); SPARK identified more SE genes compared to
SpatialDE and Trendsceek across a range of FDRs (Figs. 3B and $S22). For
example, at an FDR of 5%, SPARK identified 290 SE genes, which is ~3-fold
more than that detected by SpatialDE (which identified 115, among which 85 are
overlapped with SPARK; Figs. 3B and 3D). In contrast, Trendsceek only
identified at most 15 SE genes across ten different random seeds. Consistent
with the olfactory bulb study, we also found that the SE genes only detected by
SpatialDE tend to have low expression levels, suggesting of potential false
positives. In contrast, the SE genes detected only by SPARK generally have
comparable expression levels to the SE genes detected by both methods (Fig.
S23). To assess the quality of the SE genes identified only by SPARK, we
obtained 20 genes with increasing p-values from the ranked list as representative
examples (Fig. S24). Again, most of these genes show clear spatial expression
pattern, confirming the higher power of SPARK.

We provide three additional lines of evidence to validate the SE genes detected
by SPARK. First, we examined the 14 cancer relevant genes highlighted in the
original study. Importantly, SPARK detected 10 of them while SpatialDE detected
7 and Trendsceek detected two (Fig. S25). Both SpatialDE and Trendsceek
missed three of these previously well-known cancer relevant genes (SCGB2A2,
KRT17 and MMP14). Second, we collected a list of 1,144 genes that are
previously known to be relevant to breast cancer through literature based on the
CancerMine database®. 14% of SE genes uniquely identified by SPARK are in
the list while only 10% by SpatialDE are in the list (Fig. 3C). For example, the
well-known proto-oncogene ERBB2 gene has tens of thousands of previous
literature support on breast cancer but it can only be identified by SPARK (Fig.
3E). Third, we collected a list of 3,538 genes that are relevant to breast cancer
based on the Harmonizome database®. Again, 44% of SE genes uniquely
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identified by SPARK are in the list while only 37% by SpatialDE are in the list (Fig.
3C). Overall, these three additional lines of evidence provide convergent support
for the higher power of SPARK.

We performed functional enrichment analysis with GO term and KEGG pathways.
At an FDR of 5%, SPARK identified 542 GO terms and 20 KEGG pathways (Fig.
3F; Table S2) while SpatialDE identified 266 GO terms (overlap = 191) and 3
KEGG pathways (overlap = 3; Fig. S26; Table S2). Many enriched gene sets
discovered only by SPARK are related to extracellular matrix organization and
immune responses (Figs. S26A-S26C; Table S2). For example, the GO term of
response to cytokine is only identified by SPARK (G0:0034097; SPARK: p-value
= 5.58x107'% SpatialDE: not enriched); cytokines are released in response to
immunity and can function to inhibit cancer development®*. One representative
gene in this GO term is HLA-B, which is a member of the human leukocyte
antigen (HLA) complex®®. HLA-B and five other HLA members are only detected
by SPARK and are all expressed in the areas of ductal cancer (Figs. 3E and
S24), suggesting a potential tumor-associated local immune response. As
another example, the GO term of immune effector process is only identified by
SPARK (G0:0002252; SPARK: p-value = 1.03x107%; SpatialDE: not enriched);
the number of immune effector cells plays an important role of cancer
immunotherapy to block the tumor immune evasion and to restore immune
surveillance®®. One representative gene related to this GO term is EEF1A1,
which is only detected by SPARK and is previously known to be upregulated in
breast cancer samples®’. EEF1A1 is highly expressed in the cancer area with
moderate expression in the rest areas (Fig. 3E) and such spatial expression
pattern is consistent with the previous hypothesis that EEF1A1 promotes tumor
cell motility and subsequently metastasis through its influence in the cytoskeleton
organization®. As last example, the GO term of cell-substrate adherens junction
is only identified by SPARK (G0:0005924; SPARK: p-value = 1.61x10°%
SpatialDE: 5.97x107%); the adhesion protein junctional adhesion molecule-A
regulates epithelial cell morphology and migration, and its over-expression has
recently been linked with increased risk of metastasis in breast cancer patients™°.
The example gene related to this GO term is CD44 (Fig. 3E), which encodes a
cell-surface glycoprotein involved in tumors metastasis. The interaction between
CD44 and matrix metalloproteinases (MMP) members such as MMP2 and
MMP14 has been discovered in many cancer cell types**". It has been
hypothesized that MMP-induced CD44 cleave is associated with enhanced cell
migration, thus facilitating metastasis. The coordinated expression of MMP2,
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MMP14 and CD44 in the cancer area of the studied sample (Figs. 3E and S24)
highlights the importance of extracellular matrix in the process of metastasis.
These new GO terms/KEGG pathways and SE genes that are only identified by
SPARK again reveal new biology in the data that otherwise cannot be discovered
by existing methods.

Hypothalamus Data

The third data we examined is a MERFISH data collected on the preoptic area of
the mouse hypothalamus*. The data contains 160 genes measured on 4,975
single cells with known spatial locations (Fig. 31), and 155 out of these 160 genes
were selected in the original study as they are makers of distinct cell populations
or relevant to various neuronal functions of the hypothalamus. Besides these
likely true positive genes, a total of 5 blank control genes that were also included
in the original study to serve as negative controls. In the analysis, consistent with
simulations, we found that SPARK produces calibrated p-values under permuted
null, while SpatialDE does not (Fig. 3G). Note that we did not apply Trendsceek
to the permuted null here due to computational reasons: it takes Trendsceek over
48 hours to analyze even one gene in this data. Also consistent with simulations,
the QQ-plot of p-values from different methods suggest that both SpatialDE and
SPARK are more powerful than Trendsceek (Fig. S27A). Because this data
contains 5 negative control genes and 155 likely positive genes, we directly
compared power of different methods based on the number of SE genes
identified given a fixed number of negative control genes identified (Fig. 3H). The
power comparison results again support a higher power of SPARK. For example,
conditional on only one blank control gene being detected (i.e. one false positive),
SPARK identified 145 SE genes, which is 6 more than that detected by
SpatialDE (which identified 139, among which 138 are overlapped with SPARK;
Figs. 3H and S27B). The performance of SPARK and SpatialDE is followed by
Trendsceek, which identified 108 SE genes, among which 103 are overlapped
with SPARK.

A careful examination suggests that almost all SE genes identified by SPARK
show clear spatial expression pattern as one would expect. For example, we
display 9 major cell classes in hypothalamus (Figs. 31 and S28A) along with 9
marker genes* (Fig. S28B). Importantly, all four SE genes only identified by
SPARK are closely related to the neuronal functions of the hypothalamus.
Specifically, Grpr encodes a multiphase membrane protein that functions as a
receptor for gastrin-releasing peptide. Grpr has been recently shown to mediate
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an antidepressant-like effect in mouse model and could be potentially served as
a new therapeutic target of depression®®. Avprla encodes a receptor for arginine
vasopressin, which is a neurohypophysial hormone involved in the regulation of
adrenocorticotropic hormone released from the pituitary**. A recent study has
shown that the blocking AVPR1A may improve social communication in autism
spectrum disorder®. Chat encodes an enzyme which catalyzes the biosynthesis
of the neurotransmitter acetylcholine. Polymorphisms in Chat have been
associated with Alzheimer's disease and mild cognitive impairment*®. Nup62cl
itself is a protein coding gene related to structural constituent of nuclear pore.
Previous studies have found that Nup62cl is co-expressed with Ghrh*?, which is
the gene coding the growth hormone-relating hormone (GHRH) secreted by the
hypothalamus that further stimulates the synthesis and release of growth
hormone (GH) in pituitary”’. These important genes missed by other methods
highlight the power of SPARK.

Hippocampus Data

The final data we examined is from a mouse hippocampus study*®. This is a
small seqFISH data that contains 249 genes measured on 131 single cells with
known spatial locations (Fig. S29A). These 249 genes include 214 genes that
were selected in the original study as transcription factors and signaling pathway
components and 35 remaining genes that are previously known cell identity
markers. In the analysis, consistent with simulations, both SPARK and
Trendsceek produce calibrated p-values under permuted null, while SpatialDE
yields conservative p-values (Fig. S29B); SPARK again identified more SE genes
compared to SpatialDE and Trendsceek across a range of FDRs (Figs. S29C
and S29D). For example, at an FDR of 5%, SPARK identified 17 SE genes; while
SpatialDE and Trendsceek identified 11 (all overlap with SPARK) and 4 (one
overlap with SPARK) SE genes, respectively (Figs. S30-S32). The 11 SE genes
identified by both SpatialDE and SPARK show clear spatial expression patterns
(Fig. S31), so are the 6 SE genes identified only by SPARK (Fig. S32). The 3 SE
genes only detected by Trendsceek tend to express uniformly highly in most cells
and show less obvious spatial pattern (Fig. S33). The higher number and
apparent spatial expression pattern of SE genes identified by SPARK support its
higher power.

We carefully examined all six SE genes that are only identified by SPARK. Four
of them are cell identity markers: FoxO1 and Slc17a8 for glutamatergic neurons;
igtp for GABAergic neurons; and opalin for Oligodendrocytes®. All of them are
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closely related to neuronal functions in hippocampus. For example, the spatial
expression pattern of FoxO1 detected by SPARK is consistent with the previous
observation that it is highly enriched in the ventral CA3 area of the hippocampus
as well as in the amygdalohippocampal region®® *!. FoxO1l is activated in
hippocampal progenitor stem cells following cortisol exposure to prenatal stress
and mediates the negative effect of stress on neurogenesis®’. Besides these
four marker genes, the remaining two genes are pou4fl and dfil, both of which
encode neural transcription factors and play important roles in the sensory
nervous system development®® **. These important genes that are missed by
other methods again highlight the power of SPARK.
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DISCUSSION

We have presented a new computational method, SPARK, for identifying genes
with spatial expression patterns in spatially resolved transcriptomic studies.
Compared with existing approaches, SPARK is computationally scalable,
produces well-calibrated p-values for type | error control, and is more powerful in
identifying SE genes. We have illustrated the benefits of SPARK through
extensive simulations and in-depth analysis of four real data sets.

Different from previous literatures in spatial statistics, SPARK incorporates a data
generative model and relies on a model-based hypothesis test framework for
spatial pattern detection. The data generative model in SPARK distinguishes it
from previous spatial data exploratory tools that rely on variogram or semi-
variogram to visualize spatial autocorrelation pattern®®°°. The model-based
hypothesis test in SPARK also distinguishes it from previous simple spatial test
statistics such as Moran’s | and Geary's C°" *® for detecting spatial
autocorrelation patterns. However, presumably because Moran’'s | relies on
asymptotic normality, its p-values under permuted null were highly inflated in the
real data we examined here (Fig. S34). In addition, Moran’s | effectively
computes correlation among neighboring locations to detect the existence of
spatial autocorrelation. Subsequently, these conventional test statistics are not
specifically designed to detect spatial patterns other than autocorrelation. For
example, studies have shown that Moran’s | (and Geary’s C) are not well
powered to detect spatial periodicity patterns®’°%. In contrast, by incorporating
multiple spatial kernel functions, SPARK can accommodate a range of spatial
patterns commonly observed in spatial transcriptomics studies. Indeed, in our
analysis, we also found that Moran’s | test was unable to identify most SE genes
in pattern | from the mouse olfactory bulb data, including the well-known genes
Doc2g and Reln, whose spatial patterns do not reflect simple autocorrelation.
Subsequently, the power of Moran’s | test was lower than SPARK across all four
real data sets (Fig. S35).

We have primarily focused on modeling count data with SPARK. Modeling count
data directly allows us to account for the mean-variance dependency observed in
the spatial data (Fig. S36), resulting in an appreciable power gain. Such power
gain is especially apparent in data with low count reads such as the first two
spatial transcriptomics data we examined here. However, we acknowledge that
the power gain brought by count modeling may be small in data with high count
reads such as the MERFISH and seqFISH data, since a normal distribution can
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often approximate high counts as well as an over-dispersed Poisson distribution.
Subsequently, it could be beneficial to provide a Gaussian version of SPARK.
Here, we have developed such a Gaussian version of SPARK and implemented
it in the SPARK software package. Modeling and algorithm details are provided
in the Supplementary Text. The Gaussian version of SPARK allows for robust
modeling and scalable computation and can be particularly beneficial for data
with high counts. Because we rely on novel statistical techniques to obtain p-
values, the Gaussian version of SPARK also produces well-calibrated p-values in
all permuted data (Fig. S37), much more so than the p-values from SpatialDE.
While the power of the Gaussian version of SPARK is inferior to the Poisson
version of SPARK for data with low counts (Figs. S38A-S38B), its power is
somewhat comparable with the Poisson version of SPARK for data with high
counts, even though its power remains higher than that of SpatialDE (Figs.
S38C-538D). We hope that by providing both the Poisson and Gaussian
versions of SPARK, practitioners can make their own choice in selecting the
appropriate model for applied data analysis.

We have primarily focused on aggregating p-values obtained from ten different
kernels. Aggregating p-values across different kernels ensures stable
performance across a range of possible scenarios. However, we fully
acknowledge that some kernels may work preferentially well for certain data sets
(Fig. S39), for detecting certain spatial patterns, and/or for identifying certain SE
genes. Subsequently, it could be beneficial to estimate the weights of the ten
kernels for each gene separately. In addition, because many SE genes may
share similar spatial expression pattern, it could be beneficial to exploit such
common information across multiple genes to further improve the power of SE
analysis. For example, we could infer for all genes in the same gene set a
common set of weights, with which to combine p-values from different kernels.
How to obtain these kernel weights and how to combine p-values in a weighted
fashion are important topics for future research.

There are several potential extensions for SPARK. We have primarily focused on
de novo detection of genes with spatial expression patterns without knowing
what specific spatial patterns to look for in the data a priori. If we have prior
knowledge on the structure of the tissue, we can incorporate such structural
information into the kernel functions to facilitate the detection of genes that are
specifically expressed in the known structures. We have primarily focused on
analyzing spatial transcriptomic data collected on a two-dimensional space of a
tissue/culture layout. SPARK is flexible and can be easily extended to analyze


https://doi.org/10.1101/810903
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/810903; this version posted October 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

three-dimensional (3D) data sets such as STARmap where the depth of the
sample location in the tissue can be recorded® or even higher dimensional data
sets where other coordinates (e.g. time) are also recorded. We have primarily
relied on simple spatial pattern plots and hierarchical clustering for downstream
analysis to visualize and categorize identified SE genes from SPARK. Using
model based downstream analysis approaches such as the hidden Markov
random field model®® may provide additional accuracy in the categorization of
spatial patterns inferred from identified SE genes. We have primarily focused on
using an over-dispersed Poisson model to model count data. Several recent
studies have shown that over-dispersed Poisson models are well suited for
modeling the data generating process underlying, for example, the unique
molecular identifier (UMI) based sequencing studies®™ ®2. However, exploring the
use of zero inflated models for data types with inflated zero counts could be a
useful future extension. We have primarily focused on analyzing one gene at a
time. Future extension of SPARK towards joint modelling of multiple correlated
genes in a hierarchical Bayesian framework may further increase power, as it
allows for information sharing on the common spatial patterns inferred across
genes. Finally, SPARK is computationally efficient. It takes less than an hour to
analyze each real data set examined here (Table S3) and can easily handle tens
of thousands of genes measured on tens of thousands of spatial locations (Fig.
S40). However, extending SPARK to analyze the larger data collected from
emerging techniques such as Slide-seg®® will likely require new algorithmic
development or better computing environment other than standard desktop PCs.
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MATERIALS AND METHODS
SPARK: Model and Algorithm

We consider modeling gene expression data collected by various high-
throughput spatial sequencing techniques such as smFISH and spatial
transcriptomics technology. These spatial techniques simultaneously measure
gene expression levels of m different genes on n different spatial locations on a
tissue of interest (which we simply refer to as samples). The gene expression
measurements are often obtained in the form of counts: they are collected either
as the number of barcoded mRNA for any given transcript in a single cell through
smFISH based techniques or as the number of sequencing reads mapped to any
given gene through sequencing based spatial techniques. The number of genes,
m, varies across different spatial sequencing techniques and often ranges from a
couple hundred (in the case of smFISH) to the whole transcriptome (in the case
of spatial transcriptomics technology). The sample composition varies across
different spatial sequencing techniques and can consist of either a single cell (in
the case of smFISH) or a small set of approximately homogenous single cells
residing in a small region of the sampled location known as a spot (in the case of
spatial transcriptomics technology). The sampled locations have known spatial
coordinates that are recorded during the experiment. These sampled locations
can either be considered as random (in the case of SmFISH; as expressions are
measured on single cells that are randomly scattered across the tissue/culture
space) or are pre-determined by researches (in the case of spatial
transcriptomics technology) before the experiment. We denote s; = (s;1,S;2) as
the spatial coordinates (i.e. location index) for i'th sample, with i € (1,-:-,n).
These spatial coordinates vary continuously over a two-dimensional space R?, or
s; € R%. While we only focus on the cases where samples are collected on a two-
dimensional space of a tissue/culture layout, our model and method are general,
capable of handling three-dimensional cases where the depth of the sample
location in the tissue can be recorded or handling even higher dimensional cases
where other coordinates (e.g. time) are also recorded.

Our primary goal is to detect genes whose expression level displays spatial
pattern with respect to the sample locations. We simply refer to these genes as
SE genes (genes with spatial expression pattern), in parallel to DE genes
(differentially expressed genes) used in other settings. To identify SE genes, we
examine one gene at a time and model its expression level across sampled
locations using a generalized linear spatial model (GLSM)** ®°. GLSM, also
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known as the generalized linear geostatistical model or the spatial generalized
linear mixed model, is a generalized linear mixed model that directly models non-
Gaussian spatial data and uses random effects to capture the underlying
stationary spatial process. GSLM has been commonly used for interpolating and
prediction of spatial data, with applications in spatial disease mapping and spatial
epidemiologic studies®® ®’. However, different from all these previous GLSM
development, we instead focus on developing a hypothesis testing framework for
GLSM. Here, for the gene of focus, we denote y;(s;) as the gene expression
measurement in terms of counts for the i'th sample. We denote x;(s;) as a k-
vector of covariates that include a scalar of one for the intercept and k-1
observed explanatory variables for the i'th sample. These explanatory variables
could contain batch information, cell cycle information, or other information that
are important to adjust for during the analysis. We denote N;(s;) as the
normalization factor for i'th sample. Here, we set N;(s;) as the summation of the
total number of counts across all genes for the sample as our main interest is in
analyzing the relative gene expression level. Other choices of N;(s;) are possible;
for example, N;(s;) can be set to one if the main interest is in the absolute gene
expression level. We consider modeling the observed expression count data with
an over-dispersed Poisson distribution
yi(s)~Poi(N;(s);(s)), i = 1,2,-+,n
where A;(s;) is an unknown Poisson rate parameter that represents the
underlying gene expression level for the i'th sample. In the spatial setting, 4;(s;)
can also be viewed as the unobserved spatial random process occurred at
location s;. We model the log scale of the latent variable A;(s;) as a linear
combination of three terms,
108(11' (Si)) =x;(s)TB + bi(s) + €,
where B is a k-vector of coefficients that include an intercept representing the
mean log-expression of the gene across spatial locations together with k-1
coefficients for the corresponding explanatory variables; ¢; is the residual error
that is independently and identically distributed from N (0,7, ) with variance t,;
and b;(s;) is a zero-mean, stationary Gaussian process modeling the spatial
correlation pattern among spatial locations
b(s;) = (b1(51),b2(52), "+, by (50))" ~ MYN(0, 7, K(5)),
where the covariance K(s) is a kernel function of the spatial locationss =
(51,-,8,)", with ijth element being K(s; s;); 7, is a scaling factor of the
covariance kernel; and MVN denotes a multivariate normal distribution. We will
discuss the choice of the kernel function in more details below. In the above
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model, the covariance for the latent variables log(A(s;)) isZ = 7, K(s) + 7,1,
where A(s;) = (4,(51),42(83),, 4, (s,))T and I is an n-dimensional identity
matrix. In spatial statistics, 7, is commonly referred to as the partial sill which
effectively measures the expression variance in log(Ai(si)) captured by spatial
patterns or spatial location information; 7, is commonly referred to as the nugget
which effectively measures the expression variance in log(Ai(sl-)) due to random
noise independent of spatial locations.

In the GLSM defined above, testing whether a gene shows spatial expression
pattern can be translated into testing the null hypothesis Hy:t, =0. The
statistical power of such hypothesis test will inevitably depend on how the spatial
kernel function K(s) matches the true underlying spatial pattern displayed by the
gene of interest. For example, a periodic kernel will be particularly useful to
detect expression pattern that is periodic across the location space, while a
Gaussian kernel will be particularly useful to detect expression pattern that is
clustered in focal areas. The true underlying spatial pattern for any gene is
unfortunately unknown and may vary across genes. To ensure robust
identification of SE genes across various spatial patterns, we consider using a
total of ten different spatial kernels, including five periodic kernels with different
periodicity parameters and five Gaussian kernels with different smoothness
parameters. The detailed construction of these kernels is described in
Supplementary Text. These ten kernels cover a range of possible spatial patterns
that are observed in common biological data sets (Fig. S41) and are used as
default kernels in our software implementation for all analysis results presented
here. However, we note that our method and software implemented can easily
handle many other kernel functions or incorporate different number of kernel
functions as the users see fit.

We fit the above GLSM and test the null hypothesis using the ten kernels one at
a time. Parameter estimation and hypothesis testing in GLSM is notoriously
difficult, as the GLSM likelihood consists of an n-dimensional integral that cannot
be solved analytically. To overcome the high dimensional integral and enable
scalable estimation and inference with GLSM, we develop an approximate
inference algorithm based on the penalized quasi-likelihood (PQL) approach® .
The algorithmic details are provided in the Supplementary Text. With parameter
estimates from the PQL-based algorithm, we computed a p-value for each of the
ten kernels using the Satterthwaite Method® based on score statistics, which
follow a mixture of chi-square distributions. Afterwards, we combined these ten p-
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values through the recently developed Cauchy p-value combination rule®*. To
apply the Cauchy combination rule, we converted each of the ten p-values into a
Cauchy statistic, aggregated the ten Cauchy statistics through summation, and
converted the summation back to a single p-value based on the standard Cauchy
distribution. The Cauchy rule takes advantage of the fact that combination of
Cauchy random variables also follows a Cauchy distribution regardless whether
these random variables are correlated or not?: ?2. Therefore, the Cauchy
combination rule allows us to combine multiple potentially correlated p-values
into a single p-value without loss of type | error control. After obtaining m p-
values across m genes, we controlled for false discovery rate (FDR) using the
Benjamini-Yekutieli (BY) procedure, which is effective under arbitrary
dependence across genes’.

We refer to the above method as the Poisson version of SPARK (Spatial PAttern
Recognition via Kernels) and is the main method used in the present study.
Besides the Poisson version, we have also developed a Gaussian version of
SPARK for modeling normalized spatial data (Supplementary Text). Both
versions of SPARK are implemented in the same R package with multiple
threads computing capability, and with underlying efficient C/C++ code linked
through Rcpp. The software SPARK, together with all analysis code used in the
present study for reproducing the results presented in the manuscript, are freely
available at www.xzlab.org/software.html.

Simulation Designs

We performed two sets of simulations. In the first set of simulations, we
simulated gene expression data on 260 spatial locations (i.e. spots) collected in
the mouse olfactory bulb study using parameters inferred from the corresponding
real data (detail of the study is described in the next section). For null simulations,
we simulated 10,000 non-SE genes on these locations to examine type | error
control. For power simulations, we simulated 1,000 SE genes and 9,000 non-SE
genes on these locations to examine method power. In either null or power
simulations, for each gene in turn, we first simulated the non-spatial residual
errors on the spots independently based on a normal distribution with mean zero
and variance being either 0.2, 0.35 or 0.6, which are equivalent to approximately
the first quartile, median and third quartile of the non-spatial variance estimates
in the real data, respectively. For non-SE genes, we set the intercept to be -10.2,
which is shared across all spots and corresponds to the median of the intercept
estimates in the mouse olfactory data. For SE genes, we first categorized spots
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into two groups — a group of spots with low expression levels and a group of
spots with high expression levels -- based on the three spatial patterns illustrated
in Fig. 1C. We then set the intercept in the low expression group to be -10.2 and
set the intercept in the high expression group to be either two-fold, three-fold or
four-fold higher than the lower one on rate parameter scale; thus the intercept in
the high expression group is -9.5, -9.1, and -8.8, for the three cases, respectively.
The difference in the intercept between the two groups of spots thus introduces
spatial differential expression pattern. Finally, for each gene in turn, regardless
whether it is SE or non-SE, we summed the residual errors and the intercept to a
spot-specific latent variable log 4;. We then simulated the gene expression count
data based on a Poisson distribution with the rate being a product of the latent
variable A; and the total read counts (N;) that is obtained from the real data. That
is, y;~Poi(N;A;) for the i'th spot. With the above procedure, in each of the spatial
pattern illustrated in Fig. 1C, we first simulated data using a baseline parameter
setting where the noise variance is set to be 0.35 and the intercept is set to be
either -10.2 for non-SE genes or -10.2/-9.1 (representing a three-fold change) for
SE genes. Afterwards, we varied one parameter at a time to examine the
influence of different parameters on the performance of different methods. We
performed 10 replicates for each scenario and combined results across all 10
replicates.

In the second set of simulations, we simulated count data on spatially distributed
cells following the Trendsceek paper. Specifically, we first randomly simulated
the spatial locations for a fixed number of cells (n = 100, 200 or 500) through a
random-point-pattern Poisson process. We generated 1,000 genes in the
simulated data, which were all non-SE genes in the null simulations and
consisted of 100 SE genes and 900 non-SE genes in the power simulations. For
non-SE genes, the expression measurements from the real data were randomly
assigned to the simulated cells regardless of their spatial locations (Fig. 1E). For
SE genes, the expression measurements from the real data were assigned to the
simulated cells to display three distinct spatial patterns (Hotspot, Streak and
Gradient patterns; Fig. 1E). Specifically, for the first two spatial patterns, we
created either a circle (for Hotspot pattern) or a band (for Streak pattern) in the
middle of the panel and marked cells residing in these areas. The size of the
circle and the size of the band were designed so that the marked cells inside
these areas represent a fixed proportion of all cells, with the proportion set to be
either 10%, 20%, or 30%. The expression measurements of the non-marked
cells were randomly assigned from the observed expression distribution of the
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gene in the seqFISH data. The expression measurements of the marked cells
were randomly assigned from either the upper quantile (for 50 SE genes) or the
lower quantile (for the other 50 SE genes) of the expression distribution of the
gene in the segFISH data. We set the quantile cutoff to be either 40%, 66% or
80%, representing low, moderate, or high SE signal strength, respectively. These
three different quantile cutoffs correspond to an expected expression fold change
between the marked cells and the non-marked cells of either 1.5, 2 or 2.5,
respectively. For the Gradient pattern, the expression levels of a fraction of
marked cells (=30%, 40%, or 50%) were set either in an increasing order (for 50
SE genes) or a decreasing order (for the other 50 SE genes) along the x-axis. To
do so, we draw the expression measurements for the marked cells randomly
from the observed expression distribution in the real data and assigned these
drawn values in either increasing or decreasing order to the marked cells based
on their x-axis coordinates. In contrast, the expression measurements of the non-
marked cells were again randomly assigned from the observed expression
distribution of the gene in the seqFISH data, regardless of their spatial location.
In all these simulations, we varied the number of cells (n = 100, 200 or 500), the
SE strength (low, moderate or high; measured by the quantile cutoff for the first
two spatial patterns and by the fraction of cells displaying expression gradient for
the third spatial pattern), as well as the fraction of cells in the focal/streak area for
the first two spatial patterns.

Clustering SE Genes Detected by SPARK

We summarized the spatial expression patterns detected by SPARK by dividing
SE genes into different categories. To do so, we first applied variance-stabilizing
transformation (VST) to the raw count data’® and obtained the relative gene
expression levels through adjusting for the log-scale total read counts. We then
used the hierarchical agglomerative clustering algorithm in the R package
amap (v0.8-17) to cluster identified SE genes detected by SPARK into five
groups. Afterwards, we summarized the gene expression patterns by using the
expression level of the five cluster centers (Fig. S42). In the hierarchical
clustering, we set the two optional parameters in the R function to be Euclidean
distance and Ward's criterion, respectively.

Gene Sets and Functional Enrichment Analysis

For each of the first two real data sets, we obtained lists of genes that can be
used to serve as unbiased validation for the SE genes identified by different
methods. Specifically, for the olfactory bulb data, we obtained a gene list directly
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based on the three layers (mitral, glomerular and granule) of the main olfactory
bulb listed in the Harmonizome database
(https://amp.pharm.mssm.edu/Harmonizome/). For the breast cancer data, we
obtained from the Harmonizome database a gene list that consists of breast
cancer related genes from six different data sets (OMIM Gene-Disease
Associations; PhosphoSitePlus Phosphosite-Disease Associations; DISEASES
Text-mining Gene-Disease Association Evidence Scores; GAD Gene-Disease
Associations; GWAS Catalog SNP-Phenotype Associations). For the breast
cancer data, we also obtained from the CancerMine database
(http://bionlp.bcgsc.ca/cancermine/) another gene list that consists of breast
cancer related genes that are either cancer drivers, oncogenes, or tumor
suppressors. We used these gene lists to validate the SE genes identified by
different methods.

In addition, we performed the functional enrichment analysis of significant SE
genes identified by SPARK and SpatialDE in Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG). We performed all enrichment
analyses using the R package clusterProfiler’* (v3.12.0). In the package, we
used the default “BH” method for p-value multiple testing correction and we used
the default number of permutations to be 1,000.

Spatial Transcriptomics Data Sets

We downloaded two spatial transcriptomics data sets from the Spatial
Transcriptomics Research (http://www.spatialtranscriptomicsresearch.orq).
These two data sets include a mouse olfactory bulb data and a human breast
cancer data. These data consist of gene expression measurements in the form of
read counts that are collected on a number of spatial locations known as spots.
Following the SpatialDE paper, we used the MOB Replicate 11 file for mouse
olfactory bulb data, which contains 16,218 genes measured on 262 spots and
Breast Cancer Layer 2 file for the breast cancer data, which contains 14,789
genes measured on 251 spots. We filtered out genes that are expressed in less
than 10% of the array spots and selected spots with at least 10 total read counts.
With these filtering criteria, we analyzed a final set of 11,274 genes on 260 spots
in the mouse olfactory bulb data and 5,262 genes on 250 spots for the breast
cancer data. In the analysis, we performed permutations to construct an
empirical null distribution of p-values for each method by permuting the spot
coordinates 10 times. Afterwards, we examined type | error control of different
methods based on the empirical null distribution of p-values.
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MERFISH Data Set

We obtained the MERFISH data set collected on the mouse preoptic region of
the hypothalamus from Dryad**’?. We used the slice at Bregma +0.11mm from
animal 18 for analysis, as it contains all 160 genes measured on the largest
number of single cells (5,665) across all nine cell classes. Among the 160 genes,
155 of them were pre-selected in the original study as either known markers for
major cell classes or relevant to various neuronal functions of the hypothalamus
(e.g. some are neuropeptides and some are neuro-modulator receptors). Most of
these 155 genes are expected to have spatial expression pattern in the
hypothalamus. The remaining 5 genes are blank control genes without spatial
expression pattern in the hypothalamus and thus can serve as negative controls.
The downloaded data contains normalized genes expression values, which were
computed as read counts divided by either the cell volume (combinatorial
smFISH) or arbitrary fluorescence units per um?® (non-combinatorial, sequential
FISH) and further scaled by 1,000. To obtain the raw count data, we thus
rescaled the expression values by first multiplying 1,000, adjusted for cell volume,
and then converted the rescaled value into integers by taking the ceiling over the
rescaled data. After removing the ambiguous cells that were identified as putative
doublets in the original data, we analyzed a final set of 160 genes on 4,975 cells.
In the analysis, we permuted the location coordinates 100 times to construct an
empirical null distribution, with which we examined type | error control of different
methods.

SeqFISH Data Set

We obtained the seqFISH data set collected on the mouse hippocampus from
the supplementary file of the original paper*®. Following the SpatialDE paper, we
extracted the field 43 data set for analysis. The data are in the form of raw count
data for 249 genes measured in 257 cells with known spatial location information.
Among 249 measured genes, 214 were selected from a list of transcription
factors and signaling pathway components, and the remaining 35 were selected
from cell identity markers*®. Following Trendsceek*® and the original study*®, we
filtered out cells with x- or y-axis values falling outside the range of 203 - 822
pixels in order to address border artifacts. After filtering, we analyzed a final set
of 249 genes measured on 131 cells. In the analysis, we permuted the location
coordinates 100 times to construct an empirical null distribution, with which we
examined type | error control of different methods.

Compared Methods
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We compared SPARK with two existing methods for detecting genes with spatial
expression patterns. Both of these methods are designed for normalized data.
The first method is Trendsceek (R package trendsceek; v1.0.0; download date:
12/20/2018). We followed the same procedure described in the original
Trendsceek paper®® to filter and normalize count data. Specifically, for the two
spatial transcriptomics data, we excluded genes that are expressed in less than 3
spots and excluded spots that contain less than 5 read counts. We then
performed log10-transformation on raw count data (by adding a pseudo-count of
one to void log transformation of zero values). For the real data analysis, we
focused on analyzing the top 500 most variable genes to ensure sufficient power
as well as computational feasibility as described in the Trendsceek paper. For
the permuted data, we analyzed all the genes to construct an empirical null
distribution. For seqFISH data, we first removed boundary cells as described in
the previous section. Afterwards, following the Trendsceek recommendation, for
each gene in turn, we performed a one-sided winsorization procedure to remove
outlier effects by setting the first four largest values to be the fifth largest value.
We then applied log10-transformation on the count data (again adding a pseudo-
count of one) to obtain normalized expression values. For MERFISH data, we
performed logl0-transformation on raw count data (again adding a pseudo-count
of one) and included all genes for analysis. Besides filtering and normalization,
Trendsceek relies on permutation to compute p-values. Here, we set the number
of permutations to be the default of 10,000. In addition, because the results of
Trendsceek depend on the seeds used in the software, we analyzed each data
using ten different seeds and reported results based on the seed that yields the
highest number of discoveries; thus the power estimates of Trendsceek are likely
upward biased. One disadvantage of Trendsceek is its slow computation: it takes
over 48 hours to analyze one single gene in the mouse hypothalamus data.
Therefore, in that data, we only applied the Trendsceek to the real data but not to
the permuted data. Following the Trendsceek paper, we used the Benjamini-
Hochberg procedure implemented in Trendsceek software to obtain adjusted p-
value (i.e. FDR). With the adjusted p-value, we declared an SE gene significant if
at least one of the four adjusted p-value outputs from (the four tests of)
Trendsceek is below the threshold of 0.05.

The second method we compared with is SpatialDE (python package; v.1.1.0;
download date: 12/12/2018). For the mouse olfactory data and human breast
cancer data, we directly used the analysis code provided by the SpatialDE
authors on the Github (https://github.com/Teichlab/SpatialDE) to perform analysis.
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For the mouse hippocampus data, we applied their analysis code to the border
artifacts adjusted data set described above to avoid detection of border artifacts
and ensure fair comparison across methods. For the mouse hypothalamus data,
we also directly applied the MERFISH analysis code described in the SpatialDE
paper. Following the SpatialDE paper, we declared an SE gene as significant if
the output g-value (i.e. FDR) from SpatialDE is below the threshold of 0.05.

Finally, we also examined the performance of Moran’s | test in all four real data
sets. We used the function moran.test implemented in the R package spdep
(v1.1.2) for this analysis. The results on Moran’s | are presented in the
Discussion.
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Figure 1. Method schematic of SPARK and simulation results. (A) Method
schematic of SPARK. SPARK examines one gene at a time and models the gene
expression measurements on spatial locations using the generalized linear spatial
model (GLSM). To detect whether the gene shows spatial expression pattern, SPARK
relies on a series of spatial kernels for pattern recognition and outputs a p-value for
each spatial kernel using the Satterthwaite method that enables exact p-value
computation. All these p-values from different spatial kernels are subsequently
combined into a final SPARK p-value through the Cauchy combination rule. (B)
Quantile-quantile plot of the observed -logl0 p-values from different methods against
the expected -log10 p-values under the null for the first set of null simulations based on
the mouse olfactory bulb data. p-values are combined across ten simulation replicates.
Simulations are performed under moderate noise (7, = 0.35). Compared methods
include SPARK (pink), SpatialDE (purple), Trendsceek.E (light salmon) which is the
Emark test of Trendsceek, Trendsceek.p (yellow-green) which is the Markcorr test of
Trendsceek, Trendsceek.y (light green) which is the Markvario test of Trendsceek, and
Trendsceek.V (wheat) which is the Vmark test of Trendsceek. p-values from SPARK
and some of the Trendsceek methods (e.g. Markvario and Vmark) are well calibrated. In
contrast, p-values from SpatialDE, and to a lesser extent from the Emark and Markcorr
tests of Trendsceek, are overly conservative and distributed below the expected
diagonal line. Representative expression pattern for a null gene that does not show a
spatial expression pattern is embedded inside the panel. (C) Power plots show the
proportion of true positives (y-axis) detected by different methods at a range of false
discovery rates (FDR; x-axis) for the first set of alternative simulations based on the
mouse olfactory bulb data. Representative genes displaying each of the three spatial
expression patterns I-lll are embedded inside the panels. The proportion of true
positives is averaged across ten simulation replicates. Simulations are performed under
moderate noise (r, = 0.35) and moderate SE strength (threefold). Trendsceek (sky-blue)
is the combined test of Trendsceek. (D) Quantile-quantile plot of the observed -log10 p-
values from different methods against the expected -logl0 p-values under the null for
the second set of null simulations based on the SeqFISH data. p-values are combined
across ten simulation replicates. Simulations are performed under moderate sample
size (n = 200). p-values from SPARK and Trendsceek are well calibrated. In contrast,
p-values from SpatialDE are overly conservative and distributed below the expected
diagonal line. Representative expression pattern for a null gene that does not show a
spatial expression pattern is embedded inside the panel. (E) Power plots show the
proportion of true positives (y-axis) detected by different methods at a range of false
discovery rates (FDR; x-axis) for the first set of alternative simulations based on the


https://doi.org/10.1101/810903
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/810903; this version posted October 21, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

SeqFISH data. Representative genes displaying each of the three spatial expression
patterns are embedded inside the panels. The proportion of true positives is averaged
across ten simulation replicates. Simulations were performed under moderate fraction of
marked cells (20%) and moderate SE strength (2 fold) for the hotspot and streak
patterns, or under moderate SE strength (40% cells displaying expression gradient) for
the linear gradient pattern. In all these simulations, SPARK properly controls for type |
error and is more powerful than the other two methods for detecting genes with spatial
expression patterns.
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Figure 2: Analyzing the mouse olfactory bulb data. (A) Quantile-quantile plot of the
observed -logl0 p-values from different methods are plotted against the expected -
log10 p-values under the null in the permuted data. p-values are combined across ten
permutation replicates. Compared methods include SPARK (pink), SpatialDE (purple),
Trendsceek.E (light salmon) which is the Emark test of Trendsceek, Trendsceek.p
(yellow-green) which is the Markcorr test of Trendsceek, Trendsceek.y (light green)
which is the Markvario test of Trendsceek, and Trendsceek.V (wheat) which is the
Vmark test of Trendsceek. p-values from SPARK and various Trendsceek methods are
well calibrated. In contrast, p-values from SpatialDE are overly conservative at large
values and are overly anti-conservative at small values. (B) Power plot shows the
number of genes with spatial expression pattern (y-axis) identified by different methods
at a range of false discovery rates (FDRs; x-axis). Across a range of FDRs, SPARK
detected more genes with spatial expression pattern than SpatialDE, while Trendsceek
(sky-blue) which is the combined test of Trendsceek, detected almost none. (C) In situ
hybridization of three representative genes (Reln, Cldn5, and Camk2a) obtained from
the database of the Allen Brain Atlas. Reln is spatially expressed in the mitral layer and
glomeruli layer. Cldn5 is spatially expressed in the nerve layer. Camk2a is spatially
expressed in the granular layer. Spatial expression pattern for the same three genes
(Reln, Cldn5, and Camk?2a) in the spatial transcriptomics data, along with their p-values
from SPARK (inside parenthesis). Color represents relative gene expression level
(purple: high; green: low). These genes are only identified by SPARK, but not by the
other two methods. Spatial expression patterns for three additional known marker genes
(Doc2g, Kctd12, and Penk) in the spatial transcriptomics data, along with their p-values
from SPARK (inside parenthesis). These genes are previously known molecular
markers for different layers in the mouse olfactory bulb: Doc2g for mitral layer; Kctd12
for nerve layer; and Penk for granular layer. (D) Three distinct spatial expression
patterns summarized based on the 772 SE genes that are identified by SPARK, along
with dendrogram displaying the clustering of these three main patterns. (E) Venn
diagram shows the overlap between SE genes identified by SPARK and SpatialDE. Bar
plot shows the percentage of SE genes identified by SPARK (orange/pink) or SpatialDE
(orange/purple) that are also validated in two gene lists, one from a literature (left) and
the other from the Harmonizome database (right). The orange bar represents the
percentage of SE genes identified by both SPARK and SpatialDE that are in either of
the gene lists; the pink bar represents the percentage of unique SE genes identified by
SPARK that are in either of the gene lists; the purple bar represents the percentage of
unigue SE genes identified by SpatialDE that are in either of the gene lists. In both gene
lists, SE genes identified only by SPARK show a higher percentage of overlap with
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existing gene lists than SE genes identified only by SpatialDE. (F) Bubble plot shows —
logl0 p-values for pathway enrichment analysis on SE genes obtained by SPARK.
Gene sets are colored by three categories: GO biological process (blue), GO molecular
function (purple), and GO cellular component (yellow).
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Figure 3: Analyzing the human breast cancer data and the mouse hypothalamus
data. (A) Quantile-quantile plot of the observed -log10 p-values from different methods
are plotted against the expected -log10 p-values under the null in the permuted data. p-
values are combined across ten permutation replicates. Compared methods include
SPARK (pink), SpatialDE (purple), Trendsceek.E (light salmon) which is the Emark test
of Trendsceek, Trendsceek.p (yellow-green) which is the Markcorr test of Trendsceek,
Trendsceek. y (light green) which is the Markvario test of Trendsceek, and
Trendsceek.V (wheat) which is the Vmark test of Trendsceek. p-values from SPARK
and various Trendsceek methods are approximately well calibrated. In contrast, p-
values from SpatialDE are overly conservative at large values and are overly anti-
conservative at small values. (B) Power plot shows the number of genes with spatial
expression pattern (y-axis) identified by different methods at a range of false discovery
rates (FDRs; x-axis). Across a range of FDRs, SPARK detected more genes with spatial
expression pattern than SpatialDE, while Trendsceek (sky-blue) which is the combined
test of Trendsceek, detected only a few. (C) Bar plot shows the percentage of SE genes
identified by SPARK (orange/pink) or SpatialDE (orange/purple) that are also validated
in two gene lists, one from the CancerMine database (left) and the other from the
Harmonizome database (right). The orange bar represents the percentage of SE genes
identified by both SPARK and SpatialDE that are in either of the gene lists; the pink bar
represents the percentage of unique SE genes identified by SPARK that are in either of
the gene lists; the purple bar represents the percentage of unique SE genes identified
by SpatialDE that are in either of the gene lists. In both gene lists, SE genes identified
only by SPARK show a higher percentage of overlap with existing gene lists than SE
genes identified only by SpatialDE. (D) Venn diagram shows the overlap between SE
genes identified by SPARK and SpatialDE. (E) Spatial expression pattern for five genes
(HLA-B, EEF1A1, ERBB2, MMP14, and CD44) that are only identified by SPARK but
not by the other two methods. The p-values for the five genes from SPARK are shown
inside parenthesis. Color represents relative gene expression level (purple: high; green:
low). For reference, the hematoxylin and eosin (H&E) staining on an adjacent section is
shown in the top left panel. The dark staining in the H&E panel represents potential
tumors. The H&E panel is reproduced based on the reference’. These five genes are
previously known molecular markers associated with tumor induced immune response
(HLA-B), growth factor (ERBB2), or metastasis (EEF1A1, MMP14 and CD44). (F)
Bubble plot shows —logl0 p-values for pathway enrichment analysis on SE genes
obtained by SPARK. Gene sets are colored by categories: GO biological process (blue),
GO molecular function (purple), and GO cellular component (yellow). (G) Quantile-
guantile plot of the observed -log10 p-values from different methods are plotted against
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the expected -logl0 p-values under the null in the permuted data. p-values are
combined across one hundred permutation replicates. Compared methods include
SPARK (pink) and SpatialDE (purple). Results for Trendsceek are not included here
due to computational issue. (H) Power plot shows the number of genes with spatial
expression pattern (y-axis) identified by different methods vs the number of blank
control genes identified at the same threshold (x-axis). SPARK detected more genes
with spatial expression pattern than SpatialDE and Trendsceek (sky-blue) across
various numbers of false discoveries. Color represents relative gene expression level
(purple: high; green: low). () Spatial distribution of all major cell classes on the 1.8-mm
by 1.8-mm imaged slice from a single female mouse (Bregma +0.11). Cells are colored
by cell classes shown in the legend, where the cell class information are obtained from
the reference®®. Spatial distribution of four main cell classes. The spatial distributions of
the remaining five cell classes are shown in a Supplementary Figure. The cell classes
are represented by colored dots while the background of all other cells is shown as gray
dots. Spatial expression pattern for four representative genes (Gadl, Mbp, Cd24a, and
Myh11) that are identified by all three methods. The p-values for the four genes from
SPARK are shown inside parenthesis.
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