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Abstract

Across sensory systems, complex spatio-temporal patterns of neural activity arise following the onset (ON)
and offset (OFF) of simple stimuli. While ON responses have been widely studied, the mechanisms generating
OFF responses in cortical areas have so far not been fully elucidated. Recent studies have argued that OFF
responses reflect strongly transient sensory coding at the population level, suggesting they may be generated
by a collective, network mechanism. We examine here the hypothesis that OFF responses are single-cell
signatures of network dynamics and propose a simple model that generates transient OFF responses through
recurrent interactions. To test this hypothesis, we analyse the responses of large populations of neurons in
auditory cortex recorded using two-photon calcium imaging in awake mice passively listening to auditory
stimuli. Adopting a population approach, we find that the OFF responses evoked by individual stimuli
define trajectories of activity that evolve in low-dimensional neural subspaces. A geometric analysis of
the population OFF responses reveals that, across different stimuli, these neural subspaces lie on largely
orthogonal dimensions that define low-dimensional transient coding channels. We show that a linear network
model with recurrent interactions provides a simple mechanism for the generation of the strong OFF responses
observed in auditory cortex, and accounts for the low-dimensionality of the transient channels and their
global structure across stimuli. We finally compare the network model with a single-cell mechanism and
show that the single-cell model, while explaining some prominent features of the data, does not account for
the structure across stimuli captured by the network model.
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Introduction

Neural responses within the sensory cortices are inherently transient. In the auditory cortex even the simplest
stimulus, for instance a pure tone, is able to evoke neural responses that strongly vary in time following the
onset and offset of the stimulus. A number of past studies have reported a prevalence of ON- compared to
OFF-responsive neurons in different auditory areas (Phillips et al., 2002; Luo et al., 2008; Fu et al., 2010;
Pollak and Bodenhamer, 1981). As a result, the transient onset component has been long considered the
dominant feature of auditory responses, and has been extensively studied across the auditory pathway (Liu
et al.; 2019b; Kuwada and Batra, 1999; Grothe et al., 1992; Guo and Burkard, 2002; Yu et al., 2004; Heil,
1997a,b), with respect to its neurophysiological basis and perceptual meaning (Phillips et al., 2002). In
parallel, due to less evidence of offset-responsive neurons in anaesthetized animals, OFF cortical responses
have received comparably less attention. Yet, OFF responses have been observed in awake animals throughout
the auditory pathway, and in the mouse auditory cortex they constitute from 30% to 70% of the responsive
neurons (Scholl et al., 2010; Keller et al., 2018; Joachimsthaler et al., 2014; Liu et al., 2019a; Sollini et al.,
2018).

While the generation of ON responses has been attributed to neural mechanisms based on short-term
adaptation, most likely inherited from the auditory nerve fibers (Phillips et al., 2002; Smith and Brachman,
1980, 1982), the mechanisms that generate OFF responses are more diverse and seem to be area-specific (Xu
et al., 2014; Kopp-Scheinpflug et al., 2018). In subcortical regions, neurons in the dorsal cochlear nucleus
(DCN) and in the superior paraolivary nucleus (SPN) of the brainstem nuclei may generate OFF responses
by post-inhibitory rebound, a synaptic mechanism in which a neuron emits one or more spikes following the
cessation of a prolonged hyperpolarizing current (Suga, 1964; Hancock and Voigt, 1999; Kopp-Scheinpflug
et al., 2011). In the midbrain inferior colliculus (IC) and in the medial geniculate body (MGB) of the
thalamus, OFF responses appear to be mediated by excitatory inputs from upstream areas and potentially
boosted by a post-inhibitory facilitation mechanism (Kasai et al., 2012; Vater et al., 1992; Yu et al., 2004;
He, 2003). Unlike in subcortical areas, OFF responses in auditory cortex do not appear to be driven by
hyperpolarizing inputs during the presentation of the stimulus, since synaptic inhibition has been found to
be only transient with respect to the stimulus duration (Qin et al., 2007; Scholl et al., 2010). The precise
cellular or network mechanisms underlying transient OFF responses in cortical areas therefore remain to be
fully elucidated.

Previous studies investigating the transient responses in the auditory system mostly adopted a single-
neuron perspective (Henry, 1985; Scholl et al., 2010; Qin et al., 2007; He, 2002; Wang et al., 2005; Wang,
2007). However, in recent years, population approaches to neural data have proven valuable for understanding
the role of transients dynamics in various cortical areas (Buonomano and Maass, 2009; Remington et al.,
2018; Saxena and Cunningham, 2019). Work in the olfactory system has shown that ON and OFF responses
encode the stimulus identity in the dynamical patterns of activity across the neural population (Mazor and
Laurent, 2005; Stopfer et al., 2003; Broome et al., 2006; Friedrich and Laurent, 2001; Saha et al., 2017). In
motor and premotor cortex, transient responses during movement execution form complex population activity
patterns that have been hypothesised to serve as the basis for the generation of muscle activity (Churchland
et al., 2012; Sussillo et al., 2015; Hennequin et al., 2014; Stroud et al., 2018). In the auditory cortex, this
approach has suggested a central role of the neural dynamics across large population for the coding of
different auditory features (Deneux et al., 2016; Saha et al., 2017). Yet, how a structured population code
arises from the neural transient dynamics and how these dynamics are generated are still open questions.

Leveraging on the observation that the auditory cortex constitutes a network of neurons connected in a
recurrent fashion (Linden and Schreiner, 2003; Oswald and Reyes, 2008; Oswald et al., 2009; Barbour and
Callaway, 2008), in this study we explore the hypothesis that transient OFF responses may be generated by
network mechanisms. We analyse OFF responses evoked by multiple stimuli recorded using calcium imaging
across a large population of neurons in the auditory cortex of mice passively listening to ramping auditory
stimuli (Deneux et al., 2016). Across different stimuli, OFF responses were elicited in overlapping subsets of
neurons, where individual neurons responded to more than one stimulus. Analyses of the population activity
through dimensionality reduction techniques (Cunningham and Yu, 2014; Kobak et al., 2016; Bagur et al.,
2018; Stringer et al., 2019) revealed that OFF responses encode different stimuli in orthogonal low-dimensional
subspaces, consistent with the existence of a neural code for OFF responses at the ensemble level (Saha
et al., 2017). We interpret these results by examining a linear network model with recurrent connectivity
(Bondanelli and Ostojic, 2018), and show that it provides a simple mechanism for the generation of the
strong single-cell OFF responses observed in data from auditory cortex. Crucially, we show that the proposed
mechanism for OFF response generation can also explain the low-dimensional patterns of the population
neural activity elicited in response to specific stimuli, as well as the global structure of the population OFF
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responses across multiple stimuli. We finally compare the network model with a simplified single-cell model,
and show that the single-cell model can reproduce population dynamics in response to individual stimuli,
but cannot capture the structure across stimuli, in contrast to the network model.

Results

Amplified ON/OFF population responses in auditory cortex

We analyse the population responses of 2434 cells from the auditory cortex of 3 awake mice recorded using
calcium imaging techniques (data from Deneux et al. (2016)). The neurons were recorded while the mice
passively listened to randomized presentations of different auditory stimuli. In this study we consider a total
of 16 stimuli, consisting of two groups of intensity modulated UP- or DOWN-ramping sounds. In each group,
there were stimuli with different frequency content (either 8 kHz pure tones or white noise sounds), different
durations (1 or 2 s) and different intensity slopes (either 50 — 85 dB or 60 — 85 dB and reversed, see Table 1
in Methods).

We first illustrate the responses of single cells to the presentation of different auditory stimuli, focusing
on the periods following the onset and offset of the stimulus. We observe that the activity of individual
neurons to different stimuli was highly heterogeneous. In response to a single stimulus, we found individual
neurons that were strongly active only during the onset of the stimulus (ON responses), or only during
the offset (OFF responses), while other neurons in the population responded to both stimulus onset and
offset, consistent with previous analyses (Deneux et al., 2016). Importantly, across stimuli some neurons
in the population exhibited ON and/or OFF responses only when specific stimuli were presented, showing
stimulus-selectivity of transient responses, while others strongly responded at the onset and/or at the offset
of multiple stimuli (Fig. 1A).

Because of the intrinsic heterogeneity of single-cell responses, we examined the structure of the transient
ON and OFF responses to different stimuli using a population approach (Buonomano and Maass, 2009;
Saxena and Cunningham, 2019). The temporal dynamics of the collective response of all the neurons in the
population can be represented as a sequence of states in a high-dimensional state space, in which the i-th
coordinate represents the firing activity r;(t) of the i-th neuron in the population. At each time point, the
population response is described by a population activity vector r(t) which draws a neural trajectory in the
state space (Fig. 1B).

To quantify the strength of the population transient ON and OFF responses, we computed the distance
of the population activity vector r(t) from its baseline level rpz, corresponding to the norm of the population
activity vector ||r(t) — rp|| (Mazor and Laurent, 2005). This revealed that the distance from baseline
computed during ON and OFF responses was larger than the distance computed for the state at the end
of stimulus presentation (Fig. 1B). We refer to this feature of the population transient dynamics as the
amplification of ON and OFF responses.

To examine what the transient amplification of ON and OFF responses implies in terms of stimulus
decoding, we train a simple decoder to classify pairs of stimuli that differ in their frequency content, but had
the same intensity modulation and duration. We found that the classification accuracy was highest during
the transient phases corresponding to ON and OFF responses, while it decreased at the end of stimulus
presentation (Fig. 1C). This result revealed a robust encoding of the stimulus features during ON and OFF
responses, as previously found in the locust olfactory system (Mazor and Laurent, 2005; Saha et al., 2017).

Low-dimensional dynamics during OFF responses

To further explore the structure of the neural trajectories associated with the population OFF response to
different stimuli, we analysed neural activity using dimensionality reduction techniques (Cunningham and
Yu, 2014). We focused in particular on the OFF responses within the period starting 50 ms before stimulus
offset to 350 ms after stimulus termination.

By performing principal component analysis (PCA) independently for the responses to individual stimuli,
we found that the dynamics during the transient OFF responses to individual stimuli explored only a few of
the available dimensions, as 80% of the variance of the OFF responses to individual stimuli was explained on
average by the first 5 principal components (Fig. 2A). The projection of the low-dimensional OFF responses
to each stimulus onto the first two principal components revealed circular activity patterns, where the
population vector smoothly rotated between the two dominant dimensions (Fig. 2B).

A central observation revealed by the dimensionality reduction analysis is that the OFF response
trajectories relative to stimuli with different frequency content span orthogonal low-dimensional subspaces.
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Figure 1: Strong transient ON and OFF responses in auditory cortex of mice passively listening to
different sounds and stimulus decoding. A. Top: deconvolved calcium signals averaged over 20 trials showing
the activity (estimated firing rate) of 20 out of 2343 neurons in response to a 8 kHz 1s UP-ramp with intensity range
60-85 dB. We selected neurons with high signal-to-noise ratios (ratio between the peak activity during ON/OFF
responses and the standard deviation of the activity before stimulus presentation). Neurons were ordered according
to the difference between peak activity during ON and OFF response epochs. Bottom: activity of the same neurons
as in the top panel in response to a white noise sound with the same duration and intensity profile. In all panels
dashed lines indicate onset and offset of the stimulus, green solid lines show the temporal region where OFF responses
are analysed (from 50 ms before stimulus offset to 350 ms after stimulus offset). B. Left: cartoon showing the OFF
response to one stimulus as a neural trajectory in the state space, where each coordinate represents the firing rate
of one neuron (with respect to the baseline B). The length of the dashed line represents the distance between the
population activity vector r(t) and the baseline firing rate rg. Right: the red trace shows the distance from baseline
||r(¢)|] computed for the population response to the 8 kHz sound in A. The grey trace shows the distance from baseline
averaged over all the 8 kHz 1 s sounds (4 stimuli). Gray shading represents +1 standard deviation. The dashed
horizontal line shows the average level of the distance ||r(t)|| before stimulus presentation (even if baseline-subtracted
responses are used, a value of the norm different from zero is expected because of the noise in the spontaneous activity
before stimulus onset). C. Accuracy of stimulus classification between a 8 kHz versus white noise UP-ramping sounds
over time based on single trials (20 trials). The decoder is computed at each time step (spaced by ~ 50 ms) and
accuracy is computed using leave-one-out cross-validation (LOOCYV). Orange trace: average classification accuracy
over the cross-validation folds. Orange shaded area corresponds to +1 standard error. The same process is repeated
after shuffling stimulus labels across trials at each time step (gray trace and shading). The dashed horizontal lines
represent the chance level. The red markers on the top indicate the time points where the average classification
accuracy is lower than the maximum accuracy during the ON transient response (P < 0.01, two-tailed t-test).

For instance, the response to the 8 kHz sound is poorly represented on the plane defined by the two principal
component of the response to the white noise sound (Fig. 2B), and conversely, showing that they evolve
on distinct subspaces. To quantify the relationship between the subspaces spanned by the OFF responses
to different stimuli, we proceeded as follows. We first computed the first 5 principal components for the
OFTF response to individual stimuli. Therefore, for each stimulus these dimensions define a 5-dimensional
subspace. Then, for each pair of stimuli, we computed the relative orientation of the corresponding pair of
subspaces, measured by the subspace overlap (Fig. 2D; see Methods).

This approach revealed an interesting structure between the OFF response subspaces for different stimuli
(Fig. 2D). Stimuli with different frequency content evoked in general non-overlapping OFF responses, reflected
in low values of the subspace overlap. Two clusters of correlated OFF responses emerged, corresponding to the
8 kHz UP-ramps and white noise UP-ramps of different durations and intensity. Surprisingly, DOWN-ramps
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evoked OFF responses that were less correlated than UP-ramps also between sounds with the same frequency
content.

The fact that most of the stimuli evoked non-overlapping OFF responses is reflected in the number of
principal components that explain 80% of the variance for all OFF responses considered together, which
is around 60 (Fig. 2C). This number is in fact close to the number of dominant components of the joint
response to all stimuli that we would expect if the responses to individual stimuli evolved on uncorrelated
subspaces (given by #PC per stimulus x #stimuli &~ 80). Notably this implies that, while the OFF responses
to individual stimuli span low-dimensional subspaces, the joint response across stimuli shows high-dimensional

structure.
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Figure 2: Low-dimensional structure of population OFF responses. A. Cumulative variance explained for
OFF responses to individual stimuli as a function of the number of principal components. The trace shows the
average cumulative variance over all 16 stimuli. Error bars are smaller than the symbol size. B. Left: projection of
the population OFF response to the 8 kHz and white noise sounds on the first two principal components computed
for the OFF response to the 8 kHz sound. Right: projection of both responses on the first two principal components
computed for the OFF response to the white noise sound. PCA was performed on the period from -50 ms to 350 ms
with respect to stimulus offset. We plot the response from 50 ms before stimulus offset to the end of the trial duration.
C. Cumulative variance explained for all the OFF responses to the 16 stimuli together as a function of the number of
principal components. D. Overlap between the subspaces defined by the first 5 principal components of the OFF
responses to stimuli s1 and s2. The overlap is measured by the principal angle between these subspaces. The red and
blue boxes highlight the groups of stimuli corresponding respectively to the 8 kHz and white noise UP-ramps.

A recurrent network model for OFF responses: a dynamical system approach

The responses following the end of stimulus presentation in auditory cortex resemble qualitatively the neural
activity in motor and premotor cortex following movement onset. At the single neuron level, this similarity is
reflected in the strong transient responses present in both areas (Churchland and Shenoy, 2007; Churchland
et al., 2010, 2012). At the population level, both OFF responses and motor activity display rotational-like
structure Churchland et al. (2012). A prominent hypothesis has been that neural activity patterns during
movement execution can be explained by a dynamical system mechanism (Hennequin et al., 2014; Stroud
et al., 2018; Sussillo et al., 2015; Shenoy et al., 2011). Here we examine to which extent population OFF
responses in auditory cortex can be accounted for using a similar mechanism based on recurrent network
dynamics.

We consider a model network of N randomly and recurrently coupled linear rate units with dynamics
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given by:

N
’I'”i:—Ti—l—ZJijTj (1)
j=1

Such networks can be interpreted as describing the linearized dynamics of a system around an equilibrium
state. In this picture, the quantity r;(¢) represents the deviation of the activity of the unit ¢ from its baseline
firing activity, while J;; denotes the effective strength of the connection from neuron j to neuron %, which
can take positive or negative values (Fig. 3A). Without loss of generality, we assume that the baseline level
isrg =0.

We model the firing activity at the end of stimulus presentation as the initial condition of the network
dynamics. If at the time of stimulus offset the firing rate of neuron ¢ is equal to 7¢ ;, the initial condition of
the network across all units is set to the activity vector ro. The evoked OFF responses can then be described
as a trajectory r(t) in a high-dimensional state-space in which the i-th component represents the firing rate
of neuron 7 at time ¢. We assume that the network receives no external input after stimulus offset. Within
this simplifying assumption, OFF responses are the result of the internally generated dynamics following
stimulus offset, and are therefore uniquely determined by the initial condition of the network rg.

We focus on two outstanding properties identified in the OFF responses to different stimuli. The first
one is the strong amplification of OFF responses, as quantified by the transient increase of the distance
from baseline ||r(¢)||. The second important feature is the low-dimensionality of OFF response trajectories
and their global structure across different stimuli. To account for these features we consider a minimal
connectivity structure of the form:

T = uDyOT 4 q@y@T 4 ((PIy(P)T, 2)

where the u(” and v(¥ are N-dimensional vectors. Connectivity matrices of this form are called low-rank
connectivities (Mastrogiuseppe and Ostojic, 2018; Hopfield, 1982). They belong to the broader class of
non-normal matrices (Trefethen and Embree (2005); Murphy and Miller (2009); Goldman (2009); Hennequin
et al. (2012); see Methods) and can produce amplified transient dynamics in responses to specific stimuli.
However, the non-normality of the connectivity matrix alone does not guarantee the existence of amplified
OFF responses, corresponding to an transient increase of the distance from baseline. Instead, the generation
of amplified OFF responses requires one additional condition on the network connectivity, namely that the
largest eigenvalue of the symmetric part defined by Jg = (J + J7)/2 is larger than unity (Bondanelli and
Ostojic, 2018).

We first consider the case in which the connectivity is defined by one single term in Eq. (2) (P = 1),
resulting in the unit-rank connectivity J = u®vM7T and focus on the case in which the vectors u® and
v(D are orthogonal to each other. The dimensions defined by u(® and v(!) essentially correspond to the
first two principal components of the population responses following initial activity along v(!) (see Methods).
When the condition for amplification is met, initial activity along v(!) elicits an amplified OFF response
(Fig. 3B-C), and the evoked trajectory lies in the plane defined by u® and v(Y)| therefore spanning two
dimensions (Fig. 3D). A unit-rank connectivity can therefore support the encoding of a single stimulus (the
one associated with v(l)) in the evoked transient OFF response dynamics. Crucially, the population activity
vector at the peak of the transient dynamics lies along the vector u(®) (see Methods). It follows that the
unit-rank network generates amplified dynamics which decorrelates the population activity at the end of
stimulus presentation (the initial condition v(*)) and the state at the peak of the OFF response (the vector
ulM); Fig. 3E).

When the connectivity defined in Eq. (2) includes P unit-rank terms, a number P of initial conditions,
corresponding to the vectors v(1)’s, can evoke amplified OFF responses. An interesting scenario arises when
the planes defined by each pair of vectors u(® and v(¥) are mutually orthogonal. In this case, the dimensions
defined by the vector u(® and v(¥ correspond to the first 2P principal component of the joint population
response elicited by activity along the v(*)’s. This structure implies that stimuli associated with orthogonal
initial conditions along the v(¥)’s evoke two-dimensional OFF response trajectories that lie in orthogonal
subspaces, the u”-v(®) planes (Fig. 3D). Each term in Eq. (2) encodes one single stimulus, corresponding
to a particular initial condition v(¥), and can therefore be interpreted as a transient coding channel. It
follows that the low-rank connectivity given by the sum of P unit-rank terms can support the encoding
of P distinct stimuli through low-dimensional transient trajectories that span orthogonal subspaces. In
this simplified set-up, the OFF responses to each stimulus span two dimensions. Nonetheless, low-rank
connectivity structures of the form given by Eq. (2) can produce higher-dimensional transient dynamics if
correlations between the single transient coding channels are introduced. This can be achieved for instance
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by including correlations between pairs of vectors v+ and u® (Sompolinsky and Kanter, 1986; Ganguli
et al., 2008), preserving at the same time the orthogonality between channels where this correlation vanishes.
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Figure 3: Strong orthogonal population OFF responses in a network model with low-rank structure.
A. Tllustration of the recurrent network model. The variables defining the state of the system are the firing rates
of the units, denoted by r;. The strength of the connection from unit j to unit ¢ is denoted by .J;;. B. Single-unit
OFF responses to two distinct stimuli generated using a low-rank network model. Different stimuli are modeled as
different states at the end of stimulus presentation (¢ = 0), corresponding to the vectors v; in Eq. (2). Here the
two stimuli have been chosen along two orthogonal vectors vi and va. Dashed line indicate the time of stimulus
offset. C. Distance of the population activity vector from baseline during the OFF responses to the two stimuli in B.
The amplitude of the offset responses, as quantified by the peak value of the distance from baseline, is controlled
by the length of the vectors u; and uz. D. Projection of the population OFF responses to the two stimuli on the
two principal components of either stimuli. The projections of the vectors u® and vV (resp. u® and v(2>) on the
subspace defined by the first two principal components of stimulus 1 (resp. 2) are shown respectively as solid and
dashed arrows. The subspaces defined by the vector pairs u®-v(") and u®-v® are mutually orthogonal, so that the
OFF responses to stimuli vi and vz evolve in orthogonal dimensions. E. Correlation between the state at the end of
stimulus presentation and the state at the peak of the OFF responses, for 5 example stimuli. Error bars represent the
standard deviation computed over 100 bootstrap subsamplings of 10% of the units in the population. We simulated a
network of 2000 units, with rank equal to 30 and ||uy|| = ||uz|| = 5.

Testing the network mechanism on the data

In the following, we proceed to test the specific predictions of the proposed network mechanism on the data
from auditory cortex. In the low-rank network given by Eq. (2), the recurrent dynamics transform orthogonal
population activity states at the end of stimulus presentation into orthogonal population trajectories during
the subsequent OFF responses. Conversely, correlated initial states at the end of stimulus presentation
generate correlated dynamical trajectories. This implies that the geometric structure of the activity states at
the end of stimulus presentation predicts the geometric structure of the dynamics during the OFF responses.
To investigate this aspect, we computed the cross-correlations between the population states reached at the
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end of stimulus presentation for all different stimuli, and found that this structure matched the pattern of
correlations observed for the subspace overlap (Fig. 4A left panel). Therefore, the structure of the population
activity at the end of stimulus presentation across stimuli was highly correlated with the structure of the
dynamics during OFF responses (Fig. 4A right panel, S6), consistent with the interpretation that activity at
the end of stimulus presentation provides an initial condition for the recurrent dynamics that generates the
OFF responses.

This result could be alternatively explained by a simple geometrical model in which the network dynamics
induce a one-dimensional linear scaling of the population activity vector (Bartho et al., 2009). By construction,
this mechanism would predict that the population activity state at the peak of the transient OFF response is
a scaled version of the state at the end of stimulus presentation, which would directly produce the observed
pattern of correlations. In contrast, our network model predicts that, for each stimulus, the population
activity state at the peak of the transient phase is essentially orthogonal to the state at the end of stimulus
presentation, resulting in near zero values of the correlation (Fig. 3E). Computing the correlation between
the peak state and the initial state at the end of stimulus presentation we find that this correlation takes
low values for all stimuli (Fig. 4B), consistent with the network model but not with the hypothesis of a
one-dimensional scaling of the activity.

To further examine to which extent the population dynamics during OFF responses could be accounted
for by a non-normal linear dynamical system, we next fitted our network model population OFF responses
to all stimuli at once using reduced-rank regression (Fig. S1; see Methods). Qualitatively, we found that
the fit reproduced well the low-dimensional population trajectories (Fig. 4C). We evaluated the goodness of
the fitted trajectories by computing the coefficient of determination R?, and found that the network model
explained a relatively high fraction of the variance of OFF responses (R? = 0.48, Fig. 4D). A concern that
needs to be addressed is that this result may not reflect a dynamical system structure in the data, but may
instead be due to correlations that do not involve a dynamical system mechanism. For instance, it could
be a consequence of the temporal smoothness of the trajectories, i.e. its temporal correlations. To test for
this possibility, we repeated the model fitting on control dataset which kept no additional structure than
the one defined by correlations across time, neurons and stimuli of the original neural responses (Elsayed
and Cunningham (2017), see Methods). We found that the value of the R? obtained from fitting the model
to the original dataset was significantly higher than the one obtained from fitting the control datasets
(Fig. 4D,S2,S3). This indicates that the recurrent network model captures structure in the data beyond its
correlations across time, neurons and stimuli.

To test that the fitted network produces amplified transients through non-normal dynamics, we examined
the spectra of the full connectivity J and of its symmetric part Jg (Bondanelli and Ostojic, 2018). The
eigenvalues of the fitted connectivity matrix had real part smaller than one, indicating stable dynamics,
and large imaginary part (Fig. 4E). However, the properties of the eigenvalues of J do not guarantee the
existence of amplified OFF responses. Instead, our analytical criterion predicted that, for OFF responses to
be amplified, the spectrum of the symmetric part Jg must have at least one eigenvalue larger than unity.
Consistent with the criterion derived theoretically, we found that the symmetric part of the connectivity
had indeed a large number of eigenvalues larger than one (Fig. 4E), and could therefore produce amplified
responses (Fig. 4C).

Finally we asked whether the fitted connectivity J consisted of independent low-rank coding channels, as
postulated in our network model (Eq. (2)). To test for this aspect and identify the low-rank coding channels
in the fitted connectivity, we proceeded in two steps. We first fitted the recurrent model to all OFF responses
at the same time. We call Jgy the connectivity matrix that resulted from the fit. Next, we fitted the
recurrent model to the OFF responses to each stimulus s independently, obtaining one matrix J ) for each
stimulus (the rank parameter for each stimulus was set to 7 = 8). Each matrix J*) corresponds to one term
in Eq. (2), with the difference that its rank is not unitary but equals the dimensionality of individual OFF
responses. The matrix J () represent therefore the transient coding channel for stimulus s. We computed the
overlap between the subspaces spanned by the transient channels for each pair of stimuli s; and sy, analogous
to the overlap between the vectors u*") and u®*2) in Eq. (2) (see Methods). We found that the overlap
between the transient channels matched the overlap between the response dynamics and population states at
the end of stimulus presentation (Fig. 4F, right panel), consistent with the interpretation that individual
OFF responses may be generated through transient coding channels of the form given by Eq. (2). To further
examine if the matrix J indeed consisted of the sum of the low-rank channels given by each individual J(*),
we reconstructed the OFF responses using the matrix Jgum = >, J () We then compared the values of R?
obtained using the matrices Jsum, Jrul and multiple controls where the elements of the matrix Jgu, were
randomly shuffled. While the fraction of variance explained when using the matrix Jg,, was necessarily
lower than the one computed using Jgy1, the model with connectivity Jsum could still explain a consistent
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fraction of the total variance, and yielded values of R? significantly higher than the ones obtained from the
shuffles. These results together indicated that the full matrix Jgy can indeed be approximated by the sum
of the low-rank channels represented by the J().

In summary we have shown that, across stimuli, the structure of the initial states at the end of stimulus
presentation is preserved during the OFF transient dynamics. A simple one-dimensional scaling of the
population activity does not account for this finding, since the OFF responses trajectories evolved along
dimensions orthogonal to the initial states. Instead, this structure is consistent with a mechanism based on
recurrent network dynamics, which generates amplified OFF responses through non-normal connectivity. We
found that a specific class of low-rank non-normal connectivities is able to account for the low-dimensionality
of OFF responses and the global structure of the corresponding transient channels across stimuli.
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Figure 4 (previous page): Testing the predictions of the network model on auditory cortical data. A.
Left: correlation between the population activity vectors at the end of stimulus presentation (50 ms before offset) for
each pair of stimuli. Right: linear correlation between the overlap between dynamical subspaces (Fig. 2D) and the
overlap between initial conditions for each stimulus pair. B. For each stimulus, we show the correlation between
the state at the end of stimulus presentation and the state at the peak of the OFF response, defined as the time
of maximum distance from baseline. Error bars represent the standard deviation computed over 100 bootstrap
subsamplings of 10% of the neurons in the population (2343 neurons). C. Colored traces: projection of the population
OFF response to a 8 kHz and a white noise sound on the first two principal components. The responses are shown
for the period from -50 ms to 350 ms with respect to stimulus offset. Light grey traces: projections of multiple
trajectories generated by the network model using the fitted connectivity matrix. Initial conditions were chosen
in a neighbourhood of the population activity vector 50 ms before sound offset, indicated with a dot. 100 traces
are shown. Dashed trace: projection of the average trajectories. D. Fraction of variance explained by a linear
dynamical system for the original dataset and for three surrogate datasets, as quantified by the R? value. For the
original dataset, the three dots show the average R* over the cross-validation folds for the three mice; the colored dot
refers to mouse 1. For the surrogate datasets, the average values of R? across multiple surrogates for mouse 1 are
shown. This difference is significantly positive for the three types of surrogates, meaning that the linear dynamical
system better fits the original dataset than the surrogate datasets (Here, *, ** *** correspond respectively to
P < 0.01, P < 0.005, P < 0.001; upper tail test using the mean value of R? over the cross-validations folds for each
dataset; 500 surrogates are shown). Box-and-whisker plots show the distribution of the values for the three types of
surrogates (Tukey convention: box lower end, middle line and upper end represent the first quartile, median and
third quartile of the distributions; lower and upper whisker extends for 1.5 times the interquartile range). Fitting is
performed on the population OFF responses to all 16 stimuli together. For each dataset, the goodness of the fit R? is
computed using 10-fold cross-validation in the time domain. E. Left: eigenvalues of the effective connectivity matrix
J found by fitting a linear dynamical system to the population OFF responses. The dashed line marks the stability
boundary given by PRe\(J) = 1. Right: probability density distribution of the eigenvalues of the symmetric part of
the effective connectivity, Js. Eigenvalues larger than 1 determine strongly non-normal dynamics and are highlighted
in yellow. The parameters used for reduced-rank ridge regression are the same as in C. F. Left: overlap between the
transient channels relative to each stimulus, as quantified by the overlap between the left singular values L) of the
connectivities J® fitted for each individual stimulus (see Methods). Right: Goodness of fit, as quantified by the R?
value, when reconstructing the population OFF responses using the connectivity Jrun or the connectivity given by
the sum of the individual channels Jsum. These values are compared with the values of the R? obtained by shuffling
the elements of the matrix Jsum(Shuffled). Different points correspond to the value of the R? computed for each
cross-validation (10-fold). In all panels, the fit is computed using reduced-rank ridge regression (see Methods), where
the best ridge and rank hyperparameters are found using cross-validation (see Methods and Fig. S1). The number of
principal component is set to 100.

Comparison with a single-cell model for OFF response generation

The auditory cortex is not the first stage where OFF responses arise. Robust OFF responses are found
throughout the auditory pathway, and in subcortical areas the generation of OFF responses most likely relies
on mechanisms that depend on the interaction between the inhibitory and excitatory synaptic inputs to
single cells (Kopp-Scheinpflug et al., 2018).

To examine the possibility that OFF responses in auditory cortex themselves are consistent with a similar
single-cell mechanism, we considered a simplified linear model for OFF response generation that mimics
single-cell activation after stimulus offset (Fig. 2 in Kopp-Scheinpflug et al. (2018)). We assume that neuron
¢ in the population responds after stimulus offset as specified by a characteristic response filter L;(t) (Meyer
et al., 2017), which describes the cell’s intrinsic response generated by intracellular or synaptic mechanisms.
While the shape of the temporal response of a neuron is assumed to be set by intrinsic properties and
is therefore the same across different stimuli, each stimulus modulates the response of each neuron in a
multiplicative way, so that the OFF response of neuron ¢ to stimulus s can be written as:

ri(t) =S Li(t) (3)

where r((fi) is the modulation factor for stimulus s and neuron ¢. Without loss of generality, we assume that

the values of the L;(0) are different from zero, so that we can interpret the vector of modulation factors r(()s)

as the vector of initial conditions.

We choose the shape of the temporal responses L;(t)’s to be non-monotonic functions with a single peak
at a specific latency tr,; (Fig. 5A; see Methods). To account for the OFF response patterns observed in the
data, the latencies ¢, ; are distributed across the population. If the response latencies were the same for
all neurons, the dynamics would lie on a single dimension, corresponding to the vector of initial conditions
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rés) (see Methods), and the OFF response dynamics would simply scale the population state at the end of
stimulus presentation, a scenario we ruled out earlier.

We first show that this model is able to account for some of the prominent features observed in the data,
namely the heterogeneity of responses across neurons, non-monotonic dynamics of the distance from baseline,
two-dimensional neural trajectories and orthogonal responses for distinct stimuli. For a particular stimulus,
randomly choosing the values of the initial conditions 7“(();) results in some unit increasing, some decreasing
their firing rates during the OFF response (Fig. 5B). Random initial conditions also imply that there are units
that respond to multiple stimuli. Because the single-cell responses are non-monotonic (due to non-monotonic
L;(t)’s), the distance from baseline of the population activity vector shows amplified dynamics, as observed
in the calcium activity data (Fig. 5C). At the population level, the trajectories generated by the single-cell
model span at least two dimensions (Fig. 5C) and resemble qualitatively the trajectories generated by the
recurrent model (Fig. 3D). When the vectors r(()s) of the initial conditions are chosen to be orthogonal to each
other for distinct stimuli, the trajectories evoked in response to those stimuli lie on orthogonal subspaces
(Fig. 5D), therefore accounting for the orthogonal structure observed in auditory cortical OFF responses
(Fig. 2D 4A).

Although the single-cell mechanism is consistent with a number of observations on single-cell and
population structure during OFF responses in auditory cortex, we found that it cannot account for other
features in the data. The first discrepancy concerns the decorrelation between the state at the end of stimulus
presentation and the state at the peak of the transient phase. The single-cell model predicts that these two
states are only weakly decorrelated and essentially lie along a single dimension (Fig. 5E and S7), which is
inconsistent with experimental observations.

A second important difference between the two models is that in the single-cell model the temporal
shape of the response of each neuron is the same across all stimuli, while for the recurrent model this is not
necessarily the case. To illustrate the consequences of this difference, we simulated OFF response trajectories
from both models and fitted the two models to each set of data. For the recurrent model we fit the dynamical
system, as already described; for the single-cell model we fit basis functions to the responses of all the
neurons subject to prior normalized by the initial conditions r(()i.) (see Methods). For both models the fit is
performed on the population responses progressively increasing the number of stimuli. For data generated by
the single-cell model, we find that fitting basis functions yields equivalent performance irrespective of the
number of stimuli considered. Importantly, the goodness of fit (R?) using basis functions is considerably
higher than the goodness of fit for the recurrent model (Fig. 5G), indicating that the recurrent model is
not able to capture the precise shape of the temporal responses of the neurons, while the single-cell model
can in principle capture arbitrary shapes of the individual responses. For data generated by the recurrent
model, we instead find that the goodness of fit using the basis functions method decreases as more stimuli
are included in the fit, because the shape of the temporal responses of the neurons changes with the stimulus.
Conversely, fitting the recurrent model yields higher and stable performance even when the fit is performed
on responses to multiple stimuli at once (Fig. 5H).

Fitting the two models to the calcium activity data, we found that the goodness of fit for the single-cell
model decreases as a function of the number of stimuli included, while for the recurrent model it maintains a
higher value even when multiple stimuli are included. This indicates that the temporal response of individual
neurons differs in general across stimuli (Fig. 5F), a key feature captured by the recurrent network model and
not by the single-cell model. Computing the goodness of fit by taking into account the number of parameters
of the recurrent and single-cell models leads to the same conclusion (Fig. S8).
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Figure 5 (previous page): Comparison between single-cell and network models for OFF response gener-
ation. A. Cartoon illustrating the single-cell model defined by Eq. (3). The OFF responses of three example units
to one stimulus are shown. The activity of each unit is described by a characteristic response filer L;(¢) (shape of
the colored traces) with a specific response latency, defined as the peak of its OFF response. Across stimuli, only
the relative activation of the units changes, but the shape of the responses of each unit L;(t), including its latency,
remains constant. B. Single-unit OFF responses generated by the single-cell model defined by Eq. (3). C. Distance
from baseline of the population activity vector during the OFF response to the stimulus in the upper panel. Dashed
line indicate the time of stimulus offset. D. Projection of the population OFF responses to two distinct stimuli on
the two principal components of either stimuli. Distinct stimuli are modeled choosing a different relative activation
vectors r(()S> for each stimulus s. When the relative activation vectors r(()1> and r(()z) are orthogonal the population
OFF responses for the two stimuli lie on orthogonal subspaces. E. Correlation between the state at the end of
stimulus presentation and the state at the peak of the OFF responses, defined as the time of maximum distance from
baseline, for 5 example stimuli. Error bars (smaller than symbol size) represent the standard deviation computed
over 100 bootstrap subsamplings of 10% of the units in the population. F. Example of a auditory cortical neuron
that responds at the offset of two distinct stimuli with different response profiles. In particular, the overall response
range is comparable across the two stimuli, but the response latency is different. G.-I. Relative variance explained,
as quantified by R?, when fitting basis functions (green trace) and a linear dynamical system (red trace) to data
generated from the single-cell model (G.), from the recurrent network model (H.), and to the AC calcium activity
data (I.), as a function of the number of stimuli. Both traces show the cross-validated value of R? (10-fold CV in the
time domain). Error bars represent the standard deviation over multiple samples of the stimuli. In panels G. and H.
N = 500, the number of stimuli is set to 10. In G.-I. both fitting procedures are performed on the first 40% most
responding units, to avoid normalizing the responses by very low values when fitting basis functions (see Methods).
The basis function fit is performed using 10 Gaussian basis functions. In H. the linear dynamical system does not
explain 100% of the variance of the data generated by the recurrent model due to noise in the input and subsampling
of units.
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Discussion

Adopting a population approach, we showed that strong OFF responses observed in auditory cortical
neurons form transient trajectories that encode individual stimuli within low-dimensional subspaces. A
geometrical analysis revealed a clear structure in the relative orientation of these subspaces, where subspaces
corresponding to different auditory stimuli were largely orthogonal to each other. We demonstrated that these
features of OFF-responses can be generated by recurrent interactions among neurons. Indeed, we showed
that a simple, linear recurrent network model accounts for for a number of properties of the population OFF
responses, notably the low-dimensionality of the transient channels and their global structure across multiple
stimuli. In contrast, a single-neuron model captures the response to individual stimuli, but not the structure
across stimuli.

In this study, we focused specifically on the responses following stimulus offset. Strong transients during
stimulus onset display similar transient coding properties (Mazor and Laurent, 2005), and could be generated
by the same network mechanism as we propose for the OFF responses. However, during ON-transients,
a number of additional mechanisms are likely to play a role, in particular single-cell adaptation, synaptic
depression or feed-forward inhibition. Indeed, recent work has showed that ON and OFF trajectories elicited
by a stimulus are orthogonal to each other in the state-space (Saha et al., 2017), and this was also the
case in our dataset (Fig. S9 A-E). Linear network models instead produce ON and OFF responses that are
necessarily correlated, and cannot account for the observed orthogonality of ON and OFF responses for a
given stimulus. Distinct ON and OFF response dynamics could also result from intrinsic non-linearities
known to play a role in the auditory cortex (Calhoun and Schreiner, 1998; Rotman et al., 2001; Sahani and
Linden, 2003; Machens et al., 2004; Williamson et al., 2016; Deneux et al., 2016).

A major assumption of our model is that the auditory cortex does not receive external inputs after the
auditory stimulus is removed. Our results show that the recurrent dynamics are able to produce strongly
amplified OFF transients in the absence of any external drive, and we found that this mechanism can fully
account for auditory cortex data. However, neurons in the auditory cortex receive direct input from the
medial geniculate body (MGB) of the thalamus, and indirect input from upstream regions of the auditory
pathway, where strong OFF responses have been observed. Thus, in principle, OFF responses observed
in auditory cortex could be at least partly inherited from upstream auditory regions (Kopp-Scheinpflug
et al., 2018). Disentangling the contributions of upstream inputs and recurrent dynamics is challenging if
one has access only to AC activity (but see Seely et al. (2016) for an interesting computational approach).
Ultimately, the origin of OFF responses in auditory cortex needs to be addressed by comparing responses
between related areas, an approach recently adopted in the context of motor cortical dynamics (Lara et al.,
2018). A direct prediction of our model is that the inactivation of recurrent excitation in auditory cortical
areas should weaken OFF responses (Li et al., 2013). However, recurrency in the auditory system is not
present only within the cortex but also between different areas between the pathway (Ito and Malmierca,
2018; Winer et al., 1998; Lee et al., 2011). Therefore OFF responses could be generated at a higher level of
recurrency and might not be abolished by inactivation of AC.

The dimensionality of the activity in large populations of neurons in the mammalian cortex is currently
the subject of debate. A number of studies have found that neural activity explores low-dimensional subspaces
during a variety of simple behavioral tasks (Gao et al., 2017). In contrast, a recent study in the visual cortex
has shown that that the response of large populations of neurons to a large number of visual stimuli is
instead high-dimensional (Stringer et al., 2019). Our results reconcile these two sets of observations. We find
that the population OFF responses evoked by individual auditory stimuli are typically low-dimensional, but
lie in orthogonal spaces, so that the dimensionality of the responses increases when considering an increasing
number of stimuli. Note that in contrast to (Stringer et al., 2019), we focused here on the temporal dynamics
of the population response.

The analyses we performed in this study were directly inspired by an analogy between OFF responses in
the sensory areas and neural activity in the motor cortices (Churchland and Shenoy, 2007; Churchland et al.,
2010, 2012). Starting at movement onset, single-neuron activity recorded in motor areas exhibits strongly
transient and multiphasic firing lasting a few hundreds of milliseconds. Population-level dynamics alternate
between at least two dimensions, shaping neural trajectories that appear to rotate in the state-space. These
results have been interpreted as signatures of an underlying dynamical system implemented by recurrent
network dynamics (Churchland et al., 2012; Shenoy et al., 2011), where the population state at movement
onset provides the initial condition able to generate the transient dynamics used for movement generation.
Computational models have explored this hypothesis (Sussillo et al., 2015; Hennequin et al., 2014; Stroud
et al., 2018) and showed that the complex transient dynamics observed in motor cortex can be generated
in network models with strong recurrent excitation and balanced by fine-tuned inhibition (Hennequin
et al., 2014). Surprisingly, fitting a recurrent network model to auditory cortical data, we found that the
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arrangement of the eigenvalues of the connectivity matrix was qualitatively similar to the spectrum of this
class of networks, suggesting that a common mechanism might account for the responses observed in both
areas. However, while models and analyses of motor cortex data have focused on the asymmetric part of the
connectivity to isolate rotational dynamics, in our analysis we instead pointed out the role of the symmetric
part of the connectivity in generating strongly amplified transient activity. Moreover we focused on the
structure of low-dimensional dynamics across stimuli.

The perceptual significance of OFF responses in the auditory pathway is still matter of ongoing research.
Single-cell OFF responses observed in the auditory and visual pathways have been postulated to form the
basis of duration selectivity (Brand et al., 2000; Alluri et al., 2016; He, 2002; Aubie et al., 2009; Duysens
et al., 1996). In the auditory brainstem and cortex, OFF responses of single neurons exhibit tuning in the
frequency-intensity domain, and their receptive field has been reported to be complementary to the receptive
field of ON responses (Henry, 1985; Scholl et al., 2010). The complementary spatial organization of ON
and OFF receptive fields may result from two distinct sets of synaptic inputs to cortical neurons (Scholl
et al., 2010), and has been postulated to form the basis for higher-order stimulus features selectivity in single
cells, such as frequency-modulated (FM) sounds (Sollini et al., 2018) and amplitude-modulated (AM) sounds
(Deneux et al., 2016), both important features of natural sounds (Sollini et al., 2018; Nelken et al., 1999).
At the population level, the proposed mechanism for OFF response generation may provide the basis for
encoding complex sequences of sounds. Seminal work in the olfactory system has shown that sequences of
odors evoked specific transient trajectories that depend on the history of the stimulation (Broome et al., 2006;
Buonomano and Maass, 2009). Similarly, within our framework, different combinations of sounds could bring
the activity at the end of stimulus offset to different regions of the state-space, setting the initial condition for
the subsequent OFF responses. If the initial conditions corresponding to different sequences are associated
with distinct transient coding channels, different sound sequences would evoke transient trajectories along
distinct dimensions during the OFF responses, therefore supporting the robust encoding of complex sound
sequences.
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Data analysis

The dataset

Neural recordings Neural data was recorded and described in previous work (Deneux et al., 2016). We
analysed the activity of 2343 neurons in mouse auditory cortex recorded using two-photon calcium imaging
while mice were passively listening to different sounds. Each sound was presented 20 times. Data included
recordings from 3 mice across 13 different sessions. Neural recordings in the three mice comprised respectively
1251, 636 and 456 neurons. We analysed the trial-averaged activity of pseudo-population of neurons built by
pooling across all sessions and animals. The raw calcium traces (imaging done at 31.5 frames per second)
were smoothed using a Gaussian kernel with standard deviation o = 32 ms.

The stimuli set The stimuli consisted of a randomized presentation of 16 different sounds, 8 UP-ramping
sounds and 8 DOWN-ramping sounds. For each type, sounds have different frequency content (either 8kHz
or white noise (WN)), different durations (1 or 2 seconds) and different combinations of onset and offset
intensity levels (for UP-ramps either 50-85dB or 60-85dB, while for DOWN-ramps 85-50dB or 85-60dB).
The descriptions of the stimuli are summarized in Table 1.

Stim | Direction | Frequency | Duration (s) | Modulation (dB)
1 UP 8 kHz 1s 50-85
2 UP 8kHz 1s 60-85
3 UP 8 kHz 2s 50-85
4 UP 8kHz 2s 60-85
5 UP WN 1s 50-85
6 UP WN 1s 60-85
7 UP WN 2s 50-85
8 UP WN 2s 60-85
9 DOWN 8 kHz 1s 85-50

10 DOWN 8 kHz 1s 85-60
11 DOWN 8 kHz 2s 85-50
12 DOWN 8 kHz 2s 85-60
13 DOWN WN 1s 85-50
14 DOWN WN 1s 85-60
15 DOWN WN 2s 85-50
16 DOWN WN 2s 85-60

Table 1: Stimuli set

Decoding analysis

To assess the accuracy of stimulus discrimination (8kHz vs. white noise sound) on single-trials, we trained
and tested a linear discriminant classifier (Bishop, 2006) using cross-validation. For each trial the pseudo-
population activity vectors were built at each ~ 50ms time bin. We used leave-one-out cross-validation
(LOOCYV). At each time bin we used 19 out of 20 trials as the training set, and test the obtained decoder
on the remaining trial. The classification accuracy is the average of correctly classified stimuli over all 20
cross-validation folds.

At each time t the decoder for classification between stimuli s; and s, was trained using the trial-averaged
pseudo-population vectors cq; and co¢. These vectors defined the decoder w; and the bias b; given by:

Cit + Cot
_ 4
: (4)

A given population vector x was classified as either stimulus s; or stimulus s, according to the value of the
function y(x) = wi x — by:

W; = C1; — Cy, b, =

()

{if y(x) > 0 then x is classified as stimulus s;

if y(x) < 0 then x is classified as stimulus so
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Random performance was evaluated by training and testing the classifier using cross-validation on surrogate
datasets built by shuffling stimulus labels of single trials at each time bin.

Principal component analysis

To perform principal component analysis on the population responses to C' stimuli s;,, ..., s;, We considered
the matrix X € RVXTC where N is the number of neurons and 7' is the number of time steps. X contains
the population OFF responses to the stimuli s;,, ..., s, centered around the mean over times and stimuli. If
we denote by \; the i-th eigenvalue of the correlation matrix XX, the percentage of variance explained by
the ¢-th principal component is given by:

VAR(i) = A; / Z by (6)

while the cumulative percentage of variance explained by the first M principal components is given by:

M N
CUMVAR(M) = > Aj/ >N (7)
j=1 j=1

In Fig. 1A, for each stimulus s we consider the matrix X(*) € RV¥*T containing the populaition OFF
responses to stimulus s. We computed the cumulative variance explained as a function of the number of
principal components M and then averaged over all stimuli.

Correlations between OFF response subspaces

To quantify the degree of correlation between pairs of OFF responses corresponding to two different stimuli,
we computed the cosine of the principal angle between the corresponding low-dimensional subspaces. In
general, the principal angle §p between two subspaces U and V represents the largest possible correlation
between any two pairs of vectors in U and V and it is defined by the relation (Bjorck and Golub, 1973;
Knyazev and Argentati, 2002)

cosfp = max u'v (8)
uelU,veV

To compute the correlations between the OFF responses to stimuli s; and so we first identified the K =5
dominant principal components of the response to stimulus s; and organize them in a N x K matrix Q(s1).
We repeated this for stimulus sy, which yields a matrix Q(sz). Therefore the columns of Q(s1) and Q(s2)
define the two subspaces on which the responses to stimuli s; and sy live. The cosine of the principal angle
between these two subspaces is given by (Bjorck and Golub, 1973; Knyazev and Argentati, 2002):

cosOp(s1,s2) = 01 (Q(Sl)TQ(SQ)) 9)

i.e. the largest singular value of the matrix Q(s;)TQ(s2). We note that this procedure directly relates
to canonical correlation analysis (CCA; see Hotelling (1936); Uurtio et al. (2017)). In particular the first
principal angle corresponds to the first canonical weight between the subspaces spanned by the columns of
Q(s1) and Q(s2) (Golub and Zha, 1992; Bjorck and Golub, 1973).

Linear dynamical system fit
To fit the linear system X=X (J — 1) we first computed the velocity of the trajectory as

X(tit1) — X(t)
tiy1 —t; )

X — (10)
We used ridge regression and we constrained the rank of the matrix J by using reduced rank regression
(Izenman, 1975; Davies and Tso, 1982). Since ridge regression involves computationally expensive matrix
inversion, we first reduced the dimensionality of the original dataset by using principal component analysis
and kept a number K of component such that the explained variance was over 90% (K 2 100). Thus, here
the data matrix X € RT¢*X contains the activity across T time bins along all K dimensions for a number
C of stimuli.
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Reduced rank ridge regression Reduced rank regression problems aim at minimizing the squared error
||X — X (J = 1)||? under a rank constraint on the matrix J, i.e. rankJ < r, where r is a hyperparameter of
the model. Instead, ridge regression introduces a penalty for large entries of the matrix J by minimizing the
cost function ||X — X (J — I)||> + X||(J — I)||?, where X is the second hyperparameter of the model. Here we
combined ridge regression and reduced rank regression in the same framework. To define the problem, it is
useful to write the ridge regression optimization problem as:

(J —1)% = argmin || X, — X (J —I)|? (11)
J—1I

where we defined X, = (X,0) and X, = (X,vAI). The reduced rank ridge regression problem with
hyperparameters r and A is therefore defined by (Mukherjee et al., 2015):

(J —I); , = argmin ||X, — X, (J - I)||? (12)
rank J<r

To solve Eq. (12) we used the solution to Eq. (11) given by:

I3 =T+ (X]X,) X1 X, (13)

Supposing that the matrix X,J3 has singular value decomposition given by X J5 = UXV, then it can be
shown that the solution to the reduced rank ridge regression problem Eq. (12) can be written as:

= Z A (14)
i=1

We note that each term in the sum of Eq. (14) has unit rank, so that the resulting matrix J ;. has rank
equal to r.

Selection of hyperparameters To find the hyperparameters r and A\ we fitted the linear dynamical system to
the data with hyperparameters (7, \) and computed the goodness of the fit R2(r, \) using cross-validation. We
repeat the process for a range of values of (r, A). We observe that, independently of the value of A, the function
R2?(r,-) saturates at a particular value of the rank r*, but it does not exhibit a clear maximum. We took the
value r* as the rank hyperparameter, while we defined the best ridge parameter as \* = argmax, R%(\,r*)
(Fig. S1).

We used K-fold cross-validation. When fitting multiple stimuli at once, for each stimulus we partitioned
the temporal activity into K chunks, resulting in a total of KC chunks. At the i-th iteration of the
cross-validation procedure, we leave out the i-th partition for each stimulus to construct the training set
((K —1)C folds) and test the fit on the remaining C folds.

Linear dynamical fit on PCA-reduced data

In this section we examine the connectivity matrix that results from fitting a dynamical system to population
responses on which dimensionality reduction (PCA) has been applied in a previous step. Suppose that
Y € RTC*N contains the population dynamics of N neurons across T timepoints and C' stimuli and is
generated by recurrent dynamics, therefore satisfying the equation

Y=YM-I), (15)

where M represents the true connectivity matrix. Let Q be the orthogonal N x N matrix containing
the principal component of the population dynamics given by Y. We reduce the dimensionality of Y by
projecting the dynamics onto the first K principal components as:

X:,O:K - YQ:,O:K (16)
where the notation :,0 : K denotes the first K columns of the matrix. We then perform the linear dynamical
system fit on the reduced dynamics given by the matrix X, o.x by fitting the equation:

X:,O:K = )(:,O:K'(J - I) (17)

In the following, we derive the relation between the connectivity matrix J resulting from fitting Eq. (17) and
the full connectivity M. We first find the expression of the velocity of the population trajectory given by X.
Using Eq. (16) and Eq. (15) and the orthogonality of Q, we write:
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X = XQ"(M-1)Q (18)

As in Eq. (17), we want to express X:70:K as a function of X. g.x. Using Eq. (18) we obtain:

X:,O:K = X:,O:K (Q(j)}g MQ:,O:K - I) + € (]‘9)

where the second term on the right hand side is given by € = X. g.n QII;:N,: (M —T) Q .x and acts effectively
as noise. We therefore conclude that, assuming that the global dynamics is generated by a dynamical system,
the connectivity matrix J obtained by fitting the dynamics onto the first K principal components (Eq. (17))
corresponds to the projection of the original connectivity M onto the first K principal components (Fig. S5):

J~ JPC = Qg:K,: M Q:,O:K (20)

Control datasets

As control dataset for the dynamical system hypothesis, we employed a recent method based on a maximum
entropy model (Savin and Tkacik, 2017) and described in (Elsayed and Cunningham, 2017). This method,
called Tensor Maximum Entropy, allows to construct surrogate datasets that are maximally random (entropy
maximization) but constrained so that its marginal means and covariances are the same as the original
dataset.

Marginal means and covariances Let the temporal activity along all K dimensions for all C' stimuli be
organized in a tensor Z € RT*X XC._ The mean tensor M is defined as the tensor that makes all the marginal
means of Z vanish. Specifically, if Z = Z — M, the tensor M is such that:

K C T C K
Z Z Ztkc =0, ZZ Ztkc =0, Z Z Ztkc =0 (21>

k=1c=1 t=1 c=1 t=1 k=1

The marginal covariances of the tensor Z across times, neural dimensions and stimuli are therefore defined as:

K C
EZ; = Z Z Zikczjkc
k=1c=1
T C
S5 =3 ZicZije (22)
t=1 c=1
T K
=5 =2 ) Zoilug
t=1 k=1

Tensor maximum entropy method The method generates the desired number of surrogate datasets
S ¢ RT*KxC EFach of these surrogates is randomly drawn from a probability distribution that assumes a
priori no structure apart from that expected from the marginal means and covariances of the original data.
Let p, AT, AX and A® the marginal means and covariances of surrogate S. The method computes the
probability P(S) over the surrogates that maximizes the entropy function

P(8) = argmax {—/Sy(S) logy(S)dS|,  with /SP(S)dS: 1 (23)

subject to the constraints

Ep[u] =M, Ep[AT]=3%T, EpAK]=%K Ep[A°]=3xC, (24)

where Ep|-] denotes the expectation over the probability density P. We use three types of surrogate datasets,
denoted as T, TK and TKC. All the three types of surrogates obey to the first constraint in Eq. (24) on the
marginal means. In addition, surrogates of type T obey the constraint on the time covariances, surrogates of
type TK on time and dimension covariance, while surrogates TKC obey all the three covariance constraints.
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Controls on simulated data We tested the controls generated as described above on simulated OFF
responses generated by the recurrent model (Eq. (2)) and by the single-cell model (Eq. (3); Fig. S4).
For the recurrent model the connectivity had a low-rank component and an unstructured component:
J= Zil u@v®OT 4 gy Multiple OFF responses were generated by simulating the dynamics in response
to initial conditions along the vectors v(?’s. An equal number of OFF responses was generated using the
single-cell model Eq. (3). For both datasets we then generated control datasets following the tensor maximum
entropy method. Fitting a dynamical system to the simulated OFF responses and to the controls yielded
significantly different goodness of fit when OFF responses were generated through the recurrent model. For
OFF responses generated by the single-cell model this difference was significant only when a large number of
principal components was kept, but was nonetheless small compared to the difference found for the recurrent
model. The same differences in the fit of recurrent and single-cell OFF responses were observed even when
the fitting was performed on smaller sets of units (50% and 20% of the units; new control datasets were
generated for each subsampling of units). Thus, these results confirm that the tensor maximum entropy
method provides suitable controls that allow us to identify dynamical structure in population responses
datasets.

Analysis of the transient channels

Let J be the connectivity matrix resulting from fitting the responses to all stimuli at once, and J©) the
connectivity obtained from fitting the response to stimulus s only. In the fitting procedure, we imposed a
different value of the rank for the two matrices (for the plots in Fig. 4 we set 7 = 80 for J and r = 8 for J(*)).
Using the singular value decomposition, we can write the matrices J®) as:

J6 = L(S)E(S)R(S)T7 (25)

where L®) and R containing respectively the r left and right singular vectors as columns, while X(*) has
the singular values of J*) in the diagonal. The left and right singular vectors for stimulus s play the same
role as the vectors u® (normalized) and v(*) in the model connectivity defined by Eq. (2). If the connectivity
consists of unit-rank transient channels as in Eq. (2), the transient dynamics elicited by stimulus s has a
strong component along a single dimension specified by u(®). If instead the connectivity consists of rank-r
transient channels of the form given by Eq. (25), then the transient dynamics elicited by stimulus s evolves
in the subspace spanned by the column vectors of L), We therefore define the overlap between the transient
channels corresponding to pairs of stimuli showed in Fig. 4F as the principal angle between the subspaces
specified by the respective L(®) (see Egs. (8)-(9)).

In analogy with equation Eq. (2), we define the matrix Jgum, as the sum of the individual transient
channels for all stimuli:

Jsum = LOSORMLT + LPO)sPRAET 4o+ LOIsPRAET (26)

We then compare goodness of the fit of the population OFF responses using the matrix J and the matrix
JSum-

The network model

We study a recurrent network of N randomly coupled linear rate units. Each unit ¢ is described by the
time-dependent variable r;(¢), which represents the difference between the firing rate of neuron ¢ at time ¢
and its baseline firing level r; . The equation governing the temporal dynamics of the network reads:

N
T’f‘i = —T; +ZJijij (27)
j=1

where 7 represents the membrane time constant (fixed to unity), and J;; is the effective synaptic strength
from neuron j to neuron ¢. The system has only one fixed point corresponding to r; = 0 for all i. To have
stable dynamics, we require that the real part of the eigenvalues of the connectivity matrix J is smaller
than unity, i.e. ReAmax(J) < 1. We model each stimulus as the state of the system reached at the end of
stimulus presentation, which we denote by the vector ry. This is equivalent to setting the initial condition
of the dynamics to r(0) = rg. The dynamics following a specific initial condition rg is therefore the OFF
response to the stimulus associated with ro. We assume that during the OFF response the network receives
no external input.
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Normal and non-normal connectivity matrices

We define strong OFF responses in recurrent networks by focusing on the temporal dynamics of the distance
from baseline, defined as the norm of the population activity vector ||r(¢)]| (Hennequin et al., 2014). The
network generates a strong OFF response to the stimulus associated with the initial condition ry when the
value of ||r(¢)|| increases before decaying to its baseline level ||rp||. Note that having a transiently increasing
value of the distance from baseline implies that the OFF response r;(t) of at least one unit displays transiently
increasing temporal dynamics. Importantly, the transient behaviour of ||r(¢)|| depends on the stimulus,
i.e. rg, and on the properties of the connectivity matrix J, in particular on the relationship between its
eigenvectors.

Connectivity matrices for which the eigenvectors are orthogonal to each other are called normal matrices
and they are defined by the equation JIT = JTJ. Networks with normal connectivity cannot produce strong
OFF responses, as defined by a transiently increasing ||r(¢)||. In such networks, any stimulus rg evokes an
OFF response for which the distance from baseline decays monotonically to the baseline level. Note that any
symmetric matrix is normal.

On the other hand, connectivity matrices for which some eigenvectors are not mutually orthogonal are
called non-normal (Trefethen and Embree, 2005) and they consist of all connectivity J for which JJ T 377,
It is well known that non-normal networks can lead to transiently increasing values of ||r(¢)||, therefore
producing strong OFF responses. However, the non-normality of the network constitutes only a necessary
but not a sufficient condition for the generation of strong OFF responses.

Criterion for strong OFF responses

To find the necessary and sufficient condition for the generation of strong OFF responses in recurrent
networks, we write the differential equation governing the dynamics of the distance from baseline as (Neubert
and Caswell, 1997; Bondanelli and Ostojic, 2018):

Ll T@s—Dr 347
T = ) S = )
[Ie]] - dt ||z [[? 2

where we denote by Jg the symmetric part of the connectivity J. The linear recurrent network exhibits
strong OFF responses when the rate of change of the distance from baseline, d||r||/d¢, takes positive values
at time ¢t = 0. The right hand side of Eq. (28) takes its largest value when the initial condition ry is aligned
with the eigenvector of Jg associated with the largest eigenvalue Apax(Js). In this case, the rate of change
of the distance from baseline at time ¢t = 0 takes the value A\pax(Js) — 1. From Eq. (28) it is possible to
show that the necessary and sufficient condition for the generation of strong OFF responses in recurrent
networks is given by

(28)

)\max(JS> >1 (29)

This criterion defines two classes of networks based on the properties of the connectivity matrix: networks in
which strong OFF responses are not evoked by any stimulus, and networks able to generate strong OFF
responses to at least one stimulus.

Dynamics in a rank-1 network

We consider a network with unit-rank connectivity J = uWv()T . For simplicity, we take the norm of the
vectors v(¥) to be unitary (|[v(¥|| = 1), while the norm of the vectors u(® can vary. For these networks, the
condition for the generation of strong OFF responses given by Eq. (29) can be determined by computing
the eigenvalues of the symmetric part Jg¢ = (uWvD7 4 v(uMT) /2. The matrix Jg has two non-trivial
eigenvalues, given by

1+ cosé

2 )
where 6 is the angle between the two vectors u(®) and vV, Therefore the condition for strong OFF responses
is given in terms of the length of the vector u") and reads:

)‘max,min(JS) = ||u(l)|| (30)

2

M —=
[l 1+ cosf

(31)
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Here we focus on the case where the two vectors are orthogonal to each other, i.e. cos® = 0. When the
number of units N is large, this can be achieved by randomly drawing the vector elements from a given
probability distribution (e.g. Gaussian). In this case, the condition for strong OFF responses reduces to
[[Ju|| > 2. In this regime, strong OFF responses are evoked when the initial condition is closely aligned to
the vector v(1). If the initial condition (t = 0) is aligned with v we can explicitly write the OFF response
dynamics as:

r(t) = e vl 4 tetu® (32)

From Eq. (32), we can directly notice that the OFF response r(t) evolves in the two-dimensional plane
defined by the vectors u(®) and v(). At time ¢t = 0 the population activity vector is aligned with the vector
v Then, at the time when the distance from baseline is the largest, the component of the activity along
the direction v(1) has decayed exponentially, while the component of the activity along the direction given
by u(® has increased proportionally to the value of [[u")||. Eventually, the activity decays to the baseline
level given by rg = r(t — 0o) = 0. Therefore, the population activity vector at the peak of the transient
OFF responses, aligned with u(?)| is essentially orthogonal to the population activity vector at time ¢t = 0,
which is along v(1.

Dynamics in a rank-P network

Here we examine the case where the connectivity consists of P orthogonal unit-rank transient channels, as
given by Eq. (2). In this scenario, all the two-dimensional subspaces defined by the vectors u(? and v
are mutually orthogonal, meaning that a vector lying on the subspace defined by u®*) and v(*1) has zero
component on the subspace defined by ut*2) and v(*2). When the number of units N > P is large, this can
be achieved by randomly drawing the elements of all the vectors u(”’s and v(9’s from a given probability
distribution (e.g. Gaussian). Assuming that all the vectors u(® has the same length equal to ||u||, the
condition for having amplified OFF responses reduces to ||u|| > 2. If this condition is met, the network can
produce amplified dynamics in responses to a number P of stimuli, corresponding to the P initial conditions
given by the vectors v(¥). If the transient channels are mutually uncorrelated, the OFF response to stimulus
s can be written as in Eq. (32):

r@®(t) = e tv®) 4 te tu® (33)

The OFF responses to different stimuli follow therefore the same dynamics, but evolve on orthogonal
subspaces.

Since the dynamics is linear, any correlation between pairs of initial condition is reflected in the correlation
between the subspaces spanned by the evoked trajectories. We illustrate this point using our network model.
Suppose we have a pair of initial conditions given by v(*1) and av(®1) + gv(52) (with o2 + 8% = 1). Since the
vectors v(1) and v(*2) are orthogonal to each other, the correlation between these initial condition is equal
to a. While the OFF response with initial condition v(**) can be written as in Eq. (33), the OFF response
to the second stimulus reads:

v (t) = e~ (avl®) 4 pv2)) + te~ (aul*) 4 pul*?)) (34)

At the time of peak distance from baseline, activity vectors for the two OFF responses are given respectively
by ut*) and au®) + ful*2). Since u®*Y) and u*2) are orthogonal to each other, their correlation is equal to
«. Therefore, the correlation between the initial conditions is preserved in the correlation between the states
explore during the evoked transient dynamics.

Principal component analysis of low-rank dynamics

Rank-1 connectivity Here we show the link between the vectors u and v defining a single transient channel
and the principal components of the OFF response with initial condition v for a unit-rank connectivity given
by J = uv’. We examine the case in which the two vectors are orthogonal to each other, i.e. cosf = 0. In
this case, we can write the OFF response in Eq. (32) as:

r(t) = fi(t)v + fa(t)u, (35)

where f1(t) = e~ and f5(t) = te~t. To compute the principal components of the population OFF response
for a single stimulus we need to compute the eigenvalues and eigenvectors of the covariance matrix defined as:
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c- /0 TeW-wew -wa =2 [T rwa (36)

T0 0

where p is the temporal mean and 7y is the timescale on which the transient dynamics occurs. This cutoff
is necessary to capture the principal components of the transient dynamics and avoid overweighting the
dynamics near the fixed point. Using Eq. (35) we can re-write the covariance matrix as:

C=avvl + 8 @uv’ +vul) + yuu’ (37)
Wherea:ffffTo_l(ffl)z,ﬂ:fflfngo_lfflffg and’y:foQfTo_l(ffg)? The coefficient «, 3

and ~y are of order 1. We examine the two limit cases of weakly amplified dynamics, ||u|| < 1, and strongly
amplified dynamics ||u|| > 1. In the case of weakly amplified dynamics we can write the covariance matrix
as:

C = avvl +0(||ul|/VN) (38)

Therefore the first principal component of weakly amplified trajectory is strongly aligned with the vector v.
It follows that the second principal component is strongly correlated with the vector u. In case of strongly
amplified dynamics the covariance matrix can be written as:

C =7 |[ul*aa” + O(||ul[/V'N) (39)

where we defined the normalized vector i = u/||u||. The first principal component is therefore strongly
correlated with u, while the second one with v.

Rank-P connectivity Here we show the relationship between the vectors u(”, i = 1,..., P and the first
principal components of the joint dynamics with initial conditions v(?), s = 1, ..., P when the connectivity
matrix is of the form given by Eq. (2): J = Zil udv®T  For simplicity we assume that the number of
transient channels is smaller than the number of units, P < N. Under this condition the dynamics with
initial condition v(¥) can be written as (Bondanelli and Ostojic, 2018):

r(t) = AtV + fo(t)u® (40)

Therefore the correlation matrix of the joint dynamics reads:

AT 0 T L ™
C_;/O (e () = ) (7 () — ) it M_TOP;/O @ (1) dt (41)

We examine the case of strongly amplified dynamics, corresponding to |[u®|| = |[u|| > 1,i=1,..., P (the
case of weakly amplified dynamics ||u|| < 1 is analogous). If [Ju(?|| > 1 for all i, the correlation matrix C is
dominated by quadratic terms in {u(}:

P P
. . 1 . .
C=a) uu®"— 583 uuP"+0(ull/VN) (42)
i=1

4,5=1

where a = [ f2 and 8 = 7, ([ f2)?. If the number of transient channels P is large (but still much smaller
than the number of units N), the vectors u(®’s are strongly correlated with the eigenvectors of C. In fact,
multiplying the correlation matrix by &) = u® /|[u®|| yields:

P
N N 1 NG
ca) = alulPa® — S8l Y a® + O(ull/VN) (43)
=1

While the first term on the right hand side of Eq. (43) is of order 1/v/N, the second term is of order 1/v/PN.
This implies that when the number of transient channels P is large but smaller than N (1 < P < N),
the vectors u(?’s are strongly correlated with the top eigenvector of C, corresponding to the first principal
components of the joint dynamics r()(¢), i = 1, ..., P.
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Single-cell model for OFF response generation

The model

The temporal filters L;(¢) in Eq. (3) are chosen to be simple exponential functions (for illustration see
Fig. 5A):

Li(t) = (14 agt) e~ /T, (44)

Note that L;(0) = 1, so that the modulation factors r((fi) can be interpreted as the initial condition of the
response of neuron i to stimulus s. The parameters a; control both the peak latency and the effective
timescale of the response of neuron 7. In fact, we have that the effective timescale is given by Teg; = 7/,
while the peak latency is ¢1; = (7 — 1)/c;. Neurons with bigger response latencies have also longer decay
times. The functions L;(t) have a single peak. The peak amplitude does not depend on «; and it is given by
A(1) = Texp(—1+ 1/7). Note that the timescale of the distance from baseline ||r(¢)|| is controlled by the
neuron with the largest latency, i.e. ||r(¢)|| ~ exp(— min;(«;)t/7).

Principal component analysis of the single-cell model

Here we show that in the case where all the neurons have the same response latency «; = «, the population
response evolves along only one dimension. Using Eq. (3) we can write the covariance matrix goven by
Eq. (36) as:

Cij = om0 & = Jo' Liljdt — = [0° Lidt [° L;dt (45)

If the response latency is the same for every neuron, then §;; = ¢ for all 4, j and C = érord. In this case, the
covariance matrix has only one non-trivial eigenvector equal to rg, which corresponds to the dimension on
which the population OFF response evolves.

Fitting with basis functions
()

To fit the single-cell OFF responses 7, (t), we use an approach based on basis functions (Pillow et al., 2008).

()

The problem consists in finding the coefficient a;;’ that best approximate the equation

Nbasis

r =3 al? g, (46)

j=1
where the shape and the number of basis function Np.sis is predetermined. We choose the functions
fi(t) to be Gaussian functions centered around a certain value #; and with a certain width w;, i.e.
fi(t) = exp(—(t — ;)% /2w?).

By dividing the left and right hand side of Eq. (46) by the initial condition r{*) we obtain:

(g)(t) Nbasis
L= 0 WM, b =al) ). )

Jj=1

In general the coefficients bl(.;) could be fitted independently for each stimulus. However, our single-cell model
Eq. (3) assumes that the coefficients b;; do not change across stimuli. Under this assumption, Eq. (46) can
be written as:

Nbasis

Li(t) = Z bij f5(t) (48)

If the coefficients b;; are independent on the stimulus s, the problem of fitting Eq. (46) can be reduced
to a linear regression problem. Suppose we want to fit the population responses to C' different stimuli
simultaneously. Let R be the matrix of size N x TC obtained by concatenating the N x T matrices
(r,({f))rm)it = 7“1(5) (t)/r(()‘? (i=1,.,N,t=1,..,T, s = 1,...,C) corresponding to the normalized responses
to the C stimuli. Let F(©) be the Npasis X T'C' obtained by concatenating C' times the Npass X T° matrix
(£)it = fi(t). Let B be the N X Npagis given by B;; = b;;. Then Eq. (47) can be written as:
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R(©) = BF(©), (49)

which can be solved using linear regression techniques.

If population responses are generated through Eq. (3), then Eq. (46) implies that the performance
of the fit Eq. (49) is independent of the number C of stimuli considered. In the case of OFF responses
generated through a recurrent network mechanisms, Eq. (46) does not hold true, and the performance
of the fit decreases as the number of stimuli C is increased. In Fig. 5D.-F. instead of normalizing the
responses by their initial condition, we normalized them by the firing rate range (up to a sign), i.e. we choose
ro,; = £(max, 7;(t) — min; r;(¢)), where the sign corresponds to sgn(r;(t*)), with t* = argmax,|r;(t)|. Note
that the two normalizations are equivalent for the single cell model Eq. (3). In order to avoid normalizing for
very small values, we fit only the most responding neurons in the population, as quantified by their firing
rate range.
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Selection of hyperparameters in rank-reduced ridge regression. The ridge and rank hyperpa-

rameters A and r are selected using 10-fold cross-validation in the time domain, when fitting the activity of the
whole pseudopopulation (All) or the activity of individual animals. A. Goodness of fit R? as a function of the
hyperparameters A and r. The gray trace shows the value of A for which the R? is maximum for each value of the
rank parameter 7. B. Goodness of fit R? as a function of the hyperparameters \ for three different choices of the
rank r. The value of X for which R? is maximum is indicated by the dashed line. C. Goodness of fit R? as a function
of the rank r for A = 1. The value of the R? as a function of the rank r does not exhibit a clear maximum, but rather
tends to saturate at a certain value r*.
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Figure S2: Goodness of fit for the original and surrogate datasets. Value of R? for the original and 500

surrogate datasets computed using the activity of the whole pseudopopulation (All) and the activity of individual

animals (mouse 1 is shown in Fig. 4D). The parameters for the reduced-rank ridge fitting for the three plots are
respectively: Aan = 2, ran = 70; A2 = 0.8, r2 = 90; A3 = 0.6, r = 90.
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Figure S3: Goodness of fit as a function of PC dimensionality for original and surrogate datasets. Value
of R? as a function of PC dimensionality for the original dataset (black trace) and for the surrogate datasets (colored
traces). The value of R? was computed using ridge regression using 10-fold cross-validation. The ridge parameter is
optimized for each choice of the PC dimensionality. For the original dataset, error bars represent the standard error
over the 10 cross-validation folds; for the surrogate datasets, error bars represent the average cross-validation standard
error over all the surrogates. Here the number of surrogates is set to 100. For each choice of the PC dimensionality, a
red cross indicates that the difference in R? between the original dataset and the most constraining surrogate (TKC)

is statistically significant (at least P < 0.01; upper tail test using the mean value of R? over the cross-validations
folds for each dataset).
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Figure S4: Hypothesis testing for simulated OFF responses. We fit a linear dynamical system to the OFF
responses generated through a recurrent network mechanism with low-rank connectivity (Eq. (2), A.-C.) or through
the single-cell mechanism (Eq. (3), D.-F.) The goodness of the fit R? for the original simulated data is then compared
with the three types of surrogate datasets. For the recurrent model, we find that there is a substantial difference
between the value of R? for the original datasets and for the surrogates, and this difference is statistically significant
over the whole range of PC dimensionality considered. This feature is preserved even when the fitting is performed
on a smaller subset of units (subsampling 50% and 20% of the units). In A.-C. we used a recurrent connectivity
J = Jiow—rank + gX, given by the sum of a low-rank connectivity (with rank 30) and a Gaussian connectivity with
mean zero and standard deviation g/ VN (with g = 0.2), which acts as connectivity noise (Mastrogiuseppe and
Ostojic, 2018; Bondanelli and Ostojic, 2018). 20 OFF responses were generated by setting the state before stimulus
offset along the first 20 amplified initial conditions. Here N = 500. Input noise was included in the simulation. D.-F.
When OFF responses are generated through the single-cell mechanism, fitting a dynamical system yields very poor
performance. The difference in the values of R? between the original and surrogate datasets is relatively small and it
becomes significant only when a large number of principal components is considered. We simulated 20 OFF responses
generated by the single-cell model using 500 units. In all panels, we used ridge regression and 10-fold cross validation.
The ridge parameter is optimized for each choice of the PC dimensionality. For the simulated dataset, error bars
represent the standard error over the 10 cross-validation folds; for the surrogate datasets, error bars represent the

average cross-validation standard error over all the surrogates (computed as (SEM) = \/Z?E‘f" SEM?/Nsurr). The
number of surrogates is set to 100. For each choice of the PC dimensionality, a red cross indicates that the difference
in R? between the original dataset and the most constraining surrogate (TKC) is statistically significant (at least
P < 0.01; upper tail test using the mean value of R? over the cross-validations folds for each dataset).
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Figure S5: Model recovery for simulated OFF responses using a low-rank network model. Model recovery
for OFF responses generated through a low-rank network mechanism. The number of units was set to N = 500
and the rank of the connectivity was fixed to 30. We generated 10 OFF responses by setting the initial state of the
network to the first 10 amplified initial conditions. Input noise was injected into the system. Thus, the dynamics
across stimuli spans at least 20 dimensions. A. Goodness of fit R? as a function of the rank parameter r in the
reduced-rank regression fit, for two values of the PC dimensionality. 10-fold cross validation is used; error bars
represent the standard error across the 10 cross-validation folds. The value of R? increases as a function of the
rank 7 and stays approximately constant for rank bigger or equal to 20 (dashed line). B. Goodness of fit R? as a
function of the PC dimensionality computed using ordinary least square regression (with no rank constraint, grey
trace) and reduced-rank regression (with r = 20, red trace). The dashed line indicated the number of dimensions
spanned by the dynamics for all stimuli in case of zero input noise (equal to 20 in this case). For a value of the
PC dimensionality larger than the number of dimensions spanned by the dynamics, the value of R? decreases due
to overfitting. Cross-validation is performed as in A. C. Variance explained, as quantified by the R?, between the
elements of connectivity resulting from the fitting procedure Jg; and the projection of the real connectivity J on
the top principal components, Jpc, as a function of the number of principal components considered (see Eq. (20)
in Methods). The gray trace corresponds to ordinary least square regression, while the red trace to reduced-rank
regression with rank r = 20. D. Spectra of the matrices Jg; (green dots) and Jpc (red crosses) using ordinary least
square regression (left) and reduced-rank regression (right) for fixed dimensionality (equal to 80, black marker in
panel C.). In all panels, the ridge parameter is set to A = 0.1.
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Figure S6: Overlap between the state at the peak of the transient OFF responses. A. Left: overlap
between the states at the peak of the OFF responses for each pair of stimuli. The peak time is defined as the time at
which the distance from baseline of the population vector is maximum. Right: linear correlation between the overlap
between peak states and the overlap between initial conditions for each stimulus pair. B. Same as A. except that, for
each stimulus, the component of the peak state along the corresponding initial condition has been subtracted.
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Figure S7: Correlation between initial state and peak state for the single-cell model as a function
of latency span and signal-to-noise ratio. A. Average correlation between the state at the end of stimulus
presentation and the state at the peak of the OFF responses as a function of the latency span, defined as the
difference between the maximum and the minimum value of the latency across all units (ALatency(norm.) =
(Latency,,,, — Latency,;,)/Latency,,..), and the signal-to-noise ratio (SNR), defined as the ratio between the
standard deviation of the noise and the peak amplitude of the temporal responses L;(t). Average is computed
over 1000 bootstrap subsamplings of 10% of the units in the population. B. Correlation between the state at
the end of stimulus presentation and the state at the peak of the OFF responses as a function of the SNR for
ALatency(norm.) = 0.5 (red dashed line in A.). Error bars represent the standard deviation computed over 1000
bootstrap subsamplings of 10% of the units in the population. Here N = 500, 7 = 10 and amin = 1.
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Figure S8: Fit of population OFF responses using the recurrent and single-cell model adjusted for the
number of parameters. A.-C. Relative variance explained, as quantified by the adjusted index Ridj, when fitting
basis functions (green trace) and a linear dynamical system (red trace) to data generated from the single-cell model
(A.), from the recurrent network model (B.), and to the AC calcium activity data (C.), as a function of the number
of stimuli. Error bars represent the standard deviation over multiple samples of the stimuli. In panels A. and B.
N = 500, the number of stimuli is set to 10. Both fitting procedures are performed on the first 40% most responding
units, to avoid normalizing the responses by very low values when fitting basis functions (see Methods). The basis
function fit is performed using 10 Gaussian basis functions. In B. the linear dynamical system does not explain 100%
of the variance of the data generated by the recurrent model due to noise in the input and subsampling of units.
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Figure S9: Population ON and OFF responses in auditory cortical activity and in a nonlinear recurrent
network model. A. Trial-averaged deconvolved calcium signals showing the activity of 20 out of 2343 neurons
in response to a 8 kHz 1s UP-ramp with intensity range 60-85 dB (see Fig. 1A). We selected neurons with high
signal-to-noise ratios and ordered them according to the difference between peak activity during ON and OFF
response epochs. B. Distance from baseline ||r(¢)|| computed for the population response to the 8 kHz sound in A
(see Fig. 1A). C. Left: projection of the population ON and OFF responses to the stimulus in A. on the first two
principal components computed for the ON response. Right: projection of both ON and OFF responses on the first
two principal components computed for the OFF response. PCA was performed on the period from -50 ms to 350 ms
with respect to stimulus onset and offset. D. Subspace overlap between the subspaces spanned by the ON and OFF
population responses to individual stimuli. The subspace overlap is computed as the principal angle between the ON
and OFF subspaces defined by the first 5 principal components of the ON and OFF population responses. Error bars
correspond to +1 standard deviations computed over 100 subsamplings of the 80% of the units. E. Projection of
the population response to the stimulus in A. along the population states at the peak (corresponding to maximum
distance from baseline) of the ON and OFF responses.
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