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Abstract 

 

Single cell technologies have rapidly generated an unprecedented amount of data that            

enables us to understand biological systems at single-cell resolution. However,          

analyzing datasets generated by independent labs remains challenging due to a lack of             

consistent terminology to describe cell types. Here, we present OnClass, an algorithm            

and accompanying software for automatically classifying cells into cell types          

represented by a controlled vocabulary derived from the Cell Ontology. Cell type            

similarity is inferred according to the distances in the Cell Ontology so a key advantage               

of OnClass is its ability to annotate cell types that are not present in the training set by                  

using the hierarchical structure of the vocabulary space. We applied OnClass to diverse             

collections of single cell transcriptomics of both mouse and human and observed            

substantial improvement on automated cell type annotation. We further demonstrated          

how OnClass can be used to identify marker genes for cell types present and absent in                

the training set, suggesting that OnClass can be used as a tool to associate marker               

genes to each term of the Cell Ontology, offering the possibility of refining the Cell               

Ontology using a data-centric approach. 
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Introduction 
Single cell RNA-seq has emerged as a powerful tool to generate comprehensive organismal             
atlases encompassing a wide range of organs and tissues ​1–6​. One of the most important tasks                
in single-cell analysis is cell type annotation, which aims at characterizing and labeling groups of               
cells according to their gene expression ​7–10​. Recent efforts in scRNA-seq have produced an              
unprecedented large compendium of expert annotated cell types, paving the way for scientists             
to better understand cellular diversity ​4,11​. However, utilizing these cell type annotations is             
challenging due to the inconsistent terminology used to describe cell types collected by             
independent groups ​4,5,11​. This inconsistency will likely increase as more groups generate new             
datasets and more cellular types and states are characterized. The Cell Ontology, which used              
expert curation to organize more than 2000 cell types into a hierarchical structure, offers a               
controlled vocabulary for cell types and has been proposed as a basis for consistently              
annotating large-scale single-cell atlases ​12–16​.  
 
A natural approach to address the inconsistent vocabulary challenge is to build computational             
methods that automatically assign cells to terms in the Cell Ontology. Ideally, these methods              
should be fully automated so they can be updated and quickly integrated as the Cell Ontology                
evolves. However, assigning cells to terms (i.e., cell types) in the Cell Ontology has at least                
three challenges. First, although the Cell Ontology contains valuable hierarchical relationships           
among cell types, not all the terms are associated with marker genes which are crucial for cell                 
type annotation. Second, even though supervised learning approaches might be used to predict             
cell types that have curated annotations, they are unable to classify cells into novel cell types                
which have been omitted from the training data. Throughout this paper, we refer to “unseen cell                
types” to describe cell types that are not part of annotated cells in the training data, whereas                 
“seen cell types” are the cell types annotated in the training data. This issue largely prevents us                 
from fully understanding cellular diversity as more than 95% of cell types in the Cell Ontology                
are unseen even in the largest datasets ​11​. Third, as the Cell Ontology is not developed                
specifically for single-cell RNA sequencing (scRNA-seq), it might be inaccurate for certain cell             
types relationships. Collectively, these challenges hinder progress towards comprehensive cell          
type annotation and cellular diversity understanding.  
 
We developed OnClass to address these challenges. OnClass is able to automatically classify             
cells to any unseen cell type as long as it is in the Cell Ontology. To achieve this, OnClass first                    
infers similarity among all the cell types according to their distances in the Cell Ontology. It then                 
leverages the cell type similarity to transfer annotations to a novel, unseen cell type from other                
seen and similar cell types. In particular, OnClass constructs a network of cell types based on                
the hierarchical “is_a” relationship in the Cell Ontology and embeds this network into a              
low-dimensional space that preserves network topology. It then finds multiple boundaries to            
separate each cell type into a unique region of the low-dimensional space. Annotated cells and               
unannotated cells are all mapped to this low-dimensional space. After all cells and cell types are                
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embedded in the same low-dimensional space, OnClass annotates a cell based on the cell type               
region in which it lies. Importantly, as this region might correspond to an unseen cell type,                
OnClass thus enables the annotation of unseen cell types. Furthermore, by embedding cells             
and the Cell Ontology into the same low-dimensional space, OnClass advances other important             
applications, such as marker genes identification, data integration, and refinement of the Cell             
Ontology. 
 
We evaluated OnClass on the Tabula Muris Senis dataset which contains 96 cell types,              
representing the existing largest effort of cell type characterization. We found that our method              
outperformed all existing methods and more importantly could classify cells to unseen cell types              
with more than 0.8 accuracy. We further demonstrated the ability of OnClass to transfer              
annotations to 26 other single-cell datasets and achieve improved data integration performance,            
even when the cell types were not part of the training data. Finally, we showed OnClass was                 
able to identify marker genes for both well-characterized cell types as well as unseen cell types,                
paving the way for creating an organism-wide molecular representation of cellular diversity.  
 

Results 

Cell type annotation using OnClass 
The Cell Ontology used a controlled vocabulary to organize 2331 cell types into a hierarchy               
based on the “is_a” relation. OnClass first embedded the Cell Ontology into a low-dimensional              
space where similar cell types were close to each other ​17,18​. It then partitioned this               
low-dimensional space into multiple regions, each corresponding to a cell type in the Cell              
Ontology. Single cells, which were characterized by the gene expression, were then projected to              
this low-dimensional space by finding a nonlinear transformation that projected each cell to the              
region of its cell type. An unannotated cell can be classified by first projecting to one of the                  
regions in this low-dimensional space using the same nonlinear transformation and then            
annotating to the corresponding cell type. Importantly, such a classification procedure enables            
the annotation of unseen cell types based on their regions in the low-dimensional space. In               
addition to cell type annotation, OnClass used these regions for other applications, including             
marker genes identification and data integration ​(Figure 1a)​. 
 

Cell type embeddings reflect cell type similarity 
Since OnClass annotated unseen cell types by transferring annotations from other similar cell             
types, its performance greatly relied on the quality of the cell type embeddings. High-quality cell               
type embeddings, which were derived from the Cell Ontology structure, should be similar for cell               
types with similar gene expression profiles. Therefore, we first verified the merit of our approach               
by comparing three types of cell type similarities: the Cell Ontology structure-based similarity,             
the embedding-based similarity, and the gene expression-based similarity (see Online          
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Methods). We first observed that the embedding-based similarity was strongly correlated with            
the Cell Ontology structure-based similarity ​(Figure 1b) ​. For example, the average           
embedding-based similarity of direct neighbors in the Cell Ontology was 0.86, which was 42%              
and 183% higher than the average embedding-based similarity of two-hop neighbors and            
three-hop neighbors. For cell types that are more than four-hop away in the Cell Ontology, the                
average embedding-based similarity was less than 0.01. Next, we examined whether cell types             
with similar embeddings would have similar gene expression profiles by comparing the            
embedding-based similarity and the gene expression-based similarity. Using a collection of           
annotated cells as the benchmark, we observed strong correlations between these two types of              
similarities (​Figure 1c,d​). For instance, the correlation between the gene expression-based           
similarity and the embedding-based similarity was 0.70 (p-value < 1e-10) in pancreas and 0.77              
(p-value < 1e-11) in kidney. The strong correlation between these two types of similarities              
demonstrated the high-quality of cell type embeddings and further suggested the possibility to             
annotate unseen cell types by transferring annotations from other similar cell types.            
Unfortunately, none of the existing cell type annotation methods integrates with the Cell             
Ontology. OnClass’s ability to use the Cell Ontology to annotate unseen cell types led us to                
consider whether we could improve cell type annotation on large and diverse collections of              
scRNA-seq datasets. 
 

Improved cell type annotation 
We ran OnClass on the Tabula Muris Senis (TMS) dataset containing a total of 96 cell types​11​.                 
To investigate the effect of unseen cell types, we split cells into test and training across different                 
proportions of seen cell types in the test set. Overall, we observed that OnClass led to a                 
substantial improvement in comparison to existing approaches (​Figure 2a-d​). We first examined            
the ability of OnClass to identify cells belonging to a given cell type. We observed that OnClass                 
significantly outperformed all existing approaches in terms of AUROC on all proportions of seen              
cell types (​Figure 2a​). Even when only half of the cell types were seen, OnClass still achieved                 
an AUROC of 0.87, while AUROCs of existing methods were all below 0.72. Next, we               
investigated whether OnClass could accurately predict the cell type for a given cell. In a simpler                
setting where we combined all unseen cell types as an “unseen” class, OnClass outperformed              
existing methods in terms of Cohen’s Kappa statistic (i.e., balanced accuracy) from 10% to 90%               
unseen cell types (​Figure 2b​). We found that the improvement of OnClass was more prominent               
with the increasing proportion of unseen cell types. We next evaluated a more challenging              
setting where unseen cell types were no longer combined and a prediction was deemed as               
correct only when the cell was assigned to the specific cell type, even if this cell type was an                   
unseen cell type. By using Accuracy@3 and Accuracy@5 to quantify the performance, we             
observed significant improvement of OnClass in comparison to existing methods (​Figure 2c,d​).            
For example, when 30% of cell types were unseen, OnClass obtained 0.45 Accuracy@3 and              
0.55 Accuracy@5, while none of the existing approaches was greater than 0.3. Again, the              
improvement of OnClass was larger with more unseen cell types, indicating the advantage of              
using the Cell Ontology to transfer annotations from seen cell types to unseen cell types.               
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Notably, even though TMS had one of the most diverse and largest numbers of cell types, it still                  
only covered less than 5% of all cell types in the Cell Ontology. We anticipate that OnClass will                  
be even more useful as more single cell RNA-seq datasets become available. 
 

OnClass accurately annotates unseen cell types 
We then examined the performance of OnClass in the more challenging case of annotating              
unseen cell types, which cannot be achieved by any existing methods. Although recent efforts              
had classified cells into a “unknown” type ​7,8​, they could neither break down this new type into                 
detailed subtypes nor annotate it to specific cell types in the Cell Ontology. To enable a better                 
comparison between OnClass and these approaches, we proposed comparison approaches          
which extended existing approaches by classifying “unknown” type cells to the nearest cell type              
in the Cell Ontology. We studied the performance of OnClass by using an increasing number of                
cell types as the training set. We observed significant improvement with OnClass across             
different proportions of cell types as the training set. For instance, when 60% of cell types were                 
used as training data (​Figure 3a​), OnClass obtained an AUROC of 0.73 when all test cells                
belonging to unseen cell types, which is 30% higher than comparison approaches. Even when              
only 20% of cell types are used in the training set, OnClass still obtained an AUROC of 0.68. On                   
a randomly selected set of 9 new unseen types, OnClass was able to accurately classify 81% of                 
cells (​Figure 3b-d​). On a larger set of 21 unseen types, OnClass still accurately classified 58%                
of cell types (​Figure 3h-j​). We showed the comparison of OnClass annotation and ground truth               
annotation in ​Figure 3b-j ​. We found that OnClass was able to accurately classify a majority of                
cell types, including rare cell types. For those cells that were not accurately annotated, we found                
that the cell type assigned by OnClass was indeed biologically related to the ground truth cell                
type. For example, OnClass classified fibroblasts cells as mesenchymal stem cells, which are             
known to be morphologically indistinguishable from fibroblasts​19 (​Fig. 3h, i ​). As human            
annotation can be imperfect and mostly limited to familiar cell types, OnClass can correct these               
false positives and broaden expert knowledge.  
 
We next examined the robustness and applicability of OnClass by using it to transfer              
annotations from TMS to other more diverse datasets across animals, technologies, and            
organs. In particular, we trained OnClass using TMS and then classified 105,476 cells collected              
from 26 single-cell datasets (26-datasets) representing 9 technologies and 11 studies. We            
observed an average AUROC=0.75 for these 26 datasets. Among all 10 cell types, OnClass              
obtained an AUROC greater than 0.8 for 5 of them (​Figure 4a​). For B cell and macrophage that                  
have annotated cells in TMS, OnClass obtained AUROCs of 0.99 and 0.97, respectively (​Figure              
4b, c ​). More importantly, for cell types that were unseen in TMS, OnClass still achieved               
relatively high AUROCs (0.85 for CD14 ​+ monocytes cell, 0.85 for CD56 ​+ natural killer cell, and               
0.81 for regulatory T cell), indicating its ability to accurately annotate and discover new cell               
types (​Figure 4d-f ​). Furthermore, the predicted cell type annotations can be used as features to               
cluster and integrate cells from different datasets. We used the predicted cell type annotations              
to integrate these 26 datasets following the same procedure as previous work ​20​. We observed               
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good performance by using OnClass, where cells were clustered based on cell types rather than               
artifacts related to platforms (​Figure 4g​). We further quantified the integration performance            
using the silhouette coefficient and observed a significant improvement in comparison to the             
state-of-the-art data integration approach Scanorama ​20 (​Figure 4h ​), indicating OnClass’s          
robustness to annotating cells from different batches and datasets. 

OnClass identifies marker genes for both seen and unseen cell types 
Given the accurate annotation of both seen and unseen cell types, we were then interested in                
using OnClass to identify cell type marker genes. While cell type marker genes are the key to                 
expert curation and understanding cellular diversity, existing knowledge about cell type marker            
genes is incomplete and limited to extensively studied cell types. Here, we used OnClass to               
identify marker genes for each cell type, including both seen and unseen cell types in TMS.                
(​Figure 5a ​). For example, OnClass was able to identify marker genes for 64% of seen cell types                 
by examining the top 10 candidate genes in the predicted marker gene list. More importantly,               
since OnClass did not require any annotations to identify marker genes, it was able to find                
marker genes for unseen cell types as well. We found that OnClass was able to identify marker                 
genes for 39% of unseen cell types by examining the top 10 candidate genes in the predicted                 
marker gene list. We incorporated these OnClass referred maker genes into the existing Cell              
Ontology, in the hope of facilitating future expert curation (​Supplementary Table 1​). Although             
these marker genes were by no means a complete representation of cell type features, they               
provided a first draft attempt to create a comprehensive characterization of cellular diversity. 
 
Finally, we sought to examine whether our referred marker genes can accurately annotate cells.              
We first used FACS cells in TMS to identify marker genes and then used them to annotate                 
droplet cells in TMS. We found that the performance of using OnClass referred marker genes               
was substantially better than using curated marker genes for cell types with more than 500 cells.                
For example, OnClass marker genes achieved 0.98 AUROC, whereas curated marker genes            
achieved 0.90 AUROC for cell types with more than 500 and less than 1500 cells (​Figure 5b​).                 
For rare cell types, the performance of OnClass was comparable to curated marker genes              
(​Figure 5b ​). Furthermore, for those cell types that have no curated marker genes, OnClass              
marker genes also achieved highly accurate cell type annotation performance (​Figure 5c​). For             
instance, OnClass marker genes obtained a high AUROC of 0.97 for cell types with more than                
500 cells. We found that the performance of OnClass was better for cell types with more                
annotations. As more data would be available in the future, we anticipate further improvement of               
OnClass on the identification of robust and accurate marker genes. To ensure the robustness of               
these marker genes, we next used them to classify the 26-datasets. Among all the 10 cell types,                 
8 of them achieved AUROCs larger than 0.7 and 4 of them achieved AUROCs larger than 0.8                 
(​Figure 5d-i ​). Even for cell types that had no annotation, OnClass still obtained a desirable               
performance (​Figure 5g, h, i​). Notably, when comparing the performance with a supervised             
classifier, we found that using marker genes could achieve better results on several cell types               
(e.g., CD14 ​+ monocyte cells) (​Figure 4a, Figure 5a​). Although supervised models are more             
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expressive, they are also prone to overfitting. In contrast, marker genes are not only              
interpretable but also more robust to noise, thus enabling accurate annotation of new cells. 

Discussion 
Ever since the emergence of scRNA-Seq, cell type annotation is a key step in single-cell data                
analyses. As more cell types are discovered and expected to be discovered, recent efforts have               
focused on classifying cells into existing labels or a generic unseen cell type ​7,8​. Despite               
encouraging results based on these approaches, these methods fail to provide meaningful            
information specific to the cell types that are not part of the training sets. In contrast, our method                  
takes an important step forward by mapping each cell to the Cell Ontology, leading to accurate                
annotations of unseen cell types that cannot be achieved by any existing methods. Conceptually              
and methodologically, this is substantially different from any existing methods in the sense that              
our method not only leverages known cell-to-cell (hierarchical) relationships, but also directly            
classifies cells without pre-clustering in order to model the diversity within unseen cell types. 
 
While our method leverages the Cell Ontology to classify unseen cell types, it is inspired by                
recent progress in single cell dataset integration approaches ​20,21​. In the state-of-the-art single             
cell integration frameworks, datasets from different technologies are aligned in the same            
low-dimensional space by using mutual nearest neighbors as anchors to connect them. Indeed,             
our method can be considered to be aligning the Cell Ontology to the gene expression matrix by                 
using known annotations as anchors. The key novelty of our method comes from effectively              
embedding cell types based on the Cell Ontology and dividing the low-dimensional space into              
regions to enable unseen cell type annotation. In future efforts, we might focus on annotating               
datasets from different technologies simultaneously by mapping all of them into the cell type              
low-dimensional space, providing a framework that is more applicable, flexible and robust. 
 
With the continually and massively generation of single cell datasets, more cell types will be               
discovered and annotated. OnClass provides a robust, accurate, efficient and reproducible           
solution to this problem with a Python-based implementation and an R-based pipeline through             
the reticulate library. OnClass is publicly available at        
https://github.com/wangshenguiuc/OnClass​ under an Open Source software license. 
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Figure 1. ​a​, Flow chart of OnClass. The Cell Ontology is used to embed cell types into a                  
low-dimensional space. OnClass then finds multiple boundaries in this low-dimensional space to            
separate each cell type into a unique region. Cells are then projected into this space by                
reducing the dimensionality of the gene expression matrix. These boundaries can then be used              
to predict cell type, identify marker genes and integrate datasets. ​b​, Violin plot showing the               
correspondence between the location of each cell type’s nearest neighbor in the Cell Ontology              
and the embedding similarity. The nearest neighbor of each cell type is calculated by using the                
cosine distance between cell type low-dimensional representations. ​c,d Scatter plots showing           
the correlations between the embedding-based cell type similarity and the gene           
expression-based cell type similarity in pancreas (c) and kidney (d). 
 
Figure 2. ​a-d Bar plots comparing OnClass and existing methods in terms of AUROC (a),               
Cohen’s Kappa (b), Accuracy@3 (c) and Accuracy@5 (d). x-axis shows the proportion of cell              
types present in the test data. 
 
Figure 3. ​a​, Bar plot comparing OnClass and existing methods for different proportions of seen               
cells in the training set. x-axis shows the proportion of seen cell types in the training data and                  
y-axis the AUROC. ​b,c,e,f,h,i ​, 2-D UMAP showing the predicted cell types of OnClass (b, e, h)                
and ground truth labels (c, f, i) for 9 cell types (b, c), 11 cell types (e, f), and 21 cell types (h, i).                        
The same color means correct annotation. ​d,g,j, Sankey diagrams of the resulting mapping             
between predicted cell types (left) to ground truth labels (right) for 9 unseen cell types (d), 11                 
unseen cell types (g) and 21 unseen cell types (j).  
 
Figure 4. ​a​, Bar plot showing the AUROC of OnClass on 9 cell types, including 2 present in                  
TMS (green) and 7 not (yellow). ​b-f AUROC plots of OnClass’s prediction for five cell types: B                 
cell (b), macrophage (c), CD14 ​+ monocyte cell (d), CD56 ​+ NK cell (e) and regulatory T cell (f). ​g​,                  
2-D UMAP showing OnClass’s integration of 26 datasets on 6 cell types. ​h​, Box plot showing                
the comparison between OnClass and Scanorama on data integration in terms of silhouette             
coefficient. 
 
Figure 5. ​a​, Plot showing the proportion of cell types out of the ones present (green) or not                  
(yellow) in TMS for which OnClass can identify the marker genes in the top k genes out of                  
23,437 genes. k is shown in the x-axis and corresponds to the position in the marker gene list                  
sorted by p-value. ​b​, Boxplot showing the cell type annotation performance of using OnClass              
referred marker genes (red) and curated marker genes (blue) in terms of AUROC. x-axis shows               
the number of cells per cell type. ​c​, Boxplot showing the cell type annotation performance of                
using OnClass referred marker genes in terms of AUROC. Only cell types that have no curated                
marker genes are shown here. x-axis shows the number of cells per cell type. ​d​, Bar plot                 
showing the AUROC of OnClass for 10 cell types, including 2 present in TMS (green) and 8 not                  
(yellow). ​e-i AUROC plots of OnClass’s prediction for five cell types: macrophage (e), B cell (f),                
CD14 ​+​ monocyte cell (g), CD56 ​+​ NK cell (h), and regulatory T cell (i). 
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Online methods 

scRNA-seq datasets 
We used the compendium of single cell transcriptomic data from the Tabular Muris Senis​11​. The               
cell type annotations in Tabula Muris Senis had been curated by domain experts             
(​Supplementary Table 2​) and all the cell type annotations present in the dataset were manually               
mapped to the Cell Ontology vocabulary. We next obtained 26 scRNA-seq datasets from 11              
different studies ​22–33​. We used the preprocessed collection from Scanorama ​20​, where           
low-quality cells were excluded. There were 5,216 genes across all 26 datasets and a total of                
105,476 cells, with each dataset containing between 90 and 18,018 cells. Since these datasets              
did not provide cell type annotations that were mapped to the Cell Ontology vocabulary, we               
manually mapped cell types in these datasets to the Cell Ontology vocabulary (​Supplementary             
Table 3 ​). After the mapping, there were 10 different cell types in these 26 datasets. We denoted                 
these datasets as “26-datasets” in this paper. 

The Cell Ontology 
We downloaded the Cell Ontology from The OBO Foundry         
(​http://www.obofoundry.org/ontology/cl.html ​)​13​. We used the “is_a” relation in the Cell Ontology          
to construct an undirected network of cell types. There were in total of 2331 nodes in the                 
constructed network, corresponding to 2331 different cell types. All edges in this network had              
the same weight. 
 

Embedding the Cell Ontology into low-dimensional space 
OnClass computed a compressed, low-dimensional representation of each cell type based on            
the constructed cell type network. We used DCA​17,18​, which had been proposed to embed the               
Gene Ontology, to embed the Cell Ontology. DCA first computed a propagated cell type network               
by applying the random walk with restart​34 to the cell type network. It then obtained the                
low-dimensional representation of each cell type by using the singular value decomposition            
(SVD)​35 to reduce the dimensionality of this propagated cell type network. As suggested by              
DCA, we set the dimensionality of SVD to 1000 and the restart probability of the random walk                 
with restart to 0.8.  
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Cell type annotation 
OnClass used a bilinear model to predict the cell type for a novel cell. Let ​M be an ​m by ​n matrix                      
of input gene expression data, where ​m ​was the number of cells and ​n was the number of                  
genes. Let ​Y be an m by ​c label matrix, where ​c was the total number of cell types in the Cell                      
Ontology. ​Y​ij​=​1 if cell ​i belonged to cell type ​j​, otherwise ​Y​ij​=​0. Note that ​c was much larger than                   
the number of seen cell types in the training data, as the majority of cell types were unseen in                   
the training data. For example, there were 96 cell types in TMS, which was much smaller than                 
c=​2331 cell types in the Cell Ontology. The corresponding columns of unseen cell types were all                
zeros in the label matrix. Let ​U be a ​c by ​q matrix of the low-dimensional representations of cell                   
types, where ​q was the dimension of cell type low-dimensional space. ​U ​was the output of DCA                 
and fixed during optimization. OnClass optimized the following cross-entropy loss: 

,Σ Y log(exp(M W W U ) / Σ exp(M W W U ))L = Σmi=1
c
j=1 ij i 1 2 j

T c
k=1 i 1 2 k

T   

where and were the parameters that needed to be estimated. ​h ​was the ∈RW 1  
n✖h  ∈RW 2  

h✖q             
hidden-dimension and set to 500. We observed that the performance of OnClass was stable for               
h​ between 200 and 2000. OnClass used ADAM​36​ to optimize this objective function.  
 
After the optimization, the cell type of a new cell with expression vector ​z could then be                 
predicted as: 

,xp(zW W U ) / Σ exp(zW W U )pj = e 1 2 j
T c

k=1 1 2 k
T  

where was the probability that this cell belonged to cell type ​j​. was the pj             p , p , .., }P = { 1  2 . pc   
probability distribution that this cell belonged to each cell type. Since ​c was the total number of                 
cell types in the Cell Ontology, OnClass could automatically annotate cell types that were not               
seen in the training data. 
 

Cell type embeddings reflect cell type similarity 
We calculated three types of cell type similarities: the Cell Ontology structure-based similarity,             
the embedding-based similarity, and the gene expression-based similarity. The Cell Ontology           
structure-based similarity was calculated as the shortest distance between two cell types in the              
Cell Ontology-based cell type network. The embedding-based similarity was the cosine similarity            
between low-dimensional representations of two cell types. To calculate the gene           
expression-based similarity, we used the gene expression of all FACS cells in TMS. The              
calculation was performed within individual organs. We first identified two sets of cells belonging              
to two given cell types and an organ. We then calculated the mean of pairwise cosine                
similarities between these two sets of cells and used it as the gene expression-based cell type                
similarity. 
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Evaluation of cell type annotation  
We evaluated across different proportions of seen cell types in the test set ranging from 100%                
to 10%, where 100% indicates that all cell types in the test set also presented in the training set.                   
For a proportion ​k​, we first randomly selected ​k percentage of cell types as seen cell types and                  
the remaining as unseen cell types. All cells belonging to these unseen cell types were used as                 
the test set. For the seen cell types, we random split their cells into five equal size folds, where                   
one fold was used as the training set and the remaining four folds were used as the test set. We                    
created a five-fold of test and training here according to the setting of Tabula Muris Senis,                
where about 20% of cells (3- month mice) were annotated first and then extended to the                
remaining 80%. The test data thus contained all cells in the unseen cell types and 80% of cells                  
in the seen cell types. We performed cross-validation by repeating this procedure 5 times for               
each proportion.  
 
To evaluate the case where all cell types in the test set are unseen (​Figure 3a​), we compared                  
the performance across different proportions of seen cell types in the training set. For a given                
proportion ​k​, we randomly selected ​k percentage of cell types as seen cell types and the                
remaining as unseen cell types. All cells belonging to the seen (unseen) cell types were used as                 
the training (test) set. We performed cross-validation by repeating this procedure 5 times for              
each proportion. 
 
We evaluated our method and comparison approaches on four metrics, including the area under              
the receiver operating characteristic curve (AUROC), Accuracy@3, Accuracy@5, and Cohen’s          
kappa statistic​37​. As we were evaluating a large number of classes (i.e., more than 80 cell                
types), it was important to address the bias from class imbalance during evaluation. Therefore,              
we used the macro-average AUROC rather than the micro-average AUROC to summarize            
results across different cell types. Macro-average calculates the areas under the curves for             
each class independently and then takes the average. Cohen’s kappa statistic can handle well              
both multi-class and imbalanced class problems and has been widely used as an alternative to               
accuracy. A large cohen’s kappa statistic indicates better performance, while 1 indicates perfect             
classification. Accuracy@3 (Accuracy@5) is a widely used ranking metric, which assesses the            
correctness of the top 3(5) predicted cell types in comparison to only examining the top 1 cell                 
type in Cohen’s kappa statistic. A prediction would be deemed as correct if any of the top 3 (5                   
for Accuracy@5) predicted cell types is the correct cell type. 
 

Comparison approaches 
We compared our method with four existing methods ACTINN, singleCellNet (sCN), one-vs-rest            
logistic regression (LR), and DOC. ACTINN used a three-layer neural network to predict cell              
type ​9​. We used the implementation of ACTINN from the authors           
(​https://github.com/mafeiyang/ACTINN​) and ran it on TMS. We used the default parameters for            
ACTINN since these parameters were used in their paper to annotate cells in the Tabula Muris​4​,                
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an earlier version of the Tabula Muris Senis. sCN used gene pairs as features and random                
forest as the classifier to predict the cell type ​7​. sCN was able to classify cells into a unknown cell                   
type. We obtained the implementation of singleCellNet from        
(​https://github.com/pcahan1/singleCellNet​). We found that the implementation of sCN was not          
scaled to large datasets like TMS and it was not able to cross-validate rare cell types with less                  
than 50 cells. We reimplemented part of sCN to enable its annotation for rare cell types. To                 
make it scalable to TMS, we ran it on the dimensionality reduced gene expression matrix               
instead of the original gene expression matrix. LR was the standard machine learning classifier              
for multi-class classification on large-scale datasets. We used the one-vs-rest logistic regression            
instead of the multinomial logistic regression in order to obtain a probability cutoff of 0.5 to                
determine the unknown cell type. DOC was an advanced machine learning method for             
classifying unseen text documents, which was inherently similar to our problem and could be              
directly applied here ​38​. The key idea of DOC was to find a data-driven probability cutoff for the                  
unknown class rather than using a fixed probability cutoff of 0.5 as LR did. However, DOC was                 
also not able to classify cells into the specific cell type. As the original DOC codebase was                 
developed for word sequences classification and could not take gene expression as input, we              
reimplemented and replaced its underlying convolutional neural network classifier with a           
multinomial logistic regression. 
 
Although sCN, DOC and LR were able to classify cells into a “unknown” cell type, they were not                  
able to classify these cells into the specific cell type. To enable a fair comparison, we further                 
proposed to extend these three approaches by classifying each “unknown” cell type cell to a               
specific cell type. In particular, when a cell was annotated as the “unknown” cell type, we first                 
found the seen cell type that had the largest confidence score for this cell. We then annotated                 
the cell to the nearest neighbor of this seen cell type in the Cell Ontology. We denoted these                  
extended approaches as sCN (extended), LR (extended), and DOC (extended) for sCN, LR,             
and DOC, respectively. 
 

Transfer annotations to 26-datasets 
To transfer annotations from TMS to 26-datasets, we first used Scanorama to correct batch              
effects among TMS and 26 datasets. Scanorama took the gene expression matrix of these 27               
datasets as input, it then provided the corrected gene expression of these 27 datasets. We then                
ran OnClass on all cells in TMS and predicted cell types for cells in the 26-datasets. To                 
integrate these 26-datasets, we used the output probability distribution of each cell by OnClass              
as the representation for each cell. We visualized these cells by using UMAP​39 to project these                
representations. We used silhouette coefficients to evaluate the clustering accuracy for both our             
method and Scanorama ​40​. 
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Marker genes identification 
We used differential gene expression analysis to identify marker genes for each cell type. In               
particular, we first ran OnClass on all FACS cells in TMS and then predicted the probability of                 
these cells belonging to each cell type in the Cell Ontology. For each cell type, we took the 50                   
cells with the highest probability as the positively annotated group and other 50 cells with the                
lowest probability as the negatively annotated group. We then used the t-test to test whether an                
individual gene was significantly overexpressed in the positively annotated group then the            
negatively annotated group. We performed this one-sided independent t-test for each gene and             
then ranked genes according to the resulted ​P​-values. This rank list was the predicted marker               
gene list. Curated marker genes of 69 cell types were collected from literature by experts               
(​Supplementary Table 4​). 28 of 96 cell types in TMS had curated marker genes. To classify a                 
new cell according to marker genes, we used the sum of the expression of marker genes as the                  
predicted score for this cell. A larger score indicated that this cell more likely belonged to the cell                  
type. 

Statistical analysis 
We used the scipy.stats​41 Python package implementation of the one-sided independent t-test,            
Pearson correlation statistics, Spearman correlation statistics, and associated p-values used in           
this study. We used the scikit-learn Python package implementation of one-vs-rest logistic            
regression, silhouette coefficients, AUROC, and cohen’s kappa statistics used in this study​42​. 

Data availability and code availability 
OnClass code and data are available at ​https://github.com/wangshenguiuc/OnClass 
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