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Abstract
The ability to detect threatening sensory stimuli and initiate an escape response is essential for

survival and under stringent evolutionary pressure. In diverse fish species, acoustic stimuli
activate Mauthner neurons, which initiate a stereotypical C-start escape response. This reflexive
behavior is highly conserved across aquatic species and provides a model for investigating the
neural mechanism underlying the evolution of escape behavior. Here, we define evolved
differences in the C-start response between populations of the Mexican cavefish, Astyanax
mexicanus. Cave populations of A. mexicanus inhabit in an environment devoid of light and
macroscopic predation, resulting in evolved differences in diverse morphological and behavioral
traits. We find that the C-start is present in multiple populations of cavefish and river-dwelling
surface fish, but response kinematics and probability differ between populations. The Pachoén
population of cavefish have an increased response probability, a slower response and reduction
of the maximum bend angle, revealing evolved differences between surface and cave
populations. In two other independently evolved populations of cavefish, the response probability
and the kinematics of the response differ from one another, as well as from surface fish,
suggesting the independent evolution of differences in the C-start response. Investigation of
surface-cave hybrids reveals a relationship between angular speed and peak angle, suggesting
these two kinematic characteristics are related at the genetic or functional levels. Together, these
findings provide support for the use of A. mexicanus as a model to investigate the evolution of

escape behavior.
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Introduction

Predator evasion is essential for survival and is thought to be a critical trait contributing to
behavioral adaptation in novel environments (Domenici, 2010). Multiple sensory systems are
used to detect predators including olfaction, vision, and mechanotransduction, which all result in
the activation of arousal systems (Ferrari et al, 2010; Bleicher et al, 2018; Temizer et al, 2015;
Franceschi et al, 2016; Mooney et al, 2016; Suzuki, 2018). The escape responses of a variety of
larval fish systems have been studied in detail, including zebrafish, medaka, killifish, and goldfish
(Burgess & Granato, 2007; Featherstone, 1991; Canfield, 2006; Fleuren et al, 2018). All of these
species exhibit a conserved, highly stereotypical C-start response. The startle response of fish is
termed the C-start because of the characteristic c-shaped curve formed by the body during the
first stage of the response, which is followed by a smaller counter-bend and rapid swimming
(Kalueff et al, 2013). It is also highly stereotyped and plastic, providing a system to examine innate

behaviors and their experience-dependent modification (Lopez-Scheir, 2016).

The escape responses of larval fish are initiated by multiple pairs of highly conserved
reticulospinal neurons that receive input from a variety of sensory systems and project to spinal
interneurons and motor neurons that innervate the muscles of the trunk (Liu & Fetcho, 1999;
Gahtan et al, 2002; Kohashi & Oda, 2008; Bosch & Paul, 1993). Activation of one of these pairs
of neurons, the Mauthner cells, initiate a stereotype short latency C-start escape reflex (Burgess
& Granato, 2007; Liu & Fetcho, 1999). Mauthner cells receive input from multiple sensory
modalities including from the visual, olfactory, and mechanosensory systems (Medan et al, 2018;
Kohashi & Oda, 2008; Canfield, 2006; Kimmel et al, 1990; Bhattacharyya et al, 2017). Thus, these
neurons receive sensory information and initiate escape reflexes, providing a model for
investigating sensory-motor integration (Bierman et al, 2009). Despite its fundamental importance
to behavioral evolution, surprisingly little is known about the neural mechanisms through which

ecological perturbation shapes the evolution of this escape response.
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The Mexican cavefish, Astyanax mexicanus is a powerful model for studying behavioral evolution
(Keene, McGaugh, & Yoshizawa, 2015; Gross, 2012). These fish exist as surface fish that inhabit
rivers in Mexico and Southern Texas and at least 29 geographically isolated cave-dwelling
populations of the same species (Mitchell, Russell, & Elliott, 1977; Jeffery, 2009). The ecology of
caves differs dramatically from the surface habitat resulting in the emergence of distinct
morphological and behavioral phenotypes. For example, the absence of light in caves is thought
to contribute to the evolution of albinism, eye-loss, and circadian rhythm (Keene et al, 2015). As
a consequence of these environmentally driven changes, these fish are useful models for
investigating convergent trait evolution, and more recently, the evolution of neural circuits
mediating behavior (Jaggard et al, 2018; Alie, 2018; Duboué, 2012). Interestingly, no macroscopic
predator the caves lack macroscopic predators of A. mexicanus, raising the possibility that a lack
of selective pressure for predator avoidance contributes to morphological and behavioral

evolution in cavefish populations (Pitcher, 1986).

Prominent changes in sensory processing contribute to behavioral evolution in cavefish. This
includes enhanced sensitivity of the lateral line that contributes to prey capture and sleep loss in
cavefish (Yoshizawa et al, 2012; Lloyd et al, 2018; Jaggard et al, 2017). Cavefish have also
evolved increased sensitivity to tastants and odorants, presumably to support efficient foraging
in the absence of visual cues (Shiriagin & Korsching, 2019; Bibliowicz, 2013; Hinaux et al, 2016).
Additionally, A. mexicanus use acoustic stimulation to communicate, and a recent report
highlights the differences in this communication between surface and cave morphs (Hyacinthe et
al, 2019). The diversity of evolved changes in sensory processing combined with the robust
ecological differences raises the possibility that the startle reflex may differ between populations

of A. mexicanus.
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Here, we systematically investigate the evolution of the C-start response to acoustic stimuli in
multiple A. mexicanus population. We find differences in both response probability and kinematics
between surface fish larvae and three different populations of cavefish. These findings support
the notion that the ecological differences between cave and river environments contribute to
differences in escape behavior and provide a platform for investigating the evolution of neural

circuits contributing to sensory-motor integration.
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98 Results

99 To quantify differences in startle response, we constructed a system to produce acoustic pulses
100 similar to those shown to induce startle behavior in zebrafish (Burgess & Granato, 2007;
101  Bhandiwad, 2013; Zeddies & Fay, 2005). Fish were individually placed in custom-designed wells
102  attached to a vibration exciter that provided acoustic stimuli. Behavior of the fish was recorded
103  throughout the stimulation using a high-speed camera (Fig 1A). We first compared the probability
104  of 6 day post fertilization (dpf) surface fish and Pachén cavefish initiating a C-start in response to
105 acoustic stimulation. We found that both surface and Pachén cave populations responded to
106  acoustic stimuli with a stereotyped response consisting of simultaneous head and tail turning, as
107  observed during classic C-start escape reflexes that have been characterized in zebrafish and
108 other aquatic models (Burgess & Granato, 2007; Featherstone, 1991; Canfield, 2006; Fleuren et
109 al, 2018). To determine whether the sensitivity required to elicit an escape response differed
110  between populations, we quantified the probability of C-start initiation in surface fish and Pachén
111 cavefish at multiple vibration intensities and found that cavefish exhibit an increased response
112 probability to vibrations at 31 dB (surface fish 67%, cavefish: 53%) and 35 dB (surface fish 74%,
113 cavefish: 90%), but not 28 dB (surface fish: 47%, cavefish: 43%) (Fig 1B). These data
114  demonstrate that Pachén cavefish have a more acute sensitivity to vibrations relative to their
115  surface conspecifics.
116
117  Inorder to compare C-start kinematics between surface fish and cavefish, we quantified response
118 latency, maximum change in orientation (referred to as “peak bend angle”), and angular speed,
119  and found that the responses of surface fish and Pachon cavefish differ in all quantified kinematic
120 parameters (Fig 2A & B). The C-start responses of Pachon cavefish are characterized by a
121  decrease in angular speed and peak bend angle compared to surface fish, with Pachon turning
122 approximately 3°/ms more slowly and to a peak bend angle that is smaller in magnitude by almost

123 20° relative to surface fish (Fig 2C & D). Pachon larvae also displayed significantly longer
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124 response latencies than surface fish larvae (Fig 2E). In surface fish, the shortest latency C-starts
125 were initiated 7-9 ms after stimulus onset, in contrast to Pachon larvae in which the shortest
126 latency C-starts were initiated 11-13 ms after stimulus onset (Fig 2F). Together these data
127  suggest that cavefish have developed substantial differences in the C-start response.

128

129 In teleosts, Mauthner neurons integrate visual stimuli, and a loom stimulus is enough to initiate a
130 C-start response (Temizer et al, 2015; Bhattacharyya et al, 2017). Cavefish can detect light and
131  sense looming stimuli, despite eye degeneration, raising the possibility that light modulates the
132  C-startresponse (Yoshizawa & Jeffery, 2008). To assess the influence of visual input on response
133  probability and kinematics we assayed escape response under light and dark conditions. The
134  presence of light had no effect on response probability, response latency, or angular speed in
135  cavefish or surface fish (Fig 3A-C). In goldfish, it was found that peak C-start bend angle was
136  predictable based off of a fish’s orientation relative to the startle-inducing stimulus, except for
137  situations where the predicted trajectory was blocked by a wall (Eaton & Emberley, 1991). This
138 trend was true even when C-starts were initiated from rest, precluding the possibility that the
139 lateral line was influencing escape kinematics. Furthermore, in zebrafish it has been shown that
140 peak bend angle is a reliable predicter of escape trajectory (Bhattacharyya et al, 2017). In dark
141  conditions, surface fish display an increase in peak bend angle , while no difference is detected
142  in cavefish (Fig 3D). These data suggest that, as with goldfish, the escape path of surface fish is

143 visually informed.

144  Independently evolved populations of cavefish have converged on numerous behavioral and
145 morphological traits (Keene, McGaugh, & Yoshizawa, 2015; Gross, 2012), providing a powerful
146  system for examining whether convergent traits arise through similar or distinct genetic
147  mechanisms. To determine whether the changes in C-start probability and kinematics are shared

148  across cavefish populations, we measured response in Molino and Tinaja cavefish. While Tinaja
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149 larvae exhibit a response probability similar to that of surface fish, larvae from the Molino
150 population exhibited a 98% response probability, which was significantly higher than surface fish
151 and any of the cavefish populations (Fig 4A). Unlike Pachon larvae, Molino and Tinaja did not
152  exhibit any differences in response latency relative to surface fish (Fig 4B). However, angular
153 speed was reduced in both Tinaja and Molino populations (Fig 4C) while the peak bend angle
154  was significantly reduced in Tinaja compared to surface fish (Fig 4D). Together, these findings
155 reveal convergence on a decrease in angular speed during the C-start response in cavefish. On
156 the other hand, the variety in latency, peak bend angle, and response probability observed in the
157  three cavefish populations analyzed here reveal the evolution of unique kinematic changes across
158  all three cavefish populations.

159

160 Itis possible that independent genetic mechanisms contribute to different kinematic components
161  of the C-start, or that they have evolved through shared genetic architecture. A benefit of A.
162  mexicanus is that cavefish and surface fish populations are interfertile, producing hybrid offspring
163  that possess behavioral and morphological characteristics ranging from cave-like to surface-like,
164  as well as intermediate phenotypes. To differentiate between these possibilities, we quantified
165 the kinematics of C-start responses of surface-cave F» hybrid fish. The response probability of
166 F» hybrid fish was intermediate to pure surface and Pachén fish, but this did not reach significance
167  (Fig 5A). Significant differences in latency were not detected between hybrid fish and surface or
168  Pachon populations, with the range of values exhibited by F2 hybrids encompassing the full range
169  of values seen in surface and Pachodn fish. Though no significant differences were identified in
170 these data, it is worth noting that the mean value for the F.> hybrids (16 ms) matched that of
171  Pachén cavefish (16 ms), but not that of surface fish (14 ms) (Fig 5B). Similarly, the peak bend
172 angle of F2 hybrids resembled those of Pachén cave fish, differing significantly from the larger
173  bend seen in surface fish responses (Fig 5C). The angular speed of F2 hybrids was intermediate

174  to that of surface and Pachon fish (Fig 5D). To determine the relationship between components
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of the C-start response, we quantified the correlation between each pair of kinematic parameters.
No correlation was observed between response latency and peak angle or angular speed,
however there was a significant correlation between angular velocity and peak angle. Taken
together, these findings suggest that there are a variety of factors influencing the various

kinematic parameters that compose the C-start response.
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182  Discussion

183 The C-start response represents a primary mechanism for predator avoidance in fish and
184  amphibians (Yasugi & Hori, 2012; Walker et al, 2005; Fuiman, 1993) Here, we identify evolved
185 changes in the C-start response in multiple independent populations of A. mexicanus. There are
186  many differences between the ecology of caves and that of rivers and lakes inhabited by surface
187 fish including changes in food availability, changes in water quality, loss of circadian cues, and
188 reduced predation (Keene et al, 2015). It is possible that, since there is a near absence of
189  predators in the caves, the changes observed in cavefish are due to relaxed interspecies selective
190 pressure in the cave environments. However, adult surface and cave populations of A. mexicanus
191 consume their larvae, raising the possibility that the C-start remains critical for intra-species
192  predation. Further investigation of the ecology of early life environment within the natural setting
193  may inform the cause of the evolved changes in the C-start.

194

195 In fish, escape responses can be characterized into those which occur quickly (short latency C-
196 starts) and those that emerge later (long latency C-starts) (Burgess & Granato, 2007). Ablation of
197  the Mauthner neurons completely abolishes short latency C-starts in goldfish and zebrafish, but
198 notlonger latency C-starts, which are initiated by a different set of reticulospinal neurons (Kohashi
199 & Oda, 2008; Burgess & Granato, 2007; Eaton et al, 1982; Liu & Fetcho, 1999). We observed
200 that the latency is significantly greater in Pachdn cavefish than in surface fish, raising the
201  possibility that differences in Mauthner neuron signaling may contribute to the observed
202  differences in startle kinematics. In zebrafish, the frequency distribution of C-start initiation latency
203  values produces a bimodal curve, with separate peaks representing short latency C-starts and
204  less frequent long latency C-starts (Burgess & Granato, 2007; Takahashi et al, 2017; Issa et al,
205 2011). In our frequency analysis we did not identify separate peaks, however this is likely due to

206  sample size, not a lack of long latency responses. Future studies testing a greater number of

10
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207 individuals may provide insight into how the reticulospinal escape network has evolved and the

208 intrapopulation variation in this response.

209  We identified an increased probability of eliciting a startle response in Pachdn and Molino larvae.
210 Itis possible that this is due to altered sensory detection of the acoustic stimuli, or due to changes
211  at the level of processing that affect the threshold of Mauthner neuron activation. Adult surface
212 and cavefish respond to click-like sounds that signal aggression, revealing the presence of
213 acoustic communication between conspecifics in this species (Hyacinthe et al, 2019). Previous
214  analysis of auditory sensitivity in Astyanax did not identify differences between surface and cave
215  populations, supporting the notion that the differences observed are at the level of sensory
216  processing, rather than detection (Popper, 1970, Hinaux, 2016). Therefore, it is unlikely that
217  differences in sensory detection underlie the enhanced response probability in cavefish.

218 The kinematics of the C-start response differed between all three cavefish populations and
219  surface fish. In Pachén and Tinaja cavefish, this is marked by a reduced peak angle within the
220 C-startresponse. Further, the differences in kinematic changes across all three cave populations,
221  raise the possibility that different genetic and neural mechanism underlie changes in this escape
222  response across different population.

223

224 Identifying the behavioral and neuronal components of the C-Start response that are associated
225  with effective interspecies and intraspecies escape may provide insight into the ecological factors
226  contributing to the evolution of the C-start. In guppies, increased angular speed during the first
227  phase of fast start escapes has been correlated with more effective predator evasion, raising the
228  possibility that individual kinematic parameters contribute to successful predator avoidance
229  (Walker et al, 2005). Interestingly, all cave population analyzed here exhibit decreased angular
230 speed. Further, it is extremely likely that a quick latency increases the likelihood of successful

231 evasion. While it may seem intuitive to predict that an increase in response probability would be

11
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232 beneficial in successfully avoiding predators, in a situation where predators are known to rely
233 heavily on mechanosensory stimuli for prey capture, such as in cavefish, initiation of a startle
234  response could potentially be detrimental (Lloyd et al, 2018; Yoshizawa et al, 2010). These data
235 suggest that the C-start responses of cavefish may be less effective for successful predator
236  evasion as a result of the relaxation of predation in the cave environment.

237

238 The escape response is likely to be energetically expensive, and therefore extremely detrimental
239 in the nutrient-limited cave environment. A possible explanation for the increased response
240  probability of Pachon larvae to vibrational stimuli may be related to a shift in feeding strategy. In
241 hunting archer fish and goldfish, C-shaped flexions have been associated with prey capture (Wohl
242 & Schuster, 2007; Canfield 2007). Furthermore, in goldfish, this feeding behavior has been
243 correlated with firing of the Mauthner neurons (Canfield & Rose, 1993). In cave populations of
244  Astyanax, loss of eyesight has resulted in a shift in prey capture behavior involving the use of the
245  lateral line to sense prey, which are captured using a C-bend, similar to the C-start behavior we
246  examine here . This is in contrast to sight-dependent prey capture observed in surface fish which
247  consists of J-shaped turns and a of a head-on approach. Interestingly, Pachén cavefish were able
248  to successfully capture prey even after complete pharmaceutical ablation of the lateral line, but
249  were unable to capture dead prey, suggesting hat alternate modes of perception of movement
250 are being utilized (Lloyd et al, 2018). Taken together, these data suggest that the increase in
251  acoustically driven C-start responses observed in cavefish may be driven by a shift in feeding
252  strategy.

253

254  Powerful genetic approaches in zebrafish have provided extensive mechanistic insight into the
255  function of the Mauthner neurons (Burgess et al, 2014; Shimazaki et al, 2019; Stil & Drapeau,
256  2015; Monesson-Olson et al, 2014). This includes the use of genetically expressed Ca2+ sensors

257  to identify how the activity of these neurons is modulated and the use of GAL4-based genetic

12
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258  screens to identify additional circuits that regulate the startle response (Takahashi et al, 2017;
259  Lacoste et al, 2015; Choe et al, 2013). Recently, many of these technologies including GCaMP
260 imaging, tol2 transgenesis, and CRISPR gene editing have been developed in A. mexicanus
261  (Stahl et al,2019; Kowalko et al, 2018; Elipot et al, 2014). The application of these genetic
262  approaches has potential to define functional differences between surface fish and cavefish and
263  provide mechanistic insight into evolved differences between the populations. For example, the
264 anatomy and activity of Mauthner neurons can be directly compared between individual
265  populations. Our identification of differences in response probability and kinematics between A.
266  mexicanus populations position this system as a powerful model for examining the evolution of

267  the escape responses and sensory-motor integration.

13
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268 Methods

269  Animal husbandry was carried out as previously described (Borowsky, 2008; Stahl et al, 2019)
270  and all protocols were approved by the IACUC Florida Atlantic University (Protocols A15-32 and
271  A16-04). Fish were housed in the Florida Atlantic University core facilities at 23 + 1°C constant
272  water temperature throughout rearing for behavior experiments (Borowsky, 2008). Lights were
273  kepton a 14:10 hr light-dark cycle that remained constant throughout the animal’s lifetime. Light
274  intensity was kept between 25—-40. Larvae were raised in 200ml bowls.

275

276  Behavioral experiments

277  C-start responses were elicited according to methods previously utilized for zebrafish (Burgess &
278  Granato, 2007; Bhandiwad et al, 2013; Zeddies & Fay, 2005). All behavioral testing was done
279  between ZT5 and ZT9 (Zeitgeber time) in a temperature controlled room maintained between 23
280 and 25°C. For all assays individual 6 dpf larvae were placed within 15x15x9 cm square wells on
281  a custom 3D-printed polyactic acid plate (Autodesk Fusion 360; San Rafael, CA; Creality CR10
282  Max; Guangdong, China) and allowed to acclimate for 10 minutes before being exposed to a
283  single stimulus. The plates were securely screwed onto a vertically oriented vibration exciter
284  (Type 4810; Bruel and Kjaer, Duluth, GA) controlled by a multifunction 1/0 device (PCle-6321;
285  National Instruments, Austin, TX). Stimuli were 500 Hz square waves of 50 ms duration generated
286  using Labview 2018 v.18.0f2 (National Instruments, Austin, TX) and were of an intensity of 31 dB,
287  unless otherwise stated. Stimulus intensity was determined using a Check Mate CM-130 SPL
288 meter (Galaxy Audio; Wichita, KS) held approximately 2 cm above the center of the vibrating
289  apparatus. Plates had between 1 and 18 wells. For trials conducted on plates with greater than 6
290 wells, recording was done from above with the well placed directly over the center of the exciter
291 to avoid shifting the center of mass away from the source of the stimulus. In these cases, lighting

292  was provided from below using LED strips in addition to overhead ceiling lights. For trials

14
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293  conducted using plates with 6 wells or fewer, recording was done from below and illumination was
294  done from above using LED strips and a polycarbonate sheet for diffusing light. Infrared light strips
295 (940 nm) were used for all light/dark experiments. For trials conducted for the light condition, white
296  light LED strips were also used.

297  Video was acquired at 1000 frames per second using an FPS 2000 high speed camera (The Slow
298  Motion Camera Company Limited; London, UK).

299

300

301 Analysis of C-start responses

302 C-start responses were identified as accelerated, simultaneous flexion of the head and tail in the
303 same direction. Response probability is reported as the total proportion of larvae that exhibited a
304 C-start response. Kinematic analysis was performed by separately analyzing various parameters
305 of the C-start response as previously done in zebrafish (Issa et al, 2011; Burgess & Granato,
306 2007; Takahashi et al, 2017). The “angle” tool available on ImageJ 1.52a (National Institutes of
307 Health; Bethesda, MD) was used to determine the orientation of the larvae by measuring the
308 angle formed by a horizontal line and a line drawn along the midline of the fish from the anterior-
309 most point of the swim bladder to the anterior-most point on the head. Measurements were
310 subsequently standardized to the orientation of the larva 1 ms before stimulus onset.

311 Response latency was defined as the time between stimulus onset and a change in orientation of
312 10°. Peak angle was identified as the maximum change in orientation before a change in direction
313 back toward the original orientation. Speed was determined as the slope of the best-fit line for
314 change in body orientation from the point in time designated as the latency to the time of the peak
315 angle.

316
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319  Statistical Analysis

320  All statistical tests were conducted on GraphPad Prism 8.2.1 or RStudio 1.2.1335. Differences in
321 response probability were analyzed using Fisher's Exact Test, except for analyses of 2x3 tables,
322  which were analyzed using a X*test. All error bars on response probability data denote margin of
323  error of the sample proportion calculated using a z*-value of 1.96. Post-hoc analysis was
324  conducted on results that indicated a significant difference (a < 0.05) via pairwise X? tests and
325  Bonferroni correction of p-values. Normality of kinematic data was assessed using a Shapiro-Wilk
326 test. Data that did not pass the normality test were subsequently assessed using the Mann-
327  Whitney test and data that did pass the normality test were assessed using an unpaired t-test. In
328 cases involving more than 2 populations, a one-way ANOVA was used followed by Tukey’s test
329 in cases that the results of the ANOVA indicated significant differences (a < 0.05). Correlation
330 between kinematic parameters was assessed using Spearman’s rank order correlation.

331
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Figure Legends
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Figure 1. Measurements of C-start response in A. mexicanus (A) Acoustic stimuli
were generated using an amplifier and small vibration exciter controlled by a Data
acquisition device (DAQ). A high-speed camera collected data throughout the
stimulation protocol. (B) Pachoén larvae (grey) exhibit increased startle probability to
vibrational stimuli at intensities of 31 dB (SF N=112, Pa N=103, 2-tailed Fisher's Exact
Test p=0.0374) and 35 dB (SF N=72, Pa N=48, 2-tailed Fisher's Exact Test p=0.0373)
compared to surface fish (white). No significant differences were detected at 28 dB (SF
N= 64, Pa N= 56, 2-tailed Fisher’s Exact Test p=0.715). Error bars signify margin of
error. * denotes p<0.05.
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Figure 2. C-start kinematics are altered in Pachén cavefish (A) Time lapse images showing
typical surface fish (top) and Pachon cave fish (bottom) C-start responses. Changes in
orientation over the course of the response were standardized to the fish’s orientation 1 ms
before stimulus onset (first frame shown). Snapshots shown are 3 ms apart (B) Surface fish
(open circles) and Pachon cavefish (filled circles) exhibit robust differences in c-start kinematics.
Quantitative analysis was done to compare the angular speed, peak bend angle, and latency of
surface and cave fish responses. (C) Comparisons of Pachén (N=15, median=11.34°/s) and
surface fish (N=13, median=14.01°/s) responses revealed that cavefish exhibit significantly
reduced turning speed than surface fish. Mann-Whitney U=17, p<0.0001. (D) Pachon cavefish
(N=15, median=88.36°) also exhibit a smaller change in orientation during the first phase of the
C-start response than surface fish (N=13, median 115.8°). Mann-Whitney U=29.50, p=0.0011.
(E) Initiation of Pachdn responses (N=29, median=13ms) was delayed relative to surface fish
responses (N=16, median=11ms). Mann-Whitney U=145.5, p=0.0386. (F) A histogram of
response relative frequency across different response latencies reveals a shift in Pachon
caveifhs (black) to slower response latency. Error bars denote std. error of mean. * denotes

P<0.05. ** denotes P<0.01, **** denotes P<0.0001.
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626  surface fish (light N=15, dark N=12) and Pachdn cavefish (light N=14, dark N=13)

627 responses also were unaffected. Surface fish unpaired t-testt = 0.1467, df = 25, p =

628 0.8846; Pachon unpaired t-test t = 0.8779, df = 25,p = 0.8779. (C) Likewise, the angular
629 speed of surface fish (light N=16, dark N=12) and Pachoén cavefish (light N=14, dark
630 N=13) were unaffected by light. (D) The peak bend angle of surface fish (light N=16,
631 dark N=12) was significantly larger in the absences of light. Median angle in light

632  conditions was 99.15° and 112.8° in the dark. 2-tailed Mann-Whitney test U = 46.50, p =
633 0.0204. Pachon cavefish exhibited no difference in peak bend angle in dark conditions.
634  Pachodn 2-tailed Mann-Whitney test U = 87.50, p = 0.8774. * denotes p<0.05. Error bars
635 on kinematic data (B-D) signify standard error of the mean.
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Figure 4. The C-start response is altered in Tinaja and Molino populations of
cavefish. (A) Molino larvae (N=54) responded in 98% of trials, exhibiting significantly
higher response probability than either surface (N=112) or Tinaja (N=54) larvae. Error
bars denote margin of error. Surface/Molino X2 (1)=32.28, p<0.0001; Tinaja/Molino X2
(1)=26.292, p<0.0001. (B) There were no significant differences in response latency
(surface N=16, Tinaja N=21, Molino N=13). One-way ANOVA F(2, 47) = 0.8153,
p=0.4487. (C) Surface fish larvae (N=13) turned with significantly quicker angular speed
than Tinaja (N=10) or Molino (12) larvae. One-way ANOVA F(2, 32)=0.7188, p=0.0024.
Surface/Molino p=0.0101; surface/Tinaja p=0.0051. (D) Surface fish exhibited the most
drastic change in orientation. One-way ANOVA F(2, 32)=0.7560. Surface/Tinaja
p=0.0044. Error bars on kinematic data (B-D) denote standard error of the mean. *
denotes p<0.05, ** denotes p<0.01, **** denotes p<0.0001.
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Figure 5. Analysis of surface-cave hybrids reveals a relationship between angular

speed and peak C-start angle (A) No difference was identified between the response

probabilities of surface fish (N=112), Pachén (N=103), and F, hybrids (N=179), X? (2,

N=291)=2.93, p=0.099, though surface and Pachon cavefish approached significance.
Error bars signify margin of error (B) There was also no difference in response latency
between surface (N=16), Pachon (N=29), and F, hybrids (N=68). (C) F. hybrids (N=34)
exhibit a peak change in orientation similar to that of Pachon (N=15) larvae, in contrast

to surface fish (N=13). One-way ANOVA F(2, 59) = 0.66, p < 0.001. Surface/Pachoén
p<0.001, surface/ F, p<0.001. (D) The angular speed of the F; hybrids (N=34) was

intermediate to that of cavefish (N=15) and surface fish (N=13). One-way ANOVA F(2,

59) = 0.48, p = 0.0002. Surface/ F, p=0.0426, F,/Pachon p=0.0139, surface/Pachén
p<0.0001. (E) Spearman’s rank correlation test indicates a positive correlation exists
between peak angle and speed. r denotes Spearman’s correlation coefficient, rho.
Dotted lines in violin plots denote quartiles and median. * denotes p<0.05, ** denotes

p<0.01, *** p<0.001.
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