

1 **Increased ultra-rare variant load in an isolated Scottish population impacts**
2 **exonic and regulatory regions**

3 Mihail Halachev^{1*}, Alison Meynert¹, Martin S Taylor¹, Veronique Vitart¹, Shona M Kerr¹, Lucija Klaric¹,
4 SGP Consortium[^], Timothy J Aitman², Chris S Haley^{1,3}, James G Prendergast³, Carys Pugh⁴, David A
5 Hume⁵, Sarah E Harris⁶, David C Liewald⁶, Ian J Deary⁶, Colin A Semple^{1¶}, James F Wilson^{1,7¶}

6

7 Affiliations:

- 8 1. MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, UK
- 9 2. Centre for Genomic and Experimental Medicine, MRC IGMM, University of Edinburgh, Crewe Road, Edinburgh, UK
- 10 3. The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
- 11 4. Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh,
12 UK
- 13 5. Mater Research Institute, University of Queensland, Woolloongabba, Australia
- 14 6. Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology
15 and Language Sciences, University of Edinburgh, George Square, Edinburgh, UK
- 16 7. Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of
17 Edinburgh, Teviot Place, Edinburgh, UK

18

19 * Corresponding author

20 Email: mihail.halachev@igmm.ed.ac.uk (MH)

21

22 [¶]These authors contributed equally to this work.

23

24 [^]Membership of the Scottish Genomes Partnership (SGP) Consortium is provided in the
25 Acknowledgements.

26

27

28 **Abstract**

29 Human population isolates provide a snapshot of the impact of historical demographic
30 processes on population genetics. Such data facilitate studies of the functional impact of rare
31 sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies
32 of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of
33 the VIKING cohort, a representative collection of samples from the isolated Shetland population in
34 northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish
35 population. Our analyses reveal the strong contributions played by the founder effect and genetic
36 drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants
37 discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in
38 more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of
39 purifying selection during the evolutionary history of the Shetland isolate. We demonstrate
40 enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that
41 ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that
42 gene expression patterns may diverge relatively rapidly in human isolates.

43

44 **Author Summary**

45 Population isolates provide a valuable window on the roles of rare genetic variation in
46 human phenotypes, as a result of their unusual evolutionary histories, that often lead to relatively
47 high frequencies of variants that are exceptionally rare elsewhere. Such populations show increased
48 levels of background relatedness among individuals and are often subject to stronger genetic drift,
49 leading to a higher frequency of deleterious variants. Here, for the first time, we present whole
50 genome sequencing data from the Shetland population in Northern Scotland, encompassing 500
51 individuals, and compare these genomes to the mainland Scottish population. As expected we find
52 the imprint of Shetland population history in the Shetland genome, with strong evidence for founder

53 effects and genetic drift, but we also discover a relaxation of selective constraint across the genome.
54 These influences have combined to endow the Shetland genome with thousands of ultra-rare
55 genetic variants, not observed previously in other populations. Surprisingly these variants are
56 significantly enriched in functional regions including protein coding regions of genes and regulatory
57 elements. Among regulatory regions, promoters are particularly enriched for ultra-rare variants,
58 suggesting the potential for rapid divergence of gene expression in isolates.

59

60 **Introduction**

61 Population isolates are subpopulations that originated from a small number of founders and
62 subsequently remained relatively isolated for long periods of time due to geographical, cultural and
63 social barriers. Such populations have been recognised to be of significant interest for some time [1],
64 due to their unusual genetic characteristics. These include higher degrees of linkage-disequilibrium
65 (LD), reduced haplotype complexity, increased numbers and extent of genomic regions within runs
66 of homozygosity (ROH), high kinship, evidence for genetic drift, relatively high frequencies for
67 otherwise rare variants, restricted allelic and locus heterogeneity [2–4]. Isolates are also subject to
68 lower variation in environmental factors, tend to have better genealogical records, more uniform
69 phenotyping and higher participation rates in studies [2]. Taken together, these genetic and other
70 factors increase the power of gene mapping and association studies for both Mendelian and
71 complex diseases and traits [5].

72 With the recent advances in high throughput sequencing (HTS) technologies, the traditional
73 approach of investigating the genomic architecture of isolated populations via SNP genotyping
74 arrays [6–13] has shifted towards using whole-exome sequencing (WES) [14–16] and low-coverage
75 whole-genome sequencing (WGS) [17–21] to more recent high-coverage WGS studies [22–24]. The
76 breadth and depth of high-coverage WGS provides unprecedented opportunities for interrogation of
77 the effects of rare and ultra-rare variants genome wide, and may prove instrumental for addressing
78 the “missing heritability” problem [25,26].

79 For the first time our study used high-coverage WGS to compare the genomic landscapes of
80 samples from an isolated population from the Shetland Islands to a more cosmopolitan mainland
81 Scottish population. By investigating common and rare single nucleotide polymorphisms (SNPs) and
82 short (up to 75bp) insertions/deletions (INDELs) in coding as well as in regulatory regions, we aimed
83 to answer the following questions: *i*) is there any significant difference between the variant load
84 observed in the two populations, *ii*) if so, what are the characteristics and the driving forces behind it
85 and *iii*) which identified variants should be further examined for potential phenotype/trait
86 associations?

87 The Shetland Islands lie scattered between ~160-290 km (~100-180 miles) north of the
88 Scottish mainland and consist of a group of ~100 islands, of which 16 are inhabited, with a
89 population of ~23,000 (Fig 1 in S1 File). First settled in the Neolithic period, ~5400 years ago, the
90 major demographic event in Shetland's history was the arrival of the Norse Vikings about 800 CE.
91 Shetland became part of the Jarldom of Orkney, centred on the archipelago to the south, until after
92 over 500 years of Norse rule the islands were annexed by Scotland in 1472 [27]. Lowland Scots
93 settled in Shetland both before and after this date; however, until the late 20th century, the extreme
94 geographic location in the north Atlantic served to isolate the population from further major
95 immigration. In common with neighbouring areas, Shetland was variously affected by smallpox
96 epidemics and famines over the centuries. Analyses of uniparental genetic systems reveal Shetland,
97 like Orkney, to be a Norse-Scots hybrid population [28–30], with considerable genetic differentiation
98 from the rest of the British Isles, reduced genetic diversity and longer stretches of linkage
99 disequilibrium [31]. The presence of Norwegian ancestry in Shetland (23-28%) is further confirmed in
100 a recent study based on high density autosomal SNP data [32].

101
102
103
104

105 **Results**

106 **Establishment of comparable Scottish isolate and mainland WGS datasets**

107 A total of 2,122 participants of the VIKING Health Study – Shetland [33] were genotyped at
108 ~1 million SNP markers (using the Illumina HumanOmniExpressExome-8 v1.2 BeadChip) and 2,011
109 passed all quality control thresholds. All participants were selected to be over 18 years old and to
110 have at least two grandparents born in the Shetland Isles (85% had four grandparents from Shetland,
111 10% had three and 5% had two grandparents born in the Shetland Isles). From the SNP genotyped
112 cohort, 500 individuals were selected for whole-genome sequencing using the ANCHAP method [34]
113 to most effectively represent the haplotypes present across the entire cohort. Unrelated individuals
114 from the largest families were selected first, followed by those from smaller families, and finally
115 some related individuals were selected to best represent the variation in the full cohort. The
116 comparative population was 1369 individuals from the Lothian Birth Cohort (LBC) dataset [35–37]
117 who were selected for WGS at the same facility as the VIKING samples. These are individuals born in
118 1921 or 1936 who attended Scottish schools and most took part in Scottish Mental Surveys in 1932
119 and 1947, respectively. Most were living in Edinburgh, Scotland (Fig 1 in S1 File) and the surrounding
120 area (the Lothians) between 1999 and 2007.

121 The WGS data for the VIKING (median coverage 36.2x, range [27.1-40.2x], mean 36.1x, s.d.
122 2.0x) and LBC (median 37.3x, range [30.0-65.9x], mean 37.7x, s.d. 4.7x) cohorts were processed in an
123 identical manner to identify and retain only high-quality SNP and INDEL variants (Materials and
124 Methods). Overall concordance analysis between the SNP array data and WGS-derived genotypes for
125 the Shetland cohort was performed to ensure there were no sample mix-ups by using the
126 GenotypeConcordance tool from the GATK 3.6 toolkit [38] and was found to be 99.6%. We selected
127 269 unrelated (up to and including first cousin once removed and equivalents, $\pi_{\text{hat}} < 0.0625$; for
128 π_{hat} definition see Materials & Methods, Sample selection) individuals from the Shetland cohort
129 and 1156 unrelated individuals from the LBC. A total of 10,784,026 SNP sites and 1,082,383 INDEL
130 sites were found in the 269 unrelated Shetland individuals (π_{hat} mean = 0.0196, sd = 0.0164,

131 median = 0.0269); the corresponding numbers for the 1156 unrelated LBC individuals (π_{hat} mean =
132 0.0141, sd = 0.0130, median = 0.0188) are 21,152,042 SNPs and 2,065,442 INDELS. The two cohorts
133 exhibited overall similar average numbers of high-quality variant alleles per sample (Table 1 in S2
134 File).

135 A multidimensional scaling (MDS) analysis revealed that while similar, the two populations
136 are genetically distinct from each other (Fig 2 in S1 File), and this was confirmed by a complementary
137 admixture analysis (Fig 3 in S1 File). However, we adopted a conservative approach and did not
138 exclude Shetland samples showing genotypes commonly found in LBC and *vice versa*. Such samples
139 are representative of the fact that, although the Shetland population is isolated, there has been
140 some gene flow to and from the capital city of Scotland and its surrounding area, where the LBC
141 cohort were recruited. Inclusion of these individuals implies that any observed differences between
142 the variant loads in the two cohorts will tend to be underestimated.

143

144 **The VIKING cohort is significantly enriched for ultra-rare SNP and INDEL variants genome-
145 wide**

146 To compare the genome-wide variant load in the two cohorts we stratified the variants
147 found in the mappable regions of the 22 autosomal chromosomes based on their presence and MAF
148 observed in the gnomAD genomes dataset (r2.0.1 [39]). We annotated variants as “ultra-rare” if they
149 have not been observed in any individual in the full gnomAD genome dataset ($n = 15,496$); “very
150 rare” for variants with MAF in Non-Finnish Europeans (NFE, $n = 7,509$) $\leq 1\%$, “rare” with $1\% < MAF_{\text{NFE}}$
151 $\leq 5\%$, “common” with $5\% < MAF_{\text{NFE}} \leq 10\%$, and “very common” with $MAF_{\text{NFE}} > 10\%$. To quantify the
152 observed differences accurately for each frequency class, we bootstrapped the LBC data by
153 generating 10,000 random subsets (with replacement) of size 269 individuals each to match the size
154 of the VIKING dataset. For each of these subsets we counted the numbers of variants per individual
155 in the VIKING and LBC cohorts and used the Wilcoxon rank sum test to evaluate the difference in
156 distribution of number of variants between the two cohorts. To annotate the number of variants in a

157 frequency class as significantly different (shown in bold, Table 1), we required at least 95% of the
 158 10,000 subsets to have p-value $\leq 5 \times 10^{-3}$ (Bonferroni corrected) and no overlap between the 95% CI
 159 for the LBC and VIKING median values.

160 **Table 1A. Genome-wide SNP load comparison in VIKING vs LBC (number of alleles per individual)**

gnomAD Frequency Class	VIKING median	LBC 10k subsets median & 95%CI	VIKING/LBC ratio median & 95%CI	Wilcoxon rank sum test	
				p : median & 95% CI	number tests with $p \leq 5 \times 10^{-3}$
very common	3,287,577	3,283,825 [3282607, 3284923]	1.001 [1.001, 1.002]	3×10^{-6} [5 $\times 10^{-9}$, 5 $\times 10^{-4}$]	9985
common	115,366	115,267 [115040, 115500]	1.001 [0.999, 1.003]	6×10^{-1} [1 $\times 10^{-1}$, 1 $\times 10^{-0}$]	1
rare	86,229	86,539 [86373, 86748]	0.996 [0.994, 0.998]	4×10^{-2} [1 $\times 10^{-3}$, 4 $\times 10^{-1}$]	1160
very rare	33,762	34,250 [34146, 34343]	0.986 [0.983, 0.989]	9×10^{-10} [5 $\times 10^{-13}$, 6 $\times 10^{-7}$]	10000
ultra-rare	5164	4452 [4421, 4486]	1.160 [1.151, 1.168]	5×10^{-82} [5 $\times 10^{-86}$, 2 $\times 10^{-77}$]	10000
singleton	2022	3216 [3186, 3247]	0.629 [0.623, 0.635]	4×10^{-80} [6 $\times 10^{-81}$, 5 $\times 10^{-79}$]	10000
\geq doubleton	3131	1215 [1192, 1235]	2.577 [2.535, 2.627]	4×10^{-89} [3 $\times 10^{-89}$, 6 $\times 10^{-89}$]	10000

161 Very common: variants with MAF > 10% in Non-Finnish Europeans (NFE, gnomAD, n=7,509); common: 5% < MAF_{NFE} \leq 10%;
 162 rare: 1% < MAF_{NFE} \leq 5%; very rare: MAF_{NFE} \leq 1%; ultra-rare: not observed in any gnomAD individual (n=15,496); singleton:
 163 ultra-rare variants found in single individual (within cohort) only; \geq doubleton: ultra-rare variants found in two or more
 164 individuals (within cohort). Median number and 95% CI of LBC alleles (third column) for each frequency class is computed
 165 based on 10,000 random subsets (n = 269, with replacement, matching VIKING size); last two columns represent the
 166 median p-value (and 95% CI) and the number of tests with p-value smaller than the Bonferroni corrected threshold.

167 **Table 1B. Genome-wide INDEL load comparison in VIKING vs LBC (number of alleles per individual)**

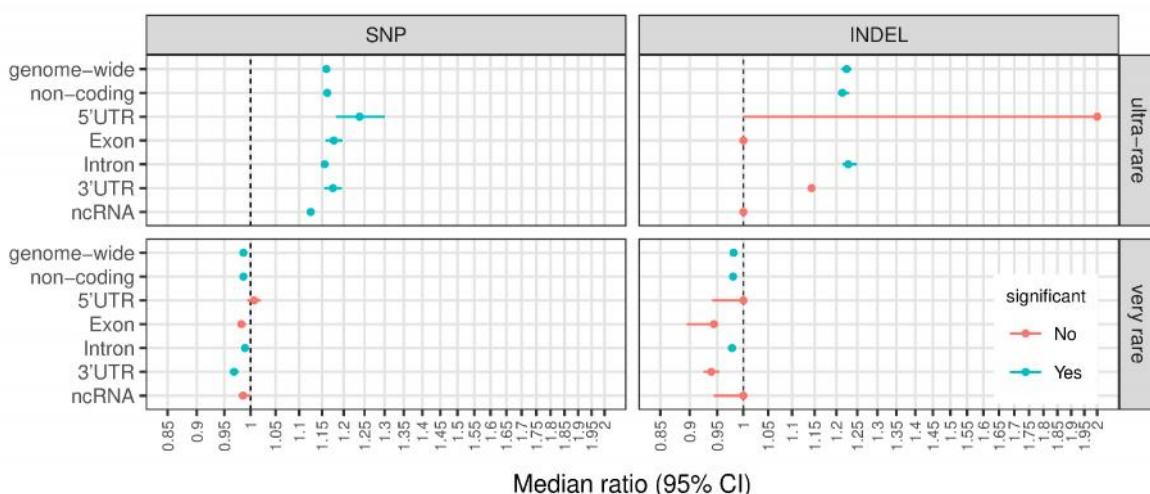
gnomAD Frequency Class	VIKING median	LBC 10k subsets median & 95%CI	VIKING/LBC ratio median & 95%CI	Wilcoxon rank sum test	
				p : median & 95% CI	number tests with $p \leq 5 \times 10^{-3}$
very common	331,340	329,518 [329368, 329655]	1.006 [1.005, 1.006]	5×10^{-53} [6 $\times 10^{-58}$, 5 $\times 10^{-48}$]	10000
common	11,939	11,806 [11767, 11839]	1.011 [1.008, 1.015]	3×10^{-10} [9 $\times 10^{-14}$, 3 $\times 10^{-7}$]	10000
rare	8731	8657 [8630, 8689]	1.009 [1.005, 1.012]	2×10^{-4} [1 $\times 10^{-6}$, 1 $\times 10^{-2}$]	9362
very rare	4001	4080 [4067, 4093]	0.981 [0.978, 0.984]	8×10^{-13} [2 $\times 10^{-16}$, 1 $\times 10^{-9}$]	10000
ultra-rare	503	411 [407, 415]	1.224 [1.212, 1.236]	1×10^{-82} [5 $\times 10^{-86}$, 1 $\times 10^{-78}$]	10000
singleton	183	284 [281, 287]	0.644 [0.638, 0.651]	5×10^{-77} [4 $\times 10^{-78}$, 7 $\times 10^{-76}$]	10000
\geq doubleton	324	124 [122, 127]	2.613 [2.551, 2.656]	2×10^{-89} [2 $\times 10^{-89}$, 3 $\times 10^{-89}$]	10000

168 Our results indicate that the VIKING samples are significantly enriched for ultra-rare SNPs
 169 (1.16 fold) and INDELs (1.22 fold) not observed in gnomAD (Table 1). Importantly, the observed
 170 enrichment is not driven by a greater individual-specific variation in Shetlanders; in fact, a VIKING
 171 individual carries less than two-thirds of the number of ultra-rare singleton variants compared to an
 172 LBC counterpart (see singleton versus \geq doubleton fractions of ultra-rare variants in Table 1).

173 To evaluate the potential effect of distant relatedness remaining in the chosen sets of 269
 174 VIKING and 1156 LBC individuals on the ultra-rare variant load, we selected from them the 34
 175 VIKING and 68 LBC individuals with no detectable relationships within each cohort ($\pi_{\text{hat}} = 0$ within

176 cohort). Using the discussed bootstrapping approach on these stricter subsets, we found that ultra-
177 rare SNPs are enriched 1.14 fold (95% CI = [1.13, 1.16], $p = 6.5 \times 10^{-11}$, Wilcoxon rank sum test) and
178 ultra-rare INDELs are enriched 1.20 fold (95% CI = [1.18, 1.23], $p = 6.2 \times 10^{-11}$) in the VIKING cohort;
179 these values are very similar to the results obtained for the 269 VIKING and 1156 LBC sets (Table 1).
180 Again, the overall enrichment is driven by the shared ultra-rare variants (i.e. \geq doubleton) - 3.03 fold
181 ultra-rare SNP enrichment ($p = 2.4 \times 10^{-12}$) and 2.65 fold ultra-rare INDEL enrichment ($p = 1.7 \times 10^{-12}$) -
182 whereas the two cohorts exhibit very similar levels of individual-specific ultra-rare variation and their
183 difference is not significant.

184 These data suggest that genetic drift has increased the frequency of many ultra-rare variants
185 in Shetland compared to those in Lothian. On average, a Shetland individual carries about 2.6 times
186 more ultra-rare variants shared with at least one other Shetlander, compared to the ultra-rare
187 variants shared within the Lothian individuals (Table 1). There is also a small but significant depletion
188 of very rare known variants ($MAF_{NFE} \leq 1\%$) in VIKING, again due to the action of genetic drift whereby
189 many rare variants are expected to be lost in the population.


190

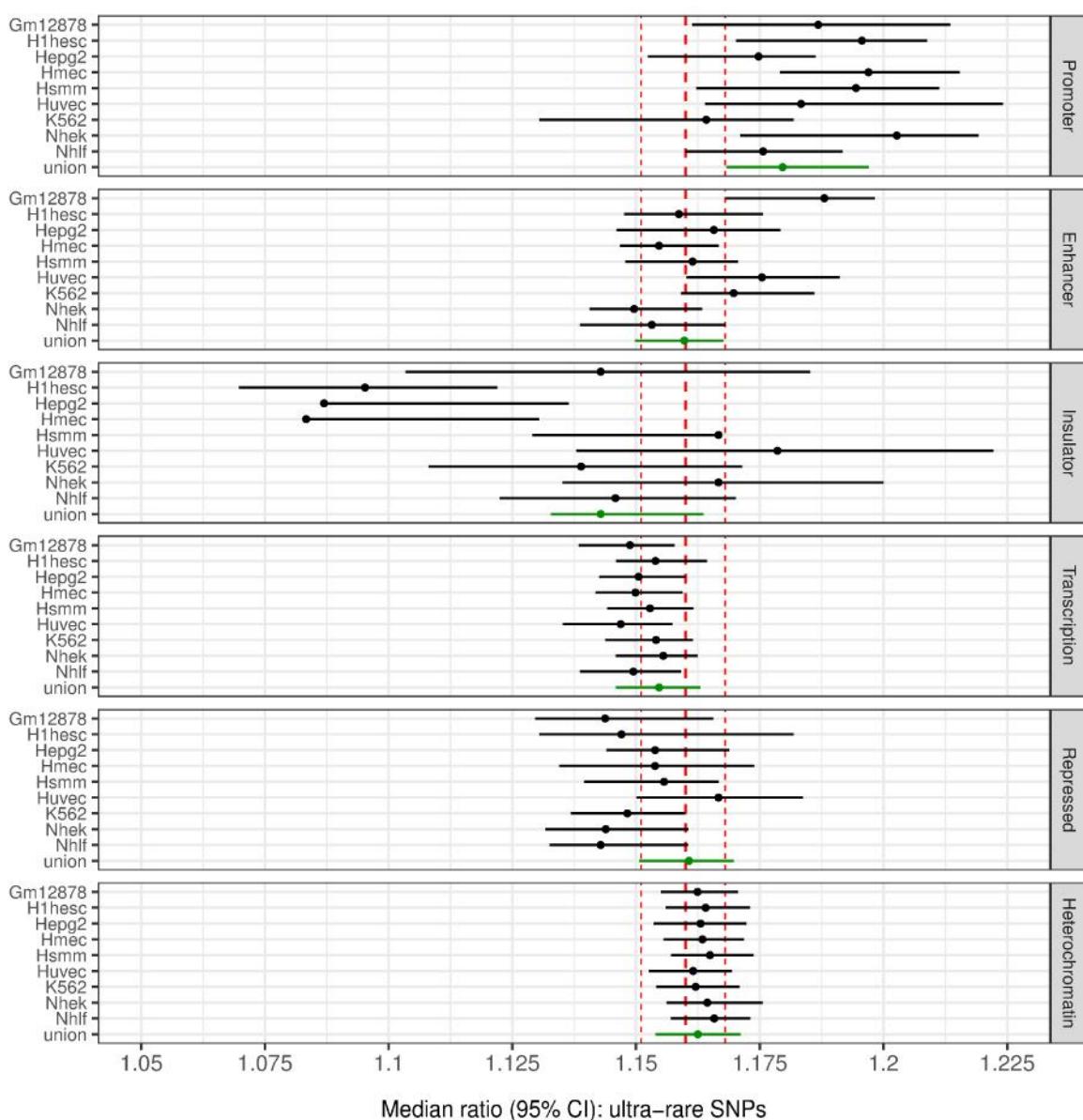
191 **Elevated ultra-rare variant loads in the VIKING cohort at functional regions**

192 Using data provided by Ensembl (GRCh37.p13, Ensembl Genes 92 [40]), we annotated the
193 protein coding and related regions in the mappable sections of the 22 autosomal chromosomes as
194 5'UTR (a total length of 9.3M bases), exon (30Mb), intron (906Mb), 3'UTR (27.6Mb) and ncRNA
195 regions (7.3Mb); the remaining 1.1Gb of the mappable regions in the reference human genome are
196 labelled as “non-coding” regions (Materials and Methods). To make data from different regions
197 comparable, we examined the number of variant alleles per megabase and used the same
198 framework as for the genome-wide analysis to quantify the observed differences for each of the
199 considered regions. The full results are available in Table 2 and Table 3 in S2 File and illustrated in Fig
200 4 in S1 File. As with the genome-wide level, in coding regions the two datasets are most divergent in

201 terms of variant loads for ultra-rare and very rare variants; the results for these two regions are
202 presented in Fig 1.

203 Our results show that VIKING samples are significantly enriched for ultra-rare SNPs in all
204 coding related regions – including exonic regions – while potentially more damaging ultra-rare
205 INDELs are restricted to non-coding and intronic regions. The observed exonic enrichment of ultra-
206 rare SNPs is similar to the levels of enrichment seen genome-wide and in non-coding regions,
207 demonstrating that exonic regions in the VIKING cohort have not been protected from the general
208 accumulation of ultra-rare variation in spite of their functional importance. Indeed, the median
209 enrichments seen in exons, 3'UTR and 5'UTR regions are somewhat higher than the genome-wide
210 median enrichment.

211
212 **Fig 1. Significant differences in variant load in coding and related regions for ultra-rare (upper**
213 **panel) and very rare (lower panel) variants**


214 Circle dots represent the ratio of the median number of variants in a VIKING individual to the median number of variants in
215 an LBC individual; whiskers are 95% CI based in 10,000 randomly selected LBC subsets (n = 269, with replacement).
216 Significance: at least 95% of the 10,000 subsets have p-value $\leq 8 \times 10^{-4}$ (Bonferroni corrected) and no overlap between the
217 95% CI for the LBC and the VIKING median values (for full results see Fig 4 in S1 File). The higher variance in the 5'UTR and
218 lower variance in ncRNA regions could be explained by their relatively small sizes – 9.3Mb and 7.3Mb, respectively.

219 We also annotated variants within predicted functional non-coding regions using the
220 coordinates of 15 chromatin states generated for nine cell types by the NIH Roadmap Epigenomics
221 Consortium [41], including promoters (average total length 39.2Mb over the 9 cell types), enhancers
222 (130.5Mb), insulators (17.4Mb), transcribed (530.3Mb), repressed (130.5Mb) and heterochromatin

223 (1.8Gb) regions (Materials and Methods). Using the same approach as for the genome-wide (Table 1)
224 and coding analyses (Fig 1) to quantify variant loads for each of the chromatin states, we again found
225 that the major difference between the two cohorts is for ultra-rare variant loads (Table 4 and Table 5
226 in S2 File). The observed significant enrichment of ultra-rare SNPs in all predicted regulatory regions
227 was generally indistinguishable from the genome-wide level (Fig 2), suggesting that regulatory
228 regions – similarly to the exonic regions – do not appear to be protected from ultra-rare SNP
229 variants.

230 As for exonic regions, the median enrichment for promoters is generally somewhat higher
231 than the genome-wide enrichment, particularly for predicted promoters active in H1 embryonic
232 stem cells, HMEC primary mammary epithelial cells and NHEK epidermal keratinocyte cells (Fig 2).

233 The results for ultra-rare INDELs (Fig 5 in S1 File) are similar, but due to the small number of
234 INDELs present in these regions, the conclusions are less robust. There is no significant difference in
235 the regulatory regions for known SNPs in any of the 9 cell types (Table 6 in S2 File) and the
236 enrichment for known INDELs in VIKING, although significant, is usually below 1% (Table 7 in S2 File).

237

238 **Fig 2. Ultra-rare SNP variant loads in functionally annotated non-coding regions**

239 Circle dots represent the ratio of the median number of variants in a VIKING individual to the median number of variants in
240 an LBC individual; whiskers are 95% CI based in 10,000 randomly selected LBC subsets ($n = 269$, with replacement).
241 Significance: at least 95% of the 10,000 subsets have $p \leq 2 \times 10^{-4}$ (Bonferroni corrected) and no overlap between the 95% CI
242 for the LBC and the VIKING median values. The higher variance in the Insulator regions estimates could be explained by their relatively small size
243 (17.4Mb). Gm12878: B-lymphoblastoid cells, H1hesc: embryonic stem cells, Hepg2: hepatocellular carcinoma cells, Hmec:
244 mammary epithelial cells, Hsmm: skeletal muscle myoblasts, Huvec: umbilical vein endothelial cells, K562: erythocytic
245 leukemia cells, Nhek: normal epidermal keratinocytes, Nhlf: normal lung fibroblasts, union: an aggregated comparison
246 between the two cohorts for this chromatin state by considering the union of state's regions annotated in any of the 9 cell
247 types.
248

249

250

251

252 **Strong founder effects and genetic drift in the VIKING cohort**

253 A likely source of the observed enrichment of ultra-rare variants in the isolated Shetland
254 population is the founder effect [42]. Among the variant sites found in VIKING samples but not
255 present in gnomAD (i.e. the VIKING ultra-rare set) 707,600 SNPs (82%) and 63,549 INDELs (82%) are
256 also absent from LBC (Table 2). These numbers represent 6.56% and 5.87% of all high-quality SNPs
257 and INDELs identified in the VIKING cohort, respectively. Notably, approx. 0.8% of the VIKING SNPs
258 and INDELs are ultra-rare, cohort-specific and seen in at least three VIKING individuals, compared to
259 0.35% of the LBC variants with the same characteristics, thus highlighting the potential role of
260 founder effects, bottlenecks and restricted effective population size more generally in the VIKING
261 cohort.

262 **Table 2. Variants observed in the VIKING cohort but not in gnomAD are often specific to Shetland**

gnomAD Frequency Class	SNP enrichment				INDEL enrichment			
	≥ 2x	≥ 5x	≥ 10x	Shetland specific	≥ 2x	≥ 5x	≥ 10x	Shetland specific
very common & common	≤0.01%	n/a	n/a	n/a	≤0.01%	n/a	n/a	n/a
rare	0.80%	≤0.01%	n/a	n/a	0.72%	≤0.01%	n/a	n/a
very rare	31.64%	16.01%	10.49%	n/a	28.99%	14.26%	9.35%	n/a
ultra-rare	13.14%	4.69%	2.14%	81.99%	13.07%	4.78%	2.17%	82.04%

263 For variants seen in gnomAD, enrichment is computed against the maximum AF observed in LBC and gnomAD (all
264 populations); for variants not found in gnomAD, enrichment and indigeneity is computed against LBC data.

265 There is also evidence of genetic drift for VIKING variants shared only with LBC, as well as for
266 variants shared with geographically more distant populations (Table 2). Among the VIKING ultra-rare
267 variants (i.e. not seen in gnomAD), but present in LBC, there are 18,451 SNPs (2.14%) and 1,678
268 INDELs (2.17%) with allele frequency in VIKING at least ten times higher than in LBC. Considering the
269 VIKING variants which are very rare in gnomAD Non-Finnish European population ($MAF_{NFE} \leq 1\%$),
270 there are 359,275 SNPs (10.49%) and 31,713 (9.35%) INDELs with allele frequency in VIKING at least
271 ten times higher than the maximum allele frequency observed in LBC and all gnomAD populations.
272 Collectively, these enriched frequency variants represent 3.50% and 3.08% of all SNPs and INDELs
273 identified in the VIKING cohort, respectively, highlighting the strength of genetic drift.

274 The above analyses reveal the extent of the contributions played by the founder effect and
275 genetic drift in shaping the genomic variation in the isolated VIKING cohort. About one tenth of all
276 high-quality variants discovered – 10.06% of the SNPs and 8.95% of the INDELs – are either unique to
277 the VIKING cohort or seen at least ten times more frequently in it compared to cosmopolitan WGS
278 populations (LBC and gnomAD).

279 Another line of evidence supporting the founder effect / genetic drift in the VIKING cohort is
280 based on the analysis of the distribution of allele frequencies across polymorphic sites, also known
281 as the site frequency spectrum (SFS) analysis (Materials and Methods). Our analysis is based on the
282 high-quality variants discovered in the callable regions of the 22 autosomal chromosomes in the two
283 cohorts of unrelated individuals, split to known variants (present in gnomAD at any frequency) and
284 ultra-rare variants (not found in any gnomAD population).

285 The proportion of known variants (Fig 6 in S1 File) found as singletons was lower for VIKING
286 compared to LBC: 19% (s.d. 6×10^{-17}) versus 22% (s.d. 1×10^{-16}) and 19% (s.d. 5×10^{-3}) versus 21% (s.d.
287 3×10^{-3}) for SNPs and INDELs, respectively, whereas the opposite is true for known variants found in
288 two or more individuals. A similar trend was previously observed comparing the SFS of Finnish
289 against non-Finnish Europeans [43], consistent with past founder effect(s).

290 The same trend, even amplified, is observed when comparing the SFS of the ultra-rare
291 variants. VIKING individuals exhibit a much lower proportion of ultra-rare variants seen as singletons
292 compared to LBC - 88% (s.d. 7×10^{-3}) versus 98% (s.d. 5×10^{-16}) and 86% (s.d. 7×10^{-3}) versus 97% (s.d.
293 8×10^{-16}) for SNPs and INDELs, respectively. Notably, 12% of the ultra-rare SNPs are shared by two or
294 more among 50 randomly-chosen VIKING subjects compared to only 2% ultra-rare SNPs for LBC; 14%
295 of the ultra-rare INDELs are shared by two or more VIKING subjects compared to 3% for LBC. These
296 results support our finding of increased sharing of ultra-rare variants in VIKING compared to LBC
297 (singleton versus \geq doubleton fractions in Table 1).

298 The roles played by founder effects and genetic drift in shaping the Shetland isolate were
299 further evidenced by Tajima's D [44] analysis (Materials and Methods) of the known SNPs (the

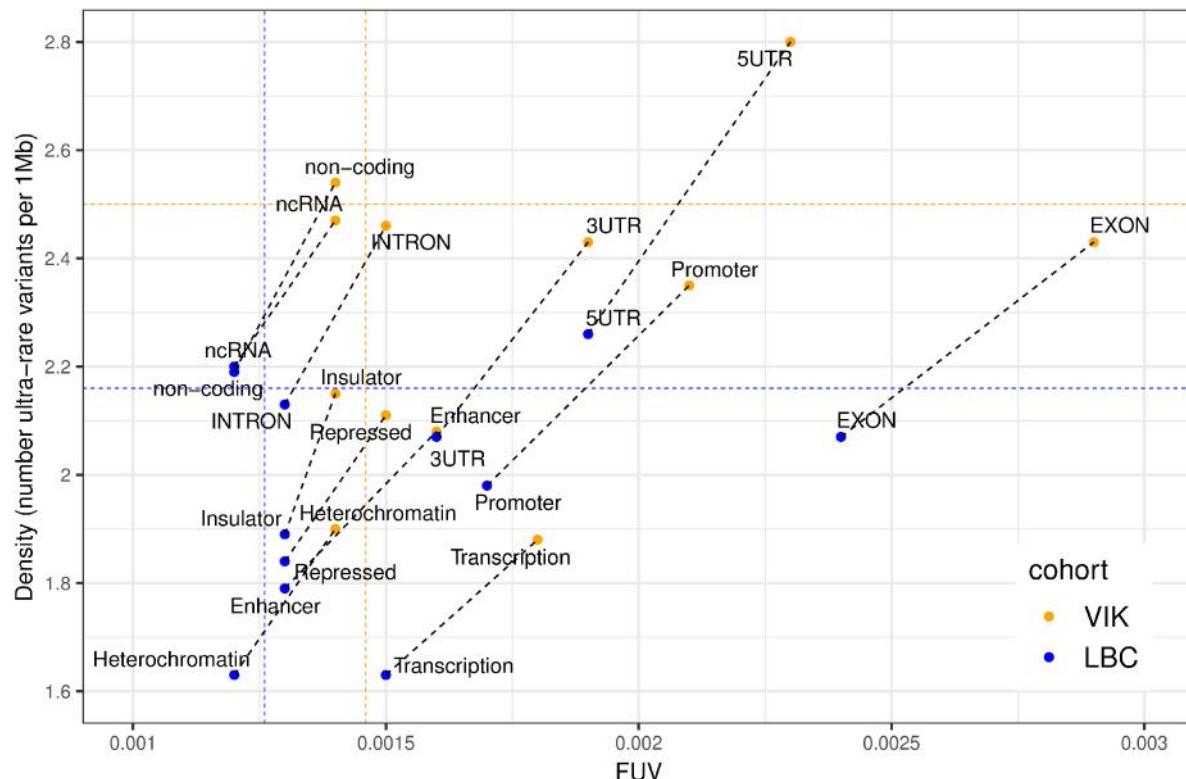
300 variants present in the gnomAD dataset) in the six functional regions (Table 3). Tajima's D values
301 close to zero are considered as evidence for the neutral hypothesis, while negative values reflect
302 high number of rare alleles due to population growth and/or purifying selection and positive
303 Tajima's D value indicate high number of alleles shared within the population [45].

304 **Table 3. Tajima's D captures demography and suggests relaxation of purifying selection in VIKING**

Functional Region	VIK median [95% CI]	LBC median [95% CI]	Difference
Exon	-0.53 [-1.67, 1.24]	-0.85 [-0.86, -0.84]	0.32
5'UTR	-0.27 [-1.56, 1.75]	-0.55 [-0.57, -0.53]	0.28
3'UTR	-0.15 [-1.57, 1.63]	-0.48 [-0.50, -0.45]	0.33
ncRNA	0.06 [-1.45, 2.22]	-0.24 [-0.26, -0.22]	0.30
Intron	0.22 [-1.26, 1.22]	-0.19 [-0.20, -0.17]	0.41
non-coding	0.38 [-1.04, 1.30]	-0.03 [-0.04, -0.01]	0.41

305 VIKING Tajima's D values are based on aggregating the results for the 269 unrelated individuals over sliding genomic
306 windows of size 1Mb (Materials and Methods). LBC results are based on aggregating the window medians for 100 random
307 unrelated LBC subsets of size 269 individuals.

308 As expected, for both cohorts we observe strongest purifying selection in exonic regions (the
309 lowest Tajima's D values), followed by 5'UTR, 3'UTR, ncRNA and intronic regions. The VIKING cohort
310 exhibit higher Tajima's D scores in all interrogated categories reflecting the specific demographic
311 characteristics of this isolated population. Notably, the consistency of the Tajima's D upwards shifts
312 in VIKING compared to LBC ($\sim 0.3 - 0.4$), even in exonic regions, is suggestive of potential relaxation
313 of purifying selection in the VIKING cohort, which we address in the next section.


314 Lastly, we compared the runs of homozygosity (ROH) identified in the two cohorts. ROHs
315 were identified in VIKING and LBC individuals (Materials and Methods) and split into intermediate
316 (length 0.5-2Mb) and long (≥ 2 Mb) ROH (Fig 7 in S1 File). The total length of intermediate ROH in an
317 individual is thought to reflect cryptic relatedness in populations, while the total length of long ROH
318 usually shows large inter-individual variations that may reflect recent inbreeding patterns [3,46,47],
319 or alternatively, a smaller effective population size. The observed correlation between the number
320 of ROH and the total length is largely in accordance with data reported previously [48,49]. To
321 quantify potential differences between cohorts, similarly to the previous analyses, we generated
322 10,000 random LBC subsets from the data and for each subset we computed the medians, their ratio
323 and the Wilcoxon p-value (Table 8 in S2 File). ROH with intermediate length were observed in all 269

324 VIKING and 1156 LBC samples, therefore we selected 10,000 LBC subsets of size 269 individuals (with
325 replacement). We observed slight, but significant decrease in both the number and the total length
326 of intermediate ROH in VIKING (VIKING/LBC median ratio ≈ 0.95 , 95%CI $\approx [0.94, 0.96]$). Long ROH
327 were detected in 244 (91%) VIKING and 863 (75%) LBC unrelated individuals. Comparing the long
328 ROH only in these individuals (subset size of 244 individuals, with replacement), we observed
329 significant enrichment for both the number (ratio = 3.0 [1.5, 3.0], median $p = 3 \times 10^{-22}$) and the total
330 length of ROH in VIKING (ratio = 2.31 [2.16, 2.93], median $p = 2 \times 10^{-31}$), consistent with increased
331 parental kinship in the Shetland population.

332

333 **Evidence for relaxation of purifying selection in the VIKING cohort**

334 Purifying (negative) selection is a powerful evolutionary mechanism of removing harmful
335 genetic variation. It has been shown previously that isolated populations, due to their smaller
336 effective population size, exhibit weaker purifying selection [19]. The strength of the purifying
337 selection can be assessed by comparison of the distribution of rare derived variants across different
338 functional categories. For example, analysis of the density and frequency of rare variants with
339 derived allele frequency (DAF) $< 0.5\%$ in 2623 Icelandic whole genome sequences revealed that
340 promoters had similar fraction of rare variants (FRV) and variant densities as UTRs, whereas
341 enhancers had FRV and densities intermediate between UTRs on the one hand, and intronic,
342 upstream or downstream regions on the other [22]. We performed similar, but more stringent,
343 analyses of the VIKING and LBC data based on the ultra-rare SNPs discovered in the two cohorts and
344 included data for protein coding and related regions (Fig 3). A comparison of the fraction of ultra-
345 rare variants (FUV) and their densities in VIKING and LBC reveals that 5'UTR, exon and promoter
346 regions show the most extreme shifts, driven by accumulation of ultra-rare variants at a higher rate
347 compared to known variants in VIKING.

348

349 Fig 3. Distribution of ultra-rare SNPs in functional regions

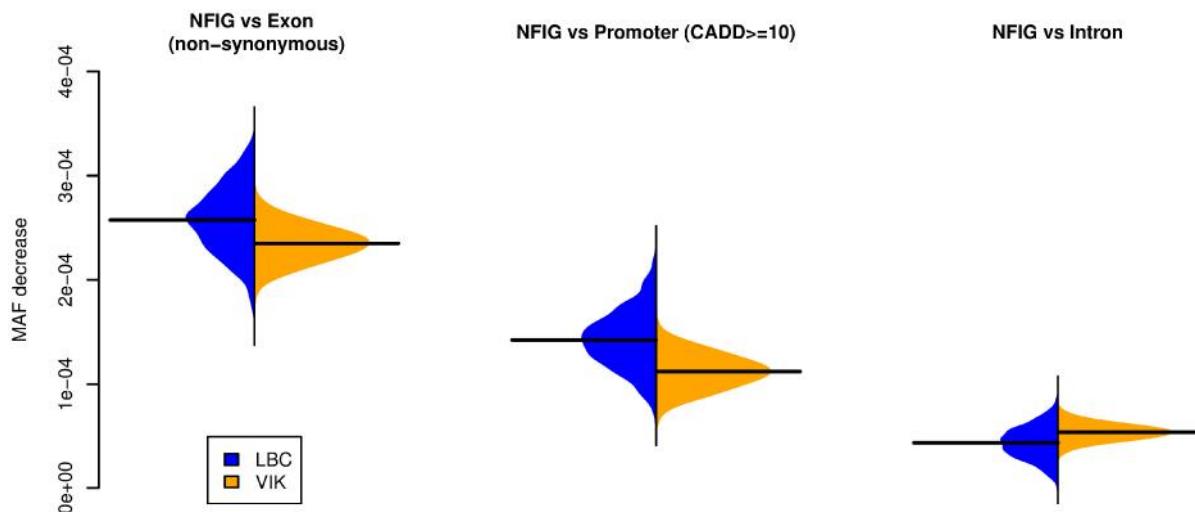
350 Fraction of ultra-rare variants (FUV) = number of ultra-rare variants / (number of ultra-rare + known variants); Values for
 351 regulatory regions are computed as the average over the 9 cell types; non-coding = mappable genome – 5'UTR – exon –
 352 intron – 3'UTR – ncRNA; Coloured horizontal and vertical lines represent the genome-wide averages for the two cohorts.
 353 Dashed black lines represent the distribution shifts between LBC and VIKING for each of the considered genomic regions. A
 354 strictly vertical shift would indicate a proportional increase in the numbers of ultra-rare and known variants from LBC to
 355 VIKING, whereas a strictly horizontal shift (no change in the ultra-rare variant density between the two cohorts) would
 356 represent a decrease in the number of known variants in VIKING.

357 We sought formal evidence for the relaxation of purifying selection by examining the
358 accumulation of extremely rare (i.e. singleton) variants predicted to have a loss of function (LOF)
359 impact using the SVxy statistic (a comparison of the ratios of damaging to synonymous variants
360 between isolate and other populations), which has previously been shown to identify weakened
361 purifying selection in isolates [19]. As a baseline we used the Non-Finnish European (NFE) population
362 in gnomAD (n = 7,509), extracting all exonic heterozygous SNPs (on the canonical transcript for each
363 gene) found in a single NFE individual only. We filtered these singleton variants into two categories:
364 i) LOF - stop gain, splice donor and splice acceptor variants, as well as missense variants with
365 predicted deleterious CADD score ≥ 20 (the variant is predicted to be amongst the top 1% of
366 deleterious variants in the human genome) [50]; and ii) synonymous (SYN) variants. There were

367 211,761 LOF and 158,077 SYN singleton alleles in NFE, such that the LOF/SYN ratio was 1.34.
368 Similarly, from the VIKING and LBC ultra-rare variant sets we extracted the exonic singleton LOF and
369 SYN variants, finding 23,787 LOF and 17,122 SYN singletons in the LBC cohort and 3,655 LOF and
370 2,501 SYN singletons in VIKING. The computed LOF/SYN ratios for the three cohorts correlate with
371 the anticipated declining effective population size across these populations – from continent-wide
372 Europeans (ratio = 1.34), to individuals born in the 1920-30s and living in Lothian, Scotland (ratio =
373 1.39), to the isolated Shetland population (ratio = 1.46).

374 For more rigorous evaluation of the potential relaxation of purifying selection in VIKING
375 compared to LBC, we repeated the ultra-rare singleton comparison with an additional requirement
376 of considering only genes for which there is at least one LOF or SYN variant observed in both cohorts
377 [19]. This led to very similar results (4,030 genes, $LBC_{LOF/SYN} = 1.40$ and $VIKING_{LOF/SYN} = 1.47$), which
378 indicates a 5.3% enrichment of ultra-rare singleton LOF SNP alleles in the VIKING cohort compared to
379 LBC ($p = 0.0387$, one-sided Wilcoxon rank sum test; Fig 9 in S1 File). In [19], the authors studied 8
380 isolated populations and found a 1.2% enrichment of LOF alleles in an Orkney cohort (from the
381 adjacent isolated northern Scottish archipelago) with respect to a cosmopolitan UK cohort, although
382 the results are not readily comparable since their analysis was based on all (rather than only ultra-
383 rare) singleton missense variants (regardless of their CADD score and not including nonsense and
384 essential splice variants) as LOF variants and reporting mean instead of median values. Since the
385 major difference in the variant load between VIKING and LBC is due to ultra-rare non-singleton
386 variants (Table 1), we relaxed the singleton requirement above and performed the same analysis
387 considering all ultra-rare variants in the two cohorts (5,365 genes with at least one LOF or SYN
388 variant observed in both cohorts). The result shows a 9.4% enrichment of ultra-rare LOF SNP alleles
389 in the VIKING cohort compared to LBC ($p = 0.00064$, one-sided Wilcoxon rank sum test).

390
391
392


393 **Allelic shift bias analysis supports widespread loss of selective constraint**

394 LOF-based analyses can be applied only to exonic regions where variants can be split into
395 two distinct categories based on their predicted impact. We developed a more general test, the
396 allelic shift bias (ASB) test, which is designed to assess relaxation of selection in non-coding regions,
397 based on the change in the allele frequency of variants within specific genomic regions across
398 populations, as follows. We selected all SNPs in the VIKING and LBC cohorts found in the gnomAD
399 genome dataset with $MAF_{NFE} \leq 1\%$ in Non-Finnish Europeans. Given their low frequencies, these
400 variants from the ancestral European population are likely to be enriched for SNPs that have been
401 subject to purifying selection. We repeatedly (1000x) randomly selected 269 LBC individuals
402 (matching the VIKING unrelated cohort size, with replacement) and selected $MAF_{NFE} \leq 1\%$ variants
403 shared between this LBC subset and the VIKING cohort. We then computed the mean MAF of such
404 variants for each LBC subset and the VIKING cohort in exonic, promoter, intronic and non-functional
405 intergenic (NFIG) regions (Fig 10 in S1 File). We also calculated the mean MAF of such variants for
406 non-synonymous exonic variants and the predicted deleterious promoter variants (CADD score ≥ 10 ;
407 predicted top 10% of the most deleterious variants genome-wide).

408 We estimated the strength of the purifying selection in each cohort as the difference
409 between the mean MAF of the selected variants observed in the NFIG regions, where the effect of
410 purifying selection is assumed to be negligible, and the mean MAF in regions assumed to be subject
411 of active purifying selection. If purifying selection acts with the same strength in two populations
412 there will be equivalent MAF differences in the two cohorts between the NFIG regions and the
413 regions being tested. However, in the scenario where purifying selection is weakened in one of the
414 populations, we expect to observe a bias towards smaller MAF differences in this population. The
415 significance of these shifts can then be measured by a nonparametric statistic comparing the
416 distributions of MAF differences between cohorts.

417 We applied the ASB test on exonic, promoter and intronic regions (Fig 4). Our results are
418 consistent with the LOF-based observation of weaker purifying selection in VIKING exonic regions. In

419 addition, ASB testing shows a similarly widespread loss of constraint in VIKING promoter regions,
420 suggesting effects on gene expression. We observe higher MAF of very rare variants at LBC intronic
421 regions compared to VIKING, which is most likely due to the more cosmopolitan nature of the LBC
422 cohort and weaker purifying constraint in intronic compared to exonic and promoter regions.

424 **Fig 4. Allelic shift bias (ASB) suggests loss of constraint at VIKING exonic and promoter regions.**

425 MAF shifts for very rare SNPs ($MAF_{NFE} \leq 1\%$) between non-functional intergenic regions (NFIG), considered as baseline, and
426 non-synonymous SNPs in exonic regions, SNPs with CADD score ≥ 10 in promoter regions and intronic SNPs, for each of the
427 cohorts. These MAF differences are calculated using 1000 randomly selected LBC subsets of size 269 individuals (matching
428 the VIKING size; with replacement) and considering only variants shared between the VIKING and the currently evaluated
429 LBC subset, for which we computed the cohorts' mean MAF in exonic, promoter, intronic and non-functional intergenic
430 regions (see Fig 10 in S1 File). Black horizontal lines represent mean values. The differences in MAF shifts in the two
431 cohorts are statically significant for all three comparisons ($p < 2.2 \times 10^{-16}$, one-sided Wilcoxon rank sum test).

432

433 **Functional impacts of rare and ultra-rare VIKING variants**

434 Our analysis of the WGS data of the 269 Shetland individuals revealed 79 exonic variants
435 predicted to impact gene function as significantly enriched (Fisher's exact test) in VIKING compared
436 to gnomAD, and occurring in 74 unique genes predicted to be largely intolerant to variation
437 (Materials and Methods); 54 of these variants (68%) are ultra-rare (i.e. not found in gnomAD
438 genomes dataset). A lookup for these 54 exonic variants in the order of magnitude larger gnomAD
439 exomes dataset (v2.1.1, $n = 125,748$) [51] confirms their rarity in general populations: 19 variants
440 (35%) were not found in the gnomAD exomes dataset; 16 variants (30%) were found with overall
441 $MAF \leq 1 \times 10^{-5}$ (i.e. less than 1 in 100,000), 17 variants (31%) with $MAF \leq 5 \times 10^{-5}$ (i.e. less than 1 in

442 20,000) and the remaining 2 variants with $MAF \leq 1 \times 10^{-4}$ (i.e. less than 1 in 10,000). As of Aug 27,
443 2019 only one of these 54 variants - rs779590262, a missense variant of uncertain significance
444 (Variation ID 423006) – was present in ClinVar [52], a database aggregating information about
445 genomic variation and its relationship to human health.

446 Given our small sample size, in order to reduce the search space and the multiple testing
447 correction burden, from the 79 enriched exonic variants predicted to be functional we selected the
448 40 variants (26 of which ultra-rare) within 38 genes for which a strong evidence of gene-trait
449 association ($p \leq 5 \times 10^{-8}$) is reported in the GWAS Catalog (v1.0.1) [53]; among them are 13 variants (5
450 of which ultra-rare) in 11 distinct genes that are carried by at least 10 out of the 500 genome-
451 sequenced Shetland individuals (Table 9 in S2 File). We performed genotype-to-phenotype analysis
452 in the 500 VIKING individuals for those 13 variants and the 26 related quantitative traits for which
453 data is available, but found no significant associations (nominal $p < 0.0019$, Bonferroni corrected for
454 the number of traits). This was not surprising, given that we have 80% power with $n = 500$ and MAF
455 ≈ 0.01 to detect a variant explaining 3% (or more) of the trait variance at that significance level.
456 Variants with such effects sizes are relatively rare in generally healthy cohorts, highlighting the
457 importance of sample size. We plan to investigate the identified variants and their potential
458 phenotype correlations in ~1600 additional VIKING samples whose WES is currently underway.

459 VIKING variants in promoter regions show higher levels of enrichment for ultra-rare variants
460 than other regulatory regions (Fig 2), and analysis of the WGS data of the 269 unrelated VIKING
461 individuals revealed 2,782 (52% ultra-rare) promoter variants significantly enriched compared to
462 gnomAD (Materials and Methods). Since variation in promoter regions is often associated with
463 variation in gene expression, we screened the enriched variants against the list of known eQTLs
464 (with $qval \leq 0.05$) in the GTEx dataset (v7) [54] using the data obtained from the GTEx portal [55] and
465 found 6 rare variants (gnomAD $MAF < 0.05$, Shetland $MAF \leq 0.1$) predicted to affect the expression of 6
466 distinct genes (4 of them with strong GWAS Catalog gene-trait correlation, Table 10 in S2 File), as

467 well as 6 very common variants (gnomAD MAF > 0.4) correlated with the expression of 5 distinct
468 genes.

469

470 **Discussion**

471 Comparison of high-coverage WGS data for 269 unrelated individuals in the VIKING cohort
472 from the Shetland Islands to similar data from LBC – a more cosmopolitan Scottish sample from the
473 city of Edinburgh and around – reveals evidence of founder effects, genetic drift, and relaxation of
474 purifying selection in Shetland. VIKING individuals exhibit genome-wide enrichment of ultra-rare
475 variants (Table 1). On average 0.15% of all variants found in a VIKING individual have not been
476 previously reported in the gnomAD database of WGS variants discovered in 15,496 individuals from
477 varying ethnic origins. After careful filtering of these ultra-rare variants, we found genome-wide
478 enrichment for ultra-rare SNPs in VIKING compared to LBC of 1.16-fold and for ultra-rare INDELs of
479 1.22-fold. Importantly, this enrichment is not due to an elevated rate of singleton variants in VIKING
480 individuals, but is a result of higher rates of sharing of ultra-rare variants among Shetlanders.

481 The existing literature reports similar proportions of ultra-rare variants detected in isolated
482 populations as a fraction of all variants in the population [15,19,20], although a direct comparison is
483 difficult due to different sample sizes, sequencing approaches, genealogical criteria for participant
484 inclusion and reference datasets. Fluctuations in the frequencies of rare variants, usually defined as
485 variants with MAF \leq ~1%, have also been observed in isolate cohorts. In some cases, studies found
486 an excess of such variants in isolated populations compared to controls [17,19,20,22], whereas in
487 others, the isolated populations are depleted for such variants [15,21,56]. Although there is an
488 inverse correlation between the observed frequency of a variant and the probability of it being ultra-
489 rare [15,19,20,23], we are aware of no study to date that has explicitly investigated ultra-rare variant
490 loads in isolates. By using the gnomAD genomes database as a reference dataset to separate the
491 variants into ultra-rare and very rare but known (i.e. seen in gnomAD and with MAF in Non-Finnish
492 Europeans \leq 1%), we were able to show that while the VIKING cohort is depleted for very rare

493 known variants, it is enriched for ultra-rare variants compared to a control cosmopolitan population,
494 in particular for those shared by more than one unrelated individual in the isolated population. The
495 discovered ultra-rare and rare VIKING variants which are predicted to be functional and are
496 significantly enriched in the Shetland isolate compared to gnomAD add to the emerging catalogue of
497 ultra-rare variants from isolated cohorts correlated with various traits of medical importance
498 [20,23]. Such variants are illustrative of the potential for the so called “jackpot effect” [25].

499 The VIKING individuals in this study were recruited as phenotypically ‘normal’ healthy
500 individuals and represent only our first view of the Shetland isolate, with further recruitment
501 underway. The detailed demographics and history of the Norse diaspora is still an area of active
502 research (e.g. [57]). We look forward to deep WGS data from relevant Scandinavian populations
503 (with compatible sequencing technologies and sample ascertainment) becoming available in the
504 future. Such data, combined with power increasing strategies (e.g. imputation) and continual GWAS
505 Catalog improvements, will provide much greater opportunities for discovering VIKING variants
506 correlated with various phenotypic traits.

507 The availability of high-coverage WGS data allows the interrogation of both SNP and INDEL
508 variant loads in regulatory as well as coding regions. Our results suggest that due to the reduced
509 efficiency of purifying selection, the exonic and regulatory regions in the Shetland isolate exhibit
510 ultra-rare SNP loads equal to the genome-wide level. We observe the same trend for higher levels of
511 ultra-rare INDELs in many VIKING regulatory regions, particularly promoters, but VIKING exonic
512 regions appear to be protected from short ultra-rare INDELs (of length up to 75bp), consistent with
513 the higher expected intolerance to variation in exonic compared to regulatory regions, as well as
514 with the previously reported finding that exonic regions are depleted of long (median size of several
515 kbp) copy number variant deletions [58]. Excesses of functional exonic SNPs in isolated populations
516 have been widely reported before but, to the best of our knowledge, this work is the first to provide
517 empirical evidence that while exonic regions in an isolated population may be enriched for ultra-rare
518 SNPs, they appear protected from short ultra-rare INDELs.

519 It has previously been shown that primate promoters exhibit an increased rate of evolution
520 compared to other genomic regions [59] and this acceleration of nucleotide substitution rate is most
521 pronounced in broadly expressed promoters [60]. It is also widely accepted that variation in
522 regulatory regions plays an important role in complex traits, and trait-associated SNPs are known to
523 be enriched in regulatory regions [61]. Certain recent studies [20,21,23] have suggested that isolated
524 populations may be enriched for regulatory variation. In this work, we explicitly test this hypothesis
525 and show that regulatory regions in the Shetland isolate generally exhibit genome-wide level of
526 ultra-rare variant loads. This suggests that gene expression patterns may diverge relatively rapidly in
527 isolates, producing substantial variation in gene dosage, super-imposed upon the ultra-rare variant
528 loads in coding regions. Currently, our ability to interpret the potential effect of regulatory variants is
529 limited to screening against eQTL databases which inevitably contain incomplete information from
530 previous, modestly powered studies. The generation of RNA sequencing data would enable a fuller
531 understanding of the role ultra-rare regulatory variation plays in isolated populations.

532

533 **Materials and Methods**

534 **Participant recruitment and consent**

535 The Viking Health Study - Shetland (VIKING) is a family-based, cross-sectional study that
536 seeks to identify genetic factors influencing cardiovascular and other disease risk in the population
537 isolate of the Shetland Isles in northern Scotland. The 2105 participants were recruited between
538 2013 and 2015, 95% of them having at least three grandparents from Shetland. Fasting blood
539 samples were collected and many health-related phenotypes and environmental exposures were
540 measured in each individual. All participants gave informed consent for WGS and the study was
541 given a favourable opinion by the South East Scotland Research Ethics Committee (REC Ref
542 12/SS/0151).

543 The Lothian Birth Cohort (LBC) study sampled people living in Edinburgh and the Lothians
544 who were recruited and tested in the Scottish Mental Surveys of 1932 and 1947 as described

545 elsewhere [35,36]; 1369 individuals from the LBC dataset were selected for WGS at the same facility
546 as the VIKING samples. Ethical permissions were obtained from the Lothian Research Ethics
547 Committee (LREC/1998/4/183; LREC/2003/2/29; 1702/98/4/183), the Multi-Centre Research Ethics
548 Committee for Scotland (MREC/01/0/56) and the Scotland A Research Ethics Committee
549 (07/MRE00/58). Written informed consent was obtained from all participants.

550

551 **Availability of data and materials**

552 There is neither research ethics committee approval, nor consent from individual
553 participants, to permit open release of the individual level research data underlying this study. The
554 datasets generated and analysed during the current study are therefore not publicly available.
555 Instead, the VIKING WGS data has been deposited in the EGA (accession number
556 EGAS00001003872). VIKING DNA samples are available from Professor Jim Wilson
557 (accessQTL@ed.ac.uk) on reasonable request, following approval by the QTL Data Access Committee
558 and in line with the consent given by participants. LBC WGS data has been deposited in the EGA
559 (EGAS00001003818 for the LBC1921 subset, EGAS00001003819 for the LBC1936 subset).

560

561 **Variant calling and filtering**

562 The WGS sequencing and initial processing of the samples used in this study was performed
563 at Edinburgh Genomics, University of Edinburgh. The starting point of our analyses were the gVCF
564 files (GRCh38) we received for the 500 VIKING and 1369 LBC individuals, generated as follows.
565 Demultiplexing is performed using bcl2fastq (Illumina, 2.17.1.14), allowing 1 mismatch when
566 assigning reads to barcodes; adapters are trimmed during the demultiplexing process. BCBio-
567 Nextgen (0.9.7) is used to perform alignment, bam file preparation and variant detection. BCBio uses
568 bwa mem (v0.7.13 [62]) to align the raw reads to the reference genome (GRCh38; with alt, decoy
569 and HLA sequences), then samblaster (v0.1.22 [63]) to mark the duplicated fragments, and GATK 3.4

570 for the indel realignment and base recalibration. The genotype likelihoods are calculated using GATK
571 3.4 HaplotypeCaller creating a final gVCF file.

572 We called the variants in each sample individually from its gVCF using GenotypeGVCFs (GATK
573 3.6); the identified INDELs are limited to 75bp, i.e. about half of the read length. The discovered
574 variants for each sample were decomposed and normalized using VT (v0.5772-60f436c3 [64]). The
575 Variants not in the 22 autosomal or the two sex chromosomes, as well as variants with AC = 0 (after
576 decomposition) were excluded from further analyses and the filter value for all the remaining
577 variants was reset to PASS. The variants in each individual VCF were then split to SNPs and INDELs
578 (GATK 3.6).

579 An attempt to filter the variants using GATK's VQSR approach did not produce convincing
580 results – there was no clear separation between the filtered and retained variants in the generated
581 plots. Instead, we adopted a hard-filtering strategy based on the variant call parameters suggested
582 as suitable for hard-filtering by GATK [65]. The cut-off values for these parameters were determined
583 separately for VIKING and LBC cohorts in order to account for potential batch effects since the two
584 cohorts were sequenced at different time points and using different preparation kits – VIKING used
585 the TruSeq PCR-Free High Throughput library, while the earlier sequenced LBC used the TruSeqNano
586 High Throughput library. Using VariantFiltration (GATK 3.6), we marked (FILTER flag in the VCF set to
587 FAIL) SNPs with QD < 7.4/6.9, MQ < 44.0/44.5, FS > 10.0/9.8, SOR > 2.1/2.1, MQRankSum < -2.4/-2.3
588 or ReadPosRankSum < -1.4/-1.4; and marked INDELs with QD < 5.3/4.9, FS > 9.1/8.8, SOR > 2.9/2.6
589 or ReadPosRankSum < -1.8/-1.8 in VIKING/LBC cohorts, respectively. These cut-off values were
590 determined as the boundary to the worst-quality 5% of the variants for each of the parameters,
591 using all variants in the SNP and INDEL VCFs for 23/62 randomly chosen VIKING/LBC samples with
592 mean sequencing coverage $\geq 30x$. The chosen cut-off values are more stringent than those
593 suggested by GATK; however, one of our objectives was to minimize the number of false positive
594 calls. In addition, we also marked as FAIL variants with DP < 10. On average, our approach lead to
595 marking 18% and 16% of the VIKING SNPs and INDELs per sample; the corresponding values for LBC

596 were 19% and 18%, respectively. It should be noted that in the later step of merging the variants
597 from all samples in each cohort, we used the GATK's KEEP_IF_ANY_UNFILTERED option. This allowed
598 for reconsidering variants which failed to pass the hard filtering in some samples, but were called
599 with sufficient quality in other samples to be considered trustworthy and were therefore kept for
600 further analyses. Our analyses suggest that using this option does not introduce a bias towards rarer
601 variants in more related populations (Fig 11 in S1 File).

602 The individual SNP and INDEL VCFs were lifted over to the human_g1k_v37 reference
603 genome (using picard-2.6.0, <http://broadinstitute.github.io/picard>) and merged into cohort-wide
604 SNP and INDEL VCFs (CombineVariants, GATK 3.6, using the KEEP_IF_ANY_UNFILTERED option).

605 Next, we selected only variants from the mappable regions of the 24 chromosomes by
606 identifying and excluding variants from genomic regions known to produce false positive calls at a
607 higher rate due to poor alignability (repeat rich regions and regions with low complexity) using the
608 UCSC tracks for the CRg dataset (36mers) [66], the Duke dataset (35mers) [67] and the DAC dataset
609 [68].

610 Despite the cohort-specific cut-off values used in the hard-filtering step, we further
611 evaluated our data for the presence of potential technical artefacts due to the different kits used for
612 sequencing of the VIKING (“PCR free”) and LBC (“PCR plus”) cohorts. We were advised (Edinburgh
613 Genomics, personal communication, October 2018) that the use of the “PCR free” kit may result in a
614 higher number of discovered raw INDELs genome-wide due to the elimination of the PCR
615 amplification step in the “PCR plus” kit which may not perform optimally in regions with extreme GC
616 content (resulting in drop of coverage in such regions for “PCR plus”). To address this, we split the
617 mappable regions in the reference human genome to ~ 1.75 billion consecutive blocks of length
618 100bp, computed the GC content for each block and assigned it to one of the 100 bins based on its
619 GC content (one bin for each percent difference in the GC content). We then counted and compared
620 the total number of VIKING and LBC variants for all the blocks in each of the 100 bins. As a control,
621 we considered variants from 139 unrelated individuals from the island of Korcula, Croatia, which

622 were sequenced with the “PCR plus” kit (same as LBC), by the same sequencing centre (Edinburgh
623 Genomics) at a time point between the LBC and VIKING cohorts and processed by us in the same
624 manner as for the other two cohorts. The results (Fig 12 in S1 File, Fig 13 in S1 File) suggest that
625 indeed there is enrichment for the “PCR free” kit in regions with extreme GC content, for both SNPs
626 and INDELs. Therefore, we identified and excluded all Shetland and LBC variants which are centred in
627 a 100bp window with GC content less than 15% or greater than 75%. This resulted in excluding
628 0.35% and 0.93% of the VIKING SNP and INDEL sites, respectively; the corresponding values for the
629 LBC cohort were 0.34% (SNPs) and 0.86% (INDELs).

630

631 **Sample selection**

632 In order to avoid bias in the variant load analyses, we first excluded 165 samples from the
633 LBC cohort with mean sequencing coverage < 30x, given that all but two of the 500 Shetland samples
634 have mean coverage >= 30x. Next, we identified and excluded related samples in each cohort. We
635 based this analysis on the discovered biallelic SNPs from the mappable regions in the 22 autosomal
636 chromosomes with MAF >= 2% in the VIKING and LBC cohorts: 5,732,180 and 5,711,775 such
637 markers, respectively. As a relatedness metric, we used PLINK’s [69] pi_hat statistic representing the
638 proportional identity by descent (IBD) between two individuals and computed as $\text{pi_hat} = P(\text{IBD}=2) +$
639 $0.5*P(\text{IBD}=1)$. We used PLINK (v1.90b4 [69]) to compute the pi_hat statistic at the markers
640 described above for each pair of samples in each cohort and marked as related any pair of samples
641 with $\text{pi_hat} >= 0.0625$, corresponding to first cousins once removed and closer, and equivalents.
642 From these data, we identified the maximum unrelated sets of samples for each cohort (269 for
643 VIKING and 1160 for LBC) using PRIMUS (v1.9.0 [70]). Our analysis showed that there is no significant
644 bias towards individuals with recent immigration history (i.e., with less than four grandparents from
645 the Shetland Isles) in the unrelated VIKING set (n = 269).

646 Another potential source of bias could be the presence of individuals with non-European
647 genomic heritage. The VIKING cohort samples were investigated using the genotype array data and

648 only those with no evidence of non-European heritage were submitted for WGS. For the LBC cohort,
649 using data available from the 1000G Project (Phase 3) [71] as controls, we performed MDS analysis
650 (PLINK) and identified and excluded from further analyses four samples with evidence of some
651 African or Asian heritage.

652

653 **Variant annotation and ultra-rare variants**

654 The variants were annotated with their predicted functional effect using VEP (v90 [72]) and
655 with their gnomAD filter status and prevalence in all populations available in gnomAD genome
656 dataset (gnomAD, r2.0.1 release, data from 15,496 WGS, downloaded May 26, 2017). All variants in
657 VIKING and LBC datasets passing the hard-filtering described above, but failing the quality filters in
658 gnomAD, were excluded from further analyses. We refer to the variants which passed both our and
659 gnomAD filtering as “known” variants. Furthermore, from variants found in our datasets, but not
660 found in gnomAD (i.e. ultra-rare variants), we kept for further analysis only biallelic SNPs with allele
661 frequency (AF) in the corresponding dataset ≤ 0.1 , with depth of coverage (DP) at least 8 and no
662 more than 60 reads and genotype quality (GQ) ≥ 30 ; and only biallelic INDELs with AF ≤ 0.1 , DP ≥ 12
663 and ≤ 60 and GQ ≥ 40 . We refer to those variants as “ultra-rare” (Table 1), noting that some are
664 shared between the VIKING and LBC cohorts. Our tests showed that these ultra-rare variants are
665 generally randomly distributed genome-wide.

666

667 **ADMIXTURE analysis**

668 Admixture analysis of the 269 VIKING and 1156 LBC unrelated individuals was performed
669 using the ADMIXTURE tool [73,74]. The analysis was based on 4,320,501 SNPs (not LD pruned)
670 found in the callable regions in the 22 autosomal chromosomes with combined MAF $\geq 5\%$ in the two
671 cohorts and also present in gnomAD genomes dataset. The admixture_linux-1.3.0 was run with
672 default parameters with 4 threads in unsupervised mode with K= 1, 2 and 3. The cross-validation

673 error for each K computed using the --cv option (5 folds) identified K = 2 as the most suitable
674 modelling choice.

675

676 **Site Frequency Spectrum (SFS) analysis**

677 SFS analysis of the 269 VIKING and 1156 LBC unrelated individuals was performed using
678 VCFtools (v0.1.13) [75] using the --freq2 option. Our analysis uses the high-quality variants
679 discovered in the callable regions of the 22 autosomal chromosomes in the two cohorts of unrelated
680 individuals, split to known variants (present in gnomAD at any frequency) and ultra-rare variants
681 (not found in any gnomAD population). All sites with missing genotype(s) were excluded. The means
682 and standard deviations for each frequency (Table 11 in S2 File and Fig 6 in S1 File) were computed
683 based on subsampling the two cohorts to 50 distinct individuals each repeated 100 times (w/o
684 replacement within subsamples, with replacement across subsamples).

685

686 **Tajima's D analysis**

687 Tajima's D analysis of the 269 VIKING and 1156 LBC unrelated individuals was performed
688 using VCFtools (v0.1.13) using the --TajimaD option and sliding windows of size 1Mb. The analysis
689 was based on the cohorts' known SNPs (i.e., found with passing quality in the gnomAD dataset)
690 identified in the callable regions of the 22 autosomal chromosomes. The variants were then split into
691 six subsets based on the functional region they reside in: 5'UTR, exon, intron, 3'UTR, ncRNA and
692 non-coding regions. For the VIKING cohort, we computed the median Tajima's D value and the 95%
693 CI for each region aggregating the results observed for the 269 individuals in the ~3000 genomic
694 windows of size 1Mb, excluding any window with no SNPs present. For the LBC cohort, we
695 generated 100 random subsets of size 269 unrelated individuals to match the VIKING size (without
696 replacement within subsamples, with replacement across subsamples) and computed the cohort's
697 median and 95% CI aggregating the 1Mb window medians observed for each of these 100 subsets.

698

699 **ROH analysis**

700 The runs of homozygosity (ROH) tracts were called using the `roh` function in bcftools (v1.6)
701 [76] interrogating the high-quality SNPs discovered in the mappable regions of the 22 autosomal
702 chromosomes of the unrelated VIKING and LBC individuals and also present in gnomAD. The `roh`
703 command was invoked with instructions to read the alternate allele frequencies from the VCF file (–
704 AF-tag AF) and to ignore all variant calls with genotype quality < 30 (-G30).

705 To establish suitable cut-offs for partitioning the discovered ROH into to intermediate and
706 long based on their length, we used the available data for 10 populations of European ancestry,
707 reported in [46]. Based on these, we computed the mean (511,734bp) and the standard deviation
708 (23,307bp) of the boundary for separating short and intermediate ROHs; the intermediate/long
709 boundary has a mean of 1,567,737bp (s.d. 98,252bp). Conservatively, we picked 0.5Mb as
710 intermediate ROH cut-off and 2Mb as long ROH cut-off, which is in agreement with the long ROH
711 cut-off used in [24].

712 Next, we examined the density of SNP markers in the detected long and intermediate ROHs
713 (Fig 8 in S1 File). For long ROHs, we observed a bi-modal distribution for the number of SNP markers
714 discovered per 1Kb ROH length indicating potentially poor coverage/reliability for some ROHs,
715 consistent with the findings in [24]. To address this issue, we excluded from further analysis all long
716 ROHs with less than 2 or 3.5 markers per 1Kb ROH length in the VIKING and LBC cohorts,
717 respectively. The difference between the LBC and VIKING cut-off values (ratio = 1.75) correlates well
718 with the ratio of the total number of SNP markers given as input to bcftools for ROH calling (ratio =
719 1.68, LBC = 16,623,172 SNPs, VIKING = 9,890,893 SNPs). These density cut-offs also appear suitable
720 for intermediate ROHs (Fig 8 in S1 File).

721

722 **Annotation of coding regions**

723 Using the Ensembl (Genes 92, GRCh37.p13) data, we split the mappable regions in the
724 reference human genome into six categories – 5'UTR (a total length of 9.3M bases), exon (30Mb),

725 intron (906Mb), 3'UTR (27.6Mb), ncRNA (7.3Mb) and non-coding (1.1Gb) regions. Note that some
726 regions may be overlapping, e.g. a 3'UTR region of one gene might be 5'UTR region for another, etc.
727 The non-coding regions are defined as genome regions which do not fall in any of the above five
728 categories.

729

730 **Annotation of regulatory regions**

731 For the regulatory regions we used the chromatin states data generated for nine cell types
732 by Ernst and colleagues [41], downloaded from UCSC Genome browser [77]. For each cell type we
733 extracted the coordinates of the regions assigned to each of the 15 chromatin states (Fig 1 in [41]),
734 followed by union of the regions in states 1, 2 and 3 to obtain a combined Promoter region (average
735 total length of 39.2Mb, s.d. = 7.5Mb over the 9 cell types), Enhancer (130.5Mb, 16.9Mb; states 4, 5,
736 6 and 7), Insulator (17.4Mb, 4.7Mb; state 8), Transcription (530.3Mb, 58.8Mb; states 9, 10 and 11),
737 Repressed (130.5Mb, 62.3Mb; state 12) and Heterochromatin (1.8Gb, 63.4Mb; state 13); we
738 excluded from consideration states 14 and 15 ("Repetitive/CNV").

739

740 **Significantly enriched and potentially functional exonic variants**

741 First, we selected exonic variants which are more frequent in VIKING compared to LBC and
742 any gnomAD population and are predicted (VEP 90) to have one of the following effects on the
743 gene's canonical transcript(s): stop gained, splice acceptor/donor variant, start/stop lost, missense,
744 frameshift or inframe insertion/deletion. Next, we annotated these variants with their CADD score
745 (CADD v1.3) and with the pLI and missense z-score values for the harbouring gene [78]. The latter
746 two statistics are provided by the ExAC consortium and are computed based on the deviation
747 between the observed versus expected counts of variants in each gene [39]. The pLI statistic is
748 applicable to nonsense variants - the closer pLI is to 1, the more haploinsufficient the gene appears
749 to be – genes with $pLI \geq 0.9$ are considered extremely haploinsufficient. The z-score statistic is
750 related to missense variants, where positive z-scores indicate increased constraint (intolerance to

751 variation). We used the CADD, pLI and z-score information to filter the set of enriched variants
752 (Table 12 in S2 File), which resulted in 1257 potentially functional (CADD \geq 20 for missense and
753 inframe variants) exonic variants in genes largely intolerant to variation.

754 From the set of 1257 potentially functional variants which were more frequent in VIKING
755 compared to LBC/gnomAD, we extracted the variants which were significantly enriched compared to
756 gnomAD. For each variant, we performed Fisher's exact test on the number of variant alleles (AC)
757 and total alleles (AN) at a given position using a Bonferroni corrected $p = 0.05 / 1257 = 4 \times 10^{-5}$. For
758 variants found in gnomAD, we used the AC_POPMAX and AN_POPMAX (the values for the
759 population in which the variant is most prevalent); for variants not seen in gnomAD (AC = 0) we
760 computed the corresponding AN value based on the number of individuals with coverage at least
761 30x at this position. In summary, we discovered 79 significantly enriched and potentially functional
762 exonic variants in 74 unique genes.

763

764 **Significantly enriched promoter region variants in Shetland**

765 From the 470,180 Shetland variants in the aggregated promoter regions (computed as the
766 union of the promoter regions identified in each of the nine cell types [41]), we identified 153,381
767 variants which were more frequent in VIKING compared to LBC and any gnomAD population. Using
768 the same approach as for exonic variants, we selected only variants that are significantly enriched
769 compared to gnomAD (a Bonferroni corrected $p = 0.05 / 153381 = 3 \times 10^{-7}$), which resulted in 2782
770 significantly enriched promoter region variants.

771

772

773

774

775

776

777 Acknowledgements

778 SGP Consortium is funded by the Chief Scientist Office of the Scottish Government Health
779 Directorates [SGP/1] and The Medical Research Council Whole Genome Sequencing for Health and
780 Wealth Initiative. Members of the Scottish Genome Partnership (SGP) include Timothy J. Aitman,
781 Andrew V. Biankin, Susanna L. Cooke, Wendy Inglis Humphrey, Sancha Martin, Lynne Mennie, Alison
782 Meynert, Zosia Miedzybrodzka, Fiona Murphy, Craig Nourse, Javier Santoyo-Lopez, Colin A. Semple,
783 and Nicola Williams. More information about SGP can be found at
784 www.scottishgenomespartnership.org.

785 The Viking Health Study – Shetland (VIKING) was supported by the MRC Human Genetics
786 Unit core programme grant “QTL in Health and Disease” MC_UU_0007/10. VIKING whole genome
787 sequencing was funded by the Chief Scientist Office of the Scottish Government Health Directorates
788 (grant reference SGP/1) and the Medical Research Council Whole Genome Sequencing for Health
789 and Wealth Initiative (MC/PC/15080). CAS, AM and MST also acknowledge core funding to the MRC
790 Human Genetics Unit. The work of LK was supported by an RCUK Innovation Fellowship from the
791 National Productivity Investment Fund (MR/R026408/1).

792 The Lothian Birth Cohorts are supported by Age UK (Disconnected Mind grant). The whole
793 genome sequencing of LBC1921 and LBC1936 was funded through an institutional award to the
794 Roslin Institute from the Biotechnology and Biological Sciences Research Council (BBSRC). The LBC
795 and SEH, DCL, and IJD were supported by the Centre for Cognitive Ageing and Cognitive
796 Epidemiology which is funded by MRC and BBSRC (MR/K26992/1).

797 The CROATIA-Korcula WGS were funded by the MRC through the “QTL in Health and
798 Disease” core programme grant.

799 The funders had no role in study design, data collection and analysis, decision to publish, or
800 preparation of the manuscript.

801 DNA extractions and QC were performed at the Edinburgh Clinical Research Facility,
802 University of Edinburgh; whole genome sequencing (WGS) was carried out in the Edinburgh
803 Genomics facility, University of Edinburgh.

804 Nicola Pirastu selected the most appropriate participants for WGS in VIKING using the
805 ANCHAP software. Thibaud Boutin helped with EGA submission of the VIKING dataset.

806 We would like to acknowledge the invaluable contributions of the research nurses in
807 Shetland, the administrative team in Edinburgh and the people of Shetland. We also thank the
808 Lothian Birth Cohorts' participants and research team for their help.

809

810

811 **References**

- 812 1. Wright AF, Carothers AD, Pirastu M. Population choice in mapping genes for complex
813 diseases. *Nat Genet.* 1999;23(4):397–404.
- 814 2. Kristiansson K, Naukkarinen J, Peltonen L. Isolated populations and complex disease gene
815 identification. *Genome Biol.* 2008;9(8):109.
- 816 3. Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of
817 homozygosity record population history and consanguinity. *PLoS One.* 2010;5(11):e13996.
- 818 4. Hatzikotoulas K, Gilly A, Zeggini E. Using population isolates in genetic association studies.
819 *Brief Funct Genomics.* 2014;13(5):371–7.
- 820 5. Zeggini E. Using genetically isolated populations to understand the genomic basis of disease.
821 *Genome Med.* 2014;6(10):83.
- 822 6. Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of Variation in CHI3L1 on Serum
823 YKL-40 Level, Risk of Asthma, and Lung Function. *N Engl J Med.* 2008;358(16):1682–91.
- 824 7. Steinhorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et
825 al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. *Nat Genet.*
826 2007;39(6):770–5.

- 827 8. Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. Genome-wide association scan
828 shows genetic variants in the FTO gene are associated with obesity-related traits. *PLoS Genet.*
829 2007;3(7):1200–10.
- 830 9. Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, et al.
831 Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma.
832 *Science* (80-). 2007;317(5843):1397–400.
- 833 10. Raelson J V., Little RD, Ruether A, Fournier H, Paquin B, Van Eerdewegh P, et al. Genome-
834 wide association study for Crohn's disease in the Quebec Founder Population identifies
835 multiple validated disease loci. *Proc Natl Acad Sci.* 2007;104(37):14747–52.
- 836 11. Chen W-M, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD, et al. Variations in the
837 G6PC2/ABCB11 genomic region are associated with fasting glucose levels. *J Clin Invest.*
838 2008;118(7):2620–8.
- 839 12. Styrkarsdottir U, Halldorsson B V, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T,
840 et al. Multiple genetic loci for bone mineral density and fractures. *N Engl J Med.*
841 2008;358(22):2355–65.
- 842 13. Nakatsuka N, Moorjani P, Rai N, Sarkar B, Tandon A, Patterson N, et al. The promise of
843 discovering population-specific disease-associated genes in South Asia. *Nat Genet.*
844 2017;49(9):1403–7.
- 845 14. Kaiser VB, Svinti V, Prendergast JG, Chau Y-Y, Campbell A, Patarcic I, et al. Homozygous loss-
846 of-function variants in European cosmopolitan and isolate populations. *Hum Mol Genet.* 2015
847 Oct 1;24(19):5464–74.
- 848 15. Jeroncic A, Memari Y, Ritchie GR, Hendricks AE, Kolb-Kokocinski A, Matchan A, et al. Whole-
849 exome sequencing in an isolated population from the Dalmatian island of Vis. *Eur J Hum
850 Genet.* 2016;24(10):1479–87.
- 851 16. Leblond CS, Cliquet F, Carton C, Huguet G, Mathieu A, Kergrohen T, et al. Both rare and
852 common genetic variants contribute to autism in the Faroe Islands. *npj Genomic Med.*

- 853 2019;4(1).
- 854 17. Gusev A, Shah MJ, Kenny EE, Ramachandran A, Lowe JK, Salit J, et al. Low-pass genome-wide
855 sequencing and variant inference using identity-by-descent in an isolated human population.
856 *Genetics*. 2012;190(2):679–89.
- 857 18. Walter K, Min JL, Huang J, Crooks L, Memari Y, McCarthy S, et al. The UK10K project identifies
858 rare variants in health and disease. *Nature*. 2015;526(7571):82–9.
- 859 19. Xue Y, Mezzavilla M, Haber M, McCarthy S, Chen Y, Narasimhan V, et al. Enrichment of low-
860 frequency functional variants revealed by whole-genome sequencing of multiple isolated
861 European populations. *Nat Commun*. 2017;8.
- 862 20. Southam L, Gilly A, Süveges D, Farmaki AE, Schwartzentruber J, Tachmazidou I, et al. Whole
863 genome sequencing and imputation in isolated populations identify genetic associations with
864 medically-relevant complex traits. *Nat Commun*. 2017;8.
- 865 21. Chheda H, Palta P, Pirinen M, McCarthy S, Walter K, Koskinen S, et al. Whole-genome view of
866 the consequences of a population bottleneck using 2926 genome sequences from Finland
867 and United Kingdom. *Eur J Hum Genet*. 2017;25(4):477–84.
- 868 22. Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale
869 whole-genome sequencing of the Icelandic population. *Nat Genet*. 2015;47(5):435–44.
- 870 23. Gilly A, Suveges D, Kuchenbaecker K, Pollard M, Southam L, Hatzikotoulas K, et al. Cohort-
871 wide deep whole genome sequencing and the allelic architecture of complex traits. *Nat
872 Commun*. 2018;9(1):4674.
- 873 24. Mooney JA, Huber CD, Service S, Sul JH, Marsden CD, Zhang Z, et al. Understanding the
874 Hidden Complexity of Latin American Population Isolates. *Am J Hum Genet*. 2018;103(5):707–
875 26.
- 876 25. Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing
877 heritability: Designing rare variant association studies. *Proc Natl Acad Sci*. 2014;111(4):E455–
878 64.

- 879 26. Wainschtein P, Jain DP, Yengo L, Zheng Z, TOPMed Anthropometry Working Group, Trans-
880 Omics for Precision Medicine Consortium, et al. Recovery of trait heritability from whole
881 genome sequence data. *bioRxiv*. 2019;
882 27. Davies N. *The isles: a history*. Macmillan; 1999. 1296 p.
883 28. Capelli C, Redhead N, Abernethy JK, Gratrix F, Wilson JF, Moen T, et al. A Y chromosome
884 census of the British Isles. *Curr Biol*. 2003;13(11):979–84.
885 29. Wilson JF, Weiss DA, Richards M, Thomas MG, Bradman N, Goldstein DB. Genetic evidence
886 for different male and female roles during cultural transitions in the British Isles. *Proc Natl
887 Acad Sci*. 2001;98(9):5078–83.
888 30. Goodacre S, Helgason A, Nicholson J, Southam L, Ferguson L, Hickey E, et al. Genetic evidence
889 for a family-based Scandinavian settlement of Shetland and Orkney during the Viking periods.
890 *Heredity (Edinb)*. 2005;95(2):129–35.
891 31. Vitart V, Carothers AD, Hayward C, Teague P, Hastie ND, Campbell H, et al. Increased Level of
892 Linkage Disequilibrium in Rural Compared with Urban Communities: A Factor to Consider in
893 Association-Study Design. *Am J Hum Genet*. 2005;76(5):763–72.
894 32. Gilbert E, O'Reilly S, Merrigan M, McGettigan D, Vitart V, Joshi PK, et al. The genetic
895 landscape of Scotland and the Isles. *PNAS*. 2019;116(38):19064–19070.
896 33. VIKING Project [Internet]. [cited 2019 Aug 1]. Available from: <https://www.ed.ac.uk/viking/>
897 34. Glodzik D, Navarro P, Vitart V, Hayward C, Mcquillan R, Wild SH, et al. Inference of identity by
898 descent in population isolates and optimal sequencing studies. *Eur J Hum Genet*.
899 2013;21(10):1140–5.
900 35. Taylor AM, Pattie A, Deary IJ. Cohort Profile Update: The Lothian Birth Cohorts of 1921 and
901 1936. *Int J Epidemiol*. 2018;47(4):1042–1042r.
902 36. Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: The lothian birth cohorts of 1921 and
903 1936. *Int J Epidemiol*. 2012;41(6):1576–84.
904 37. LBC Project [Internet]. [cited 2019 Aug 1]. Available from:

- 905 https://www.lothianbirthcohort.ed.ac.uk/
- 906 38. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome
907 Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing
908 data. *Genome Res.* 2010;20(9):1297–303.
- 909 39. Lek M, Karczewski KJ, Minikel E V, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-
910 coding genetic variation in 60,706 humans. *Nature*. 2016;536(7616):285–91.
- 911 40. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. *Nucleic
912 Acids Res.* 2018;46(D1):D754–61.
- 913 41. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and
914 analysis of chromatin state dynamics in nine human cell types. *Nature*. 2011;473(7345):43–9.
- 915 42. Mayr E. *Systematics and the Origin of Species from the Viewpoint of a Zoologist*. Harvard
916 University Press; 1999. 372 p.
- 917 43. Wang SR, Agarwala V, Flannick J, Chiang CWK, Altshuler D, Hirschhorn JN. Simulation of
918 finnish population history, guided by empirical genetic data, to assess power of rare-variant
919 tests in Finland. *Am J Hum Genet.* 2014;94(5):710–20.
- 920 44. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA
921 polymorphism. *Genetics*. 1989;123(3):585–95.
- 922 45. Neininger K, Marschall T, Helms V. SNP and indel frequencies at transcription start sites and
923 at canonical and alternative translation initiation sites in the human genome. *PLoS One*.
924 2019;14(4):e0214816.
- 925 46. Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ. Genomic patterns of
926 homozygosity in worldwide human populations. *Am J Hum Genet.* 2012;91(2):275–92.
- 927 47. Szpiech ZA, Xu J, Pemberton TJ, Peng W, Zöllner S, Rosenberg NA, et al. Long runs of
928 homozygosity are enriched for deleterious variation. *Am J Hum Genet.* 2013;93(1):90–102.
- 929 48. McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, et al.
930 Runs of Homozygosity in European Populations. *Am J Hum Genet.* 2008;83(3):359–72.

- 931 49. Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: Windows into
932 population history and trait architecture. *Nat Rev Genet.* 2018;19(4):220–34.
- 933 50. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the
934 deleteriousness of variants throughout the human genome. *Nucleic Acids Res.*
935 2019;47(D1):D886–94.
- 936 51. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Variation across
937 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance
938 across human protein-coding genes. *bioRxiv.* 2019;
- 939 52. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: Improving
940 access to variant interpretations and supporting evidence. *Nucleic Acids Res.*
941 2018;46(Database issue):D1062–D1067.
- 942 53. GWAS Catalog [Internet]. [cited 2018 Dec 1]. Available from: <https://www.ebi.ac.uk/gwas/>
- 943 54. Carithers L, Ardlie K, Barcus M, Branton P, Britton A, Buia S, et al. A Novel Approach to High-
944 Quality Postmortem Tissue Procurement: The GTEx Project. *Biopreserv Biobank.*
945 2015;13(5):311–9.
- 946 55. GTEx (v7) [Internet]. [cited 2018 Dec 1]. Available from: <https://gtexportal.org/home/>
- 947 56. Pedersen CET, Lohmueller KE, Grarup N, Bjerregaard P, Hansen T, Siegismund HR, et al. The
948 effect of an extreme and prolonged population bottleneck on patterns of deleterious
949 variation: Insights from the Greenlandic Inuit. *Genetics.* 2017;205(2):787–801.
- 950 57. Margaryan A, Lawson DJ, Sikora M, Racimo F, Rasmussen S, Moltke I, et al. Population
951 genomics of the Viking world. *bioRxiv.* 2019;
- 952 58. Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J, et al. Global
953 diversity, population stratification, and selection of human copy-number variation. *Science*
954 (80-). 2015;349(6253):aab3761.
- 955 59. Taylor MS, Kai C, Kawai J, Carninci P, Hayashizaki Y, Semple CAM. Heterotachy in mammalian
956 promoter evolution. *PLoS Genet.* 2006;2(4):627–39.

- 957 60. Young RS, Hayashizaki Y, Andersson R, Sandelin A, Kawaji H, Itoh M, et al. The frequent
958 evolutionary birth and death of functional promoters in mouse and human. *Genome Res.*
959 2015;25(10):1546–57.
- 960 61. Kindt ASD, Navarro P, Semple CAM, Haley CS. The genomic signature of trait-associated
961 variants. *BMC Genomics.* 2013;14:108.
- 962 62. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform.
963 *Bioinformatics.* 2009;25(5):1754–60.
- 964 63. Faust GG, Hall IM. SAMBLASTER: Fast duplicate marking and structural variant read
965 extraction. *Bioinformatics.* 2014;30(17):2503–5.
- 966 64. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants. *Bioinformatics.*
967 2015;31(13):2202–4.
- 968 65. GATK Hard Filtering [Internet]. [cited 2017 Jun 1]. Available from:
969 <https://software.broadinstitute.org/gatk/documentation/article.php?id=3225>
- 970 66. CRg dataset (36mers) [Internet]. [cited 2017 Jul 1]. Available from:
971 <http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod>
972 [deCrgMapabilityAlign36mer.bigWig](http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod)
- 973 67. Duke dataset (35mers) [Internet]. [cited 2017 Jul 1]. Available from:
974 <http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod>
975 [deDukeMapabilityUniqueness35bp.bigWig](http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod)
- 976 68. DAC dataset [Internet]. [cited 2017 Jul 1]. Available from:
977 <http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod>
978 [deDacMapabilityConsensusExcludable.bed.gz](http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod)
- 979 69. Purcell SM, Chang CC, Chow CC, Tellier LC, Lee JJ, Vattikuti S. Second-generation PLINK: rising
980 to the challenge of larger and richer datasets. *Gigascience.* 2015;4(7).
- 981 70. Staples J, Qiao D, Cho MH, Silverman EK, Nickerson DA, Below JE. PRIMUS: Rapid
982 reconstruction of pedigrees from genome-wide estimates of identity by descent. *Am J Hum*

983 Genet. 2014;95(5):553–64.

984 71. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global
985 reference for human genetic variation. *Nature*. 2015 Oct 30;526(7571):68–74.

986 72. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant
987 Effect Predictor. *Genome Biol*. 2016;17(1):122.

988 73. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated
989 individuals. *Genome Res*. 2009;19(9):1655–1664.

990 74. ADMIXTURE tool [Internet]. [cited 2019 Aug 1]. Available from:
991 <http://software.genetics.ucla.edu/admixture/index.html>

992 75. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call
993 format and VCFtools. *Bioinformatics*. 2011;27(15):2156–2158.

994 76. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and
995 population genetical parameter estimation from sequencing data. *Bioinformatics*.
996 2011;27(21):2987–93.

997 77. 15 chromatin states data tracks [Internet]. [cited 2018 Nov 1]. Available from:
998 <http://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeBroadHmm&db=hg19>

999 78. pLI and z-score file [Internet]. [cited 2017 Oct 1]. Available from:
1000 ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint

1003 Supporting information

1004 **S1 File. Supplementary Figures.**

1005 S2 File. Supplementary Tables.