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Abstract 
Genetic correlation analysis has quickly gained popularity in the past few years and provided 
insights into the genetic etiology of numerous complex diseases. However, existing approaches 
oversimplify the shared genetic architecture between different phenotypes and cannot effectively 
identify precise genetic regions contributing to the genetic correlation. In this work, we introduce 
LOGODetect, a powerful and efficient statistical method to identify small genome segments 
harboring local genetic correlation signals. LOGODetect automatically identifies genetic regions 
showing consistent associations with multiple phenotypes through a scan statistic approach. It 
uses summary association statistics from genome-wide association studies (GWAS) as input and 
is robust to sample overlap between studies. Applied to five phenotypically distinct but genetically 
correlated psychiatric disorders, we identified 49 non-overlapping genome regions associated 
with multiple disorders, including multiple hub regions showing concordant effects on more than 
two disorders. Our method addresses critical limitations in existing analytic strategies and may 
have wide applications in post-GWAS analysis. 
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Introduction 
Genome-wide association studies (GWASs) have been carried out for numerous complex traits 
and diseases, identifying tens of thousands of single-nucleotide polymorphisms (SNPs) 
associated with these phenotypes. However, our understanding of most traits’ genetic basis 
remains incomplete, in part due to the limited power and interpretability of the traditional GWAS 
approach that correlates one trait with one SNP at a time. Recently, statistical methods that jointly 
model multiple phenotypes have quickly gained popularity in human genetics research1-3. 
Leveraging pervasive pleiotropy in the human genome, these methods enhanced the statistical 
power to identify genetic associations1,4-7, improved the accuracy of genetic risk prediction8,9, 
revealed novel genetic sharing across diverse phenotypes10-12, and provided great insights into 
the genetic basis of a variety of diseases and traits13,14. 
 
Genetic similarity between traits can be modeled at different scales. Methods that identify SNPs 
associated with multiple phenotypes have achieved some success15-17. However, most complex 
human traits are highly polygenic, with top SNPs showing weak to moderate effects18,19. Thus, 
single SNP-based methods may not be sufficient to characterize the full landscape of genetic 
similarity. An alternative approach is to estimate the genetic correlation between different 
traits10,12,20,21. These methods effectively utilize genome-wide genetic data, including SNPs that 
do not reach statistical significance in GWAS, to quantify the overall genetic sharing between two 
traits. In addition, recent methodological advances have enabled estimation of genetic correlation 
with GWAS summary statistics10,11,22, making these approaches widely applicable to a large 
number of complex phenotypes. With these advances, genetic correlation analysis has become 
a routine procedure in post-GWAS analysis and was implemented in almost all large-scale 
GWASs published in the past few years. 
 
However, despite improved statistical power and wide applications, genetic correlation 
approaches fail to provide detailed, mechanistic insights due to its oversimplification of complex 
genetic sharing into a single metric. Two recent methods improved genetic correlation analysis by 
providing local12 and annotation-stratified estimates11. However, these methods rely on strong 
prior evidence about which local region or functional annotation to investigate. When applied to 
hypothesis-free scans, statistical power is substantially reduced. In this work, we introduce 
LOGODetect (LOcal Genetic cOrrelation Detector), a novel method that uses scan statistics to 
identify genome segments harboring local genetic correlation between two complex traits. 
Compared to other methods, LOGODetect does not pre-specify candidate regions of interest, and 
instead, automatically detects regions with shared genetic components with great resolution and 
statistical power. In addition, LOGODetect only uses GWAS summary statistics as input and is 
robust to sample overlap between GWASs. We demonstrate its performance through extensive 
simulations and analysis of well-powered GWASs for five distinct but genetically correlated 
psychiatric disorders23,24. Our analysis implicates a collection of hub regions in the genome that 
underlie the risk for several of these disorders. 
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Results 
Method overview 
Our goal is to identify genome segments showing consistent association patterns with two 
different traits. Here, we provide an overview of our approach and the technical details are 
discussed in Methods. We propose the following scan statistic 

𝑄(𝑅) =
∑ 𝑧()𝑧*))∈,
(∑ 𝑙))∈, ).  

to quantify the extent of local genetic similarity in a genome region, where 𝑅 is the index set for 
all SNPs in the region, 𝑧() and 𝑧*) are the association z-scores for the 𝑖-th SNP with two traits, 
𝑙) is the linkage disequilibrium (LD) score for the 𝑖-th SNP,10 and 𝜃 controls the impact of LD. 
𝑄(𝑅) is a LD score-weighted inner product of local z-scores from two GWASs and is conceptually 
similar to local genetic correlation - regions with high absolute values of 𝑄(𝑅) show concordant 
association patterns across multiple SNPs in the region and the sign of 𝑄(𝑅)  shows if the 
correlation is positive or negative. We search for genome segments with the highest |𝑄(𝑅)| 
values by scanning the genome while allowing the segment size to vary (Figure 1). Statistical 
evidence of genetic sharing is assessed using a Monte Carlo approach. 
 

 
Figure 1. LOGODetect workflow. (A) The inputs of LOGODetect include GWAS summary statistics for two traits and 

a reference panel for LD estimation. (B) Scan statistic is defined over a region, as the LD-weighted inner product of two 

z-score vectors in this region. A large absolute value of the scan statistic would hint at local genetic correlation. (C) 

LOGODetect identifies genome segments showing consistent associations with two different traits. 
 
Simulation results 
We conducted simulations to assess the type I error of our approach using 15,918 samples from 
the Wellcome Trust Case Control Consortium (WTCCC). First, we simulated phenotypes under 
an infinitesimal model in which genetic effects were assumed to be the same for all SNPs. In 
addition, we also investigated a more realistic genetic architecture with different levels of genetic 
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effects - we attributed 30% of the trait heritability to 3% of randomly selected SNPs, while the 
remaining SNPs explain 70% of the total heritability. The family-wise type I error rate of our 
method was well-controlled as the heritability of each trait ranged between 0.01 to 0.9 
(Supplementary Table 1) and under strong heritability enrichment (Supplementary Table 2), 
suggesting that LOGODetect is statistically robust to diverse genetic architecture. We also 
assessed the statistical power of LOGODetect under various settings (Figure 2 and 
Supplementary Figures 1-3). Three different metrics were used to quantify the statistical power 
(see Methods). With smaller values of θ, LOGODetect tends to find long segments, achieving 
greater point detection rate (Figure 2A). On the contrary, LOGODetect identified many short 
segments with decreased point detection rate when greater values of θ was used. LOGODetect 
obtains a larger G-score with smaller 𝜃 (Methods), and in particular, the G-score is almost the 
same for 𝜃 = 0.3, 0.4 or 0.5. Overall, LOGODetect worked reasonably well in all three measures 
when 𝜃 was set to 0.5. As a result, we recommend to use 0.5 as the choice of 𝜃 in practice. 
 

 

Figure 2. Assessment of statistical power. The Y-axis shows statistical power assessed by three different measures: 

(A) signal points detection rate, (B) signal segments detection rate, and (C) G-score. The X-axis shows the correlation 

of SNPs’ effects on two traits in the genome region. 

 
Application to five psychiatric disorders 
Previous studies have revealed pervasive pleiotropy25-27 and genetic covariance28-31 among 
psychiatric disorders. However, there is limited understanding of the specific genetic loci 
contributing to multiple disorders. We applied LOGODetect to study the pairwise local genetic 
correlation between five psychiatric disorders (Supplementary Table 3): bipolar disorder (BIP; 
n=51,710), schizophrenia (SCZ; n=105,318), major depressive disorder (MDD; n=173,005), 
attention-deficit/hyperactivity disorder (ADHD; n=53,293), and autism spectrum disorder (ASD; 
n=46,350), using summary statistics from the latest GWASs.32-36 In total, we identified 66 regions 
(49 non-overlapping segments) showing concordant associations with multiple disorders (FDR < 
0.05; Figure 3 and Supplementary Figures 4-9). 65 of the 66 regions showed positive 
correlations. Size of the identified genome segments varied from 24 KB to 1.6 MB 
(Supplementary Figure 10). The number of significant segments identified in our analysis is 
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proportional to the genetic correlation between each pair of disorders (Supplementary Figure 
11; correlation r=0.68). We identified 33 shared genome segments for BIP and SCZ (Figure 3B; 
genetic correlation rg=0.68, p=9.14e-87), 4 shared regions for BIP and MDD (Supplementary 
Figure 4; rg =0.42, p=4.33e-17), and 11 regions for SCZ and MDD (Supplementary Figure 5; rg 
=0.40, p=7.36e-33), which is consistent with the strong genetic overlap between these 
disorders28,37-39. Additionally, studies have suggested correlated familial genetic liabilities among 
MDD, ADHD, and ASD.29,30,40 LOGODetect identified 5 regions shared by MDD and ADHD 
(Supplementary Figure 7; rg =0.61, p=1.72e-15), 4 regions for MDD and ASD (Supplementary 
Figure 8; rg =0.55, p=1.41e-15), and 6 regions for ADHD and ASD (Supplementary Fig 9; rg 
=0.42, p=4.46e-10). Overall, we identified strong genetic sharing (higher genetic correlation and 
more shared genome segments) among SCZ, BIP, and MDD and among MDD, ASD, and ADHD. 
Sharing between these two clusters was relatively weaker. 
 

 
Figure 3. LOGODetect identifies genome regions contributing to multiple psychiatric disorders. (A) Heatmap 

shows the genetic correlation estimates (upper triangle) and the number of segments with local genetic correlation 

identified by LOGODetect (lower triangle) between five psychiatric disorders; Barplot shows the heritability estimates 

and standard errors of five disorders. (B) Mirrored Manhattan plot for BIP and SCZ. The 33 shared genome regions 

identified by LOGODetect are highlighted in red. One locus on chromosome 6 with −log(< 𝑃 > 20 in SCZ is truncated 
at 20 for visualization purpose. 

 
Tissue enrichment of hub regions shared by psychiatric disorders 
We used GenoSkyline-Plus tissue-specific functional annotations41 to investigate the functional 
relevance of the genomic regions found to harbor local genetic correlations among five psychiatric 
disorders. First, we tested the five disorders’ heritability enrichment in the predicted functional 
genome of 66 tissue and cell types (Supplementary Table 6; Methods).10 Eight tissue and cell 
types not enriched (p>0.01) for the heritability of any disorder were removed from the analysis. 
We used permutation tests to assess the enrichment of genome regions shared by multiple 
disorders in the remaining 58 annotation tracks. Genome regions identified by LOGODetect were 
significantly enriched in multiple brain regions including anterior caudate (enrichment=1.82, 
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p=3.00e-4), cingulate gyrus (enrichment=1.94, p=2.00e-4), inferior temporal lobe 
(enrichment=2.00, p=3.00e-4), angular gyrus (enrichment=1.96, p=3.00e-4), and dorsolateral 
prefrontal cortex (enrichment=2.01, p=3.00e-4) (Figure 4). In addition to brain tissues, regions 
shared by psychiatric disorders were also enriched in pancreatic islets (enrichment=2.15, 
p=2.00e-4) and mononuclear cells from peripheral blood (enrichment=2.08, p=3.00e-4). Of note, 
annotated functional regions in these tissues have substantial overlaps with annotations of brain 
tissues (Figure 4B). After conditioning on functional regions in the brain, the enrichment in 
pancreatic islets was substantially reduced (enrichment=1.03, p=0.40; Figure 4C), while 
enrichment in mononuclear cells remained significant (enrichment=1.67, p=0.02). 
 

 
Figure 4. Tissue-specific enrichment of genome regions conferring risk for multiple psychiatric disorders. (A) 

Permutation test results over 58 cell-type specific annotations. Fold enrichment is labeled next to each bar. (B) The 

overlap of predicted functional regions in pancreatic islets, mononuclear cells from peripheral blood, and five brain 

regions. (C) Enrichment in the predicted functional regions in pancreatic islets and mononuclear cells from peripheral 

blood after conditioning on the annotation overlap with brain regions.  
 
Hub regions contributing to multiple psychiatric disorders 
Next, we investigated hub regions shared by more than two disorders. Among the 49 non-
overlapping genome regions identified in our analysis, 8 regions were identified in two different 
disorder pairs, 3 regions were identified in three pairs, and 1 region was identified in four pairs 
(Supplementary Table 4). The 4 regions identified in at least three pair-wise analyses are 
summarized in Figure 5. These hub regions show consistent associations with multiple 
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psychiatric disorders and can potentially reveal key mechanisms and pathways underlying the 
shared genetics across disorders. 
 

 
Figure 5. Putative target genes for four hub regions shared by more than two psychiatric disorder. (A) shows 
the significant region in chr5 shared by four disorder pairs, (B-D) shows there significant regions, each 
is shared by three disorder pairs. Locuszoom plot, recombination rate, and the gene names are 
provided. The colored band denote the location of the significant region and which disorder pair is 
detected in. TAD in dorsolateral prefrontal cortex (DLPFC) in adult brain and TAD in the germinal zone 
(GZ) and postmitoticzone cortical plate (CP) in the developing fetal brain are shown as long solid line 
in panel (A). 
 
The region showing significant correlation between BIP-MDD (p=2.00e-4; q=0.041), MDD-ADHD 
(p=2.00e-4; q=0.041), MDD-ASD (p=2.00e-4; q=0.041), and ADHD-ASD (p=6.00e-4; q=0.061) is 
a locus spanning 500 KB on chromosome 5 (Supplementary Table 5). We note that this is an 
intergenic region but SNPs in this region have previously reached genome-wide significance in 
the MDD GWAS34 (lead SNP rs12658032; p=1.18e-10). Additionally, SNPs at this locus showed 
consistent associations with BIP (lead SNP rs323509; p=8.94e-6), ADHD (lead SNP rs12658032; 
p=1.15e-7), and ASD (lead SNP rs325485; p=3.25e-7). There are also suggestive associations 
with SCZ (lead SNP rs4473744; p=1.88e-6) but the lead SNP is not in LD with SNPs in the specific 
genome segment implicated in our analysis. Interestingly, although the closest protein-coding 
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gene NUDT12 is 700 KB away, this region is located in a large topological associating domain 
(TAD; 4.8 MB) that is conserved in adult and fetal brains (Figure 5A; Methods)42,43. Three genes, 
EFNA5, NUDT12, and FBXL17, are located in the TAD. We also note that the genome region 
identified by LOGODetect overlapped with RP11-6N13.1, a noncoding RNA exclusively 
expressed in the testis tissue. Multiple eQTLs for RP11-6N13.1 are located in the region (lead 
SNP rs416223; p=1.25e-13). Although there is no direct evidence suggesting this noncoding RNA 
is linked to psychiatric disorders, it remains a hypothesis worth investigating in the future. 
 
We also identified 3 additional hub regions, each shared by 3 pairs of disorders (Supplementary 
Table 4). The locus on chromosome 10 spans 450 KB and showed significant correlations 
between SCZ-ADHD, MDD-ADHD, and ADHD-ASD (Figure 5B). The genome regions identified 
at this locus largely overlaps with SORCS3, a previously implicated risk gene for MDD and 
ADHD.35,44,45  The second hub region is located on chromosome 11, spanning 715 KB. There are 
multiple independent association peaks in this region (Figure 5C) and it was significantly 
correlated between BIP-SCZ, BIP-MDD, and SCZ-MDD in our anlaysis. Two genes, NTM and 
SNX19, are located near this region. The third hub region spans 375 KB on chromosome 12 
(Figure 5D). It showed concordant associations between BIP-SCZ, BIP-MDD, and SCZ-MDD. 
This region is located in ANKS1B, a significant gene in the genome-wide pharmacogenomic 
analysis of antipsychotic drug (AP) response in SCZ46,47.  
 
 

Discussion 

Through simulations and analyses of GWAS data, we demonstrated that our method effectively 
identified genetic regions that may be shared across multiple complex traits with high resolution 
and statistical power. Applied to well-powered GWASs for five phenotypically distinct but 
genetically correlated psychiatric disorders, LOGODetect identified numerous shared genomic 
regions including hub regions that showed consistent effects for more than two disorders. Three 
genes (i.e. EFNA5, NUDT12, and FBXL17) are located in the same TAD with the hub region on 
chromosome 5 (Figure 5A). EFNA5, also known as Ephrin-A5, interacts with Eph receptors and 
plays a critical role in accurate guidance of cell or axon movement and synapse development in 
the nervous system48-50. It is highly expressed in various brain areas and was found to regulate 
the formation of the ascending midbrain dopaminergic pathways51 which are involved in social 
interactions and reward52. Ephrin-A5 knockout mice model suggested that ephrin-A5 plays an 
important role in the normal development of central monoaminergic pathways53, whose alteration 
has been linked to SCZ, MDD, and ADHD54,55. In addition, ephrin-A5 knockout mice shared some 
similarities in the developmental delays seen in children diagnosed with ADHD53. Based on the 
literature support and TADs derived from adult and fetal brain hi-C data, EFNA5 is a strong 
candidate gene that may explain the link of this hub region with psychiatric disorders, although 
we do not rule out the possible involvement of NUDT12 and FBXL17. 
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The hub regions shared by 3 pairs of disorders also overlapped with a handful of interesting 
candidate genes. SORCS3 (Figure 5B) is highly expressed in the CA1 region of the hippocampus, 
and is involved in synaptic depression and spatial learning ability56,57. It is also known to play an 
important role in protein networks associated with PICK1, NGF, and PDGF-BB58,59 which have 
been implicated in ADHD, ASD, MDD, and SCZ60-63. NTM (Figure 5C) regulates the outgrowth of 
neurites, and is associated with the formation of excitatory synapses64,65. It was suggested that 
haploinsufficiency of NTM may influence brain structural volumes and increase the risk for 
ASD66,67. Alterations of NTM expression in the dorsolateral prefrontal cortex was also observed in 
SCZ patients68. Of note, SNX19 at the same locus has been prioritized as a candidate causal 
gene for SCZ in transcriptomic Mendelian randomization studies69. ANKS1B (Figure 5D) encodes 
an activity dependent effector protein associated with postsynaptic density70, and is involved in 
long-term depression and synaptic plasticity71. ANKS1B mutation was found to be enriched in 
SCZ and ASD72,73, and differential methylation was found in ANKS1B in prefrontal cortex from 
SCZ patients74. Moreover, ANKS1B knockout mice displayed behavior patterns relevant to SCZ 
including alterations to sensorimotor gating and locomotor activity71,75. 
 
Taken together, we have introduced LOGODetect, a scan statistic method to identify local genetic 
regions showing correlated effects with multiple psychiatric disorders. Complementary to single 
SNP-based approaches for pleiotropy mapping17,76 and genetic correlation estimation methods 
utilizing genome-wide data10,20, our method elucidates the shared genetic architecture between 
two traits by identifying local genomic segments that are concordant. The candidate genes and 
regions we identified may be tapping into a set of transdiagnostic mechanisms that underlie all of 
psychopathology (i.e., the “p” or general factor39). In practice, LOGODetect can be used in 
combination with other methods to further improve statistical power and biological interpretability. 
For example, it may be of interest to first screen the genome by identifying larger genetic regions12 
or certain functional annotations11 enriched for the shared genetics between two traits. Then, 
LOGODetect can be applied to these candidate regions to identify the precise genetic segments 
that explain such sharing. Since high-dimensional sampling remains a challenge, a multi-tier 
analytical strategy would improve the statistical power and computational burden in the analysis. 
We believe that LOGODetect has addressed some key limitations in the current practice of cross-
trait genetic correlation analysis and will greatly benefit complex trait genetics research. 
 
 

Methods 
Genetic Model 
Suppose two standardized traits 𝑦( and 𝑦* follow the linear model with random effects: 

𝑦( = 𝑋𝛽 + 𝜖	
𝑦* = 𝑍𝛾 + 𝛿 

where 𝑋 and 𝑍 are fixed and standardized genotype matrices with 𝑀 columns (i.e. the number 
of SNPs is 𝑀); 𝜖 and 𝛿 are non-genetic effects; 𝛽 and 𝛾 are 𝑀-dimensional vectors denoting 
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genetic effects. They follow the multivariate normal distribution: 

J𝛽𝛾K ∼ 𝑁

⎝
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⎛
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where ℎW*  and ℎ^*  denote the heritability for two traits; 𝜌[  is the global genetic covariance 

between two traits; 𝐼]Y is a diagonal matrix whose 𝑖-th diagonal element equals 1 if the effects of 
the 𝑖-th SNP on two traits (i.e. 𝛽) and 𝛾)) are correlated and equals 0 if otherwise; 𝐾 is the 
number of SNPs such that 𝛽) and 𝛾) are correlated, i.e., 𝐾 = 𝑡𝑟[𝐼]Y]. 𝛽 and 𝛾 are independent 
from non-genetic effects 𝜖 and 𝛿. The statistical model described here is similar to the polygenic 
model used in genetic correlation estimation10. The difference is that we allow local genetic 
sharing and do not assume the global genetic covariance to be the same across all the SNPs in 
the whole genome. Compared to the local genetic correlation estimation method in the literature12, 
we do not assume genetic effects to be fixed. Instead, our framework is a direct generalization of 
the model developed for global genetic correlation estimation10,11. Under the alternative 
hypothesis, we denote the non-overlapping genetic regions that contribute to multiple traits to be 
𝑅(,… , 𝑅j and the union set as ℛ =∪mn(j 𝑅m such that 𝐼]Y[𝑖, 𝑖] = 1 if and only if 𝑖 ∈ ℛ. While under 
the null hypothesis, two traits share no genetic covariance, i.e., ℛ = ∅.  
 
Scan Statistic and Scanning Procedure 
We use a scan statistics approach to identify regions showing correlated effects between different 
traits. This type of approach has been used for burden test in a single-trait setting77. Suppose 
𝑛(, 𝑛* are the sample sizes for two GWASs, respectively, and we first consider the simpler case 
that there is no sample overlap between two GWASs. Additionally, we denote the association 𝑧-
scores for two traits as  

𝑧( = (𝑧((, 𝑧(*, … , 𝑧(Y)r =
1
√𝑛(

𝑋r𝑦( 

𝑧* = (𝑧*(, 𝑧**, … , 𝑧*Y)r =
1
√𝑛*

𝑍r𝑦* 

Then, we can define the scan statistic: 

𝑄(𝑅) =
∑ 𝑧()𝑧*))∈,
(∑ 𝑙))∈, ).  

where 𝑅 is the index set for SNPs in a genome region, 𝑙) is the LD score78 for the 𝑖-th SNP, and 
𝜃 is a tuning parameter that controls the strength we penalize over the LD structure. If SNPs in 
the region 𝑅 show strong, concordant effects on both traits, then the inner product ∑ 𝑧()𝑧*))∈,  
will tend to have a larger absolute value and therefore yield a larger scan statistic. On the contrary, 
if two traits are genetically independent in the local region, then the corresponding scan statistic 
would be close to 0. Therefore, the scan statistic is informative to detect local genetic correlation. 
The purpose of the LD score term in the denominator is to normalize the effect of LD. The 
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expected value of ∑ 𝑧()𝑧*))∈,  is larger in regions with strong LD. Without the normalization term 
on the denominator, the method will favor regions with large LD that may not be of biological 
interest. Further, parameter 𝜃 affects the size of identified regions. A relatively long segment may 
not have a large absolute value of scan statistic, due to the penalty in the denominator. A larger 
𝜃  implies stronger penalty, henceforth is more likely to detect smaller signal segments. In 
particular when 𝜃 equals 1, |𝑄(𝑅)| will attain local maximum with 𝑅 containing only one variant. 
A reasonable range for 𝜃 is between 0 and 1, and we used simulations to demonstrate that a 𝜃 
value of 0.5 gives great empirical performance with well-controlled type-I error and reasonable 
statistical power. 
 
Finally, we use the maximal scan statistic over all possible regions as the test statistic: 

𝑄tuv = 𝑚𝑎𝑥
|,|z{

|𝑄(𝑅)| 

where 𝐶 is a pre-specified parameter that defines the upper boundary of the SNPs count in a 
region. In practice, 𝐶 can be set based on the number of SNPs in the dataset (e.g. the average 
number of SNPs in 1 million bases). LOGODetect takes advantages of the flexible framework to 
scan local regions with varying sizes. Compared to a sliding-window approach based on a pre-
specified window size, our method is more appealing since the size of signal region could vary 
substantially by locus and by trait. We use a Monte Carlo type approach to assess the distribution 

of 𝑄tuv under the null hypothesis. We draw 𝑁 = 5000 pseudo samples ~
𝑧(
𝑧*� under the null 

distribution using a procedure detailed in the next section. Then, we estimate the empirical null 
distribution of 𝑄tuv and its 95% upper quantile. Taken together, the scanning procedure works 
as follows. We scan the genome to find 𝑅(  such that |𝑄(𝑅()|  reaches the maximum. If 
|𝑄(𝑅()| ≥ 𝑄<.��, we claim that 𝑅( is a significant signal region and remove these SNPs from the 
analysis. Then, we repeat the procedure on the remaining SNPs until no region is declared 
significant. This procedure controls the family-wise type-I error rate. 
 
Monte Carlo simulation of pseudo z-score vectors 
In order to simulate the null distribution of 𝑄tuv, we need to generate pseudo z-score vectors. 
When two GWASs do not have sample overlap, it can be verified that 

𝑣𝑎𝑟[𝑧(] =
1
𝑛(
�
ℎW
*

𝑀
𝑋r𝑋𝑋r𝑋 + �1 − ℎW

*�𝑋r𝑋�	

𝑐𝑜𝑣[𝑧(, 𝑧*] =
𝜌[

√𝑛(𝑛*𝐾
𝑋r𝑋𝐼]Y𝑍r𝑍 

And similarly for 𝑣𝑎𝑟[𝑧*]. Therefore, under 𝐻<, the combined 𝑧-score vector 

~
𝑧(
𝑧*� ∼ 𝑁

⎝

⎜
⎛
Q00R ,

⎣
⎢
⎢
⎢
⎡ 1
𝑛(
�
ℎW
*

𝑀
𝑋r𝑋𝑋r𝑋 + �1 − ℎW

*�𝑋r𝑋� 0

0
1
𝑛*
�
ℎ^*

𝑀
𝑍r𝑍𝑍r𝑍 + �1 − ℎ^*�𝑍r𝑍�⎦

⎥
⎥
⎥
⎤

⎠

⎟
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asymptotically. Note that in practice individual genotype data is hard to obtain due to privacy, it is 
meaningful to analyze based only on summary statistics. Here by using reference panel (e.g. 

1000 Genomes Project), (
��
𝑋r𝑋  and (

��
𝑍r𝑍  can be estimated as 𝑉 , (

���
𝑋r𝑋𝑋r𝑋  and 

(
���
𝑍r𝑍𝑍r𝑍  can be estimated as  𝑉*� 	=	 ��(

��*
𝑉* − Y

��*
𝑉 , where 𝑛  is the sample size of the 

reference panel and 𝑉 is the LD matrix of the reference panel. And the genetic heritability for two 

traits ℎW*, ℎ^* can be estimated through LD score regression78. After plugging in the reference LD 

matrix, we have 

~
𝑧(
𝑧*� ∼ 𝑁

⎝

⎜
⎛
Q00R ,

⎣
⎢
⎢
⎢
⎡𝑛(ℎW

*

𝑀
𝑉*� + �1 − ℎW

*�𝑉 0

0
𝑛*ℎ^*

𝑀
𝑉*� + �1 − ℎ^*�𝑉⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

 

asymptotically under the null. 
The random multivariate normal vectors have complex covariance structure, which is 
computationally challenging as the dimension of the vector can be as high as 10� in GWAS. We 
developed a computationally tractable method that leverages the LD structure in the genome. 
First, we split the high-dimensional vector 𝑧  into subvectors 𝑧	 = 	 (𝑧((), 𝑧(*), … , 𝑧(t)) . Each 
subvector 𝑧()) covers SNPs in a 1 MB genome region. We denote the variance matrix of 𝑧 as 𝛴 
and it can be written as the block matrix form. Denote 𝛴),m = 𝑐𝑜𝑣[𝑧()), 𝑧(m)] as the submatrix of 𝛴, 
with rows indexed by the 𝑖-th block 𝑧()) and columns indexed by the 𝑗-th block 𝑧(m). Then we 
use a block-wise tridiagonal matrix to approximate 𝛴 by shrinking 𝛴),m to 0 if |𝑖 − 𝑗| ≥ 2. This 
approximation is reasonable in the context of GWAS since SNPs should be independent if they 
are physically apart. Then, we can use an iterative approach to generate each block 𝑧()) by 
conditioning on the previous block 𝑧()�() via the conditional normal distribution:  

(𝑧)|𝑧)�( = 𝑎) ∼ 𝑁(𝛴),)�(𝛴)�(,)�(�( 𝑎	, 𝛴),) − 𝛴),)�(𝛴)�(,)�(�( 𝛴)�(,)𝑎) 
In practice, 𝛴),)  may be rank deficient and therefore not invertible. We adopt the truncated 
singular value decomposition (TSVD) method79 and use the top 𝑞  singular values and their 
corresponding singular vectors to calculate the inverse matrix. For numerical stability, we choose 
𝑞 to be as large as possible such that the conditional number is less than 1,00080. Finally, we 
standardize each pseudo 𝑧-score vector so that it has the same mean and variance as the 𝑧-
score vector in real data. 
 
Extension for sample overlaps 
Suppose there are 𝑛� shared samples in the two GWASs, then the linear models can be restated 
as: 

~
𝑦(,��
𝑦(,� � = J𝑋��𝑋�

K + ~
𝜖��
𝜖� �	
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~
𝑦*,��
𝑦*,� � = J𝑍��𝑍�

K + J𝛿��𝛿�
K		

where ~
𝑦(,��
𝑦(,� � , ~

𝑦*,��
𝑦*,� � are the standardized phenotypes of all individuals in each GWAS. J𝑋��𝑋�

K =

𝑋, J𝑍��𝑍�
K = 𝑍 are standardized genotypes of all individuals in each GWAS. 𝜖��, 𝜖�, 𝛿��, 𝛿� are the 

non-genetic effects where 𝑐𝑜𝑣[𝜖�, 𝛿�] = 𝜌�𝐼�� . It can be shown that 

𝑐𝑜𝑣[𝑧(, 𝑧*] =
𝜌[

√𝑛(𝑛*𝐾
𝑋r𝑋𝐼]Y𝑍r𝑍 +

𝜌�
√𝑛(𝑛*

𝑋�r𝑍� 

While 𝑣𝑎𝑟[𝑧(]  and 𝑣𝑎𝑟[𝑧*]  have the same form as no sample overlaps setting. By using 

reference panel, (
��
𝑋�r𝑍�  can be replaced by 𝑉. Therefore, under 𝐻< , the combined 𝑧-score 

vectors asymptotically follows multivariate normal distributions 

~
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Note that the variance matrix can be split into two terms. 

𝑣𝑎𝑟 Q
𝑧(
𝑧*R =

⎣
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⎢
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We can independently simulate pseudo samples following the normal distribution with mean 0 
and each variance term respectively. Finally, by adding up two vectors simulated with respect to 
different variance terms, we get the pseudo 𝑧 -score vector of interest. In particular, the 

parameters 𝜎W*, 𝜎^*, 𝜌� ∗ 𝑛� appearing in the 𝑧-score null distribution are not of our interest, but 

we need their values while doing Monte Carlo sampling of ~
𝑧(
𝑧*�. We adopt cross-trait LD score 

regression10 to estimate them. Note that LD score regression is based on random effect random 
design model setup, which is incompatible with our model assumption, yet we believe it should 
yield little consequence.  
 
Genome partition and FDR control 
We separated the genome into several LD blocks using ldetect81. Each LD block spans 15 MB on 
average (204 LD blocks in total, Supplementary Figure 12). We applied LOGODetect to each 
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LD block separately and identified the local regions with p-value < 0.05 under a family-wise type 
I error control. We aggregated all the candidate regions across different LD blocks, and applied 
Benjamini-Hochberg procedure82 to control FDR with a cutoff of 0.05. 
 
Simulation settings 
Simulations were based on the genotype data from the WTCCC cohort. We adopted the same 
quality control procedure as previously described11 and only included SNPs on chromosome 1 in 
the analysis. After quality control, 15,918 individuals and 20,211 SNPs remained in the dataset. 
Samples were randomly divided into two subsets with equal sample size. We used each subset 
to simulate the phenotype data.  
 
First, we performed simulations under the null hypothesis to see whether our approach would 
produce false positive findings. We follow the strict polygenic null, where the effect size level of 
all the SNPs are the same, and the per-SNP genetic effect was drawn from a normal distribution 

𝑁(0, ��

*<*((
) for both traits. To realistically model the polygenic genetic architecture with different 

levels of genetic effects, we attributed 30% of the trait heritability to 500 randomly chosen SNPs, 
while the remaining SNPs explain 70% of the total heritability. The per-SNP genetic effect was 

drawn from a normal distribution 𝑁(0, 0.3 ∗ ��

�<<
) for SNPs with high heritability enrichment, and 

from 𝑁(0, 0.7 ∗ ��

(��((
) for SNPs with low heritability enrichment. The total heritability ℎ* was set 

to 0.9, 0.3, 0.1, 0.03 and 0.01 for each trait. Each simulation setting was repeated for 1,000 times.  
 
Next, we performed simulations to assess the statistical power. For each trait, we randomly 
selected 𝑁 = 5  segments, each containing 𝐿 = 100  SNPs, as the signal regions shared 
between two traits. The genetic effect size for the SNPs in the signal regions follows a multivariate 
normal distribution	

J𝛽)𝛾)
K ∼ 𝑁
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⎥
⎥
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The genetic effect size for the SNPs outside the signal regions follows a different multivariate 
normal distribution without local genetic correlation	

J𝛽)𝛾)
K ∼ 𝑁
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⎢
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0
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⎥
⎤

⎠

⎞ 

The total heritability ℎ* was set to be 0.1 for both traits and the correlation of genetic effect size 
of two traits 𝜌 was set to vary from 0.9 to 0.1. Each simulation setting was repeated 100 times. 
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Evaluate model performance 
We use three different metrics to quantify the performance of our approach. Denote the true signal 
segments as 𝑅(,… , 𝑅� , and the segments detected by LOGODetect as 𝑅 (, … , 𝑅 ¡. We define the 
signal points detection rate as the number of true signal SNPs detected by LOGODetect divided 

by the number of true signal SNPs, that is 
∑ ¢,£∩(⋃ , ¦§

¦¨� )¢©
£¨�

∑ ¢,£¢
©
£¨�

. Similarly, we define signal segments 

detection rate as the number of true signal segments detected by LOGODetect divided by the 

number of true signal segments, namely 
∑ ª«,£∩�⋃ , ¦§

¦¨� �¬∅­©
£¨�

�
, where we call a segment true 

positive if it overlaps with a true signal segment. Signal points detection rate and signal segments 
detection rate aim to measure the sensitivity in SNPs level and segments level respectively. To 

take the extent of the overlap into consideration, we also followed83 to define 𝑆�𝑅m�, the G-score 

with respect to a signal region 𝑅m, as max
(z²z¡

¢, ¦∩,£¢

³|, ¦|¢,£¢
, and further define the G-score measure as 

(
�
∑ 𝑆(𝑅m)
�
mn( . The G-score aims to measure the accuracy and sensitivity together.  

 
Application of LOGODetect to five psychiatric disorders 
We applied LOGODetect to five psychiatric disorders. The European ancestry genotype data from 
1000 Genomes Project was used as the reference panel to estimate the LD matrix. For each 
GWAS data, indels and SNPs not present in the reference panel were removed. The SNPs of 
minor allele frequency less than 0.01 in the reference panel were also removed. Then for each 
disorder pair, we filtered out all the strand-ambiguous SNPs and took the overlaps, and we applied 
LOGODetect to perform the downstream analysis.  
 
Enrichment analysis  
We aggregated 49 non-overlapping segments identified by LOGODetect in five psychiatric 
disorders and investigated if these segments are enriched in predicted functional regions for a 
given tissue or cell type. Tissue or cell type-specific functional regions were defined using 
GenoSkyline-Plus annotations and dichotomized with a cutoff of 0.5. The annotation is robust to 
the cutoff due to the bimodal pattern in raw GenoSkyline-Plus annotation scores. To assess the 
statistical significance of enrichment, we randomly selected 49 non-overlapping segments across 
the genome while matching their sizes with the detected segments, and calculated the overlaps 
with GenoSkyline-Plus annotations. We repeated the permutation procedure 10,000 times to 
evaluate the significance of the observed overlap.  
 
We also assessed whether the detected regions were enriched in non-brain tissue types after 
adjusting for the overlap of brain and non-brain annotations. Specifically, for the pancreatic islets 
cell type annotation, we removed the annotations that overlap with any of the five significant brain 
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cell type annotations to define the conditional annotation of pancreatic islets. The same procedure 
was taken to define the conditional annotation of mononuclear cells from peripheral blood. 
Afterwards, permutation test was performed on these two conditional annotations. 
 
URLs 
Summary statistics data of five psychiatric disorder can be downloaded on the PGC website, 
http://www.med.unc.edu/pgc/downloads; 66 GenoSkyline-Plus cell-type specific functional 
annotations, http://genocanyon.med.yale.edu/GenoSkyline; Fetal brain TAD data 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77565; Adult brain TAD data 
http://resource.psychencode.org. 
 
Code availability 
LOGODetect software is available at https://github.com/ghm17/LOGODetect. 
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