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Abstract

Genetic correlation analysis has quickly gained popularity in the past few years and provided
insights into the genetic etiology of numerous complex diseases. However, existing approaches
oversimplify the shared genetic architecture between different phenotypes and cannot effectively
identify precise genetic regions contributing to the genetic correlation. In this work, we introduce
LOGODetect, a powerful and efficient statistical method to identify small genome segments
harboring local genetic correlation signals. LOGODetect automatically identifies genetic regions
showing consistent associations with multiple phenotypes through a scan statistic approach. It
uses summary association statistics from genome-wide association studies (GWAS) as input and
is robust to sample overlap between studies. Applied to five phenotypically distinct but genetically
correlated psychiatric disorders, we identified 49 non-overlapping genome regions associated
with multiple disorders, including multiple hub regions showing concordant effects on more than
two disorders. Our method addresses critical limitations in existing analytic strategies and may
have wide applications in post-GWAS analysis.
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Introduction

Genome-wide association studies (GWASs) have been carried out for numerous complex traits
and diseases, identifying tens of thousands of single-nucleotide polymorphisms (SNPs)
associated with these phenotypes. However, our understanding of most traits’ genetic basis
remains incomplete, in part due to the limited power and interpretability of the traditional GWAS
approach that correlates one trait with one SNP at a time. Recently, statistical methods that jointly
model multiple phenotypes have quickly gained popularity in human genetics research'.
Leveraging pervasive pleiotropy in the human genome, these methods enhanced the statistical
power to identify genetic associations'*7, improved the accuracy of genetic risk prediction®®,
revealed novel genetic sharing across diverse phenotypes'®'?, and provided great insights into
the genetic basis of a variety of diseases and traits'>".

Genetic similarity between traits can be modeled at different scales. Methods that identify SNPs
associated with multiple phenotypes have achieved some success'>"". However, most complex
human traits are highly polygenic, with top SNPs showing weak to moderate effects'®'®. Thus,
single SNP-based methods may not be sufficient to characterize the full landscape of genetic
similarity. An alternative approach is to estimate the genetic correlation between different
traits'®'22°2" These methods effectively utilize genome-wide genetic data, including SNPs that
do not reach statistical significance in GWAS, to quantify the overall genetic sharing between two
traits. In addition, recent methodological advances have enabled estimation of genetic correlation
with GWAS summary statistics’®'"?2, making these approaches widely applicable to a large
number of complex phenotypes. With these advances, genetic correlation analysis has become
a routine procedure in post-GWAS analysis and was implemented in almost all large-scale
GWASSs published in the past few years.

However, despite improved statistical power and wide applications, genetic correlation
approaches fail to provide detailed, mechanistic insights due to its oversimplification of complex
genetic sharing into a single metric. Two recent methods improved genetic correlation analysis by
providing local'? and annotation-stratified estimates'. However, these methods rely on strong
prior evidence about which local region or functional annotation to investigate. When applied to
hypothesis-free scans, statistical power is substantially reduced. In this work, we introduce
LOGODetect (LOcal Genetic cOrrelation Detector), a novel method that uses scan statistics to
identify genome segments harboring local genetic correlation between two complex traits.
Compared to other methods, LOGODetect does not pre-specify candidate regions of interest, and
instead, automatically detects regions with shared genetic components with great resolution and
statistical power. In addition, LOGODetect only uses GWAS summary statistics as input and is
robust to sample overlap between GWASs. We demonstrate its performance through extensive
simulations and analysis of well-powered GWASs for five distinct but genetically correlated
psychiatric disorders®?*. Our analysis implicates a collection of hub regions in the genome that
underlie the risk for several of these disorders.
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Results

Method overview
Our goal is to identify genome segments showing consistent association patterns with two
different traits. Here, we provide an overview of our approach and the technical details are
discussed in Methods. We propose the following scan statistic
YieR Z1i %2

W) = Bl
to quantify the extent of local genetic similarity in a genome region, where R is the index set for
all SNPs in the region, z;; and z,; are the association z-scores for the i-th SNP with two traits,
I; is the linkage disequilibrium (LD) score for the i-th SNP,'® and 8 controls the impact of LD.
Q(R) is a LD score-weighted inner product of local z-scores from two GWASs and is conceptually
similar to local genetic correlation - regions with high absolute values of Q(R) show concordant
association patterns across multiple SNPs in the region and the sign of Q(R) shows if the
correlation is positive or negative. We search for genome segments with the highest |Q(R)|
values by scanning the genome while allowing the segment size to vary (Figure 1). Statistical
evidence of genetic sharing is assessed using a Monte Carlo approach.
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Figure 1. LOGODetect workflow. (A) The inputs of LOGODetect include GWAS summary statistics for two traits and
a reference panel for LD estimation. (B) Scan statistic is defined over a region, as the LD-weighted inner product of two
z-score vectors in this region. A large absolute value of the scan statistic would hint at local genetic correlation. (C)

LOGODetect identifies genome segments showing consistent associations with two different traits.

Simulation results

We conducted simulations to assess the type | error of our approach using 15,918 samples from
the Wellcome Trust Case Control Consortium (WTCCC). First, we simulated phenotypes under
an infinitesimal model in which genetic effects were assumed to be the same for all SNPs. In
addition, we also investigated a more realistic genetic architecture with different levels of genetic
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effects - we attributed 30% of the trait heritability to 3% of randomly selected SNPs, while the
remaining SNPs explain 70% of the total heritability. The family-wise type | error rate of our
method was well-controlled as the heritability of each trait ranged between 0.01 to 0.9
(Supplementary Table 1) and under strong heritability enrichment (Supplementary Table 2),
suggesting that LOGODetect is statistically robust to diverse genetic architecture. We also
assessed the statistical power of LOGODetect under various settings (Figure 2 and
Supplementary Figures 1-3). Three different metrics were used to quantify the statistical power
(see Methods). With smaller values of 6, LOGODetect tends to find long segments, achieving
greater point detection rate (Figure 2A). On the contrary, LOGODetect identified many short
segments with decreased point detection rate when greater values of 6 was used. LOGODetect
obtains a larger G-score with smaller 6 (Methods), and in particular, the G-score is almost the
same for 6 = 0.3,0.4 or 0.5. Overall, LOGODetect worked reasonably well in all three measures
when 6 was set to 0.5. As a result, we recommend to use 0.5 as the choice of 6 in practice.
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Figure 2. Assessment of statistical power. The Y-axis shows statistical power assessed by three different measures:
(A\) signal points detection rate, (B) signal segments detection rate, and (C) G-score. The X-axis shows the correlation

of SNPs’ effects on two traits in the genome region.

Application to five psychiatric disorders

Previous studies have revealed pervasive pleiotropy and genetic covariance among
psychiatric disorders. However, there is limited understanding of the specific genetic loci
contributing to multiple disorders. We applied LOGODetect to study the pairwise local genetic
correlation between five psychiatric disorders (Supplementary Table 3): bipolar disorder (BIP;
n=51,710), schizophrenia (SCZ; n=105,318), major depressive disorder (MDD; n=173,005),
attention-deficit/hyperactivity disorder (ADHD; n=53,293), and autism spectrum disorder (ASD;
n=46,350), using summary statistics from the latest GWASs.3?% |n total, we identified 66 regions
(49 non-overlapping segments) showing concordant associations with multiple disorders (FDR <
0.05; Figure 3 and Supplementary Figures 4-9). 65 of the 66 regions showed positive
correlations. Size of the identified genome segments varied from 24 KB to 1.6 MB
(Supplementary Figure 10). The number of significant segments identified in our analysis is
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proportional to the genetic correlation between each pair of disorders (Supplementary Figure
11; correlation r=0.68). We identified 33 shared genome segments for BIP and SCZ (Figure 3B;
genetic correlation rg=0.68, p=9.14e-87), 4 shared regions for BIP and MDD (Supplementary
Figure 4; ry =0.42, p=4.33e-17), and 11 regions for SCZ and MDD (Supplementary Figure 5; rq
=0.40, p=7.36e-33), which is consistent with the strong genetic overlap between these
disorders?®37-*_ Additionally, studies have suggested correlated familial genetic liabilities among
MDD, ADHD, and ASD.?**4 | OGODetect identified 5 regions shared by MDD and ADHD
(Supplementary Figure 7; ry =0.61, p=1.72e-15), 4 regions for MDD and ASD (Supplementary
Figure 8; ry =0.55, p=1.41e-15), and 6 regions for ADHD and ASD (Supplementary Fig 9; rq
=0.42, p=4.46e-10). Overall, we identified strong genetic sharing (higher genetic correlation and
more shared genome segments) among SCZ, BIP, and MDD and among MDD, ASD, and ADHD.
Sharing between these two clusters was relatively weaker.
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Figure 3. LOGODetect identifies genome regions contributing to multiple psychiatric disorders. (A) Heatmap
shows the genetic correlation estimates (upper triangle) and the number of segments with local genetic correlation
identified by LOGODetect (lower triangle) between five psychiatric disorders; Barplot shows the heritability estimates
and standard errors of five disorders. (B) Mirrored Manhattan plot for BIP and SCZ. The 33 shared genome regions
identified by LOGODetect are highlighted in red. One locus on chromosome 6 with —log,, P > 20 in SCZ is truncated

at 20 for visualization purpose.

Tissue enrichment of hub regions shared by psychiatric disorders

We used GenoSkyline-Plus tissue-specific functional annotations*' to investigate the functional
relevance of the genomic regions found to harbor local genetic correlations among five psychiatric
disorders. First, we tested the five disorders’ heritability enrichment in the predicted functional
genome of 66 tissue and cell types (Supplementary Table 6; Methods).'® Eight tissue and cell
types not enriched (p>0.01) for the heritability of any disorder were removed from the analysis.
We used permutation tests to assess the enrichment of genome regions shared by multiple
disorders in the remaining 58 annotation tracks. Genome regions identified by LOGODetect were
significantly enriched in multiple brain regions including anterior caudate (enrichment=1.82,
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p=3.00e-4), cingulate gyrus (enrichment=1.94, p=2.00e-4), inferior temporal lobe
(enrichment=2.00, p=3.00e-4), angular gyrus (enrichment=1.96, p=3.00e-4), and dorsolateral
prefrontal cortex (enrichment=2.01, p=3.00e-4) (Figure 4). In addition to brain tissues, regions
shared by psychiatric disorders were also enriched in pancreatic islets (enrichment=2.15,
p=2.00e-4) and mononuclear cells from peripheral blood (enrichment=2.08, p=3.00e-4). Of note,
annotated functional regions in these tissues have substantial overlaps with annotations of brain
tissues (Figure 4B). After conditioning on functional regions in the brain, the enrichment in
pancreatic islets was substantially reduced (enrichment=1.03, p=0.40; Figure 4C), while
enrichment in mononuclear cells remained significant (enrichment=1.67, p=0.02).
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Figure 4. Tissue-specific enrichment of genome regions conferring risk for multiple psychiatric disorders. (A)
Permutation test results over 58 cell-type specific annotations. Fold enrichment is labeled next to each bar. (B) The
overlap of predicted functional regions in pancreatic islets, mononuclear cells from peripheral blood, and five brain
regions. (C) Enrichment in the predicted functional regions in pancreatic islets and mononuclear cells from peripheral

blood after conditioning on the annotation overlap with brain regions.

Hub regions contributing to multiple psychiatric disorders

Next, we investigated hub regions shared by more than two disorders. Among the 49 non-
overlapping genome regions identified in our analysis, 8 regions were identified in two different
disorder pairs, 3 regions were identified in three pairs, and 1 region was identified in four pairs
(Supplementary Table 4). The 4 regions identified in at least three pair-wise analyses are
summarized in Figure 5. These hub regions show consistent associations with multiple
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psychiatric disorders and can potentially reveal key mechanisms and pathways underlying the
shared genetics across disorders.

1064 1066 1068
Position on chr10 (Mb)

Figure 5. Putative target genes for four hub regions shared by more than two psychiatric disorder. (A) shows
the significant region in chr5 shared by four disorder pairs, (B-D) shows there significant regions, each
is shared by three disorder pairs. Locuszoom plot, recombination rate, and the gene names are
provided. The colored band denote the location of the significant region and which disorder pair is
detected in. TAD in dorsolateral prefrontal cortex (DLPFC) in adult brain and TAD in the germinal zone
(GZ) and postmitoticzone cortical plate (CP) in the developing fetal brain are shown as long solid line
in panel (A).

The region showing significant correlation between BIP-MDD (p=2.00e-4; q=0.041), MDD-ADHD
(p=2.00e-4; q=0.041), MDD-ASD (p=2.00e-4; g=0.041), and ADHD-ASD (p=6.00e-4; g=0.061) is
a locus spanning 500 KB on chromosome 5 (Supplementary Table 5). We note that this is an
intergenic region but SNPs in this region have previously reached genome-wide significance in
the MDD GWAS** (lead SNP rs12658032; p=1.18e-10). Additionally, SNPs at this locus showed
consistent associations with BIP (lead SNP rs323509; p=8.94e-6), ADHD (lead SNP rs12658032;
p=1.15e-7), and ASD (lead SNP rs325485; p=3.25e-7). There are also suggestive associations
with SCZ (lead SNP rs4473744; p=1.88e-6) but the lead SNP is not in LD with SNPs in the specific
genome segment implicated in our analysis. Interestingly, although the closest protein-coding
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gene NUDT12 is 700 KB away, this region is located in a large topological associating domain
(TAD; 4.8 MB) that is conserved in adult and fetal brains (Figure 5A; Methods)*>*3. Three genes,
EFNAS, NUDT12, and FBXL17, are located in the TAD. We also note that the genome region
identified by LOGODetect overlapped with RP77-6N13.1, a noncoding RNA exclusively
expressed in the testis tissue. Multiple eQTLs for RP11-6N13.1 are located in the region (lead
SNP rs416223; p=1.25e-13). Although there is no direct evidence suggesting this noncoding RNA
is linked to psychiatric disorders, it remains a hypothesis worth investigating in the future.

We also identified 3 additional hub regions, each shared by 3 pairs of disorders (Supplementary
Table 4). The locus on chromosome 10 spans 450 KB and showed significant correlations
between SCZ-ADHD, MDD-ADHD, and ADHD-ASD (Figure 5B). The genome regions identified
at this locus largely overlaps with SORCS3, a previously implicated risk gene for MDD and
ADHD.*#44%  The second hub region is located on chromosome 11, spanning 715 KB. There are
multiple independent association peaks in this region (Figure 5C) and it was significantly
correlated between BIP-SCZ, BIP-MDD, and SCZ-MDD in our anlaysis. Two genes, NTM and
SNX19, are located near this region. The third hub region spans 375 KB on chromosome 12
(Figure 5D). It showed concordant associations between BIP-SCZ, BIP-MDD, and SCZ-MDD.
This region is located in ANKS1B, a significant gene in the genome-wide pharmacogenomic
analysis of antipsychotic drug (AP) response in SCZ*47.

Discussion

Through simulations and analyses of GWAS data, we demonstrated that our method effectively
identified genetic regions that may be shared across multiple complex traits with high resolution
and statistical power. Applied to well-powered GWASs for five phenotypically distinct but
genetically correlated psychiatric disorders, LOGODetect identified numerous shared genomic
regions including hub regions that showed consistent effects for more than two disorders. Three
genes (i.e. EFNA5, NUDT12, and FBXL17) are located in the same TAD with the hub region on
chromosome 5 (Figure 5A). EFNAS, also known as Ephrin-A5, interacts with Eph receptors and
plays a critical role in accurate guidance of cell or axon movement and synapse development in
the nervous system**®°_ It is highly expressed in various brain areas and was found to regulate
the formation of the ascending midbrain dopaminergic pathways®' which are involved in social
interactions and reward®?. Ephrin-A5 knockout mice model suggested that ephrin-A5 plays an
important role in the normal development of central monoaminergic pathways®®, whose alteration
has been linked to SCZ, MDD, and ADHD>**. In addition, ephrin-A5 knockout mice shared some
similarities in the developmental delays seen in children diagnosed with ADHD®3. Based on the
literature support and TADs derived from adult and fetal brain hi-C data, EFNA5 is a strong
candidate gene that may explain the link of this hub region with psychiatric disorders, although
we do not rule out the possible involvement of NUDT12 and FBXL17.
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The hub regions shared by 3 pairs of disorders also overlapped with a handful of interesting
candidate genes. SORCS3 (Figure 5B) is highly expressed in the CA1 region of the hippocampus,
and is involved in synaptic depression and spatial learning ability>®*’. It is also known to play an
important role in protein networks associated with PICK1, NGF, and PDGF-BB%®*° which have
been implicated in ADHD, ASD, MDD, and SCZ°*%. NTM (Figure 5C) regulates the outgrowth of
neurites, and is associated with the formation of excitatory synapses® . It was suggested that
haploinsufficiency of NTM may influence brain structural volumes and increase the risk for
ASD®%7_ Alterations of NTM expression in the dorsolateral prefrontal cortex was also observed in
SCZ patients®®. Of note, SNX19 at the same locus has been prioritized as a candidate causal
gene for SCZ in transcriptomic Mendelian randomization studies®. ANKS 1B (Figure 5D) encodes
an activity dependent effector protein associated with postsynaptic density’®, and is involved in
long-term depression and synaptic plasticity’’. ANKS1B mutation was found to be enriched in
SCZ and ASD’?™, and differential methylation was found in ANKS7B in prefrontal cortex from
SCZ patients™. Moreover, ANKS 1B knockout mice displayed behavior patterns relevant to SCZ
including alterations to sensorimotor gating and locomotor activity”""®.

Taken together, we have introduced LOGODetect, a scan statistic method to identify local genetic
regions showing correlated effects with multiple psychiatric disorders. Complementary to single
SNP-based approaches for pleiotropy mapping'”’® and genetic correlation estimation methods
utilizing genome-wide data'®?°, our method elucidates the shared genetic architecture between
two traits by identifying local genomic segments that are concordant. The candidate genes and
regions we identified may be tapping into a set of transdiagnostic mechanisms that underlie all of
psychopathology (i.e., the “p” or general factor®). In practice, LOGODetect can be used in
combination with other methods to further improve statistical power and biological interpretability.
For example, it may be of interest to first screen the genome by identifying larger genetic regions'?
or certain functional annotations'' enriched for the shared genetics between two traits. Then,
LOGODetect can be applied to these candidate regions to identify the precise genetic segments
that explain such sharing. Since high-dimensional sampling remains a challenge, a multi-tier
analytical strategy would improve the statistical power and computational burden in the analysis.
We believe that LOGODetect has addressed some key limitations in the current practice of cross-
trait genetic correlation analysis and will greatly benefit complex trait genetics research.

Methods

Genetic Model
Suppose two standardized traits y; and y, follow the linear model with random effects:
yi=XB+e€
Vo, =Zy+34
where X and Z are fixed and standardized genotype matrices with M columns (i.e. the number
of SNPsis M); ¢ and 6 are non-genetic effects; g and y are M-dimensional vectors denoting
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genetic effects. They follow the multivariate normal distribution:

2
h_ﬁl p_gf
5=\ e K
4 2
14 0 pg-. hy
K gy

where hﬁ) and hZ denote the heritability for two traits; pg is the global genetic covariance

between two traits; I,, is a diagonal matrix whose i-th diagonal element equals 1 if the effects of
the i-th SNP on two traits (i.e. §; and y;) are correlated and equals O if otherwise; K is the
number of SNPs such that §; and y; are correlated, i.e., K = tr[I),]. § and y are independent
from non-genetic effects € and §. The statistical model described here is similar to the polygenic
model used in genetic correlation estimation'®. The difference is that we allow local genetic
sharing and do not assume the global genetic covariance to be the same across all the SNPs in
the whole genome. Compared to the local genetic correlation estimation method in the literature'?,
we do not assume genetic effects to be fixed. Instead, our framework is a direct generalization of
the model developed for global genetic correlation estimation'®'. Under the alternative
hypothesis, we denote the non-overlapping genetic regions that contribute to multiple traits to be
Ry, ..., R, and the union setas R =Uj_; R; such that Iy[i,i] = 1 ifand only if i € R. While under
the null hypothesis, two traits share no genetic covariance, i.e., R = 0.

Scan Statistic and Scanning Procedure

We use a scan statistics approach to identify regions showing correlated effects between different
traits. This type of approach has been used for burden test in a single-trait setting’’. Suppose
ny,n, are the sample sizes for two GWASSs, respectively, and we first consider the simpler case
that there is no sample overlap between two GWASSs. Additionally, we denote the association z-
scores for two traits as

1
z1 = (241, 212, ---:ZlM)T = EXTM
1
zy = (221,22, ---:ZZM)T = EZT}’Z
Then, we can define the scan statistic:
Yier Z1iZ2;
QR) =———~5
Xierl:)?

where R is the index set for SNPs in a genome region, [; is the LD score’® for the i-th SNP, and
@ is a tuning parameter that controls the strength we penalize over the LD structure. If SNPs in
the region R show strong, concordant effects on both traits, then the inner product };cg z1;22;
will tend to have a larger absolute value and therefore yield a larger scan statistic. On the contrary,
if two traits are genetically independent in the local region, then the corresponding scan statistic
would be close to 0. Therefore, the scan statistic is informative to detect local genetic correlation.
The purpose of the LD score term in the denominator is to normalize the effect of LD. The
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expected value of );cr z1:75; is larger in regions with strong LD. Without the normalization term
on the denominator, the method will favor regions with large LD that may not be of biological
interest. Further, parameter 6 affects the size of identified regions. A relatively long segment may
not have a large absolute value of scan statistic, due to the penalty in the denominator. A larger
6 implies stronger penalty, henceforth is more likely to detect smaller signal segments. In
particular when 6 equals 1, |Q(R)| will attain local maximum with R containing only one variant.
A reasonable range for 6 is between 0 and 1, and we used simulations to demonstrate that a 6
value of 0.5 gives great empirical performance with well-controlled type-| error and reasonable
statistical power.

Finally, we use the maximal scan statistic over all possible regions as the test statistic:
Qmax = mlcsl?lQ(R)l

where C is a pre-specified parameter that defines the upper boundary of the SNPs count in a
region. In practice, C can be set based on the number of SNPs in the dataset (e.g. the average
number of SNPs in 1 million bases). LOGODetect takes advantages of the flexible framework to
scan local regions with varying sizes. Compared to a sliding-window approach based on a pre-
specified window size, our method is more appealing since the size of signal region could vary
substantially by locus and by trait. We use a Monte Carlo type approach to assess the distribution

Z
Zz) under the null

of Qmax under the null hypothesis. We draw N = 5000 pseudo samples (
distribution using a procedure detailed in the next section. Then, we estimate the empirical null
distribution of Q,,., and its 95% upper quantile. Taken together, the scanning procedure works
as follows. We scan the genome to find R; such that |Q(R;)| reaches the maximum. If
|Q(R,)| = Qy95, We claim that R, is a significant signal region and remove these SNPs from the
analysis. Then, we repeat the procedure on the remaining SNPs until no region is declared

significant. This procedure controls the family-wise type-I error rate.
Monte Carlo simulation of pseudo z-score vectors
In order to simulate the null distribution of Q,,,,, we need to generate pseudo z-score vectors.

When two GWASSs do not have sample overlap, it can be verified that

1 [h3
var[z] = — [ﬁﬁXTXXTX +(1- hg)XTX]
1

p -
cov[zy, 2] = \/T;qlzK XTX1,Z"Z
And similarly for var|z,]. Therefore, under H,, the combined z-score vector
1 [hp
— [ﬁXTXXTX +(1- hg)XTX] 0

(21 - N 0 ’ ny
Zz) [0] 0 n—t[hﬁ%szsz +(1-h2)z"z
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asymptotically. Note that in practice individual genotype data is hard to obtain due to privacy, it is
meaningful to analyze based only on summary statistics. Here by using reference panel (e.g.

1000 Genomes Project), niXTX and niZTZ can be estimated as V, %XTXXTX and
1 1 1

%ZTZZTZ can be estimated as V2 = Z—_;VZ —%V, where n is the sample size of the
P _ _

reference panel and V is the LD matrix of the reference panel. And the genetic heritability for two
traits hé,hf, can be estimated through LD score regression’®. After plugging in the reference LD

matrix, we have

nlhé

VZ+(1-h3)V 0
hZ
0 %V2+(1—h§)v

asymptotically under the null.
The random multivariate normal vectors have complex covariance structure, which is
computationally challenging as the dimension of the vector can be as high as 107 in GWAS. We
developed a computationally tractable method that leverages the LD structure in the genome.
First, we split the high-dimensional vector z into subvectors z = (z(y),2(2), .., Zm)) - Each
subvector z;) covers SNPs in a 1 MB genome region. We denote the variance matrix of z as X
and it can be written as the block matrix form. Denote X;; = cov[z(;), 7] as the submatrix of X,
with rows indexed by the i-th block z;) and columns indexed by the j-th block z;). Then we
use a block-wise tridiagonal matrix to approximate X by shrinking X;; to 0 if |i —j| = 2. This
approximation is reasonable in the context of GWAS since SNPs should be independent if they
are physically apart. Then, we can use an iterative approach to generate each block z; by
conditioning on the previous block z(;_;y via the conditional normal distribution:

(zilzio1 = @) ~ N(Zii 1575210, Zii — By Zi01,i-1%im1,00)
In practice, X;; may be rank deficient and therefore not invertible. We adopt the truncated
singular value decomposition (TSVD) method’® and use the top g singular values and their
corresponding singular vectors to calculate the inverse matrix. For numerical stability, we choose
q to be as large as possible such that the conditional number is less than 1,000%. Finally, we
standardize each pseudo z-score vector so that it has the same mean and variance as the z-
score vector in real data.

Extension for sample overlaps
Suppose there are n; shared samples in the two GWASSs, then the linear models can be restated

as:
()= () +(2)
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Y2,ns _ Zns) (6115)
(yz,s)‘(zs s,

) are the standardized phenotypes of all individuals in each GWAS. (X“) =

Y1,ns) ’ (}’Z,ns X

Where (}’1,5 YZ,S

Z . D .
X,( ”S> = Z are standardized genotypes of all individuals in each GWAS. ¢, €5, 65,85 are the

Zs
non-genetic effects where covles, 6] = p.I,,_. It can be shown that
pg Tv7 T pe T
, = X' XlyZ'Z + ——X; Z
covlenzl = G W I

While var[z;] and var[z,] have the same form as no sample overlaps setting. By using

reference panel, niXSTZS can be replaced by V. Therefore, under H,, the combined z-score

vectors asymptotically follows multivariate normal distributions

hZ
1B 2 PeMg
V24 (1—h3)V |4
(21) N [0] M ( ﬁ) Vnin,
) ol Pells nyh%
14 — vz (1-h2)v
(_n1n2 M ( Y)
Note that the variance matrix can be split into two terms.
hZ __ n
1 ,8 2 12 pe S
var [Zl] _| M v (1 hB)V VN,
& pens nohl ,
mv TV + (1 - hy)V
_nlhlz? = PeNs PeMls PeNls
—EV2 + (1 —hZ - )V 0 4 4
_ M B Vmn, + Vnn, Vnn,
nzh;Z/ _ 5 DN PeMs v PeMs v
O _M V2 + (1 - hy - m) /nlnz /nlnz

We can independently simulate pseudo samples following the normal distribution with mean 0
and each variance term respectively. Finally, by adding up two vectors simulated with respect to
different variance terms, we get the pseudo z-score vector of interest. In particular, the

parameters ag,aﬁ,pe * ng appearing in the z-score null distribution are not of our interest, but

Z
we need their values while doing Monte Carlo sampling of (z;) We adopt cross-trait LD score
regression'® to estimate them. Note that LD score regression is based on random effect random
design model setup, which is incompatible with our model assumption, yet we believe it should
yield little consequence.

Genome partition and FDR control
We separated the genome into several LD blocks using Idetect®'. Each LD block spans 15 MB on
average (204 LD blocks in total, Supplementary Figure 12). We applied LOGODetect to each
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LD block separately and identified the local regions with p-value < 0.05 under a family-wise type
| error control. We aggregated all the candidate regions across different LD blocks, and applied
Benjamini-Hochberg procedure®? to control FDR with a cutoff of 0.05.

Simulation settings

Simulations were based on the genotype data from the WTCCC cohort. We adopted the same
quality control procedure as previously described' and only included SNPs on chromosome 1 in
the analysis. After quality control, 15,918 individuals and 20,211 SNPs remained in the dataset.
Samples were randomly divided into two subsets with equal sample size. We used each subset
to simulate the phenotype data.

First, we performed simulations under the null hypothesis to see whether our approach would
produce false positive findings. We follow the strict polygenic null, where the effect size level of
all the SNPs are the same, and the per-SNP genetic effect was drawn from a normal distribution

hZ
20211

N(O, ) for both traits. To realistically model the polygenic genetic architecture with different

levels of genetic effects, we attributed 30% of the trait heritability to 500 randomly chosen SNPs,
while the remaining SNPs explain 70% of the total heritability. The per-SNP genetic effect was

drawn from a normal distribution N(0, 0.3 *%) for SNPs with high heritability enrichment, and

hZ

from N(0,0.7 *
19711

) for SNPs with low heritability enrichment. The total heritability h? was set

to 0.9, 0.3, 0.1, 0.03 and 0.01 for each trait. Each simulation setting was repeated for 1,000 times.

Next, we performed simulations to assess the statistical power. For each trait, we randomly
selected N =5 segments, each containing L =100 SNPs, as the signal regions shared
between two traits. The genetic effect size for the SNPs in the signal regions follows a multivariate
normal distribution

03xh? 03xh%xp

(Bi) - N [O] NL NL
Yi 0l " [03xh%2xp  0.3=xh?
NL NL

The genetic effect size for the SNPs outside the signal regions follows a different multivariate
normal distribution without local genetic correlation

0.7 * h? 0
(Bi) - N [O] 20211 — NL
Vi ol ~ 0 0.7 * h?
20211 — NL

The total heritability h? was set to be 0.1 for both traits and the correlation of genetic effect size
of two traits p was set to vary from 0.9 to 0.1. Each simulation setting was repeated 100 times.
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Evaluate model performance

We use three different metrics to quantify the performance of our approach. Denote the true signal
segments as Ry, ..., R;, and the segments detected by LOGODetect as Ry, ..., Ri. We define the
signal points detection rate as the number of true signal SNPs detected by LOGODetect divided
Z§:1|Rjﬂ(UI;§=1§k)|

21 _alRjl
detection rate as the number of true signal segments detected by LOGODetect divided by the
Zlel{Rjn(U’,gﬂ}?k)i@}
J

positive if it overlaps with a true signal segment. Signal points detection rate and signal segments
detection rate aim to measure the sensitivity in SNPs level and segments level respectively. To

by the number of true signal SNPs, that is . Similarly, we define signal segments

number of true signal segments, namely , Wwhere we call a segment true

take the extent of the overlap into consideration, we also followed?®® to define S(R,-), the G-score

with respect to a signal region R;, as max BRI and further define the G-score measure as

1<k<K |R‘k||R]|

}Zles(R,-). The G-score aims to measure the accuracy and sensitivity together.

Application of LOGODetect to five psychiatric disorders

We applied LOGODetect to five psychiatric disorders. The European ancestry genotype data from
1000 Genomes Project was used as the reference panel to estimate the LD matrix. For each
GWAS data, indels and SNPs not present in the reference panel were removed. The SNPs of
minor allele frequency less than 0.01 in the reference panel were also removed. Then for each
disorder pair, we filtered out all the strand-ambiguous SNPs and took the overlaps, and we applied
LOGODetect to perform the downstream analysis.

Enrichment analysis

We aggregated 49 non-overlapping segments identified by LOGODetect in five psychiatric
disorders and investigated if these segments are enriched in predicted functional regions for a
given tissue or cell type. Tissue or cell type-specific functional regions were defined using
GenoSkyline-Plus annotations and dichotomized with a cutoff of 0.5. The annotation is robust to
the cutoff due to the bimodal pattern in raw GenoSkyline-Plus annotation scores. To assess the
statistical significance of enrichment, we randomly selected 49 non-overlapping segments across
the genome while matching their sizes with the detected segments, and calculated the overlaps
with GenoSkyline-Plus annotations. We repeated the permutation procedure 10,000 times to
evaluate the significance of the observed overlap.

We also assessed whether the detected regions were enriched in non-brain tissue types after
adjusting for the overlap of brain and non-brain annotations. Specifically, for the pancreatic islets
cell type annotation, we removed the annotations that overlap with any of the five significant brain
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cell type annotations to define the conditional annotation of pancreatic islets. The same procedure
was taken to define the conditional annotation of mononuclear cells from peripheral blood.
Afterwards, permutation test was performed on these two conditional annotations.

URLs

Summary statistics data of five psychiatric disorder can be downloaded on the PGC website,
http://www.med.unc.edu/pgc/downloads; 66 GenoSkyline-Plus cell-type specific functional
annotations, http://genocanyon.med.yale.edu/GenoSkyline; Fetal brain TAD data
https://www.ncbi.nlm.nih.gov/geo/query/acc.cqgi?acc=GSE77565; Adult brain TAD data
http://resource.psychencode.org.

Code availability
LOGODetect software is available at https://github.com/ghm17/LOGODetect.
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