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Abstract 
Identifying the effector genes from genome-wide association studies (GWAS) is a crucial step 
towards understanding the biological mechanisms underlying complex traits and diseases. 
Colocalization of expression and protein quantitative trait loci (eQTL and pQTL, hereafter 
collectively called “xQTL”) can be effective for mapping associations to genes in many loci.  
However, existing colocalization methods require full single-variant summary statistics which are 
often not readily available for many published GWAS or xQTL studies. Here, we present 
PICCOLO, a method that uses minimum SNP p-values within a locus to determine if pairs of 
genetic associations are colocalized. This method greatly expands the number of GWAS and 
xQTL datasets that can be tested for colocalization. We applied PICCOLO to 10,759 genome-
wide significant associations across the NHGRI-EBI GWAS Catalog with xQTLs from 28 
studies. We identified at least one colocalized gene-xQTL in at least one tissue for 30% of 
associations, and we pursued multiple lines of evidence to demonstrate that these mappings 
are biologically meaningful. PICCOLO genes are significantly enriched for biologically relevant 
tissues, and 4.3-fold enriched for targets of approved drugs. 
  
GWAS have discovered thousands of genetic associations with complex traits and diseases1. 
Most associations cannot be explained by protein coding changes and are expected to be 
driven by gene regulatory mechanisms1,2. Recent studies have shown that xQTLs explain a 
substantial proportion of complex trait heritability3,4.  However, it is not enough to demonstrate 
that a GWAS index SNP is a statistically significant xQTL to conclude that the GWAS and xQTL 
associations are likely explained by the same underlying functional variant5.  This requires that 
the two associations colocalize. A popular colocalization method developed by Giambartolomei 
et. al. determines if two associations are driven by the same signal using full single-variant 
summary statistics for the genomic region of interest5. Already, colocalization analyses have 
identified candidate effector genes for a variety of complex diseases and traits6-9. However, 
broader application of the colocalization approach is limited by the lack of readily available 
complete summary statistics from many published GWAS and xQTL studies. Even when the 
data are available, obtaining and harmonizing results takes significant effort. To overcome the 
need for full summary statistics and to expand the pool of available GWAS and xQTL studies for 
colocalization, we developed PICCOLO, a colocalization test using Probabilistic Identification of 
Causal SNPs (PICS) credible sets that can be estimated using only an index SNP p-value and a 
linkage disequilibrium reference panel10. Using PICCOLO, we colocalized all associations in the 
NHGRI-EBI GWAS Catalog11 with eQTLs from The Genotype-Tissue Expression (GTEx) 
Project12 along with xQTLs from 27 additional studies13-38 (Supplementary Table 1).  
 
We created the PICCOLO algorithm by adapting the coloc method5 to use PICS for estimating 
causal SNP probabilities. Once causal SNP probabilities for both genetic associations have 
been estimated, PICCOLO performs a statistical test to evaluate their overlap. In contrast to 
coloc (Fig. 1a), PICCOLO enables the assessment of colocalization for any two genetic signals 
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using only published index SNPs (Fig. 1b). PICS estimates the posterior probability of causality 
for each SNP within a locus using the LD structure from a reference data set and strength of 
association10. Therefore, all that is required to generate posterior probabilities with PICS is the 
index SNP identifier, the p-value of the index SNP, and the ancestry of the study population. As 
with coloc, PICCOLO calculates the posterior probability that two genetic associations are either 
shared (H4) or not shared (H3). In contrast to coloc, PICCOLO does not test the hypotheses of 
no association for either trait (H1, H2), or both traits (H0). 
 
To evaluate the performance of PICCOLO, we compared PICCOLO with coloc results for 1,490 
genome-wide significant loci (P ≤ 5 × 10-8) across 13 diverse traits analyzed in UK Biobank39 
(Supplementary Table 2). These loci were tested using coloc and PICCOLO across the 44 
GTEx Version 6p eQTL tissues (Supplementary Data 1). Coloc analyses were conducted on full 
variant-level summary statistics across each locus for both the GWAS and GTEx results.  
PICCOLO analyses were conducted with just the most significant GWAS and GTEx SNP in 
each locus.  In comparing the two methods, true positives were defined as coloc genes with a 
posterior probability of H4 ≥ 0.8. Analysis of the PICCOLO parameters identified that PICCOLO 
H4 ≥ 0.9 and an xQTL P ≤ 1 × 10-5 are parameters that provide a strong predictive power for 
coloc (positive predictive value = 0.89) and reasonable sensitivity (0.52) of coloc results (Fig. 2, 
Supplementary Figs. 1-3, see methods). We did not observe any impact of allele frequency or 
credible set size on PICCOLO performance (Supplementary Figs. 4-6). Therefore, differences 
between PICCOLO and coloc are likely due to limitations of the PICS estimations from the index 
SNPs. 
 
Since PICCOLO estimates colocalization of genetic associations without complete summary 
statistics, we used PICCOLO to identify possible causal genes using results available in the 
NHGRI-EBI GWAS Catalog11. We generated PICS probabilities for 23,012 genome-wide 
significant associations and 23,353 non-genome-wide significant associations. In addition, we 
generated xQTL PICS probabilities for 44 tissues in GTEx V6p (166,987 unique index SNPs) 
and 27 other studies (148,259 unique index SNPs)13-38. In total, we used xQTLs from 32 broad 
tissue groups, representing 68 tissues and cell types (Supplementary Table 3).  
 
PICCOLO was then used to assess colocalization of the GWAS and xQTL associations 
(Supplementary Data 2). Applying our previously selected parameters (H4 ≥ 0.9, 
xQTL P ≤ 1 × 10-5), we found 6,628 (29%) genome-wide significant associations to have ≥ 1 
PICCOLO colocalization (Supplementary Data 2). Of the 6,628 associations with PICCOLO 
colocalizations, GTEx eQTLs uniquely accounted for colocalizations for 2,500 associations 
(39%), non-GTEx xQTLs accounted for 1,802 associations (27%), and 2,240 (33%) 
associations were accounted for by both. These results highlight the added value of using index 
SNPs across additional xQTL sources to map genetic associations to putative effector genes. 
 
Of GWAS loci with PICCOLO colocalizations, 2,730 (62%) colocalized with one gene in one or 
more cell types (gene-specific loci). Of those, 1,189 (27%) had colocalization with a single gene 
in a single cell type (gene- and tissue- specific loci, Fig. 3a). These results suggest that the 
majority of GWAS loci are driven by a single effector gene (Fig. 3b). Next, we wanted to 
determine how tissue-specific colocalizations were. We grouped xQTL tissues into 32 broad 
tissue groups (Supplementary Table 3) and found that 44% of associations colocalized with 
xQTLs from single tissue groups (tissue-specific loci) (Fig. 3c). These findings indicate that 
PICCOLO can resolve 2,730 (12%) of all genome-wide significant associations to a single gene, 
and 1,839 (8%) of associations to a single tissue group. 
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Next, we hypothesized that PICCOLO genes that were specific to trait categories would be 
enriched for colocalizations in tissues that are biologically relevant. Using the Medical Subject 
Heading (MeSH) terms we grouped GWAS into 18 trait categories (Supplementary Data 3). For 
each trait category, we determined the number of PICCOLO genes that were specific or shared 
across each respective category (Fig. 4a). Blood traits had 1.5× more category specific genes 
than nonspecific genes (P = 4.7 × 10-6). In contrast, inflammatory traits had 2.2× more 
nonspecific genes than category specific genes (P = 0.02). While 2,383 (71%) of PICCOLO 
genes could be attributed to a single trait category, 66 (2%) were highly pleotropic, spanning > 4 
trait categories (Fig. 4b, Supplementary Data 4). For each trait category, we tested for the 
enrichment of xQTL tissues for PICCOLO genes specific to that trait compared to all other 
PICCOLO colocalizations. Most enriched tissues were clearly biologically relevant. For example, 
cardiovascular traits were enriched for PICCOLO colocalizations in heart and blood vessel. In 
contrast, the uterus, vagina, prostate, and pituitary tissue enrichments observed in inflammation 
traits were less obvious, but biologically insightful (Fig. 4c). The enrichment of colocalizations in 
sex-specific tissues is consistent with established studies highlighting the strong sex bias and 
key role of sex hormones in autoimmunity40-42. Together, these results demonstrate that 
PICCOLO identifies genes that are likely specific to one trait category and in biologically 
relevant tissues. 
 
Next, we tested whether PICCOLO genes were more likely to be disease modulating. For our 
first analysis, we assessed the enrichment of PICCOLO genes among all genes implicated in 
rare diseases documented in the Online Mendelian Inheritance in Man (OMIM) Catalog43 
(Supplementary Data 5). Both genes nearest to GWAS associations and non-colocalized genes 
showed significant 1.2-fold enrichments for OMIM genes (P = 2.4 × 10-9); however, PICCOLO 
genes were enriched 2.2-fold (P =1.4 × 10-12, Fig. 5 top). We observed similar enrichments 
when the analysis was limited to PICCOLO colocalizations with QTLs of a single gene and/or 
within a single tissue (OR = 2.3, P = 5.4 × 10-17). These data demonstrate that genes identified 
as influencing complex traits by colocalization are more likely to cause rare disease. 
 
Lastly, we assessed enrichment of PICCOLO genes amongst the target genes of approved 
drugs in the Pharmaprojects database. Overall, these genes were 2.7-fold enriched (P = 1.4 × 
10-11) for successful drug targets, compared to 1.2- and 1.6-fold enrichments for non-colocalized 
genes and nearest genes respectively (Fig. 5 bottom, Supplementary Fig. 7 and 8). We 
observed a positive correlation between xQTL –log(P-value) and successful target enrichment 
which is likely due to the increased confidence in the xQTL and therefore a more robust 
relationship between gene expression and genotype (Supplementary Fig. 9). Lastly, we found 
that gene and or tissue specificity of PICCOLO genes resulted in a greater enrichment in both 
OMIM and Pharmaprojects analyses (Fig. 5), suggesting such evidence may be relevant in 
assessing a gene’s biological relevance.  
 
In summary, we presented a new method that estimates the colocalization between GWAS and 
xQTL signals without the need for full summary statistics. This innovation greatly expands the 
number of GWAS and xQTL datasets that can be tested. We observed that xQTLs of 
colocalized genes tend to be enriched in biologically relevant tissues and enriched for genes 
linked to rare disease or targets of approved drugs. This work further supports the observations 
that targets with genetic evidence are more likely to succeed in the clinic44 and highlights the 
importance of mapping the correct genes to genetic associations. Our findings also provide 
motivation for additional xQTL studies in novel cell types.  
 
Together, these data offer the most comprehensive evidence to date that colocalization testing 
identifies potentially causal genes. As such, we anticipate that PICCOLO and other 
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colocalization approaches will improve the identification of drug targets from the growing wealth 
of omic data.  
 

Methods 

PICCOLO methodology 
PICCOLO is available on github (https://github.com/Ksieber/piccolo) as an R package. This 

code enables users to download PICS10 credible sets from the BROAD Institute website 

(https://pubs.broadinstitute.org/pubs/finemapping/pics.php) and then test two credible sets for 

colocalization. We removed all credible sets that returned only a single SNP entry from PICS 

because PICS is unable to differentiate between credible sets with single causal SNPs and 

SNPs missing from the imputation panel used for the PICs tool. Less than 3% of index SNPs 

were removed for this reason. The colocalization code is an adaptation from Giambartolomei et. 

al5. The default priors are set to be consistent with the default coloc code, where the prior of 

either genetic signal is 1 × 10-4, and the prior of two genetic signals being shared is 1 × 10-5.  

xQTLs 
Top-hit xQTLs were readily available from sources outlined in Supplementary Table 1. For a 
given cell type/tissue in each study, we defined the index SNP for each gene as the SNP with 
the lowest p-value. Using these xQTL index SNPs, we computed the PICS credible sets as 
outlined in Farh et al. (https://pubs.broadinstitute.org/pubs/finemapping/pics.php). Since the cell 
types and tissues were from multiple sources under different stimuli, we manually grouped cell 
types into broader categories like those used by the GTEx consortium (Supplementary Table 3). 
 

GWAS 

Index SNPs from the NHGRI-EBI GWAS Catalog were downloaded on November 22nd 2017 

from  https://www.ebi.ac.uk/gwas/downloads. Using these GWAS index SNPs, we computed the 

PICS credible sets using the same methods used for the xQTL datasets mentioned above. To 

create a more consistent naming convention for GWAS traits, each trait and was manually 

mapped to a MeSH term using the MeSH browser, and subsequently assigned to one of 18 trait 

categories using a similar methodology outlined in Nelson et al44. Some traits did not match up 

with a particular MeSH term or category and were classified as “Miscellaneous” (Supplementary 

Data 3). 

Calculating PICCOLO systematically 
For every GWAS credible set that we generated, we determined all genes within 500 MB of the 

index GWAS SNP. For each gene within the 500 kb window, we determined every gene-tissue 

combination of available xQTL credible sets and calculated the PICCOLO score for every gene-

tissue xQTL and GWAS combination.  

Calibration with coloc 
First, we investigated the distribution of PICCOLO H4 > 0 scores and observed a bimodal 
distribution (Supplementary Fig. 1). Next, we compared PICCOLO with coloc using a tissue 
specific approach where the two test results are compared for every trait, in every gene, in 
every tissue. By evaluating the test statistics of PICCOLO (Supplementary Figure 2), we 
determined that a PICCOLO cutoff of H4 ≥ 0.9 yields strong predictive power of coloc while 
maintaining reasonable sensitivity (Supplemental Fig. 2b, positive predictive value = 0.88, true 
positive rate = 0.45). Given that PICCOLO is estimating many factors, we next asked whether 
PICCOLO is better at identifying the correct gene at each locus regardless of the tissue 
specificity. Using this tissue agnostic approach, we observed that PICCOLO H4 ≥ 0.9 was again 
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ideal and yielded a dramatic improvement in the sensitivity compared to the tissue specific 
approach (Fig. 2b, Supplementary Fig. 3), positive predictive value = 0.89, true positive rate = 
0.52). Lastly, given that PICCOLO is not able to access the uncertainty of the strength of 
association for the two genetic signals (coloc H0, H1, & H2), we hypothesized that PICCOLO 
would benefit from titrating eQTL P-value cutoffs. Using the tissue agnostic approach, we 
determined that a 1 × 10-5 eQTL P-value threshold is ideal predicting coloc results 
(Supplementary Fig. 3 c, d).  
 

Tissue enrichments  
A gene was classified as “shared” if at least 1 eQTL for that gene colocalized with GWAS traits 
within more than one disease category. To measure the enrichment of tissue groups across 
each trait category, we first identified all colocalizations with genes that were unique to a single 
trait category and calculated the proportion of those colocalizations contributed by each tissue. 
We then calculated the proportion of contribution of each tissue for genes that were shared (i.e. 
not unique to a single category). Statistical differences in tissue proportion in category specific 
vs shared genes across tissues was tested using Fisher’s exact test (fisher.test) in R. 
 

Gene enrichment for rare diseases and successful drugs 
Rare disease genes were downloaded from the OMIM catalog (https://www.omim.org/) 
accessed June 5th,2018 (Supplementary Data 5). The catalog of successful drug targets was 
obtained from Pharmaprojects accessed August 5th, 2017 
(https://pharmaintelligence.informa.com/products-and-services/data-and-
analysis/pharmaprojects) . Each indication was manually mapped MeSH terms and disease 
categories. Indications that did not fit into a category were annotated as “Miscellaneous”. A 
gene was considered a successful target if there was an approved drug in the United State or 
European Union that targeted it. Due to the proprietary nature of the gene-indication pairs within 
the Pharmaproject data, we are unable to share the specific list used here in the supplemental 
information. However, we included a supplemental table specifying the number of successful 
drugs per MeSH and the number of targets with PICCOLO evidence. Moreover, we repeated 
our successful target analysis using the publicly available target-indication data from Nelson et. 
al44. and observed nearly identical results (Supplementary Fig. 10).  
 
To test for enrichments, we constructed a 2 × 2 contingency table of genes present in 
GENCODE (v17) or RefSeq (v37.1). Each box was populated with counts based on the 
presence or absence of the gene as a successful target (or rare disease gene) versus the 
presence or absence of a positive PICCOLO colocalization for that gene. Tissue-specific 
PICCOLO genes were defined as genes within loci where the colocalized xQTLs were all from a 
single tissue group. Gene-specific PICCOLO genes were defined as genes within loci where 
only a single gene was colocalized. Tissue and gene specific loci were defined as those within 
loci where a single gene was colocalized and the corresponding xQTL(s) were from a single 
tissue group. Odds ratios and 95% confidence intervals calculated using fisher.test in R. 
Statistical methods used to calculate enrichments are the same as those published in Nelson et. 
al44. 
 
To determine the percentage of successful trait-indication pairs with evidence of colocalization 
estimated by PICCOLO, we first selected trait indication-pairs that had an approved drug in the 
United States or European Union. Next, we removed all target-indication pairs with MeSH terms 
that did not have at least 1 genome-wide significant association in the GWAS catalog from the 
analysis (Supplementary Data 6). A target-indication pair was annotated as positive if the target 
gene matched the colocalized gene and the drug indication was in the same trait category as 
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the GWAS trait. 95% confidence intervals were calculated using the normal approximation 
method.  
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Figures 

 

Figure 1: Colocalization of genetic signals using PICCOLO.  
(a) Colocalization requires full summary statistics from both the GWAS and xQTL studies. (b) 
PICCOLO uses association top hits and estimates the “missing” data using PICS. The PICS 
sets are then colocalized using the coloc method. 
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Figure 2: Calibration of PICCOLO with coloc 
Using index SNPs, PICCOLO was evaluated for the ability to predict colocalization (coloc H4 ≥ 

0.80). (a) ROC comparing PICCOLO to coloc in a tissue agnostic manner. (b) Using the 

balanced PICCOLO parameters (orange dashed line, H4 ≥ 0.90 and an xQTL P ≤ 1 × 10-5), 

PICCOLO has a positive predictive value (red line) of 0.89 and sensitivity (blue line) of 0.52 for 

coloc (coloc H4 ≥ 0.8).   
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Figure 3: Colocalization of the NHGRI-EBI GWAS Catalog with xQTLs using PICCOLO.  
(a) Distribution of the number of colocalizations (tissue-gene pairs) at each GWAS association. 
(b) Distribution of the number of PICCOLO genes at each association. (c) Distribution of the 
number of tissue groups with colocalizations at each GWAS association. 
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Figure 4: PICCOLO results across different trait categories. 
(a) Number of PICCOLO genes that are shared across one or more trait categories (beige) and 

number of PICCOLO genes that are specific to a trait category (grey). (b) Proportion of 

PICCOLO genes that map to a single therapy category (blue), 2-4 categories (green), and >4 

categories (yellow). (c) Enrichment of QTL tissues for trait category specific PICCOLO genes 

across neurological/behavioral, endocrine, cardiovascular, inflammation, and blood-related 

traits. Bars show 95% confidence intervals. All enrichments are significant at an FDR of 0.5. If a 

trait category or tissue is not shown, it means that the category specific genes were not 

enriched for PICCOLO genes that colocalize in those tissues. 
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Figure 5: Enrichment of rare disease genes, approved drug targets and overlap 

between drug targets and PICCOLO genes. 
Enrichments for rare disease genes in OMIM (top), and approved drug targets in the United 
States and the European Union (bottom). Enrichment was tested for genes nearest to GWAS 
index SNPs (Nearest genes), genes that were found to not be colocalized using PICCOLO 
(Non-PICCOLO genes), all genes found to be colocalized using PICCOLO (All PICCOLO 
genes), PICCOLO genes within loci where only one gene is colocalized (Gene-specific loci 
PICCOLO genes), genes within loci where colocalization occur in a single tissue (Tissue-
specific loci PICCOLO genes), and PICCOLO genes within loci where a single gene is 
colocalized in a single tissue (Gene+tissue-specific loci PICCOLO genes). Bars show 95% 
confidence intervals.  
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Supplementary Figures 

 

Supplementary Figure 1: PICCOLO H4 Distribution 
Distribution of non-zero PICCOLO H4 scores for associations with 13 traits from the Elliot et. al. 

analysis of the UKBiobank39 colocalized with GTEx.  
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Supplementary Figure 2: PICCOLO sensitivity tissue specific 
(a) Using the tissue specific approach, a ROC compares the sensitivity (y-axis) to the false 

discovery rate (x-axis) of PICCOLO predicting colocalization at multiple coloc H4 thresholds 

(colored lines). (b) The positive predictive value (y-axis) compared the true positive rate (x-axis) 

of PICCOLO predicting colocalization across multiple coloc H4 thresholds (colored lines). 

Similar to panels (a) and (b), panels (c) and (d) compare the same test statistics, respectively, 

while holding the PICCOLO H4 (0.9) and coloc H4 (0.8) constant while titrating the xQTL P-

values (colored dots).  
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Supplementary Figure 3: PICCOLO sensitivity tissue agnostic 
(a) Using the tissue agnostic approach, a ROC compares the sensitivity (y-axis) to the false 

discovery rate (x-axis) of PICCOLO predicting colocalization at multiple coloc H4 thresholds 

(colored lines). (b) The positive predictive value (y-axis) compared the true positive rate (x-axis) 

of PICCOLO predicting colocalization across multiple coloc H4 thresholds (colored lines). 

Similar to panels (a) and (b), panels (c) and (d) compare the same test statistics, respectively, 

while holding the PICCOLO H4 (0.9) and coloc H4 (0.8) constant while titrating the xQTL P-

values (colored dots). 
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Supplementary Figure 4: The distribution of the tested GWAS minor allele frequency 

index SNPs used to compare PICCOLO and coloc. 
Using the PICCOLO and coloc comparison dataset, PICCOLO results were determined to be 

either false negatives (fn, top), false positives (fp, mid), or true positives (tp, bottom) based on 

the results of coloc (H4 ≥ 0.80). For each category, the distribution (y-axis) of the minor allele 

frequency (x-axis) of the GWAS index SNP is plotted.  
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Supplementary Figure 5: Comparison of the Wakefield and PICS GWAS credible set 

size and max posterior probability. 
Using the PICCOLO and coloc comparison dataset, PICCOLO results were determined to be 

either false negatives (fn, top), false positives (fp, mid), or true positives (tp, bottom) based on 

the results of coloc (H4 ≥ 0.80). For each category, the distributions of the difference between 

Wakefield (used for coloc) and the PICs max posterior probability (left panels) and number of 

SNPs (right panels) for each GWAS credible set are plotted. The vertical blue line illustrates the 

count where there were no differences between the two methods. 
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Supplementary Figure 6: distribution of differences in H2, H3, and H4 for false positives, 

and true positives  
Using the PICCOLO and coloc comparison dataset, PICCOLO results were determined to be 

either false negatives (fn, top), false positives (fp, mid), or true positives (tp, bottom) based on 

the results of coloc (H4 ≥ 0.80). For each category, the distribution (y-axis) of the alternative 

coloc hypotheses test posterior probabilities (x-axis, test_pp) are plotted. 
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Supplementary Figure 7: Enrichment of approved drug targets using a PICCOLO 

H4 ≥ 0.9 and an QTL P ≤ 1 × 10-5  
Enrichment was is tested for genes nearest to GWAS index SNPs (Nearest genes), genes that 
were found to not be colocalized using PICCOLO (Non-PICCOLO genes), all genes found to be 
colocalized using PICCOLO (All PICCOLO genes), PICCOLO genes within loci where only one 
gene is colocalized (Gene-specific loci PICCOLO genes), genes within loci where colocalization 
occur in a single tissue (Tissue-specific loci PICCOLO genes), and PICCOLO genes within loci 
where a single gene is colocalized in a single tissue (Gene+tissue-specific loci PICCOLO 
genes). Bars show 95% confidence intervals. 
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Supplementary Figure 8: Enrichment of approved drug targets for all genes and the 

druggable genome. 
PICCOLO gene enrichment for approved drug targets compared to all protein coding genes in 

the genome (blue) and all druggable genes (red). Enrichment was is tested for genes nearest to 

GWAS index SNPs (Nearest genes), genes that were found to not be colocalized using 

PICCOLO (Non-PICCOLO genes), all genes found to be colocalized using PICCOLO (All 

PICCOLO genes), PICCOLO genes within loci where only one gene is colocalized (Gene-

specific loci PICCOLO genes), genes within loci where colocalization occur in a single tissue 

(Tissue-specific loci PICCOLO genes), and PICCOLO genes within loci where a single gene is 

colocalized in a single tissue (Gene+tissue-specific loci PICCOLO genes). Bars show 95% 

confidence intervals. 
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Supplementary Figure 9: Enrichment of approved drug targets in relation to xQTL P-

value cutoff 
Points show the mean PICCOLO gene enrichment at xQTL –log10(P-value cutoff) (x-axis). 
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Supplementary Figure 10: Enrichment of approved drug targets using the Nelson et. al. 

2015 successful target-indication pairs dataset. 
Enrichment was is tested for genes nearest to GWAS index SNPs (Nearest genes), genes that 

were found to not be colocalized using PICCOLO (Non-PICCOLO genes), all genes found to be 

colocalized using PICCOLO (All PICCOLO genes), PICCOLO genes within loci where only one 

gene is colocalized (Gene-specific loci PICCOLO genes), genes within loci where colocalization 

occur in a single tissue (Tissue-specific loci PICCOLO genes), and PICCOLO genes within loci 

where a single gene is colocalized in a single tissue (Gene+tissue-specific loci PICCOLO 

genes). Bars show 95% confidence intervals. 
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Supplementary Tables 

Supplementary Table 1: QTLs sources used in PICCOLO analyses 
First Author PMID TISSUE QTL type 

GTEx 29022597 Multi eQTL 

Lee 24604203 Dendritic cells (derived from monocytes) eQTL 

Barreiro 22233810 Dendritic cells eQTL 

Fairfax 24604202 Monocytes eQTL 

Kim-Hellmuth 28814792 Monocytes eQTL 

Ye 25214635 CD4+ T cells eQTL 

Nédélec 27768889 Monocyte derived Macrophage eQTL 

Çalışkan 25874939 PBMCs eQTL 

Davenport 26917434 Leucocytes eQTL 

Quach 27768888 Monocytes  eQTL 

Franco 23878721 Whole blood eQTL 

Naranbhai 26151758 Neutrophils eQTL 

Raj 24786080 CD4(+) T cells and monocytes eQTL 

Ferraro 24610777 CD4(+) T cells and T regs eQTL 

Fairfax 22446964 monocytes and B-cells eQTL 

Kasela 28248954 CD4+ and CD8+ T cells eQTL 

Westra 24013639 whole blood  eQTL 

Zhernakova 27918533 whole blood eQTL 

Hao 23209423 lung eQTL 

Qui 21949713 sputum from COPD patients (ECLIPSE) pQTL 

Parisien 28564610 Dorsal Root Ganglion eQTL 

UBIOPRED NA Serum from asthma patients pQTL 

Schadt 18462017 Liver eQTL 

Innocenti 21637794 Liver eQTL 

Suhre 28240269 plasma pQTL 

Sun 29875488 plasma pQTL 

Varshney 28193859 islet eQTL 

Ko 28575649 kidney eQTL 
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Supplementary Table 2: GWAS used for comparison between coloc and PICCOLO 
Analysis Description ncase ncohort 

neale17_1239  Current tobacco smoking (UKB Broad)  NA  337030 

neale17_1558  Alcohol intake frequency. (UKB Broad)  NA  336965 

neale17_20002_1111  Non-cancer illness code, self-reported: asthma (UKB Broad)  39049 NA  

neale17_20002_1112  Non-cancer illness code, self-reported: chronic obstructive 
airways disease/copd (UKB Broad) 

1179 NA  

neale17_20002_1473  Non-cancer illness code, self-reported: high cholesterol (UKB 
Broad)  

41296 NA  

neale17_2090  Seen doctor (GP) for nerves, anxiety, tension or depression (UKB 
Broad)  

115328 NA  

neale17_21001  Body mass index (BMI) (UKB Broad)  NA  336107 

neale17_47  Hand grip strength (right) (UKB Broad)  NA  335842 

neale17_50  Standing height (UKB Broad)  NA  336474 

neale17_6150_4  Vascular/heart problems diagnosed by doctor: High blood 
pressure (UKB Broad)  

91033 NA  

neale17_6159_4  Pain type(s) experienced in last month: Back pain (UKB Broad)  85221 NA  

neale17_78  Heel bone mineral density (BMD) T-score, automated (UKB 
Broad)  

NA  194398 

neale17_I25  Diagnoses - main ICD10: I25 Chronic ischemic heart disease 
(UKB Broad)  

8755 NA  
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Supplementary Table 3: Tissue grouping key for xQTL studies 
Tissue group Tissue type Cell type 

blood b-cell B-cell 

blood t-cell CD4 

blood t-cell CD4-cis-allconditions 

blood t-cell CD4-meta-cis 

blood dendritic Dendritic-cells-Flu 

blood dendritic Dendritic-cells-IFNb 

blood dendritic Dendritic-cells-LPS 

blood dendritic Dendritic-cells-naive 

blood dendritic Dendritic-cells-re-Flu 

blood dendritic Dendritic-cells-re-IFNb 

blood dendritic Dendritic-cells-re-LPS 

blood dendritic Dendritic-MTB 

blood dendritic Dendritic-naive 

blood dendritic Dendritic-re-MTB 

lung Epithelium-airway-cis Epithelium-airway-cis 

lung Epithelium-airway-trans Epithelium-airway-trans 

adipose_tissue gtex-v6p-adipose-subcutaneous gtex-v6p-adipose-subcutaneous 

adipose_tissue gtex-v6p-adipose-visceral-omentum gtex-v6p-adipose-visceral-omentum 

adrenal_gland gtex-v6p-adrenal-gland gtex-v6p-adrenal-gland 

blood_vessel gtex-v6p-artery-aorta gtex-v6p-artery-aorta 

blood_vessel gtex-v6p-artery-coronary gtex-v6p-artery-coronary 

blood_vessel gtex-v6p-artery-tibial gtex-v6p-artery-tibial 

bladder gtex-v6p-bladder gtex-v6p-bladder 

brain gtex-v6p-brain-amygdala gtex-v6p-brain-amygdala 

brain gtex-v6p-brain-anterior-cingulate-cortex-ba24 gtex-v6p-brain-anterior-cingulate-cortex-ba24 

brain gtex-v6p-brain-caudate-basal-ganglia gtex-v6p-brain-caudate-basal-ganglia 

brain gtex-v6p-brain-cerebellar-hemisphere gtex-v6p-brain-cerebellar-hemisphere 

brain gtex-v6p-brain-cerebellum gtex-v6p-brain-cerebellum 

brain gtex-v6p-brain-cortex gtex-v6p-brain-cortex 

brain gtex-v6p-brain-frontal-cortex-ba9 gtex-v6p-brain-frontal-cortex-ba9 

brain gtex-v6p-brain-hippocampus gtex-v6p-brain-hippocampus 

brain gtex-v6p-brain-hypothalamus gtex-v6p-brain-hypothalamus 

brain gtex-v6p-brain-nucleus-accumbens-basal-ganglia gtex-v6p-brain-nucleus-accumbens-basal-ganglia 

brain gtex-v6p-brain-putamen-basal-ganglia gtex-v6p-brain-putamen-basal-ganglia 

brain gtex-v6p-brain-spinal-cord-cervical-c-1 gtex-v6p-brain-spinal-cord-cervical-c-1 

brain gtex-v6p-brain-substantia-nigra gtex-v6p-brain-substantia-nigra 

breast gtex-v6p-breast-mammary-tissue gtex-v6p-breast-mammary-tissue 

blood b-cell gtex-v6p-cells-ebv-transformed-lymphocytes 

skin gtex-v6p-cells-transformed-fibroblasts gtex-v6p-cells-transformed-fibroblasts 

cervix_uteri gtex-v6p-cervix-ectocervix gtex-v6p-cervix-ectocervix 

cervix_uteri gtex-v6p-cervix-endocervix gtex-v6p-cervix-endocervix 

colon gtex-v6p-colon-sigmoid gtex-v6p-colon-sigmoid 

colon gtex-v6p-colon-transverse gtex-v6p-colon-transverse 

esophagus gtex-v6p-esophagus-gastroesophageal-junction gtex-v6p-esophagus-gastroesophageal-junction 

esophagus gtex-v6p-esophagus-mucosa gtex-v6p-esophagus-mucosa 

esophagus gtex-v6p-esophagus-muscularis gtex-v6p-esophagus-muscularis 

fallopian_tube gtex-v6p-fallopian-tube gtex-v6p-fallopian-tube 

heart gtex-v6p-heart-atrial-appendage gtex-v6p-heart-atrial-appendage 

heart gtex-v6p-heart-left-ventricle gtex-v6p-heart-left-ventricle 

kidney gtex-v6p-kidney-cortex gtex-v6p-kidney-cortex 

liver gtex-v6p-liver gtex-v6p-liver 

lung Lung gtex-v6p-lung 

salivary_gland gtex-v6p-minor-salivary-gland gtex-v6p-minor-salivary-gland 

muscle gtex-v6p-muscle-skeletal gtex-v6p-muscle-skeletal 

nerve gtex-v6p-nerve-tibial gtex-v6p-nerve-tibial 

ovary gtex-v6p-ovary gtex-v6p-ovary 

pancreas gtex-v6p-pancreas gtex-v6p-pancreas 

pituitary gtex-v6p-pituitary gtex-v6p-pituitary 

prostate gtex-v6p-prostate gtex-v6p-prostate 

skin gtex-v6p-skin-not-sun-exposed-suprapubic gtex-v6p-skin-not-sun-exposed-suprapubic 

skin gtex-v6p-skin-sun-exposed-lower-leg gtex-v6p-skin-sun-exposed-lower-leg 

small_intestine gtex-v6p-small-intestine-terminal-ileum gtex-v6p-small-intestine-terminal-ileum 

spleen gtex-v6p-spleen gtex-v6p-spleen 

stomach gtex-v6p-stomach gtex-v6p-stomach 
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testis gtex-v6p-testis gtex-v6p-testis 

thyroid gtex-v6p-thyroid gtex-v6p-thyroid 

uterus gtex-v6p-uterus gtex-v6p-uterus 

vagina gtex-v6p-vagina gtex-v6p-vagina 

blood blood gtex-v6p-whole-blood 

liver hepatocytes HLC 

ipsc ipsc IPSC 

pancreas islet Islet 

kidney kidney Kidney 

blood leukocyte Leuco-sepsis 

liver liver Liver 

lung lung Lung-cis 

blood macrophage Macro-Listeria 

blood macrophage Macro-naive 

blood macrophage Macro-re-Listeria 

blood macrophage Macro-re-Salmonella 

blood macrophage Macro-Salmonella 

blood monocyte Mono 

blood monocyte Monocyte 

blood monocyte Mono-Flu 

blood monocyte Mono-IFN 

blood monocyte Mono-LPS 

blood monocyte Mono-LPS-24h 

blood monocyte Mono-LPS-2h 

blood monocyte Mono-LPS-6h 

blood monocyte Mono-LPS-90m 

blood monocyte Mono-mdp-6h 

blood monocyte Mono-mdp-90m 

blood monocyte Mono-naive 

blood monocyte Mono-Pam3CSK4 

blood monocyte Mono-R848 

blood monocyte Mono-re-Flu 

blood monocyte Mono-re-LPS 

blood monocyte Mono-re-LPS-6h 

blood monocyte Mono-re-LPS-90m 

blood monocyte Mono-re-mdp-6h 

blood monocyte Mono-re-mdp-90m 

blood monocyte Mono-re-Pam3CSK4 

blood monocyte Mono-re-R848 

blood monocyte Mono-re-rna-6h 

blood monocyte Mono-re-rna-90m 

blood monocyte Mono-rna-6h 
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