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Abstract

Identifying the effector genes from genome-wide association studies (GWAS) is a crucial step
towards understanding the biological mechanisms underlying complex traits and diseases.
Colocalization of expression and protein quantitative trait loci (eQTL and pQTL, hereafter
collectively called “xQTL”) can be effective for mapping associations to genes in many loci.
However, existing colocalization methods require full single-variant summary statistics which are
often not readily available for many published GWAS or xQTL studies. Here, we present
PICCOLO, a method that uses minimum SNP p-values within a locus to determine if pairs of
genetic associations are colocalized. This method greatly expands the number of GWAS and
XQTL datasets that can be tested for colocalization. We applied PICCOLO to 10,759 genome-
wide significant associations across the NHGRI-EBI GWAS Catalog with xQTLs from 28
studies. We identified at least one colocalized gene-xQTL in at least one tissue for 30% of
associations, and we pursued multiple lines of evidence to demonstrate that these mappings
are biologically meaningful. PICCOLO genes are significantly enriched for biologically relevant
tissues, and 4.3-fold enriched for targets of approved drugs.

GWAS have discovered thousands of genetic associations with complex traits and diseases?.
Most associations cannot be explained by protein coding changes and are expected to be
driven by gene regulatory mechanisms?2. Recent studies have shown that xQTLs explain a
substantial proportion of complex trait heritability®*. However, it is not enough to demonstrate
that a GWAS index SNP is a statistically significant xQTL to conclude that the GWAS and xQTL
associations are likely explained by the same underlying functional variant>. This requires that
the two associations colocalize. A popular colocalization method developed by Giambartolomei
et. al. determines if two associations are driven by the same signal using full single-variant
summary statistics for the genomic region of interest®. Already, colocalization analyses have
identified candidate effector genes for a variety of complex diseases and traits®°. However,
broader application of the colocalization approach is limited by the lack of readily available
complete summary statistics from many published GWAS and xQTL studies. Even when the
data are available, obtaining and harmonizing results takes significant effort. To overcome the
need for full summary statistics and to expand the pool of available GWAS and xQTL studies for
colocalization, we developed PICCOLO, a colocalization test using Probabilistic Identification of
Causal SNPs (PICS) credible sets that can be estimated using only an index SNP p-value and a
linkage disequilibrium reference panel'®. Using PICCOLO, we colocalized all associations in the
NHGRI-EBI GWAS Catalog!! with eQTLs from The Genotype-Tissue Expression (GTEX)
Project!? along with xQTLs from 27 additional studies!*-*® (Supplementary Table 1).

We created the PICCOLO algorithm by adapting the coloc method® to use PICS for estimating
causal SNP probabilities. Once causal SNP probabilities for both genetic associations have
been estimated, PICCOLO performs a statistical test to evaluate their overlap. In contrast to
coloc (Fig. 1a), PICCOLO enables the assessment of colocalization for any two genetic signals
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using only published index SNPs (Fig. 1b). PICS estimates the posterior probability of causality
for each SNP within a locus using the LD structure from a reference data set and strength of
association!®. Therefore, all that is required to generate posterior probabilities with PICS is the
index SNP identifier, the p-value of the index SNP, and the ancestry of the study population. As
with coloc, PICCOLO calculates the posterior probability that two genetic associations are either
shared (H4) or not shared (H3). In contrast to coloc, PICCOLO does not test the hypotheses of
no association for either trait (H1, H2), or both traits (HO).

To evaluate the performance of PICCOLO, we compared PICCOLO with coloc results for 1,490
genome-wide significant loci (P < 5 x 10®) across 13 diverse traits analyzed in UK Biobank®®
(Supplementary Table 2). These loci were tested using coloc and PICCOLO across the 44
GTEX Version 6p eQTL tissues (Supplementary Data 1). Coloc analyses were conducted on full
variant-level summary statistics across each locus for both the GWAS and GTEX results.
PICCOLO analyses were conducted with just the most significant GWAS and GTEx SNP in
each locus. In comparing the two methods, true positives were defined as coloc genes with a
posterior probability of H4 = 0.8. Analysis of the PICCOLO parameters identified that PICCOLO
H4 2 0.9 and an xQTL P < 1 x 10 are parameters that provide a strong predictive power for
coloc (positive predictive value = 0.89) and reasonable sensitivity (0.52) of coloc results (Fig. 2,
Supplementary Figs. 1-3, see methods). We did not observe any impact of allele frequency or
credible set size on PICCOLO performance (Supplementary Figs. 4-6). Therefore, differences
between PICCOLO and coloc are likely due to limitations of the PICS estimations from the index
SNPs.

Since PICCOLO estimates colocalization of genetic associations without complete summary
statistics, we used PICCOLO to identify possible causal genes using results available in the
NHGRI-EBI GWAS Catalog!!. We generated PICS probabilities for 23,012 genome-wide
significant associations and 23,353 non-genome-wide significant associations. In addition, we
generated XQTL PICS probabilities for 44 tissues in GTEx V6p (166,987 unique index SNPs)
and 27 other studies (148,259 unique index SNPs)*338, In total, we used xQTLs from 32 broad
tissue groups, representing 68 tissues and cell types (Supplementary Table 3).

PICCOLO was then used to assess colocalization of the GWAS and xQTL associations
(Supplementary Data 2). Applying our previously selected parameters (H4 = 0.9,

XQTL P <1 x 107°), we found 6,628 (29%) genome-wide significant associations to have = 1
PICCOLO colocalization (Supplementary Data 2). Of the 6,628 associations with PICCOLO
colocalizations, GTEx eQTLs uniquely accounted for colocalizations for 2,500 associations
(39%), non-GTEXx xQTLs accounted for 1,802 associations (27%), and 2,240 (33%)
associations were accounted for by both. These results highlight the added value of using index
SNPs across additional xQTL sources to map genetic associations to putative effector genes.

Of GWAS loci with PICCOLO colocalizations, 2,730 (62%) colocalized with one gene in one or
more cell types (gene-specific loci). Of those, 1,189 (27%) had colocalization with a single gene
in a single cell type (gene- and tissue- specific loci, Fig. 3a). These results suggest that the
majority of GWAS loci are driven by a single effector gene (Fig. 3b). Next, we wanted to
determine how tissue-specific colocalizations were. We grouped xQTL tissues into 32 broad
tissue groups (Supplementary Table 3) and found that 44% of associations colocalized with
XQTLs from single tissue groups (tissue-specific loci) (Fig. 3c). These findings indicate that
PICCOLO can resolve 2,730 (12%) of all genome-wide significant associations to a single gene,
and 1,839 (8%) of associations to a single tissue group.
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Next, we hypothesized that PICCOLO genes that were specific to trait categories would be
enriched for colocalizations in tissues that are biologically relevant. Using the Medical Subject
Heading (MeSH) terms we grouped GWAS into 18 trait categories (Supplementary Data 3). For
each trait category, we determined the number of PICCOLO genes that were specific or shared
across each respective category (Fig. 4a). Blood traits had 1.5x more category specific genes
than nonspecific genes (P = 4.7 x 10°). In contrast, inflammatory traits had 2.2x more
nonspecific genes than category specific genes (P = 0.02). While 2,383 (71%) of PICCOLO
genes could be attributed to a single trait category, 66 (2%) were highly pleotropic, spanning > 4
trait categories (Fig. 4b, Supplementary Data 4). For each trait category, we tested for the
enrichment of xQTL tissues for PICCOLO genes specific to that trait compared to all other
PICCOLO colocalizations. Most enriched tissues were clearly biologically relevant. For example,
cardiovascular traits were enriched for PICCOLO colocalizations in heart and blood vessel. In
contrast, the uterus, vagina, prostate, and pituitary tissue enrichments observed in inflammation
traits were less obvious, but biologically insightful (Fig. 4c). The enrichment of colocalizations in
sex-specific tissues is consistent with established studies highlighting the strong sex bias and
key role of sex hormones in autoimmunity*®-42. Together, these results demonstrate that
PICCOLO identifies genes that are likely specific to one trait category and in biologically
relevant tissues.

Next, we tested whether PICCOLO genes were more likely to be disease modulating. For our
first analysis, we assessed the enrichment of PICCOLO genes among all genes implicated in
rare diseases documented in the Online Mendelian Inheritance in Man (OMIM) Catalog*®
(Supplementary Data 5). Both genes nearest to GWAS associations and non-colocalized genes
showed significant 1.2-fold enrichments for OMIM genes (P = 2.4 x 10°); however, PICCOLO
genes were enriched 2.2-fold (P =1.4 x 10?, Fig. 5 top). We observed similar enrichments
when the analysis was limited to PICCOLO colocalizations with QTLs of a single gene and/or
within a single tissue (OR = 2.3, P = 5.4 x 10'Y"). These data demonstrate that genes identified
as influencing complex traits by colocalization are more likely to cause rare disease.

Lastly, we assessed enrichment of PICCOLO genes amongst the target genes of approved
drugs in the Pharmaprojects database. Overall, these genes were 2.7-fold enriched (P = 1.4 x
10*1) for successful drug targets, compared to 1.2- and 1.6-fold enrichments for non-colocalized
genes and nearest genes respectively (Fig. 5 bottom, Supplementary Fig. 7 and 8). We
observed a positive correlation between xQTL —log(P-value) and successful target enrichment
which is likely due to the increased confidence in the xQTL and therefore a more robust
relationship between gene expression and genotype (Supplementary Fig. 9). Lastly, we found
that gene and or tissue specificity of PICCOLO genes resulted in a greater enrichment in both
OMIM and Pharmaprojects analyses (Fig. 5), suggesting such evidence may be relevant in
assessing a gene’s biological relevance.

In summary, we presented a new method that estimates the colocalization between GWAS and
XQTL signals without the need for full summary statistics. This innovation greatly expands the
number of GWAS and xQTL datasets that can be tested. We observed that xQTLs of
colocalized genes tend to be enriched in biologically relevant tissues and enriched for genes
linked to rare disease or targets of approved drugs. This work further supports the observations
that targets with genetic evidence are more likely to succeed in the clinic** and highlights the
importance of mapping the correct genes to genetic associations. Our findings also provide
motivation for additional xQTL studies in novel cell types.

Together, these data offer the most comprehensive evidence to date that colocalization testing
identifies potentially causal genes. As such, we anticipate that PICCOLO and other
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colocalization approaches will improve the identification of drug targets from the growing wealth
of omic data.

Methods

PICCOLO methodology

PICCOLO is available on github (https://github.com/Ksieber/piccolo) as an R package. This
code enables users to download PICS™ credible sets from the BROAD Institute website
(https://pubs.broadinstitute.org/pubs/finemapping/pics.php) and then test two credible sets for
colocalization. We removed all credible sets that returned only a single SNP entry from PICS
because PICS is unable to differentiate between credible sets with single causal SNPs and
SNPs missing from the imputation panel used for the PICs tool. Less than 3% of index SNPs
were removed for this reason. The colocalization code is an adaptation from Giambartolomei et.
al®. The default priors are set to be consistent with the default coloc code, where the prior of
either genetic signal is 1 x 10, and the prior of two genetic signals being shared is 1 x 10°,

XQTLs

Top-hit xQTLs were readily available from sources outlined in Supplementary Table 1. For a
given cell typeftissue in each study, we defined the index SNP for each gene as the SNP with
the lowest p-value. Using these xQTL index SNPs, we computed the PICS credible sets as
outlined in Farh et al. (https://pubs.broadinstitute.org/pubs/finemapping/pics.php). Since the cell
types and tissues were from multiple sources under different stimuli, we manually grouped cell
types into broader categories like those used by the GTEX consortium (Supplementary Table 3).

GWAS

Index SNPs from the NHGRI-EBI GWAS Catalog were downloaded on November 22" 2017
from https://www.ebi.ac.uk/gwas/downloads. Using these GWAS index SNPs, we computed the
PICS credible sets using the same methods used for the xQTL datasets mentioned above. To
create a more consistent naming convention for GWAS traits, each trait and was manually
mapped to a MeSH term using the MeSH browser, and subsequently assigned to one of 18 trait
categories using a similar methodology outlined in Nelson et al**. Some traits did not match up
with a particular MeSH term or category and were classified as “Miscellaneous” (Supplementary
Data 3).

Calculating PICCOLO systematically

For every GWAS credible set that we generated, we determined all genes within 500 MB of the
index GWAS SNP. For each gene within the 500 kb window, we determined every gene-tissue

combination of available xQTL credible sets and calculated the PICCOLO score for every gene-
tissue xQTL and GWAS combination.

Calibration with coloc

First, we investigated the distribution of PICCOLO H4 > 0 scores and observed a bimodal
distribution (Supplementary Fig. 1). Next, we compared PICCOLO with coloc using a tissue
specific approach where the two test results are compared for every trait, in every gene, in
every tissue. By evaluating the test statistics of PICCOLO (Supplementary Figure 2), we
determined that a PICCOLO cutoff of H4 = 0.9 yields strong predictive power of coloc while
maintaining reasonable sensitivity (Supplemental Fig. 2b, positive predictive value = 0.88, true
positive rate = 0.45). Given that PICCOLO is estimating many factors, we next asked whether
PICCOLO is better at identifying the correct gene at each locus regardless of the tissue
specificity. Using this tissue agnostic approach, we observed that PICCOLO H4 = 0.9 was again
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ideal and yielded a dramatic improvement in the sensitivity compared to the tissue specific
approach (Fig. 2b, Supplementary Fig. 3), positive predictive value = 0.89, true positive rate =
0.52). Lastly, given that PICCOLO is not able to access the uncertainty of the strength of
association for the two genetic signals (coloc HO, H1, & H2), we hypothesized that PICCOLO
would benefit from titrating eQTL P-value cutoffs. Using the tissue agnostic approach, we
determined that a 1 x 10° eQTL P-value threshold is ideal predicting coloc results
(Supplementary Fig. 3 c, d).

Tissue enrichments

A gene was classified as “shared” if at least 1 eQTL for that gene colocalized with GWAS traits
within more than one disease category. To measure the enrichment of tissue groups across
each trait category, we first identified all colocalizations with genes that were unique to a single
trait category and calculated the proportion of those colocalizations contributed by each tissue.
We then calculated the proportion of contribution of each tissue for genes that were shared (i.e.
not unique to a single category). Statistical differences in tissue proportion in category specific
vs shared genes across tissues was tested using Fisher’s exact test (fisher.test) in R.

Gene enrichment for rare diseases and successful drugs

Rare disease genes were downloaded from the OMIM catalog (https://www.omim.org/)
accessed June 5" 2018 (Supplementary Data 5). The catalog of successful drug targets was
obtained from Pharmaprojects accessed August 5, 2017
(https://pharmaintelligence.informa.com/products-and-services/data-and-
analysis/pharmaprojects) . Each indication was manually mapped MeSH terms and disease
categories. Indications that did not fit into a category were annotated as “Miscellaneous”. A
gene was considered a successful target if there was an approved drug in the United State or
European Union that targeted it. Due to the proprietary nature of the gene-indication pairs within
the Pharmaproject data, we are unable to share the specific list used here in the supplemental
information. However, we included a supplemental table specifying the number of successful
drugs per MeSH and the number of targets with PICCOLO evidence. Moreover, we repeated
our successful target analysis using the publicly available target-indication data from Nelson et.
al**. and observed nearly identical results (Supplementary Fig. 10).

To test for enrichments, we constructed a 2 x 2 contingency table of genes present in
GENCODE (v17) or RefSeq (v37.1). Each box was populated with counts based on the
presence or absence of the gene as a successful target (or rare disease gene) versus the
presence or absence of a positive PICCOLO colocalization for that gene. Tissue-specific
PICCOLO genes were defined as genes within loci where the colocalized xQTLs were all from a
single tissue group. Gene-specific PICCOLO genes were defined as genes within loci where
only a single gene was colocalized. Tissue and gene specific loci were defined as those within
loci where a single gene was colocalized and the corresponding xQTL(s) were from a single
tissue group. Odds ratios and 95% confidence intervals calculated using fisher.test in R.
Statistical methods used to calculate enrichments are the same as those published in Nelson et.
al*,

To determine the percentage of successful trait-indication pairs with evidence of colocalization
estimated by PICCOLO, we first selected trait indication-pairs that had an approved drug in the
United States or European Union. Next, we removed all target-indication pairs with MeSH terms
that did not have at least 1 genome-wide significant association in the GWAS catalog from the
analysis (Supplementary Data 6). A target-indication pair was annotated as positive if the target
gene matched the colocalized gene and the drug indication was in the same trait category as
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the GWAS trait. 95% confidence intervals were calculated using the normal approximation
method.
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Figure 1: Colocalization of genetic signals using PICCOLO.

(a) Colocalization requires full summary statistics from both the GWAS and xQTL studies. (b)
PICCOLO uses association top hits and estimates the “missing” data using PICS. The PICS
sets are then colocalized using the coloc method.
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Figure 2: Calibration of PICCOLO with coloc

Using index SNPs, PICCOLO was evaluated for the ability to predict colocalization (coloc H4 =
0.80). (a) ROC comparing PICCOLO to coloc in a tissue agnostic manner. (b) Using the
balanced PICCOLO parameters (orange dashed line, H4 2 0.90 and an xQTL P <1 x 10®),
PICCOLO has a positive predictive value (red line) of 0.89 and sensitivity (blue line) of 0.52 for
coloc (coloc H4 = 0.8).
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Figure 3: Colocalization of the NHGRI-EBI GWAS Catalog with xQTLs using PICCOLO.
(a) Distribution of the number of colocalizations (tissue-gene pairs) at each GWAS association.
(b) Distribution of the number of PICCOLO genes at each association. (c) Distribution of the
number of tissue groups with colocalizations at each GWAS association.
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Figure 4: PICCOLO results across different trait categories.

(a) Number of PICCOLO genes that are shared across one or more trait categories (beige) and
number of PICCOLO genes that are specific to a trait category (grey). (b) Proportion of
PICCOLO genes that map to a single therapy category (blue), 2-4 categories (green), and >4
categories (yellow). (c) Enrichment of QTL tissues for trait category specific PICCOLO genes
across neurological/behavioral, endocrine, cardiovascular, inflammation, and blood-related
traits. Bars show 95% confidence intervals. All enrichments are significant at an FDR of 0.5. If a
trait category or tissue is not shown, it means that the category specific genes were not
enriched for PICCOLO genes that colocalize in those tissues.
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Figure 5: Enrichment of rare disease genes, approved drug targets and overlap

between drug targets and PICCOLO genes.

Enrichments for rare disease genes in OMIM (top), and approved drug targets in the United
States and the European Union (bottom). Enrichment was tested for genes nearest to GWAS
index SNPs (Nearest genes), genes that were found to not be colocalized using PICCOLO
(Non-PICCOLO genes), all genes found to be colocalized using PICCOLO (All PICCOLO
genes), PICCOLO genes within loci where only one gene is colocalized (Gene-specific loci
PICCOLO genes), genes within loci where colocalization occur in a single tissue (Tissue-
specific loci PICCOLO genes), and PICCOLO genes within loci where a single gene is
colocalized in a single tissue (Gene+tissue-specific loci PICCOLO genes). Bars show 95%
confidence intervals.
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Supplementary Figure 1: PICCOLO H4 Distribution
Distribution of non-zero PICCOLO H4 scores for associations with 13 traits from the Elliot et. al.

analysis of the UKBiobank?®® colocalized with GTEX.
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Supplementary Figure 2: PICCOLO sensitivity tissue specific

(a) Using the tissue specific approach, a ROC compares the sensitivity (y-axis) to the false
discovery rate (x-axis) of PICCOLO predicting colocalization at multiple coloc H4 thresholds
(colored lines). (b) The positive predictive value (y-axis) compared the true positive rate (x-axis)
of PICCOLO predicting colocalization across multiple coloc H4 thresholds (colored lines).
Similar to panels (a) and (b), panels (c) and (d) compare the same test statistics, respectively,
while holding the PICCOLO H4 (0.9) and coloc H4 (0.8) constant while titrating the xQTL P-
values (colored dots).
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Supplementary Figure 3: PICCOLO sensitivity tissue agnostic

(a) Using the tissue agnostic approach, a ROC compares the sensitivity (y-axis) to the false
discovery rate (x-axis) of PICCOLO predicting colocalization at multiple coloc H4 thresholds
(colored lines). (b) The positive predictive value (y-axis) compared the true positive rate (x-axis)
of PICCOLO predicting colocalization across multiple coloc H4 thresholds (colored lines).
Similar to panels (a) and (b), panels (c) and (d) compare the same test statistics, respectively,
while holding the PICCOLO H4 (0.9) and coloc H4 (0.8) constant while titrating the xQTL P-
values (colored dots).
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Supplementary Figure 4: The distribution of the tested GWAS minor allele frequency
index SNPs used to compare PICCOLO and coloc.

Using the PICCOLO and coloc comparison dataset, PICCOLO results were determined to be
either false negatives (fn, top), false positives (fp, mid), or true positives (tp, bottom) based on
the results of coloc (H4 = 0.80). For each category, the distribution (y-axis) of the minor allele
frequency (x-axis) of the GWAS index SNP is plotted.
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Supplementary Figure 5: Comparison of the Wakefield and PICS GWAS credible set
size and max posterior probability.

Using the PICCOLO and coloc comparison dataset, PICCOLO results were determined to be
either false negatives (fn, top), false positives (fp, mid), or true positives (tp, bottom) based on
the results of coloc (H4 = 0.80). For each category, the distributions of the difference between
Wakefield (used for coloc) and the PICs max posterior probability (left panels) and number of
SNPs (right panels) for each GWAS credible set are plotted. The vertical blue line illustrates the
count where there were no differences between the two methods.
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Supplementary Figure 6: distribution of differences in H2, H3, and H4 for false positives,
and true positives

Using the PICCOLO and coloc comparison dataset, PICCOLO results were determined to be
either false negatives (fn, top), false positives (fp, mid), or true positives (tp, bottom) based on
the results of coloc (H4 = 0.80). For each category, the distribution (y-axis) of the alternative
coloc hypotheses test posterior probabilities (x-axis, test_pp) are plotted.
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Supplementary Figure 7: Enrichment of approved drug targets using a PICCOLO
H4=>09andan QTLP <1 x 10-5

Enrichment was is tested for genes nearest to GWAS index SNPs (Nearest genes), genes that
were found to not be colocalized using PICCOLO (Non-PICCOLO genes), all genes found to be
colocalized using PICCOLO (All PICCOLO genes), PICCOLO genes within loci where only one
gene is colocalized (Gene-specific loci PICCOLO genes), genes within loci where colocalization
occur in a single tissue (Tissue-specific loci PICCOLO genes), and PICCOLO genes within loci
where a single gene is colocalized in a single tissue (Gene+tissue-specific loci PICCOLO
genes). Bars show 95% confidence intervals.
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Supplementary Figure 8: Enrichment of approved drug targets for all genes and the
druggable genome.
PICCOLO gene enrichment for approved drug targets compared to all protein coding genes in
the genome (blue) and all druggable genes (red). Enrichment was is tested for genes nearest to
GWAS index SNPs (Nearest genes), genes that were found to not be colocalized using
PICCOLO (Non-PICCOLO genes), all genes found to be colocalized using PICCOLO (All
PICCOLO genes), PICCOLO genes within loci where only one gene is colocalized (Gene-
specific loci PICCOLO genes), genes within loci where colocalization occur in a single tissue
(Tissue-specific loci PICCOLO genes), and PICCOLO genes within loci where a single gene is
colocalized in a single tissue (Gene+tissue-specific loci PICCOLO genes). Bars show 95%
confidence intervals.
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Supplementary Figure 9: Enrichment of approved drug targets in relation to xQTL P-
value cutoff
Points show the mean PICCOLO gene enrichment at XxQTL —logio(P-value cutoff) (x-axis).
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Supplementary Figure 10: Enrichment of approved drug targets using the Nelson et. al.
2015 successful target-indication pairs dataset.

Enrichment was is tested for genes nearest to GWAS index SNPs (Nearest genes), genes that
were found to not be colocalized using PICCOLO (Non-PICCOLO genes), all genes found to be
colocalized using PICCOLO (All PICCOLO genes), PICCOLO genes within loci where only one
gene is colocalized (Gene-specific loci PICCOLO genes), genes within loci where colocalization
occur in a single tissue (Tissue-specific loci PICCOLO genes), and PICCOLO genes within loci
where a single gene is colocalized in a single tissue (Gene+tissue-specific loci PICCOLO
genes). Bars show 95% confidence intervals.
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Supplementary Tables
Supplementary Table 1: QTLs sources used in PICCOLO analyses

First Author PMID TISSUE QTL type
GTEX 29022597 Multi eQTL
Lee 24604203 Dendritic cells (derived from monocytes) eQTL
Barreiro 22233810 Dendritic cells eQTL
Fairfax 24604202 Monocytes eQTL
Kim-Hellmuth 28814792 Monocytes eQTL
Ye 25214635 CD4+ T cells eQTL
Nédélec 27768889 Monocyte derived Macrophage eQTL
Caliskan 25874939 PBMCs eQTL
Davenport 26917434 Leucocytes eQTL
Quach 27768888 Monocytes eQTL
Franco 23878721 Whole blood eQTL
Naranbhai 26151758 Neutrophils eQTL
Raj 24786080 CD4(+) T cells and monocytes eQTL
Ferraro 24610777 CD4(+) T cells and T regs eQTL
Fairfax 22446964 monocytes and B-cells eQTL
Kasela 28248954 CD4+ and CD8+ T cells eQTL
Westra 24013639 whole blood eQTL
Zhernakova 27918533 whole blood eQTL
Hao 23209423 lung eQTL
Qui 21949713 sputum from COPD patients (ECLIPSE) pQTL
Parisien 28564610 Dorsal Root Ganglion eQTL
UBIOPRED NA Serum from asthma patients poQTL
Schadt 18462017 Liver eQTL
Innocenti 21637794 Liver eQTL
Suhre 28240269 plasma pQTL
Sun 29875488 plasma pQTL
Varshney 28193859 islet eQTL
Ko 28575649 kidney eQTL
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Supplementary Table 2: GWAS used for comparison between coloc and PICCOLO

Analysis Description ncase ncohort

nealel7 1239 Current tobacco smoking (UKB Broad) NA 337030

nealel7 1558 Alcohol intake frequency. (UKB Broad) NA 336965

nealel7 20002 1111 Non-cancer illness code, self-reported: asthma (UKB Broad) 39049 NA

nealel7_20002_1112 Non-cancer illness code, self-reported: chronic obstructive 1179 NA
airways disease/copd (UKB Broad)

nealel7_20002_1473 Non-cancer illness code, self-reported: high cholesterol (UKB 41296 NA
Broad)

nealel7_2090 Seen doctor (GP) for nerves, anxiety, tension or depression (UKB | 115328 NA
Broad)

nealel7 21001 Body mass index (BMI) (UKB Broad) NA 336107

nealel7 47 Hand grip strength (right) (UKB Broad) NA 335842

nealel7 50 Standing height (UKB Broad) NA 336474

nealel7_6150_4 Vascular/heart problems diagnosed by doctor: High blood 91033 NA
pressure (UKB Broad)

nealel7 6159 4 Pain type(s) experienced in last month: Back pain (UKB Broad) 85221 NA

nealel7_78 Heel bone mineral density (BMD) T-score, automated (UKB NA 194398
Broad)

nealel7_125 Diagnoses - main ICD10: 125 Chronic ischemic heart disease 8755 NA
(UKB Broad)



https://doi.org/10.1101/808444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/808444; this version posted October 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Table 3: Tissue grouping key for xQTL studies

Tissue group Tissue type Cell type

blood b-cell B-cell

blood t-cell CD4

blood t-cell CD4-cis-allconditions
blood t-cell CD4-meta-cis

blood dendritic Dendritic-cells-Flu
blood dendritic Dendritic-cells-IFNb
blood dendritic Dendritic-cells-LPS
blood dendritic Dendritic-cells-naive
blood dendritic Dendritic-cells-re-Flu
blood dendritic Dendritic-cells-re-IFNb
blood dendritic Dendritic-cells-re-LPS
blood dendritic Dendritic-MTB

blood dendritic Dendritic-naive

blood dendritic Dendritic-re-MTB

lung Epithelium-airway-cis Epithelium-airway-cis
lung Epithelium-airway-trans Epithelium-airway-trans

adipose_tissue

gtex-vbp-adipose-subcutaneous

gtex-v6p-adipose-subcutaneous

adipose_tissue

gtex-vbp-adipose-visceral-omentum

gtex-v6p-adipose-visceral-omentum

adrenal_gland

gtex-vép-adrenal-gland

gtex-v6p-adrenal-gland

blood vessel gtex-vep-artery-aorta gtex-v6p-artery-aorta

blood_vessel gtex-vep-artery-coronary gtex-vbp-artery-coronary

blood vessel gtex-vep-artery-tibial gtex-vep-artery-tibial

bladder gtex-vep-bladder gtex-v6p-bladder

brain gtex-vép-brain-amygdala gtex-v6p-brain-amygdala

brain gtex-v6p-brain-anterior-cingulate-cortex-ba24 gtex-v6p-brain-anterior-cingulate-cortex-ba24
brain gtex-vbp-brain-caudate-basal-ganglia gtex-v6p-brain-caudate-basal-ganglia

brain gtex-vép-brain-cerebellar-hemisphere gtex-v6p-brain-cerebellar-hemisphere

brain gtex-vep-brain-cerebellum gtex-v6p-brain-cerebellum

brain gtex-v6p-brain-cortex gtex-v6p-brain-cortex

brain gtex-v6p-brain-frontal-cortex-ba9 gtex-v6p-brain-frontal-cortex-ba9

brain gtex-vép-brain-hippocampus gtex-v6p-brain-hippocampus

brain gtex-v6p-brain-hypothalamus gtex-v6p-brain-hypothalamus

brain gtex-v6p-brain-nucleus-accumbens-basal-ganglia gtex-v6p-brain-nucleus-accumbens-basal-ganglia
brain gtex-v6p-brain-putamen-basal-ganglia gtex-v6p-brain-putamen-basal-ganglia

brain gtex-v6p-brain-spinal-cord-cervical-c-1 gtex-v6p-brain-spinal-cord-cervical-c-1

brain gtex-vbp-brain-substantia-nigra gtex-v6p-brain-substantia-nigra

breast gtex-vbp-breast-mammary-tissue gtex-v6p-breast-mammary-tissue

blood b-cell gtex-v6p-cells-ebv-transformed-lymphocytes
skin gtex-v6p-cells-transformed-fibroblasts gtex-v6p-cells-transformed-fibroblasts
cervix_uteri gtex-vep-cervix-ectocervix gtex-vbp-cervix-ectocervix

cervix_uteri gtex-vbp-cervix-endocervix gtex-vbp-cervix-endocervix

colon gtex-v6p-colon-sigmoid gtex-v6p-colon-sigmoid

colon gtex-vbp-colon-transverse gtex-vbp-colon-transverse

esophagus gtex-vbp-esophagus-gastroesophageal-junction gtex-vbp-esophagus-gastroesophageal-junction
esophagus gtex-vép-esophagus-mucosa gtex-v6p-esophagus-mucosa

esophagus gtex-v6p-esophagus-muscularis gtex-vbp-esophagus-muscularis

fallopian_tube

gtex-v6p-fallopian-tube

gtex-v6p-fallopian-tube

heart

gtex-vbp-heart-atrial-appendage

gtex-vbp-heart-atrial-appendage

heart gtex-vbp-heart-left-ventricle gtex-vbp-heart-left-ventricle
kidney gtex-vep-kidney-cortex gtex-v6p-kidney-cortex
liver gtex-vep-liver gtex-vép-liver

lung Lung gtex-v6p-lung

salivary_gland

gtex-v6p-minor-salivary-gland

gtex-v6p-minor-salivary-gland

muscle

gtex-vép-muscle-skeletal

gtex-v6p-muscle-skeletal

nerve gtex-vep-nerve-tibial gtex-vbp-nerve-tibial

ovary gtex-vep-ovary gtex-vép-ovary

pancreas gtex-v6p-pancreas gtex-v6p-pancreas

pituitary gtex-vep-pituitary gtex-v6p-pituitary

prostate gtex-v6p-prostate gtex-v6p-prostate

skin gtex-v6p-skin-not-sun-exposed-suprapubic gtex-v6p-skin-not-sun-exposed-suprapubic
skin gtex-v6p-skin-sun-exposed-lower-leg gtex-v6p-skin-sun-exposed-lower-leg
small_intestine gtex-vép-small-intestine-terminal-ileum gtex-vbp-small-intestine-terminal-ileum
spleen gtex-v6p-spleen gtex-v6p-spleen

stomach gtex-vép-stomach gtex-vbp-stomach
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testis gtex-vep-testis gtex-v6p-testis
thyroid gtex-v6p-thyroid gtex-v6p-thyroid
uterus gtex-v6p-uterus gtex-v6p-uterus
vagina gtex-vbp-vagina gtex-v6p-vagina
blood blood gtex-v6p-whole-blood
liver hepatocytes HLC

ipsc ipsc IPSC

pancreas islet Islet

kidney kidney Kidney

blood leukocyte Leuco-sepsis

liver liver Liver

lung lung Lung-cis

blood macrophage Macro-Listeria
blood macrophage Macro-naive

blood macrophage Macro-re-Listeria
blood macrophage Macro-re-Salmonella
blood macrophage Macro-Salmonella
blood monocyte Mono

blood monocyte Monocyte

blood monocyte Mono-Flu

blood monocyte Mono-IEN

blood monocyte Mono-LPS

blood monocyte Mono-LPS-24h
blood monocyte Mono-LPS-2h
blood monocyte Mono-LPS-6h
blood monocyte Mono-LPS-90m
blood monocyte Mono-mdp-6h
blood monocyte Mono-mdp-90m
blood monocyte Mono-naive

blood monocyte Mono-Pam3CSK4
blood monocyte Mono-R848

blood monocyte Mono-re-Flu

blood monocyte Mono-re-LPS
blood monocyte Mono-re-LPS-6h
blood monocyte Mono-re-LPS-90m
blood monocyte Mono-re-mdp-6h
blood monocyte Mono-re-mdp-90m
blood monocyte Mono-re-Pam3CSK4
blood monocyte Mono-re-R848
blood monocyte Mono-re-rna-6h
blood monocyte Mono-re-rna-90m
blood monocyte Mono-rna-6h
blood monocyte Mono-rna-90min
blood neutrophil Neutro

blood blood PBMC-naive

blood blood PBMC-re-rv

blood blood PBMC-rv

plasma plasma Plasma-pQTL
plasma plasma Serum-cis-pQTL
plasma plasma Serum-pQTL-cis
plasma plasma Serum-trans-pQTL
lung sputum Sputum-COPD-patients-ECLIPSE-cis
blood t-cell Treg

blood blood WB-naive
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