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ABSTRACT: 
Between birth and adulthood cardiomyocytes (CMs) undergo dramatic changes in size, 

ultrastructure, metabolism, and gene expression, in a process collectively referred to as CM 
maturation. The transcriptional network that coordinates CM maturation is poorly understood, 
creating a bottleneck for cardiac regenerative medicine. Forward genetic screens are a 
powerful, unbiased method to gain novel insights into transcriptional networks, yet this 
approach has rarely been used in vivo in mammals because of high resource demands. Here 
we utilized somatic mutagenesis to perform the first reported in vivo CRISPR genetic screen 
within a mammalian heart. We discovered and validated several novel transcriptional regulators 
of CM maturation. Among them were RNF20 and RNF40, which form a complex that 
monoubiquitinates H2B on lysine 120. Mechanistic studies indicated that this epigenetic mark 
controls dynamic changes in gene expression required for CM maturation. These insights into 
CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach 
will enable unbiased forward genetics across mammalian organ systems. 
 
INTRODUCTION 

At birth, mammalian cardiomyocytes (CMs) undergo maturation, a dramatic and coordinated set 

of structural, metabolic, and gene expression changes that enable them to sustain billions of cycles of 

forceful contraction during postnatal life1,2. Fetal CMs are primarily glycolytic, mitotic, and contract 

against low resistance, whereas adult CMs rely on oxidative phosphorylation, are post-mitotic, and 

support heart growth by increasing in size. Sarcomeric and ultrastructural adaptations, such as plasma 

membrane invaginations known as T-tubules, facilitate synchronized and forceful CM contraction 

against high resistance. Unfortunately, CMs induced from stem cells or other non-myocyte sources 

resemble fetal CMs and lack the hallmark features of mature, adult CMs3,4. This “maturation bottleneck” 

remains a major barrier to using stem cell-derived CMs for disease modeling or therapeutic cardiac 

regeneration. 

The regulatory mechanisms that govern the diverse facets of CM maturation are poorly 

understood, in large part due to the lack of a suitable in vitro model and challenges associated with in 

vivo approaches. Although mosaic gene manipulation strategies have allowed more precise 

interpretation of in vivo experiments with respect to the regulation of maturation5–7, the low throughput 

of standard in vivo approaches remains a major barrier. To overcome this obstacle, we sought to 

perform an in vivo forward genetic screen in mice. The resource intensity of traditional forward genetics 

has precluded their widespread use in mammals, but Cas9 mutagenesis directed by a library of guide 

RNAs (gRNAs) makes introduction and recovery of gene mutations highly efficient8–10, and can be 
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Fig. 1: High through-put in vivo CRISPR-Cas9 pooled screen for regulators of cardiomyocyte matura�on. a, Screen
overview. b,Myh7YFP expression is restricted to neonatal stage. c, Neonatal mosaic double knockout of GATA4 and
GATA6 by CASAAV results in persistent MYH7YFP expression. d, Sample clustering by r correla�on. e, DESeq2 differen�al
expression analysis of individual gRNAs. GATA4 and GATA6 posi�ve control gRNAs are indicated. f, Enrichment of
posi�ve and nega�ve control gRNAs within YFP+ CMs. g, Gene deple�on calculated by MAGeCK. h, Gene enrichment
calculated by MAGeCK.
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expeditiously deployed mammals in vivo5,11,12. This capability has been used for forward genetic 

screens in cultured cells10,13,14, but its ability to interrogate endogenous biological processes in 

mammals in vivo has yet to be fully realized. 

 

RESULTS: 
CRISPR loss-of-function screen identifies essential regulators of CM maturation 

We developed an in vivo forward genetic screen to discover factors that regulate murine CM 

maturation (Fig. 1a). We employed CRISPR/Cas9 AAV9 (CASAAV) based somatic mutagenesis5 and 

a gRNA library targeting murine transcriptional regulators to create thousands of distinct mutations 

within different CMs of a single mammalian heart. We screened these mutant CMs with a flow 

cytometry-based single cell assay of CM maturation. Sequencing of gRNAs from immature CMs 

compared to the input library identified gRNAs enriched or depleted in immature CMs, i.e. gRNAs that 

target genes that cell autonomously promote or antagonize CM maturation, respectively. 

To separate individual CMs with an immature or mature phenotype, we took advantage of 

developmentally regulated sarcomere gene isoform switching, a hallmark of CM maturation1,2. In 

mouse, a prominent switch is from myosin heavy chain 7 (Myh7) expression in the fetal and neonatal 

periods to Myh6 in mature CMs. In Myh7YFP mice15, YFP is fused to endogenous MYH7, such that YFP 

fluorescence is controlled by endogenous Myh7 regulatory elements15. We hypothesized that Myh7YFP 

could be used as a single cell readout of CM maturation state. Examination of Myh7YFP myocardium 

from neonatal and adult mice verified that neonatal CMs exhibited strong YFP fluorescence, whereas 

YFP was nearly completely silenced in adult CMs (Fig. 1b). Since mutation of both Gata4 and Gata6 

impair CM maturation (Suppl. Fig. 1 and ref. 16), we next tested the effect of Gata4/Gata6 mutation on 

Myh7YFP expression. We found that CASAAV-Gata4-Gata6, which expresses CM specific Cre and 

gRNAs targeting both Gata4 and Gata6 (Suppl. Fig. 1a), markedly increased the fraction of transduced 

CMs that expressed YFP from 11% to 86% (Fig. 1c). These data show that Gata4/6 mutation inhibits 

normal CM maturation, including maturational Myh7 silencing.  

Because the coordination of CM maturation suggested transcriptional regulation, we focused 

our screen on transcriptional regulators. We developed a pooled CASAAV library comprised of AAV 

expressing CM specific Cre and a gRNA designed to target a candidate gene. The candidate gene list 

contained 1894 transcription factors and epigenetic modifiers. Given that GATA4/6 regulate multiple 

aspects of CM maturation (Suppl. Fig. 1), we also included 259 genes differentially expressed in P6 

Gata4/6 high dose double KO CMs, and 291 genes with strong adjacent G4 binding at P0 (Suppl. 

Table. 1). In total, 2444 genes were selected for targeting. We used a computational pipeline designed 

to optimize gRNA on-target activity and yield of frameshift mutations17,18 to design six guides for each  
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Fig. 2: Valida�on of top candidates. a, Top ten candidates ranked high to low by MAGeCK enrichment score. The six
guides for each candidate are ranked by individual enrichment, where higher enriched gRNAs have a smaller rank.
Candidates marked in yellow induced robust persistent ac�va�on of Myh7YFP when individually targeted by the most
highly enriched gRNA. b, Quan�fica�on of Myh7YFP ac�va�on within transduced (GFP+) CMs. n = 3. c, Quan�fica�on of
mononuclea�on among GFP+ control CMs or YFP+ candidate depleted CMs. n = 3. d-g, Normalized length, width,
length to width ra�o, and area for control and candidate depleted CMs. Measurements from YFP+ CMs are normalized
to YFP- cells from the same heart. h-i, Normalized T-tubule transverse element density and longitudinal element density
for control and candidate depleted CMs as measured by AutoTT so�ware. Bar plots show mean ± SD. Student’s t test:
*P<0.05, **P<0.001.
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gene. 7 human gRNAs that do not target the mouse genome were also included as negative controls. 

These 14671 gRNAs were synthesized as an oligonucleotide pool, cloned into the CM specific 

CASAAV vector, and packaged into AAV9 (see Methods). To introduce a positive control, a small 

amount of the CASAAV-Gata4-Gata6 vector was spiked into the AAV pool. 

We subcutaneously injected the AAV library into 45 newborn R26Cas9-GFP/+;Myh7YFP/+ pups at a 

dose sufficient to transduce approximately 50% of the myocardium. At four weeks of age mice were 

sacrificed and CMs isolated. 15% of the isolated CMs from each heart were set aside as an unsorted 

input sample, while YFP+ CMs were sorted from the remaining 85% via flow cytometry (Suppl. Fig. 2a). 

CMs from three hearts were pooled for sorting, resulting in 15 input and 15 YFP+ samples. Following 

RNA isolation, gRNAs were specifically reverse transcribed, converted to barcoded amplicon libraries, 

and sequenced to an average depth of 4.8M reads. 11 YFP+ and 14 input samples passed quality 

control (Suppl. Fig. 2b-f), and these samples separated into distinct clusters (Fig. 1d). 834 gRNAs 

showed significant enrichment within YFP+ samples (adj. P < 0.001), with the Gata4 and Gata6 positive 

control gRNAs being among the most enriched (Fig. 1e). The seven human-targeting negative control 

gRNAs did not show enrichment (Fig. 1f). We used MaGeCK19 to consolidate the six gRNA enrichment 

scores per gene into a single score. gRNAs targeting 123 genes were significantly enriched within YFP+ 

CMs, while gRNAs targeting 148 genes were depleted (P < 0.05). The top ranked depleted gene was 

Myh7 (Fig. 1g), which was expected given that YFP fused to Myh7 was the screen readout. Among the 

enriched genes were thyroid hormone receptor alpha (Thra) and nucleolin (Ncl), which are established 

regulators of maturation 20,21, as well as many novel candidates (Fig. 1h; Suppl. Table 2), including both 

Rnf20 and Rnf40, which encode components of an epigenetic complex that monoubiquitinates histone 

2B22,23.  

To validate the top 10 most enriched candidates (Fig. 2a), the most highly enriched gRNA for 

each factor was cloned into a CASAAV vector and used to individually deplete each factor at birth. To 

focus on cell autonomous effects and avoid secondary effects related to organ dysfunction5–7, we used 

an AAV dose that transduced a small fraction of CMs. Among mosaic depleted cells, we observed 

robust upregulation of Myh7YFP for seven of the ten candidates: Rnf40, Rnf20, Taf3, Taf2, Thra, Zbtb7a 

and Ncl (Fig. 2a,b; Suppl. Fig. 3a). CASAAV vectors targeting the remaining three candidates, Poc1b, 

Setd6, and Eif3i, caused little YFP activation (Fig. 2a,b, Suppl. Fig. 3a). Consequently, we focused 

subsequent analyses on the seven target genes that resulted in robust upregulation of Myh7YFP. 

We analyzed the effect of individual CASAAV vectors on CM nucleation, size, and T-tubulation, 

additional hallmarks of maturation. Immature murine CMs are mononuclear and become predominantly 

binuclear during maturation24, and this polyploidization has been implicated in the reduced regenerative 

potential of mature CMs25–27. CMs markedly increase in cell size between birth and adulthood28, as  
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cellular hypertrophy accounts for the postnatal increase in heart size required to meet intensified 

postnatal demands. T-tubules, highly organized invaginations of the cell membrane, are necessary 

for fast and synchronized excitation-contraction coupling in large mature CMs. T-tubules develop in 

mice by the end of the second postnatal week29. The seven CASAAV vectors or AAV-Cre lacking 

gRNA (control) were delivered individually to newborn mice at a mosaic dose. At one month of age, 

CMs were dissociated, fixed, and stained to visualize T-tubules (CAV3) and nuclei (DAPI). Results 

were compared between YFP+ CMs and control CMs, marked by GFP. Five of the seven CASAAV 

vectors (Rnf40, Thra, Taf3, Taf2, and Ncl) increased mononucleation, decreased cell size, and 

disrupted T-tubules (Fig. 2c-i; Suppl. Fig. 3a,b). CASAAV-Rnf20 impaired maturational growth and T-

tubulation, but the increase in mononucleation did not reach statistical significance (P=0.0763).  

Zbtb7a increased mononucleation and impaired T-tubulation, but did not influence maturational 

hypertrophy. These results validated 7 of the 10 candidates as regulators of multiple facets of CM 

maturation, and also demonstrate that the overall maturational program can be separated into 

independently regulated, dissociable sub-programs. 

 

RNF20/40 depleted CMs display morphological and transcriptional characteristics of immaturity 
Rnf20 and Rnf40 were two of the most enriched genes in the screen, and their depletion broadly 

impaired CM maturation. These genes are E3 ubiquitin ligases that together form a complex that 

monoubiquitinates histone 2B at lysine 120 (H2Bub1)30,31. Human genetic studies have implicated de 

novo Rnf20/Rnf40 mutations in congenital heart disease32,33. The postnatal cardiac functions of these 

genes have not been studied. For these reasons, we investigated the mechanisms by which RNF20/40 

regulate CM maturation. We created a single CASAAV vector (CASAAV-RNF20/40) containing gRNAs 

that target both factors and validated that it depleted RNF20/40 and H2Bub1 (Fig. 3a,b). When given 

at a dose that transduced most CMs, CASAAV-RNF20/40 caused cardiac dysfunction and death (Fig. 

3c,d). At a dose that transduced a small fraction of CMs (Fig. 3e), RNF20/40 depletion cell 

autonomously impaired maturational silencing of Myh7YFP (Fig. 3e,f), maturational growth (Fig. 3g,h), 

and maturational multi-nucleation (Fig. 3i). While sarcomere organization was unaffected (Fig. 3j,k), we 

observed dramatic defects in T-tubule organization (Fig. 3i,m). 

We next performed transcriptional profiling to measure the effect of RNF20/40 depletion on gene 

expression. Newborn R26fsCas9-2A-GFP/+;Myh7YFP/+ mouse pups were injected with a mosaic dose of 

CASAAV-RNF20/40 vector, or a control vector containing Cre without gRNAs. At P28 hearts were 

dissociated and flow cytometry was used to recover YFP+ CMs transduced with CASAAV-RNF20/40 

or control GFP+ CMs transduced with Cre. RNA from each group was isolated and transcriptomes 

analyzed by RNA-seq (Fig. 4a). Principal component analysis showed clear separation of sample  
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Fig. 4: Transcrip�onal profiling of mosaic RNF20/40 depleted CMs. a, Experiment overview. b, Principal component
analysis of RNA-seq replicates. c, Differen�ally expressed genes. d, GSEA with a custom “Adult Specific Genes” gene set.
e, GSEA with a custom “Neonatal Specific Genes” gene set. f, GSEA of gene list ranked by differen�al expression in
RNF20/40 KO CMs.
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groups (Fig. 4b), and differential gene expression analysis revealed approximately 1400 upregulated 

and 1100 downregulated genes (Padj < 0.05, Fig. 4c, and Suppl. Table 3). The ratio of fetal (Tnni1) to 

mature (Tnni3) troponin I isoforms, a molecular signature of CM maturational state34, was increased 

by 165-fold in RNF20/40 depleted CMs (P < 0.001), with Tnni1 being the most upregulated gene in 

the dataset. To assess the genome wide impact of RNF20/40 depletion we used RNA-sequencing 

from neonatal and adult isolated wildtype CMs to construct custom gene sets consisting of the 100 

most neonatal specific, and 100 most adult specific genes. We then ranked all genes by their level of 

differential expression in the RNF20/40 depleted CMs, and used Gene Set Enrichment Analysis 

(GSEA)35 to calculate an enrichment score for each custom gene set within this ranked list. The 

genes downregulated in RNF20/40 depleted CMs were highly enriched for adult-specific genes (NES 

= -1.82; Fig. 4d), while the genes upregulated in the depleted CMs were enriched for neonatal-

specific genes (NES = 1.50; Fig. 4e). These data confirm that RNF20/40 depleted cells fail to activate 

the transcriptional network of mature CMs, but instead persistently express genes associated with 

immaturity. 

We next analyzed the RNA-seq data to identify biological processes enriched within the 

RNF20/40 differentially expressed genes. Many metabolism-related gene sets were enriched within the 

downregulated genes (Fig. 4f, Suppl. Table 5), including Fatty Acid Metabolism and PPAR Signaling, 

two pathways strongly associated with CM maturation36,37. Upregulated genes were enriched for a 

greater diversity of biological processes, with spliceosome-associated genes being most enriched (Fig. 

4f). 

 

H2Bub1 deposition directly regulates transcriptional maturation 
The RNF20/40 complex is an E3 ubiquitin ligase that monoubiquitinates H2B on lysine 120 

(H2Bub1). To determine how H2Bub1 deposition by RNF20/40 promotes normal maturation of CM 

gene expression, we used chromatin immunoprecipitation followed by next generation sequencing 

(ChIP-seq) to determine the genomic distribution of H2Bub1 at neonatal (P1) and mature stages (P28) 

in mouse heart apex tissue. Consistent with prior reports38, H2Bub1 predominantly occupied gene 

bodies, with greater density towards promoters. Thus, we quantified the amount of H2Bub1 deposition 

at each gene and observed reproducible signal above input at approximately 11,400 genes in the 

neonatal stage and 11,800 genes in the adult stage. Of these genes, the vast majority (>88%) were 

shared between timepoints (Fig. 5a), with a small number of unique regions (Fig. 5b, representative 

genome browser view). At either stage, genes with greater H2Bub1 generally were more highly 

expressed, although the correlation was poor (R2~0.01;Fig. 5c). However, there was a significant 

correlation between the change in H2Bub1 and the change in gene expression between stages,  
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consistent with the reported association of H2Bub1 with gene activation (Fig. 5d). Strikingly, genes 

with greater H2Bub1 were less likely to substantially change expression between stages (Fig. 5e). 

This stabilizing effect of H2Bub1 was also observed when comparing RNF20/40 depleted CMs to 

negative controls (Fig. 5f), suggesting that high H2Bub1 induces additional epigenetic mechanisms 

that limit changes in gene expression. 

Next we used GSEA to identify biological processes containing genes preferentially marked by 

H2Bub1. Several functional terms were associated with strong H2Bub1 signal at the neonatal stage 

(Nom. Pval < 0.001, NES > 1.75), with Ribosome and Oxidative Phosphorylation being the top two (Fig 

5g,h). While most genes highly marked by H2Bub1 have a stable expression profile during maturation 

(Fig. 5e), we observed that genes within several of the identified functional groups are dynamically 

expressed during maturation, and differentially expressed in RNF20/40 CMs (Fig. 5i). This included 

Oxidative Phosphorylation and TCA Cycle gene sets, suggesting that H2Bub1 deposition is directly 

required for activation of the adult metabolic gene profile. 

 
DISCUSSION 

In this study we developed a resource efficient in vivo forward genetic screen for transcriptional 

regulators of CM maturation. Our strategy uses a massively parallel approach in which the screening 

unit is the individual cell, such that thousands of individual genetic mutations can be screened using a 

small number of animals. Among the many novel genes that our screen identified as essential for CM 

maturation were Rnf20 and Rnf40, which interact to form a complex that mono-ubiquitinates histone-

2B. Depletion of Rnf20/40 broadly impaired CM maturation by disrupting H2Bub1 deposition, which 

prevented normal transcriptional changes essential for maturation. While Rnf20/40 regulate diverse 

gene sets, one common theme in our studies was regulation of the metabolic remodeling that takes 

place during CM maturation. GSEA identified lysine degradation and fatty acid metabolism as the two 

genesets most downregulated in RNF20/40 depleted CMs, while an independent GSEA based on 

H2Bub1 deposition levels identified oxidative phosphorylation and TCA cycle gene sets as 

preferentially marked. 

Mutations in pathways that regulate H2Bub1, including Rnf20 and Rnf40, have been reported in 

humans with congenital heart defects (CHD)32,33 and were recently reported to influence cardiac looping 

via regulation of motile cilia during early embryonic development32. Our results extend the function of 

Rnf20/40 into the postnatal heart, suggesting that mutations in these genes could both cause a 

structural heart defect and contribute to cardiac dysfunction after surgical repair. CHD survivors have 

a greatly increased risk of cardiovascular disease later in life39, with outcomes being diverse and difficult 

to predict. As there is substantial diversity in the range of CHD genes, additional research will be 
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necessary to characterize the role of these factors in CM maturation, to discover if functional declines 

are due to cell autonomous maturational defects, and to inform innovations in intervention. 

 

MATERIALS AND METHODS: 
Library Design and Construction 

A list of 3000+ potential transcription factors and epigenetic regulators was compiled using 

publicly available data from the Riken Transcription Factor Database40 and AnimalTFDB41). RNAseq 

data from isolated P6 wild type CMs was used to determine which factors were expressed in the 

neonatal mouse heart. Factors with an average FPKM >1 across three replicates were included in the 

screen (1735 regulators). 159 randomly selected regulators with an FPKM of 0 were included in the 

library as negative controls. In addition, 259 genes differentially expressed at P6 within GATA4/6 double 

KO CMs (adjusted p-value < 0.05), and 291 genes with strong adjacent GATA4-fbio binding at P0 were 

also included (GEO - GSE124008), for a total of 2444 genes targeted. Six gRNAs were selected for 

each gene, using CRISPR RGEN Tools Cas-Database18. The following five rules were applied, in order, 

to select the “best” six guides per gene (ie. proceed to next rule if less than six guides are available 

which meet the current rule). 1) gRNAs target constitutive exons, CDS range 5-50%, number of 

mismatches 0,1,2:1,0,0 meaning only one on-target exact match, zero off target sites with one 

mismatch, and zero off-target sites with two mismatches, and microhomology-associated out of frame 

score >60. 2) gRNAs target constitutive exons, CDS range 5-80%, number of mismatches 0,1,2:1,N,N 

and out of frame score >60. 3) gRNAs target any exon, CDS range 5-80%, number of mismatches 

0,1,2:1,N,N and out of frame score >60. 4) gRNAs target any exon, CDS range 5-80%, number of 

mismatches 0,1,2:N,N,N and out of frame score >60. 5) gRNAs target any exon, any CDS range, 

number of mismatches 0,1,2:N,N,N and any out of frame score. Approximately 63% of guides in the 

library met rule one criteria. A 5’ G was added to each gRNA to ensure optimal expression from the U6 

promoter, and gRNAs were flanked by SapI restriction sites. The 14,664 guide library was synthesized 

by Agilent as a single 80bp SUREprint oligo pool (Supplemental Table 6). The library was resuspended 

in 50ul of TE (200nM) and diluted to 33nM. 1ul of 33nM library was amplified for 10 cycles via a standard 

NEB Phusion PCR program, and 80bp library amplification primers (Supplementary Table 7), to 

produce a 200bp amplicon. Eight reactions were pooled, cleaned up via a Zymo Research DNA Clean 

and Concentrator Kit (Zymo, D4014), and 5ugs were digested with SapI for 3 hours. The 21bp gRNA 

library was purified via Invitrogen Size Select 2% gel, and seamlessly ligated into our previously 

described CASAAV vector (Addgene 132551)5,42. Ligation product was purified via Zymo DNA column, 

and electroporated into Agilent SURE Electrocompetent cells with a Bio-Rad Gene Pulser Xcell 

Electroporation System. 40ng of purified ligation product in 2ul volume was electroporated into 40ul of 
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cells. Four electroporations were conducted for a total of 160ng of ligation product. Electroporations 

were conducted at 1700V, 200 ohms resistance, 25μF capacitance, and 1mm cuvette gap. 900ul of 

SOC media was added immediately after electroporation, and bacteria were incubated at 37°C for 1hr. 

Bacteria were plated on LB agar containing ampicillin and allowed to grow for 18hrs. Approximately 

300,000 colonies (20x library coverage) were scraped into SOC media, cultured for additional 1.5hrs, 

and plasmid DNA harvested (Invitrogen Purelink HiPure Maxiprep, 210017), yielding 240ug of DNA. 

This library pool was packaged into AAV9 via PEI transfection of ten 15cm plates of HEK293T cells, 

and titered by qPCR targeting the TnT promoter, as previously described5,42.  

 

Injections, Sample Collection, and Flow Cytometry 
One day old R26fsCas9-2A-GFP/+;Myh7YFP/+ pups were subcutaneously injected with 50ul of gRNA 

library virus at a concentration of 2x1011vp/ml, spiked with a single CASAAV virus targeting both GATA4 

and GATA6 at a final concentration of 1x109vp/ml. At four weeks of age, mice were sacrificed and 

single cell CM dissociations prepared by collagenase perfusion, as previously described5,42. Atria were 

removed and discarded after perfusion, prior to dissociation. 15% of the isolated CMs (~200,000) were 

set aside as an unsorted input sample, while YFP+ CMs were sorted from the remaining 85% via FACS. 

Sorting was performed at the DANA Farber Cancer Center flow cytometry core on an Aria II cell sorter 

with 100um nozzle, and with 510/21 bandpass filter for GFP, 550/30 bandpass filter for YFP, and 525 

longpass dichroic filter to split GFP and YFP signals. CMs were sorted into Trizol (Life Technologies, 

15596026), and along with input samples, RNA was extracted via standard phase separation. CMs 

from three hearts were sorted into each RNA collection tube (45 hearts, 15 pooled samples). Trizol 

aqueous phase was transferred to a Zymo RNA Clean and Concentrator spin column (Zymo, R1015) 

and treated with DNase (Qiagen, 79254) for 20 minutes, followed by cleanup, and elution in 15ul of 

H2O for YFP samples and 120ul of H2O for Input samples. After isolation, Input RNA samples were 

pooled in groups of three to match YFP samples. 

 

NGS Library Preparation 
Reverse transcription of gRNAs and adapter addition was achieved by using a custom protocol 

with the Clontech SMART-Seq v4 Ultra Low Input RNA sequencing kit (634894). Approximately 30ng 

of RNA from YFP+ CMs or 500ng of RNA from Input CMs was reverse transcribed as directed in the 

manufacture protocol except that SMART-Seq CDS Primer IIA was replaced with a gRNA scaffold 

specific primer (Supplementary Table 7). This reverse transcription step also utilizes a template 

switching oligo to add an adapter of known sequence to the variable 5’ end of the gRNA43. cDNA was 

then amplified in two sequential rounds of PCR to add NGS sequencing adapters. In the first round of 
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amplification the full length forward read adapter was added to the 5’ end of the gRNA and a half 

adapter was added to the 3’ end (Supplementary Table 7). NEB Phusion (M0530L) was used for 5 

cycles of amplification, according to standard manufacturer protocol. First round PCR product was 

purified via Zymo DNA Clean and Concentrator column, eluted in 25ul of H2O, and 5ul used as input 

in a  20 cycle second round of amplification, which completed the reverse adapter and added a sample 

specific Illumina TruSeq multiplexing index. The resulting 220bp amplicon was purified via Invitrogen 

SizeSelect 2% gel. The concentration of each sample was assessed using the KAPA Library 

Quantitation Kit (KR0405), allowing samples to be evenly pooled and submitted for single end 75bp 

sequencing on a NextSeq500. An average sequencing depth of 4.8 million reads per sample was 

achieved. 

 

Screen NGS Analysis 
gRNA NGS libraries were trimmed to remove adapters and the gRNA scaffold, leaving only the 

20bp variable region. Bowtie2 was used to align trimmed sequence files to mm10. Counts for each 

gRNA were acquired by quantifying sequence coverage of genomic regions corresponding to the gRNA 

library via Bedtools Coverage. Differential expression of individual gRNAs in YFP+  versus Input 

samples was calculated by using gRNA counts as input for DESeq244. Differential gene representation 

in YFP+ versus Input samples was calculated using median normalized gRNA counts as input for the 

MAGeCK software package19, which consolidates scores for multiple individual gRNAs targeting the 

same gene into a single gene level enrichment score. Five samples were removed prior to MAGeCK 

analysis due to insufficient enrichment of control gRNAs, improper clustering, or poor library coverage 

(Suppl. Fig. 2). 

 

In Situ T-tubule Imaging 
CASAAV virus targeting Rnf20 and Rnf40 for double depletion was injected subcutaneously at 

P1 into R26Cas9/+;Myh7YFP/+ pups. Animals were sacrificed at P28 and hearts were perfused with the T-

tubule binding dye FM 4-64 (Thermo, T3166) at 5uM for 20 minutes, followed by imaging of on an 

Olympus FV3000R confocal microscope, as previously described5. Organization and abundance of 

transverse and longitudinal T-tubule elements was quantified using AutoTT software 45. In total 79 YFP- 

and 69 YFP+ CMs, originating from three mice, were quantified. 

 

Immunostaining 
Immunostaining was conducted as previously described42. Briefly, freshly isolated adult CMs 

were cultured on laminin coated (2ug/cm2, Life Technologies, 23017015) 12mm glass coverslips in a 
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24-well dish with DMEM plus 5% FBS and 10uM Blebbistatin (EMD Millipore, 203390) at 37°C. After 

allowing 30 minutes for cells to adhere to the laminin, CMs were fixed with 4% PFA for 10 minutes at 

room temperature, followed by permeabilization with PBST (PBS + 0.1% Triton) for 10 minutes at room 

temperature. Cells were then blocked with 4% BSA/PBS for 1hr, and incubated with primary antibody 

(Supplementary Table 8) diluted 1:500 overnight at 4°C. The next day CMs were briefly rinsed three 

times with 4% BSA/PBS and incubated with fluorescently conjugated secondary antibodies for 1 hour 

at 4°C. After rinsing three times with 4% BSA/PBS, coverslips were mounted on slides using Diamond 

Antifade mountant (Thermo, P36965), and imaged on an Olympus FV3000R confocal microscope. 

 

Western Blotting 
P7 CASAAV RNF20/40 depleted hearts were homogenized in 1ml of RIPA buffer and agitated 

at 4°C for 30 minutes. Lysates were spun at 10,000g for 10 minutes at 4°C, and the supernatant 

transferred to a new tube. 40ug of protein was boiled in 2x SDS loading buffer for 5 minutes, and loaded 

onto an Invitrogen Bolt 4-12% gradient precast mini-gel (NW04120BOX) and run at 165 volts for 45 

minutes. Protein was transferred to a pre-equilibrated PVDF membrane in Boston BioProducts transfer 

buffer (BP-190) via Biorad Trans-Blot SD Semi-Dry Transfer Cell, at 20 volts for 40 minutes. Blots were 

cut and blocked in 2% milk/TBST for 1 hour at 4°C. Blots were then incubated overnight at 4°C with 

primary antibodies for H2Bub1, Nppa, and Gapdh, in block solution. See Supplementary Table 8 for 

antibody product information and dilutions. The next day blots were rinsed in TBST and incubated with 

HRP conjugated donkey anti-rabbit secondary antibody in blocking solution for 1 hour at room 

temperature. Blots were then rinsed in TBST, incubated in Millipore Immobilon Western 

Chemiluminescent HRP Substrate (WBKLS0500) for 1 minute, and imaged on a GE Healthcare 

ImageQuant LAS4000. 

 

Echocardiography 
Echocardiography was performed on a VisualSonics Vevo 2100 machine with the Vevostrain 

software. Animals were awake during this procedure and held in a standard handgrip. The 

echocardiographer was blinded to genotype and treatment. 

 
RNA-sequencing 

One day old R26fsCas9-2A-GFP/+;Myh7YFP/+ pups were subcutaneously injected with 50ul of 

CASAAV, containing either the most enriched Rnf20 targeting gRNA and the most enriched Rnf40 

targeting gRNA in a single vector (CASAAV-Rnf20-Rnf40), or a control vector containing Cre but no 

gRNAs. Vectors were injected at a concentration of 1x1011vp/ml, which was sufficient for ~20% 
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transduction. At four weeks of age mice were sacrificed and single cell CM dissociations prepared by 

collagenase perfusion. After perfusion, ventricular apexes were dissected out and dissociated. YFP+ 

RNF20/40 depleted CMs, or control GFP+ CMs (without regard for YFP), were sorted into Trizol and 

RNA was extracted via standard phase separation. Approximately 100,000 CMs were collected from 

each of five RNF20/40 depleted and five control mice. Trizol aqueous phase was transferred to a Zymo 

RNA Clean and Concentrator spin column and treated with DNase prior to elution in 20ul H2O, as 

described above. Reverse transcription of 40ng of RNA for each sample, and library amplification, was 

achieved using the SMARTseq v4 Ultra Low Input RNA-seq kit (Clontech 634889). The standard 

manufacturer protocol was followed, with 8 cycles of amplification. To prepare amplified libraries for 

sequencing, 300 pg of each sample was enzymatically fragmented and indexed using a Nextera XT 

DNA Library Preparation Kit (Illumina FC-131-1024), and Index Kit (Illumina FC-131-1001), according 

to the standard manufacturer protocol. Single end 75 bp sequencing of pooled libraries was performed 

on a NextSeq500. After trimming the first 15 bp from sample reads to remove adapter sequences, 

reads were aligned to a fasta file of the mm10 transcriptome (ftp://ftp.ensembl.org/pub/release-

93/fasta/mus_musculus/cdna/) using Kallisto46. An average sequencing depth of ~32M pseudoaligned 

reads per sample was achieved. Kallisto counts for individual transcripts were consolidated into gene 

level counts using TxImport47, and analyzed for differential expression between control and RNF20/40 

depleted sample groups using DESeq2 (Suppl. Table 3)44. Gene ontology analysis of differentially 

expressed genes was conducted with Gene Set Enrichment Analysis35, with 1000 permutations and 

reported gene sets being limited to those containing at least 30 genes (Supplementary Table 5). For 

construction of custom gene sets RNA-sequencing data from P0 and P7 isolated mouse CMs (GEO - 

GSE124008)  was averaged to get a “neonatal” RPKM expression value, and data from 4 week and 6 

weeks of age averaged to get an “adult” value. Genes were then ranked based on the adult to neonatal 

ratio, and the highest 100 genes selected for an “adult specific gene set” and the lowest 100 for a 

“neonatal specific gene set” (Suppl. Table 4). 

 

ChIP-sequencing 
Each final ChIP-seq sample consisted of 20 apexes from bisected P1 hearts or 4 apexes from 

P28 hearts. Each sample consisted of male and female tissue in equal proportions. Tissue, either 2 

adult apexes or one litter of P1 apexes, was harvested into ice cold PBS, transferred into 1.2ml of 1% 

formaldehyde (Sigma F8775), and homogenized with a T10 Ultra Turrax homogenizer at setting 6 for 

30 seconds. Homogenate was crosslinked at room temperature on a rotator for 25 minutes. 

Formaldehyde was quenched by adding glycine to a final concentration of 500mM, and incubating for 

5 minutes at room temperature with rotation. Homogenate was then centrifuged at 3000g for 3 minutes 
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at 4°C, supernatant discarded, and tissue resuspended in 1 mL of cold PBS. This PBS wash was 

repeated for a total of three times, with the tissue pellet being resuspended in hypotonic buffer (20mM 

HEPES pH 7.5, 10mM KCl, 1mM EDTA, 0.1mM activated Na3VO4, 0.5% NP-40, 10% glycerol, 1mM 

DTT and 1:1000 Roche cOmplete protease inhibitor) after the third wash. Resuspended tissue was 

transferred into a glass douncer and dounced with pestle “B” (20x for neonatal tissue, 200x for adult). 

Lysed cells were transferred into siliconized Eppendorf tubes and  incubated on ice for 15 minutes. 

Lysates were centrifuged at 13,000g for 2 minutes at 4°C, and supernatant discarded. Pellets were 

stored in liquid nitrogen until multiple samples were ready for sonication. Prior to sonication, pellets 

were thawed, resuspended in 1ml of hypotonic buffer per 20 neonatal apexes or 2 adult apexes, and 

incubated on ice for 5 minutes. Lysate was transferred into glass douncer, and again dounced with 

pestle “B” (20x for neonatal tissue, 200x for adult). Lysate was centrifuged at 13,000g for 2 minutes at 

4°C, and the supernatant was discarded. The pellet was then resuspended in 500ul of ChIP Dilution 

Buffer (20mM Tris-Cl pH 8.0, 2mM EDTA, 150mM NaCl, 1% Triton X-100) supplemented with SDS to 

1%,  and 1:50 protease inhibitor. Samples were then equally split into two 0.65mL tubes (BrandTech 

781310 or Corning 3208) for sonication. Samples were sonicated using a Qsonica 800R, at 65% 

amplitude, 10 seconds on, 30 seconds off, for 25 minutes of on time (100 minutes total). After sonication 

the half samples were recombined in 1.5ml siliconized tubes and centrifuged at 18,500g for 5 minutes 

at 4°C. The chromatin/supernatant was transferred to a new tube, with adult samples being combined 

so that each tube represents 4 apexes. A 20ul aliquot was removed as an input sample for each 

replicate. 120ul of Life Technologies Protein A Dynabeads (10002D) were prepared for each ChIP 

sample by washing beads in 1ml of BSA solution (5%BSA/PBS) at 4°C for 20min. Wash repeated for 

a total of three times, using a magnet to collect beads and remove BSA solution between washes. After 

third wash beads were resuspended in 1ml BSA solution, 250ul of which was set aside to preclear the 

chromatin. 5ul of H2Bub1 antibody (Cell Signaling 5546), and 250ul of fresh BSA solution was added 

to the remaining 750ul of Dynabeads, and incubated overnight  at 4°C.  Sheered chromatin samples 

were pre-cleared by incubating with the 250ul aliquot of Dynabeads resuspended in 2ml of Dilution 

Buffer (20mM Tris pH=8, 2mM EDTA, 150mM NaCl, 1% Triton X-100, 1:50 Roche cOmplete protease 

inhibitor) for 1 hour at 4°C. Next the antibody-Dynabead conjugate was rinsed three times in BSA 

solution, resuspended in 150ul of Dilution Buffer, and added to the pre-cleared chromatin for a 36 hour 

incubation at 4°C. Beads were then collected on a magnet and washed three times with 1ml of LiCl 

wash buffer (1% w/v Na-Deoxycholate, 500mM LiCl, 1% NP40 Substitute, 100mM Tris pH=7.5), and 

twice with TE buffer (10mM Tris-HCl, 1mM EDTA). After removing TE buffer beads were suspended in 

75ul of SDS Elution Buffer (1% w/v SDS, 0.1M NaHCO3). Samples were then incubated at 37°C for 15 

minutes with 1000 RPM mixing. This step was repeated once and the eluates were combined. To 
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reverse crosslinking, input and immunoprecipitated samples were diluted up to 200ul with SDS Elution 

Buffer, NaCl was added to a final concentration of 200mM, and Proteinase-K to a final concentration of 

0.2mg/ml. Samples were then incubated at 65°C overnight. The next day RNase-A was added to a final 

concentration of 1mg/ml, and incubated at 37°C for 15 minutes. DNA was then purified using a Zymo 

DNA Clean and Concentrator column according to manufacturer instructions, and eluted in 100ul of 

H2O. NGS sequencing adapter addition and multiplex indexing of DNA samples was achieved using 

the KAPA Hyper Prep Kit (KAPA Biosystems KK8502) according to manufacturer instructions. 25ng of 

DNA was used as input. ChIP and input reads were aligned to mm10 using Bowtie248, and reads for 

each gene were extracted using Bedtools49. Reads for each gene, from NCBI RefSeq first transcription 

start site to last transcription stop site, were summed and normalized to get an RPKM value that served 

as an H2Bub1 binding score. Input values were subtracted from ChIP values for the final score. 
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Supplementary Figure 1. GATA4 and GATA6 are required for normal CM maturation. a, CASAAV-Gata4-Gata6
vector. AAV genome encoded CM specific Cre and gRNAs that target Gata4 and Gata6. We administered CASAAV-
Gata4-Gata6 at a low dose to postnatal day 1 (P1) mouse pups carrying Cre-activatable Cas9-2A-GFP and Myh7YFP
(R26Cas9-GFP;Myh7YFP). b, GATA4 and GATA6 depletion efficiency. We fixed hearts at P10 for GATA4 and GATA6
immunostaining. Representative section stained for GATA4 is shown. GFP marked transduced cells. c, Quantification of
GATA4 and GATA6 depletion. Greater than 90% and 60% of the transduced CMs lost GATA4 and GATA6
immunoreactivity, respectfully. d-g, Quantification of size and dimensions in isolated P28 CMs, when maturation is
normally largely complete. h, Imaging of the T-tubule network by FM4-64 staining showed dramatic defects. i,
Representative image of α-actinin (ACTN2) immunostaining. j, Quantification of sarcomere organization. k, Quantification
of sarcomere spacing.
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Supplementary Fig. 2: CRISPR screen quality control metrics a, Representa�ve FACS plots showing YFP expression in CMs
transduced with Cre, GATA4/6, or gRNA library. b, All screen samples, clustered by r correla�on. c, Enrichment of posi�ve
and nega�ve control gRNAs across all samples, where smaller rank indicates higher enrichment. d, Average enrichment of
GATA gRNAs and efficient Myh7 gRNAs for each sample pair. e, The number of gRNAs detected for each sample. f, Summary
table lis�ng each excluded sample and reason for exclusion. Samples numbers in red font indicates exclusion.
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