

1 **Phytotransferrin endocytosis mediates a direct** 2 **cell surface-to-chloroplast iron trafficking axis in** 3 **marine diatoms**

4

5 **Jernej Turnšek^{1,2,3,4,5,6}, John K. Brunson^{6,7}, Thomas J. Deerinck⁸, Miroslav**

6 **Oborník^{9,10}, Aleš Horák^{9,10}, Vincent A. Bielinski¹¹, Andrew E. Allen^{4,6*}**

7

8 ¹Biological and Biomedical Sciences, The Graduate School of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA;

9 ²Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; ³Wyss Institute for Biologically Inspired

10 Engineering, Harvard University, Boston, MA 02115, USA; ⁴Integrative Oceanography Division, Scripps Institution of Oceanography,

11 University of California San Diego, La Jolla, CA 92093, USA; ⁵Center for Research in Biological Systems, University of California

12 San Diego, La Jolla, CA 92093, USA; ⁶Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA 92037, USA;

13 ⁷Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La

14 Jolla, CA 92093, USA; ⁸National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA

15 92093, USA; ⁹Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic;

16 ¹⁰University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic; ¹¹Synthetic Biology
17 and Bioenergy, J. Craig Venter Institute, La Jolla, CA 92037, USA

18

19 *For correspondence: aallen@ucsd.edu (A.E. Allen)

20

21 **Abstract**

22 Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis,
23 respiration, nitrate assimilation, nitrogen fixation and reactive oxygen species defense.

24 Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to
25 cope with iron scarcity, a major factor limiting primary productivity in the global ocean.

26 Diatom phytotransferrin is internalized via endocytosis, however proteins downstream of
27 this environmentally ubiquitous iron receptor are unknown. We applied engineered

28 ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins
29 of phytotransferrin in the model diatom *Phaeodactylum tricornutum*. Proteins encoded

30 by poorly characterized iron-sensitive genes were identified including three that are
31 expressed from a chromosomal gene cluster. Two of them showed unambiguous

32 colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic,
33 domain, and biochemical analyses suggest their involvement in intracellular iron

34 processing. Proximity proteomics holds enormous potential to glean new insights into
35 iron acquisition pathways and beyond in these evolutionarily, ecologically and
36 biotechnologically important microalgae.

37

38 **Keywords**

39 diatoms, iron biogeochemistry, phytotransferrin, endocytosis, metal trafficking,
40 chloroplast, proximity proteomics, APEX2

41

42 **Glossary**

43 APEX	engineered ascorbate peroxidase (APX)
44 CREG	cellular repressor of E1A-stimulated genes
45 DAB	3,3'-diaminobenzidine
46 EYFP	enhanced yellow fluorescent protein
47 FMN	flavin mononucleotide
48 Fe'	dissolved iron pool (all unchelated iron species)
49 MS	mass spectrometry
50 HNLC	high-nutrient, low-chlorophyll
51 ISIP	iron starvation-induced protein
52 PBS	phosphate-buffered saline
53 pTF	phytotransferrin
54 RT	room temperature
55 TEM	transmission electron microscopy
56 TM	transmembrane
57 TMT	tandem mass tag
58 UTR	untranslated region
59 V-ATPase	vacuolar-type H ⁺ -ATPase
60 WT	wild type

61 **Introduction**

62

63 Iron (Fe) likely played an important role in the origin of life (*Bonfio et al., 2017; Jin et*
64 *al., 2018; Kitadai et al., 2019; Nitschke et al., 2013*) and is fundamental in extant
65 metabolisms acting as a cofactor in enzymes involved in DNA synthesis, cellular
66 respiration, nitrogen fixation and photosynthesis (*Crichton, 2016*). Early anoxic oceans
67 were rich in readily bioavailable ferrous (Fe(II)) iron, but with the rise of oxygenic
68 photosynthesis and the Great Oxygenation Event (GOE) in the Paleoproterozoic ~2.3
69 billion years ago, followed by the Neoproterozoic Oxygenation Event (NOE) ~1.5 billion
70 years later, most of it oxidized into insoluble ferric (Fe(III)) minerals which are not
71 bioavailable (*Camacho et al., 2017; Knoll et al., 2017; Och and Shields-Zhou, 2012*).
72 Conceivably, these large global shifts in ocean chemistry could have had a major role in
73 driving the evolution of novel Fe uptake mechanisms.

74

75 Fe availability limits primary productivity in high nutrient, low chlorophyll (HNLC) regions
76 which cover ~25% of the modern ocean habitat (*Boyd and Ellwood, 2010*) as
77 demonstrated by numerous large-scale Fe fertilization experiments (*Martin et al., 1994;*
78 *de Baar et al., 2005*) and natural Fe upwelling events (*Arydna et al., 2019*) invariably
79 resulting in diatom-dominated phytoplankton blooms. Dissolved Fe(III) in marine
80 environments is primarily found complexed to organic ligands (*Hutchins and Boyd,*
81 *2016; Tagliabue et al., 2018*) such as bacterially-produced siderophores (*Boiteau et*
82 *al., 2016*) and hemes (*Hogle et al., 2014*), but low (pM) amounts of unchelated labile
83 Fe(III), Fe', serve as a crucial source of iron for eukaryotic phytoplankton, particularly
84 diatoms (*Morel et al., 2008*). Diatoms, which are responsible for 45% of global primary
85 production (*Benoiston et al., 2017*), have convergently evolved phytotransferrin (pTF),
86 which serves as the basis of a high-affinity nonreductive carbonate ion-coordinated
87 ferric iron binding and acquisition pathway (*McQuaid et al., 2018; Morrissey et al.,*
88 *2015*). Phytotransferrin sequences have a broad taxonomic distribution and are
89 abundant in marine environmental genomic datasets (*Bertrand et al., 2015; Marchetti*
90 *et al., 2012*).

91 Phytotransferrins are estimated to have emerged concurrently with the NOE
92 exemplifying the link between large environmental changes and molecular innovation
93 (*McQuaid et al., 2018*). pTF (Ensembl ID: Phatr3_J54465) from the model diatom
94 *Phaeodactylum tricornutum* (*Bowler et al., 2008*) was first identified as an iron-sensitive
95 transcript and named ISIP2a (iron starvation induced protein 2a) (*Allen et al., 2008*),
96 although its expression levels remain relatively high in iron-replete conditions as well
97 (*Smith et al., 2016*). pTF localizes to the cell surface and intracellular puncta,
98 presumably endosomal vesicles (*McQuaid et al., 2018*), which is further supported by
99 the presence of an endocytosis motif in the C-terminus of the protein (*Lommer et al.,*
100 *2012*). In diatom pTF, dissolved ferric iron is coordinated synergistically with carbonate
101 (CO_3^{2-}) anion. Thus, decline in seawater carbonate concentrations due to ocean
102 acidification caused by elevated atmospheric CO_2 may negatively impact this prevalent
103 iron uptake system in diatoms and other marine phytoplankton (*McQuaid et al., 2018*).
104 Diatom pTF is phylogenetically related to Fe-assimilation domain-containing homologs,
105 such as the recently characterized phytotransferrin from the marine picoalga
106 *Ostreococcus tauri* (*Scheiber et al., 2019*); and represent functional and evolutionary
107 analogs of transferrins (*McQuaid et al., 2018*), iron delivery proteins found in
108 multicellular organisms that employ the same mode of binding (*Cheng et al., 2004*).
109

110 While accessing and binding dilute dissolved ferric iron on the cell surface is important,
111 subsequent internalization and delivery to target sites within complex cellular milieu are
112 also critical. Fe(III) is highly insoluble and conversion between Fe(III) and Fe(II) can
113 lead to toxic reactive oxygen species causing damage to proteins, lipids, and nucleic
114 acids (*Cheng et al, 2004*). Precise control of iron internalization and intracellular
115 trafficking in either of its redox states is thus crucial for maintenance of cellular
116 homeostasis (*Philpott and Jadhav, 2019; Wang and Pantopoulos, 2011*). Human
117 iron-laden transferrin (Tf) bound to transferrin receptor is internalized via clathrin-
118 mediated endocytosis. Endosome acidification leads to carbonate protonation and Tf
119 conformational change resulting in iron release. Fe(III) is then reduced by six-
120 transmembrane epithelial antigen of prostate 3 (STEAP3), exported to the cytoplasm
121 through divalent metal transporter 1 (DMT1) or ZRT/IRT-like protein 8/14 (ZIP8/14), and

122 offloaded to iron chaperones for distribution to cellular iron sinks (*Bogdan et al., 2016*;
123 *Eckenroth et al., 2011; Philpott and Jadhav, 2019; Wang and Pantopoulos, 2011*).
124 In contrast, proteins which conduct key endosomal processes and biochemical
125 transformations and mediate subsequent intracellular allocation of internalized Fe(III)
126 downstream of diatom pTF are unknown.

127

128 To investigate the proximal proteomic neighborhood of diatom pTF and thus the degree
129 of mechanistic resemblance between transferrin and phytotransferrin pathways, we
130 turned to APEX2, an engineered heme-containing ascorbate peroxidase (*Lam et al.,*
131 *2015*) that functions as a dual probe for electron microscopy (*Martell et al., 2017*) and
132 proximity proteomics (*Hung et al., 2016*). When genetically fused to a protein of
133 interest, the ~27 kDa APEX2 enzyme permits spatially resolved proteomic mapping by
134 oxidizing biotin-phenol to short lived (<1 ms) phenoxyl radicals which can covalently
135 react with electron-rich amino acids (tyrosine, but likely also tryptophane, histidine, and
136 cysteine) on the surface of nearby endogenous proteins. Tagged proteins can then be
137 isolated by purification with streptavidin beads and analyzed using mass spectrometry
138 (MS). The “biotinylation radius” in APEX2 experiments should be seen as a “contour
139 map”, a “probability gradient”, where the likelihood of tagging decreases with distance
140 away from APEX2-tagged protein of interest (*Hung et al., 2016; Lam et al., 2015*).
141 Target hits can therefore include both strong and stable as well as weak and transient
142 direct interactors, and also vicinal, juxtaposed proteins not interacting with the bait
143 (*Lundberg and Borner, 2019*). Replacing biotin-phenol with diaminobenzidine (DAB)
144 enables high-resolution electron microscopy experiments (*Martell et al., 2017; Martell*
145 *et al., 2012*) making APEX2 a powerful bifunctional probe. APEX2 has thus far been
146 used to investigate a variety of cellular compartments and processes including the
147 mitochondrial nucleoid-associated proteome (*Han et al., 2017*), post-Golgi vesicle
148 trafficking (*Otsuka et al., 2019*), stress granules (*Markmiller et al., 2017*), protein
149 occupancy at defined genomic loci (*Myers et al., 2018*), chromatin interactions (*Qiu et*
150 *al., 2019*), lipid droplets (*Bersuker et al., 2018*), Golgi-localized proteolysis (*Hwang et*
151 *al., 2016*), subcellular localization of RNAs (*Fazal et al., 2019*), the ciliary membrane-
152 associated proteome (*Kohli et al., 2017*), GPCR signaling (*Paek et al., 2017*), bacterial

153 pathogen inclusion membranes (*Dickinson et al., 2019*), and finally also endocytosis
154 (*Del Olmo et al., 2019*). These studies, conducted in diverse model systems including
155 mammalian cell culture, fruit fly, yeast and bacteria, testify to the breadth of APEX2
156 applications, and associated insights and advances that have been achieved in a
157 relatively short time since the technique was first described (*Lam et al., 2015*).

158

159 Here, we present further evidence for *P. tricornutum* phytotransferrin pTF endocytosis,
160 demonstrate correct subcellular localization and activity of its APEX2 fusion, identify
161 almost 40 proximal proteins in proximity proteomics experiments conducted in
162 quintuplicate, and, finally, provide initial characterization, using dual fluorophore protein
163 tagging fluorescence microscopy, phylogenetic, and biochemical analyses, for three
164 proteins (pTF.CREGr, pTF.CatCh1, pTF.ap1) believed to act in association with
165 endocytosed pTF downstream of iron binding at the cell surface. Bacterially-expressed
166 recombinant pTF.CREGr displays flavin reductase activity *in vitro* suggesting this
167 protein may be involved in intracellular ferric, Fe(III), iron reduction, while bioinformatic
168 interrogation of pTF.CatCh1 and its localization indicate it may be a chloroplast-
169 associated metallochaperone.

170

171 The overall outline of our work is shown in *Figure 1*. To the best of our knowledge, this
172 study represents the first application of APEX2 in a marine microbial model system. We
173 conclude with a vision board summarizing outstanding questions in diatom cell biology
174 that could immediately benefit from this and related chemical biology approaches.

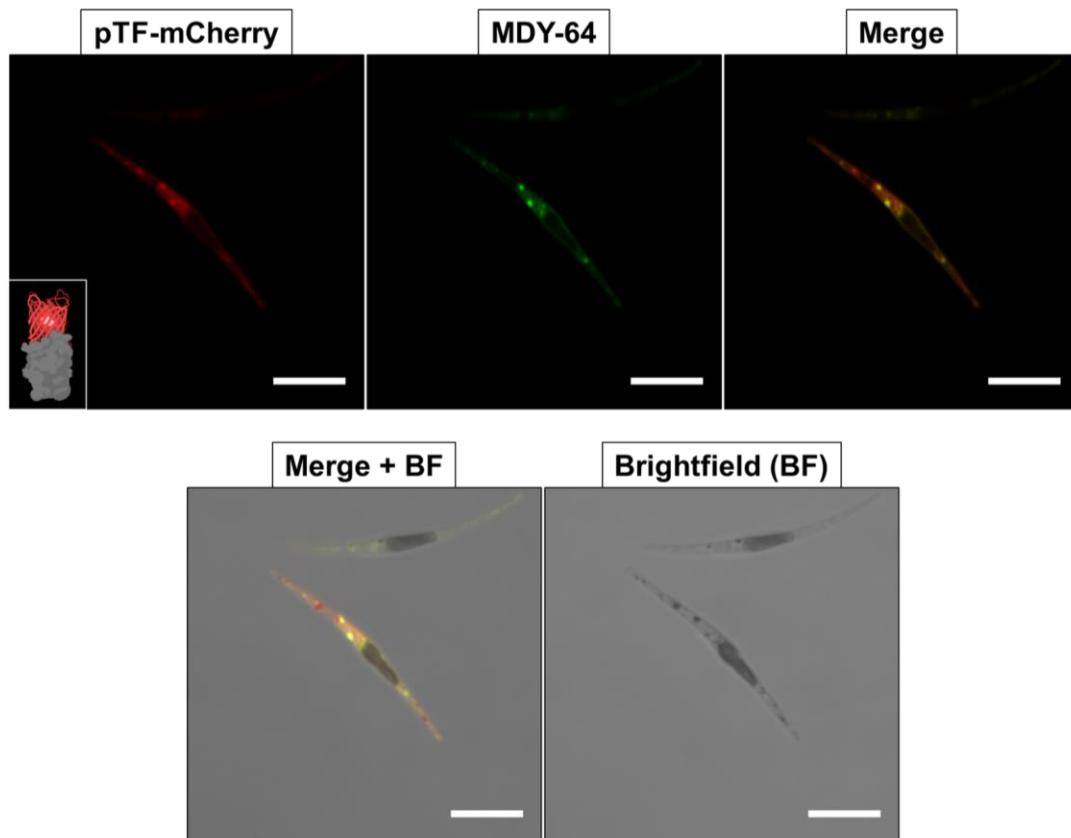
176 **Figure 1.** Functional APEX2-enabled proteogenomics with pTF (phytotransferrin/ISIP2a/Phatr3_J54465)
177 in *Phaeodactylum tricornutum*. (A) pTF-APEX2 encoding episome is introduced into *P. tricornutum* cells
178 using bacterial conjugation. (B) Resulting transconjugants are genotyped and evaluated for fusion protein
179 expression. APEX2 activity and fusion localization are then confirmed with an enzymatic assay and
180 electron microscopy, respectively. (C) In the proximity proteomics experiment, pTF-APEX2 expressing
181 cell line is supplemented with biotin-phenol and hydrogen peroxide, reaction quenched and cells lysed.
182 Cell lysate is then subjected to streptavidin pull-down, proteins analyzed with mass spectrometry (MS),
183 peptides mapped to a *P. tricornutum* proteome database, and corresponding genes identified. (D)
184 Interesting MS hits are further evaluated experimentally (e.g., for colocalization with the bait protein (i.e.
185 pTF) and/or for predicted biochemical activity) as well as bioinformatically. Created with BioRender.com.

186 **Results**

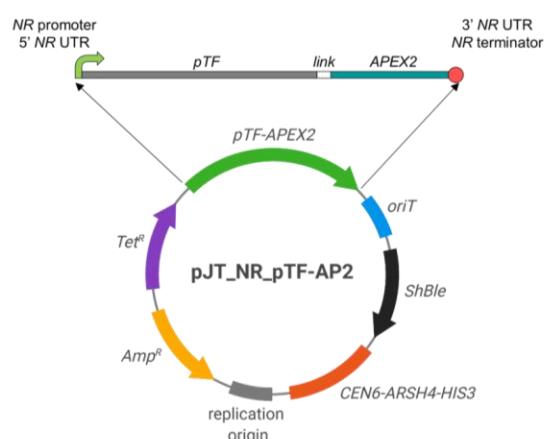
187

188 **Phytotransferrin (pTF) is localized to endosome-like vesicles**

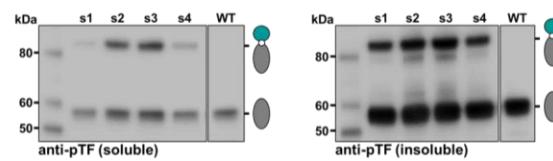
189 To further examine pTF localization and possible occurrence within intracellular
190 vesicles, a pTF-mCherry encoding episome was conjugated (*Karas et al., 2015; Diner*
191 *et al., 2016*) into ΔpTF *P. tricornutum* cells (*McQuaid et al., 2018*). After labeling the
192 fluorescent transconjugant cell line with 100 μ M of the membrane dye MDY-64 for 10
193 min at room temperature, vesicles with colocalized mCherry and MDY-64 signal were
194 observed (*Figure 2A*).

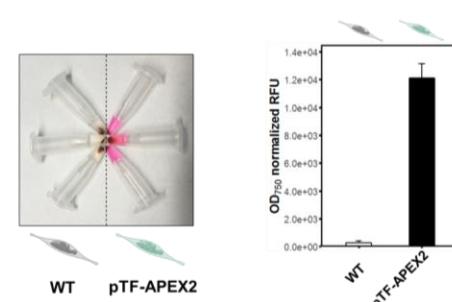

195

196 **Phytotransferrin-APEX2 fusion proteins are enzymatically active *in vivo***


197 To generate pTF-APEX2 expressing diatom cell lines, an episome encoding pTF
198 (Phatr3_J54465) with C-terminal APEX2 was assembled and conjugated into WT *P.*
199 *tricornutum* (*Figure 2B*). Considering the predicted pTF domains (*Figure 2—figure*
200 *supplement 1A*), this likely resulted in APEX2 facing the cytosol both at the cell surface
201 and once internalized into vesicles. Western blot with pTF-specific antibodies (*McQuaid*
202 *et al., 2018*) confirmed the ~84.7 kDa fusion protein expression in 4 out of 5 tested cell
203 lines. The protein was largely present in the insoluble cell lysate fraction (*Figure 2C*),
204 possibly further indicative of its membrane localization. Amplex UltraRed, a highly
205 sensitive APEX2 substrate (*Hung et al., 2016*), was used to assay live pTF-APEX2
206 expressing cells. A resorufin (reaction product) signal up to 4- and 40-fold above WT
207 background was observed in experiments performed at room temperature (data not
208 shown) and on ice (*Figure 2D; Supplementary file 2*), respectively, indicating active
209 APEX2 with incorporated heme. Resorufin was also directly visualized by confocal
210 microscopy (*Figure 2—figure supplement 1B*) and a strong cytosolic signal not tightly
211 localized to the expected site of origin, similar to previous reports (*Martell et al., 2012*),
212 was observed. APEX2 was active only in the presence of both Amplex UltraRed and
213 hydrogen peroxide (*Figure 2—figure supplement 1C*) implying that endogenous H_2O_2
214 levels are not sufficient to drive APEX2-catalyzed reactions and that the overall cell
215 surface and intracellular milieu in *P. tricornutum* is permissive to the APEX2 catalytic
216 cycle.

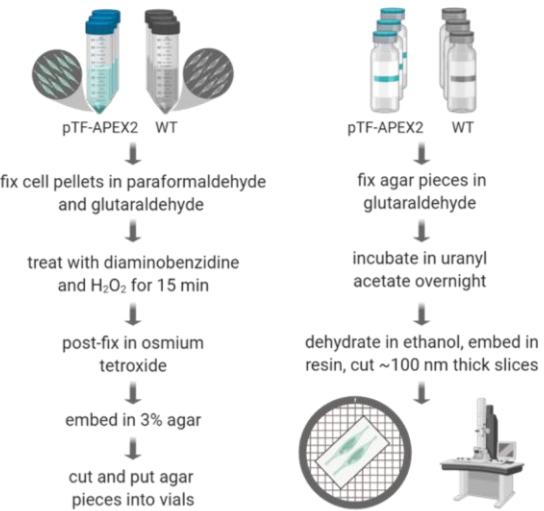
217


A

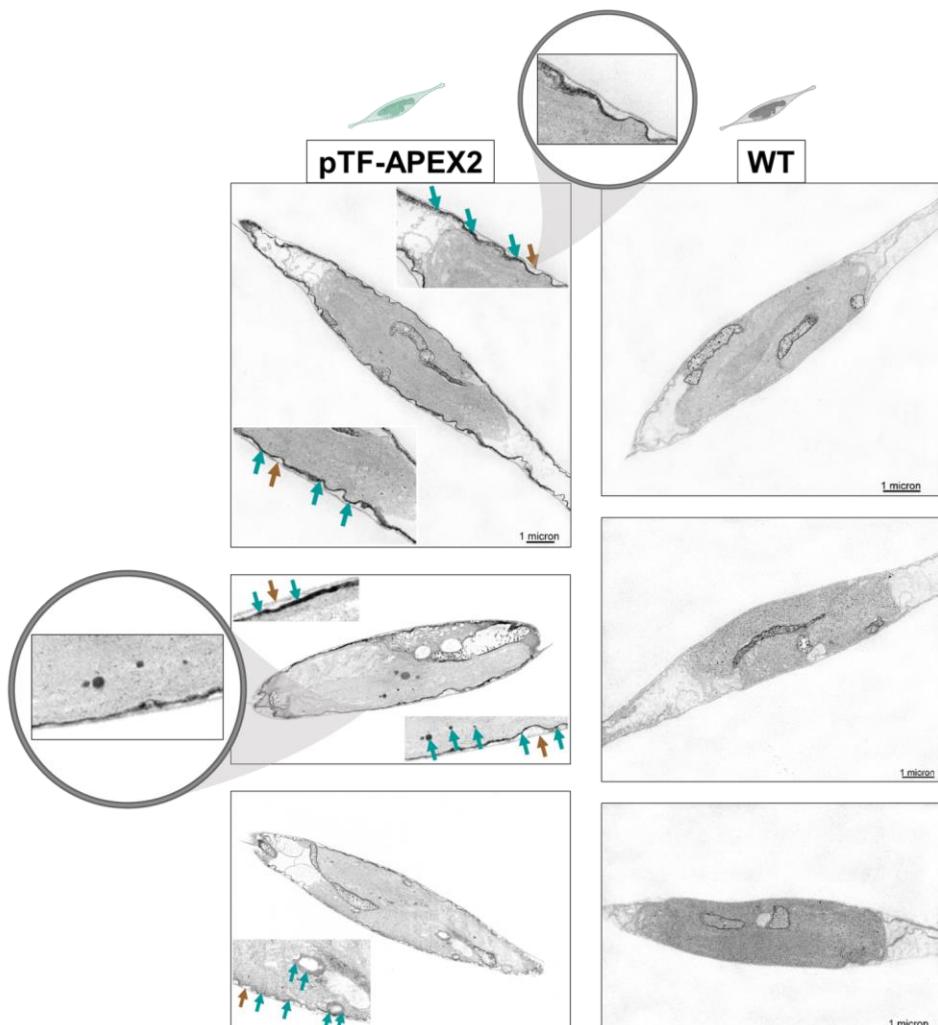

B

C

D


219 **Figure 2.** Association of pTF with intracellular vesicles and demonstration of APEX2 activity in
220 *Phaeodactylum tricornutum*. (A) pTF-mCherry colocalizes with the membrane dye MDY-64 on the cell
221 surface and within intracellular vesicles. The fusion protein was expressed under the *pTF* promoter and
222 terminator in a ΔpTF genetic background. Cells were stained with 100 μ M MDY-64 for 10 min at room
223 temperature. Scale bar is 10 μ m. Protein fusion scheme created with BioRender.com. (B) Top: *pTF-*
224 *APEX2* flanked by nitrate-inducible *NR* (nitrate reductase) promoter, terminator and UTRs. Linker
225 between pTF and APEX2: KGSGSTSGSG. Bottom: Schematic of the pTF-APEX2 expressing episome.
226 Tetracycline (*Tet*^R) and ampicillin (*Amp*^R) resistance genes for *E. coli* selection, bacterial replication origin,
227 yeast centromere (*CEN6-ARSH4-HIS3*) for episome maintenance, phleomycin/zeocin (*ShBle*) resistance
228 gene for *P. tricornutum* selection, origin of conjugative transfer (*oriT*). Plasmid map created with
229 BioRender.com. (C) Anti-pTF Western blot confirming fusion protein expression (~84.7 kDa) (lanes s1–
230 s4; left: soluble cell lysate fraction, right: insoluble cell lysate fraction) in WT *P. tricornutum* background.
231 Teal circle: APEX2, grey oval: pTF. (D) Left: pTF-APEX2 expressing, but not WT, cells convert APEX2
232 substrate Amplex UltraRed (50 μ M) into a colored product resorufin in the presence of 2 mM H₂O₂. Right:
233 >40-fold higher resorufin signal was observed in supernatants from pTF-APEX2 expressing cells than
234 those from WT cells. Triplicate cultures from one WT and one pTF-APEX2 expressing cell line (strain
235 “s2”). Standard deviation is shown. *P. tricornutum* cartoons created with BioRender.com.

236 **pTF-APEX2 is localized to the cell surface and intracellular vesicles**


237 To confirm pTF-APEX2 is localized to the cell surface and intracellular vesicles similar
238 to mCherry fusions, pTF-APEX2 expressing cells (strain “s2”, *Figure 2*) were treated
239 with 25 mM 3,3'-diaminobenzidine (DAB) in the presence of 3 mM H₂O₂ for 15 min on
240 ice (*Figure 3A*). This reaction leads to DAB polymerization and local precipitation
241 around APEX2 that can be stained with osmium tetroxide and visualized with
242 transmission electron microscopy. Cells were embedded in a 3% agar matrix to prevent
243 losses during numerous washing steps (*Figure 3—figure supplement 1A*). Tightly
244 localized signal was observed on the cell membrane and in intracellular vesicles
245 indicating that pTF-APEX2 fusion trafficked to the correct subcellular sites (*Figure 3B*).
246 Additionally, we observed mitochondrial signal in WT and pTF-APEX2 cell lines
247 subjected to the DAB reaction (*Figure 3B; Figure 3—figure supplement 1B*). Analysis
248 of the *P. tricornutum* proteome revealed 8 peroxidases with Arg38, His42, His163 and
249 Asp208; catalytic residues that are conserved across all identified ascorbate
250 peroxidases including soybean APX (*Raven et al., 2003*) and its engineered version
251 APEX2 (*Figure 3—figure supplement 1C*). Three of these contain proline in place of
252 alanine at position 134 relative to APEX2, a substrate-binding loop mutation rendering
253 APEX2 highly active (*Martell et al., 2015*), and another putative peroxidase is predicted
254 to localize to mitochondria (*Figure 3—figure supplements 1D, 1E*). APEX2 was
255 inactivated in iron-limiting conditions (40 nM total Fe) and could be reactivated by
256 supplementing fixed cells with 10 µM hemin chloride for 3 hrs (data not shown), but this
257 substantially increased background in the Amplex UltraRed assay. Therefore,
258 subsequent proximity labeling experiments were carried out on cells growing in iron-
259 replete conditions.

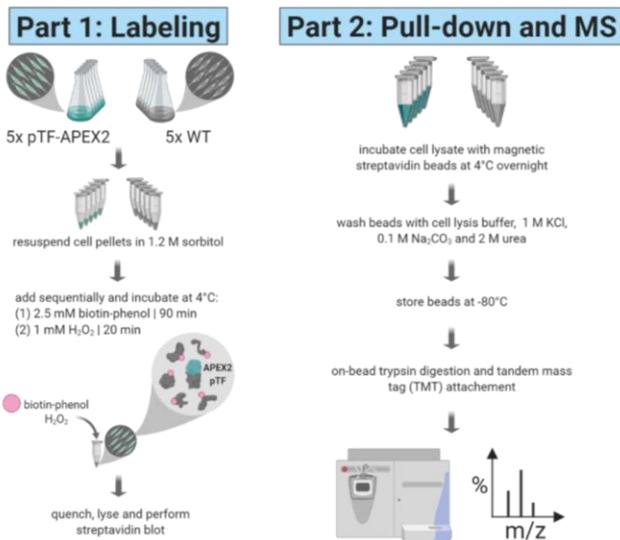
A

Part 1: Labeling **Part 2: TEM prep**

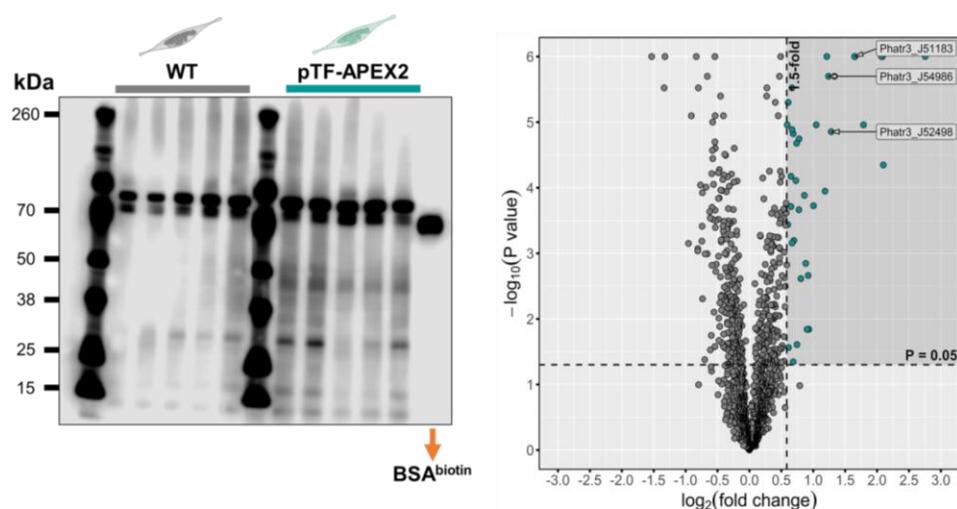
B

261 **Figure 3.** pTF-APEX2 localizes to the cell membrane and intracellular vesicles. (A) Summary of the
262 transmission electron microscopy protocol. Briefly: WT and pTF-APEX2 expressing cells were fixed,
263 treated with diaminobenzidine (DAB), post-fixed with osmium tetroxide, embedded in agar, negatively
264 stained with uranyl acetate, dehydrated, embedded in resin, and visualized. Created with BioRender.com.
265 (B) Expected cell surface and intracellular pTF-APEX2 localization. Teal and brown arrows point to
266 APEX2-induced signal and cell wall, respectively. Zoomed in is the cell periphery clearly showing cell
267 membrane, and not cell wall, is occupied by the fusion protein (top left image). pTF-APEX2-containing
268 vesicles of various sizes were seen (bottom two images on the left; acquired with backscatter scanning
269 electron microscopy). Zoomed in are cell membrane and vesicles with pTF-APEX2 (middle left image).
270 Mitochondrial signal in both WT and pTF-APEX2 expressing cells is likely due to endogenous
271 (mitochondrial) APEX2-like peroxidases. Scale bar is 1 μ m. *P. tricornutum* cartoons created with
272 BioRender.com.

273 **Identification of the proximal phytotransferrin proteome with biotin-phenol
274 labeling**


275 To identify proteins proximal to pTF, quintuplicate cultures from one WT and one pTF-
276 APEX2 expressing cell line (strain “s2”, *Figure 2*) were grown to mid- to late-
277 exponential phase and supplemented with biotin-phenol and hydrogen peroxide,
278 following the APEX2 proximity labeling protocol developed for yeast (*Hwang and
279 Espenshade, 2016; Hwang et al., 2016*). Incubation with hydrogen peroxide was
280 extended to 20 min to mirror Amplex UltraRed assay and DAB reaction conditions
281 (*Figure 4A*). Increasing the biotin-phenol concentration from 0.5 mM, usually used in
282 mammalian cells, to 2.5 mM and exposing cells to osmotic stress with 1.2 M sorbitol
283 (both are critical for efficient labeling in yeast) was necessary to detect enrichment of
284 biotinylated proteins in experimental samples (*Figure 4B*). This result confirmed our
285 hypothesis that the lack of heavy silicification in *P. tricornutum* (*Francius et al., 2009;
286 Tesson et al., 2009*), making its cell wall composition and cell membrane permeability
287 likely similar to those in yeast, would permit labeling. Streptavidin pull-downs were then
288 performed with clarified cell lysates followed by tandem mass tag (TMT)-based
289 quantitative proteomics. WT and pTF-APEX2 proteomic replicates, with the exception of
290 one WT and one pTF-APEX2 condition, formed two distinct clusters (*Figure 4—figure
291 supplement 1; Supplementary file 3*) indicating minimal technical variability. 38
292 statistically significant proteins ($P \leq 0.05$) with APEX2/WT ratios of at least 1.5 were
293 identified (*Figure 4B*). These ratios were obtained from average total peptide counts
294 across quintuplicates (*Supplementary file 4*). Predicted endogenous biotinylated
295 proteins were also detected and had APEX2/WT ratios close to 1, thus serving as an
296 intrinsic pull-down control (*Supplementary file 1—Table S1; Supplementary file 4*).
297 Some background enrichment in WT cells was likely due to endogenous APEX2-like
298 peroxidases and one would thus expect mitochondrial proteins with APEX2/WT ratios
299 close to 1 to be present in our MS dataset. Indeed, at least three were detected:
300 mitochondrial chaperonin CPN60 (Phatr3_J24820, UniProt ID: B7FQ72, APEX2/WT =
301 0.99), mitochondrial import receptor subunit TOM70 (Phatr3_J47492, UniProt ID:
302 B7G3J4, APEX2/WT = 0.91), and acetyl-CoA dehydrogenase (Phatr3_J11014, UniProt
303 ID: B7FTR6, APEX2/WT = 1.23) (*Supplementary file 4*). 14 proteins were detected

304 with an APEX2/WT ratio of at least 2. Of these 14 proteins, 9 are known to be
305 transcriptionally sensitive to iron availability; this is also the case for an additional 5
306 proteins with APEX2/WT ratio of at least 1.5 (*Supplementary file 4*) (*Smith et al.,*
307 *2016*). We note that pTF was present, but not enriched, in our pTF-APEX2 proteomics
308 samples (*Supplementary file 4*). One possible explanation for this result is that pTF
309 does not have surface exposed amino acid residues that are permissive to biotinylation
310 by APEX2-generated phenoxyl radicals, something only pTF structure would reveal;
311 and so its presence in all of our pull-down samples could be due to unspecific binding to
312 streptavidin beads.


313

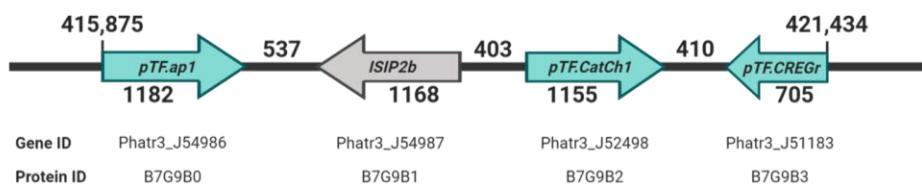
314 Some of the most apparent biologically interesting hits are summarized in *Figure 4C*.
315 Considering iron is involved in all the major photosynthetic complexes (*Rochaix, 2011*),
316 we asked if some of the proteins are perhaps predicted to be localized to the
317 chloroplast. Indeed, five are predicted to be chloroplastic, albeit with low confidence, by
318 ASAFind (*Gruber et al., 2015*), including two (Phatr3_J51183 and Phatr3_J54986) that
319 are part of a gene cluster on chromosome 20 and two (Phatr3_J41423 and
320 Phatr3_J55031) that are known to associate with the *P. tricornutum* chloroplast (*Allen*
321 *et al., 2012; Kazamia et al., 2019; Figure 4C*). Further details on how ASAFind works
322 and which proteins are given a low confidence chloroplastic prediction are presented in
323 *Gruber et al., 2015* and Materials and Methods, respectively. We elaborate on the
324 potential role for these proteins in intracellular iron trafficking in Discussion.

A

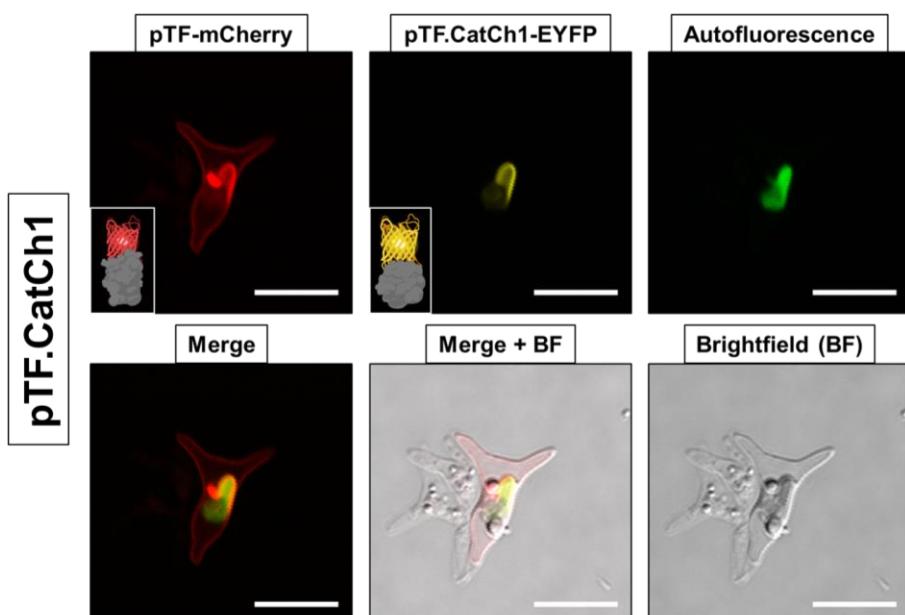
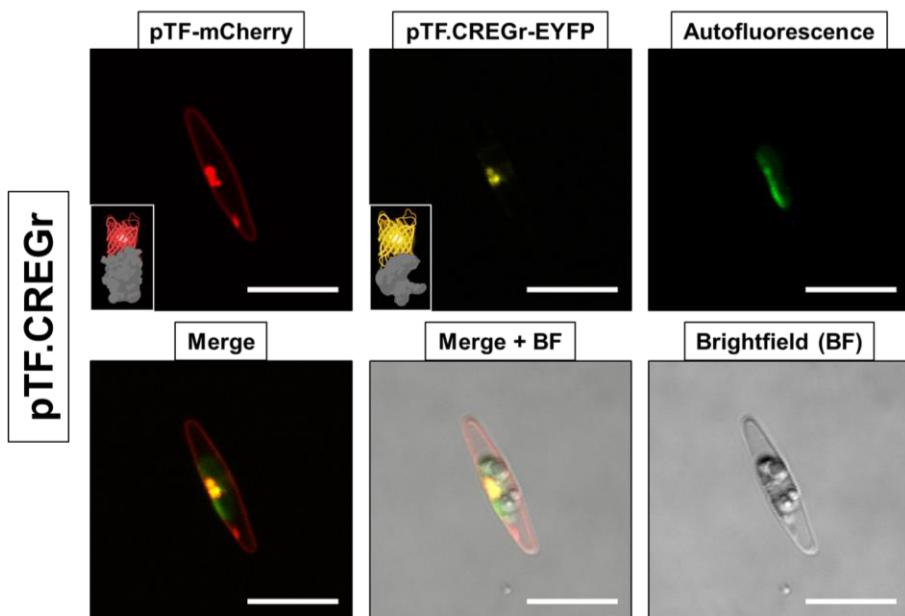
B

C

UniProt ID	APEX2/WT ratio	Gene ID	Iron-sensitive transcript	Chloroplast localization/localization/ confidence	Annotation
B7GE67	6.75	Phatr3_J41423	yes	yes/low*	fructose-biphosphate aldolase FBAC5
B7GA90	4.20	Phatr3_J55031	yes	yes/low**	iron starvation induced protein (ISIP) 1
B5Y488	3.46	Phatr3_J46929	yes	no	siderophore-bound iron assimilation protein
B7G9B3	3.15	Phatr3_J51183	yes	yes/low	CREG1-like protein
B5Y3Y4	3.13	Phatr3_J54656	yes	no	heat shock protein (HSP)
B7G9B2	2.43	Phatr3_J52498	yes	no	cell surface protein
B7G9B0	2.36	Phatr3_J54986	yes	yes/low	cell surface protein
B7G195	2.32	Phatr3_J46448	yes	no	heat shock protein (HSP)
B7G9L9	1.82	Phatr3_J30139	yes	no	small GTPase
B7GBX2	1.71	Phatr3_J23497	yes	no	ATPase
B7FNT2	1.62	Phatr3_J42574	no	yes/low	α -carbonic anhydrase
B7GDH4	1.59	Phatr3_J41172	no	no	calreticulin/mobilferrin
B7G5Y2	1.57	Phatr3_J5651	no	no	14-3-3-like protein
B7FR50	1.52	Phatr3_J43251	no	no	small GTPase
B7G162	1.51	Phatr3_J27923	no	no	vacuolar-type H ⁺ -ATPase subunit A


326 **Figure 4.** Proximity proteomics with APEX2 reveals candidate proteins involved in phytotransferrin (pTF)
327 endocytosis in *Phaeodactylum tricornutum*. (A) Summary of the proximity proteomics experiment.
328 Briefly: WT and pTF-APEX2 expressing cells were chilled on ice, pelleted, treated with 1.2 M sorbitol,
329 supplemented with 2.5 mM biotin-phenol and 1 mM H₂O₂. The labeling reaction was quenched, cells were
330 lysed, and evaluated for biotin enrichment. Supernatants were then subjected to streptavidin pull-down
331 followed by quantitative mass spectrometry using tandem mass tags (TMT). Created with
332 BioRender.com. (B) Left: Enrichment of biotinylated proteins over WT background was observed with
333 streptavidin blot; ~66.5 kDa biotinylated BSA control, equal loading. The most prominent band in all
334 samples is likely the endogenous biotin-containing propionyl-CoA carboxylase (Phatr3_J51245, ~72.5
335 kDa). Right: Volcano plot of quantitative MS data highlighting proteins with APEX2/WT ratio of at least 1.5
336 and P-value ≤ 0.05 (shaded area with teal data points). Proteins from a known iron-sensitive gene cluster
337 located on chromosome 20 are highlighted. *P. tricornutum* cartoons created with BioRender.com. (C)
338 14/38 (10 shown here) MS hits are proteins with iron-sensitive transcripts. Proteins we tagged with EYFP
339 and co-expressed with pTF are bolded. Chloroplast localization and the associated prediction confidence
340 were determined with SignalP 4.1 and ASAFind (version 1.1.7). *Experimentally shown to localize to the
341 pyrenoid—a RuBisCO-containing suborganelle—in the interior of the *P. tricornutum* chloroplast (Allen et
342 al., 2012). **Experimentally shown to be localized adjacently to the chloroplast (Kazamia et al., 2019).

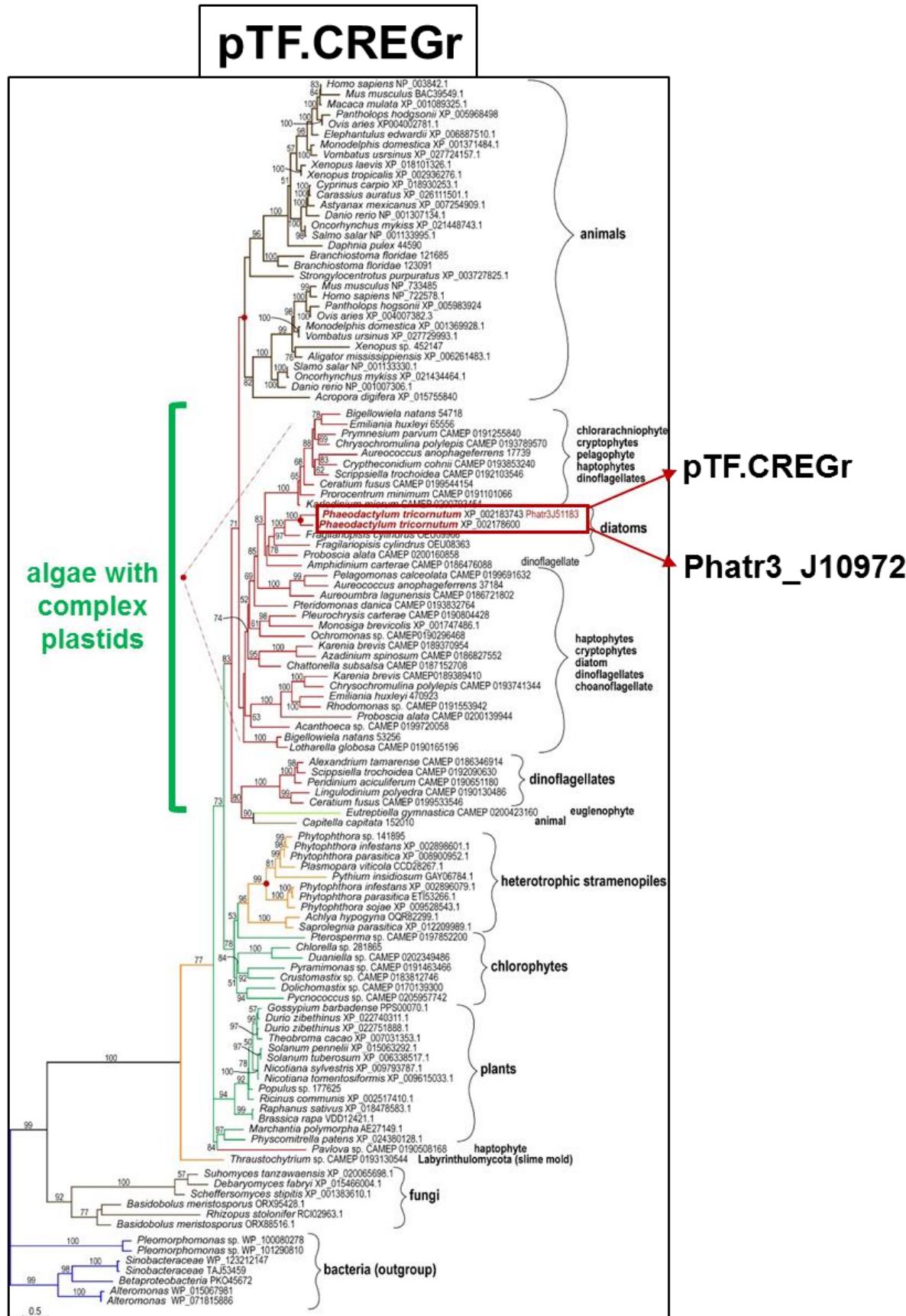
343 **Proteins encoded by an iron-sensitive gene cluster on chromosome 20 colocalize**
344 **with pTF**



345 We focused on three proteins among the top MS hits—Phatr3 IDs: J51183 (hereafter:
346 pTF.CREGr; CREG-like protein with likely Reductive function), J52498 (hereafter:
347 pTF.CatCh1; Chloroplast-AssociaTed CHaperone 1) and J54986 (hereafter: pTF.ap1;
348 pTF-Associated Protein 1)—that are expressed from a previously identified iron- (*Allen*
349 *et al., 2008*) and silicon-sensitive gene cluster (*Sapriel et al., 2009*) on chromosome 20
350 (*Figure 5A*). One additional protein (Phatr3_J54987 known also as ISIP2b), which is
351 also transcriptionally sensitive to iron and silicon and that we did not detect in our
352 proximity proteomics experiment, is also encoded by this uncharacterized locus. We
353 note that *pTF* is not co-located with these genes, but instead lies on chromosome 7
354 (genomic location 1,000,053–1,001,833, forward strand). All three genes exhibit a
355 transcriptional profile similar to *pTF* (*Figure 5—figure supplement 1*), two proteins
356 (pTF.CREGr and pTF.ap1) are predicted to localize to the chloroplast (with low
357 confidence as determined by ASAFind), and two (pTF.CatCh1 and pTF.ap1) contain a
358 C-terminal transmembrane domain (*Figure 4C; Supplementary file 1—Table S2*). It
359 has been hypothesized that organellar pH and proteome biochemistry co-evolved (*Brett*
360 *et al., 2006*); we note the isoelectric points of all three proteins are close to 5
361 overlapping the expected endosomal pH (*Supplementary file 1—Table S2*). To test
362 whether any of them colocalize with pTF, co-expression episomes were assembled and
363 conjugated into WT *P. tricornutum* cells which resulted in diatom cell lines expressing
364 pTF-mCherry and MS hit-EYFP fusion proteins. Detailed assembly strategy and cell line
365 verification results are presented in *Figure 5—figure supplement 2A* and *Figure 5—*
366 *figure supplement 2B*, respectively. pTF.CREGr and pTF.CatCh1 colocalized with pTF
367 in the chloroplast vicinity or on the chloroplast margin, respectively (*Figure 5B*).
368 Colocalization of pTF.ap1 with pTF close to the chloroplast was also evident, though
369 somewhat less precise (*Figure 5—figure supplement 3*). Imaging conditions were
370 optimized with mCherry and Venus expressing cell lines for minimal cross-channel
371 bleed-through (*Figure 5—figure supplement 2C*).

A

Chr20

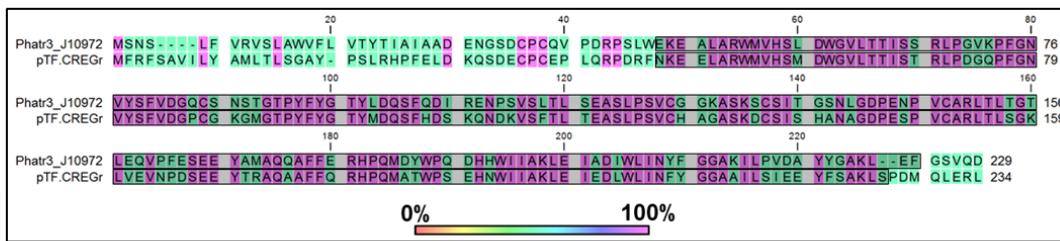
B

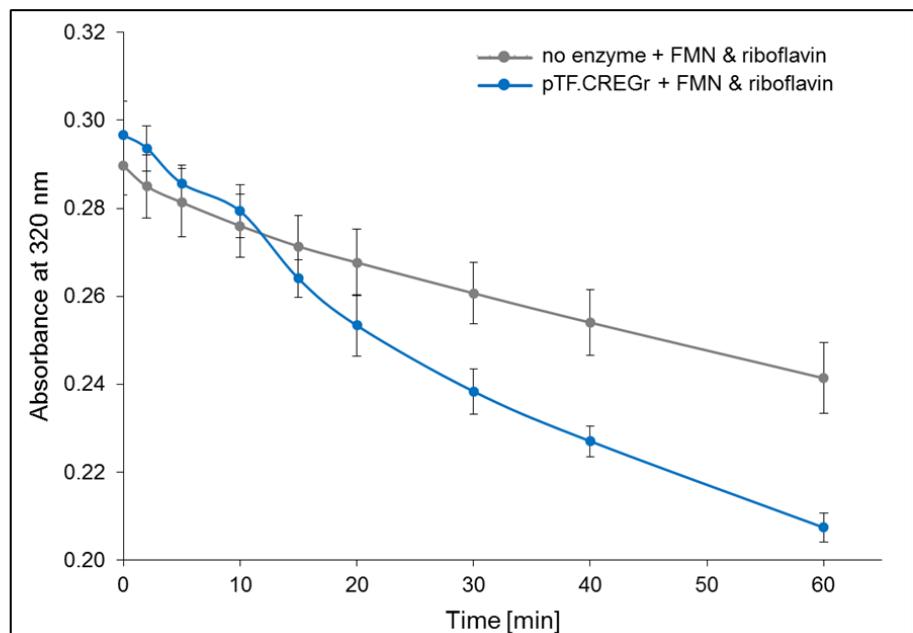


373 **Figure 5.** Proteins from a known iron-sensitive locus in *Phaeodactylum tricornutum* colocalize with pTF
374 and chloroplasts. (A) Genes corresponding to a subset of proteomic hits are clustered together on
375 chromosome 20. With exception of ISIP2b, which we did not detect in our proximity proteomics
376 experiment, all proteins were co-expressed with pTF. Corresponding Phatr3 gene IDs and UniProt protein
377 IDs are noted. Numbers indicate base pairs. Created with BioRender.com. (B) Two proteins—pTF.CREGr
378 and pTF.CatCh1—show clear, yet distinct, colocalization with pTF and the chloroplast periphery.
379 pTF.CREGr-EYFP was consistently punctate whereas pTF.CatCh1-EYFP lined the chloroplast margin.
380 pTF-mCherry punctum was almost exclusively positioned next to this “chloroplast lining” pattern. Scale
381 bar is 10 μ m. *P. tricornutum* is pleiomorphic which explains why different cell morphologies were
382 observed in pTF.CREGr-EYFP (fusiform morphotype) and pTF.CatCh1-EYFP (triradiate morphotype) cell
383 lines. Protein fusion schemes created with BioRender.com.

384 **Phylogenetic, domain, and biochemical characterization of pTF.CREGr and**
385 **pTF.CatCh1 support a putative role in diatom iron metabolism**

386 To shed light on possible functions of the two poorly annotated proteins that colocalized
387 with pTF and to examine their occurrence in other diatoms and marine phytoplankton
388 beyond *Phaeodactylum tricornutum*, phylogenetic analysis was performed. pTF.CREGr
389 was found conserved across the tree of life (*Figure 6*), but diatom proteins can be seen
390 in a crown group with other complex plastid-containing algae such as cryptophytes,
391 haptophytes, pelagophytes, chlorarachniophytes and dinoflagellates (*Archibald, 2009;*
392 *Oborník and Füssy, 2018*) suggesting their function may be distinct from those in the
393 sister animal group.

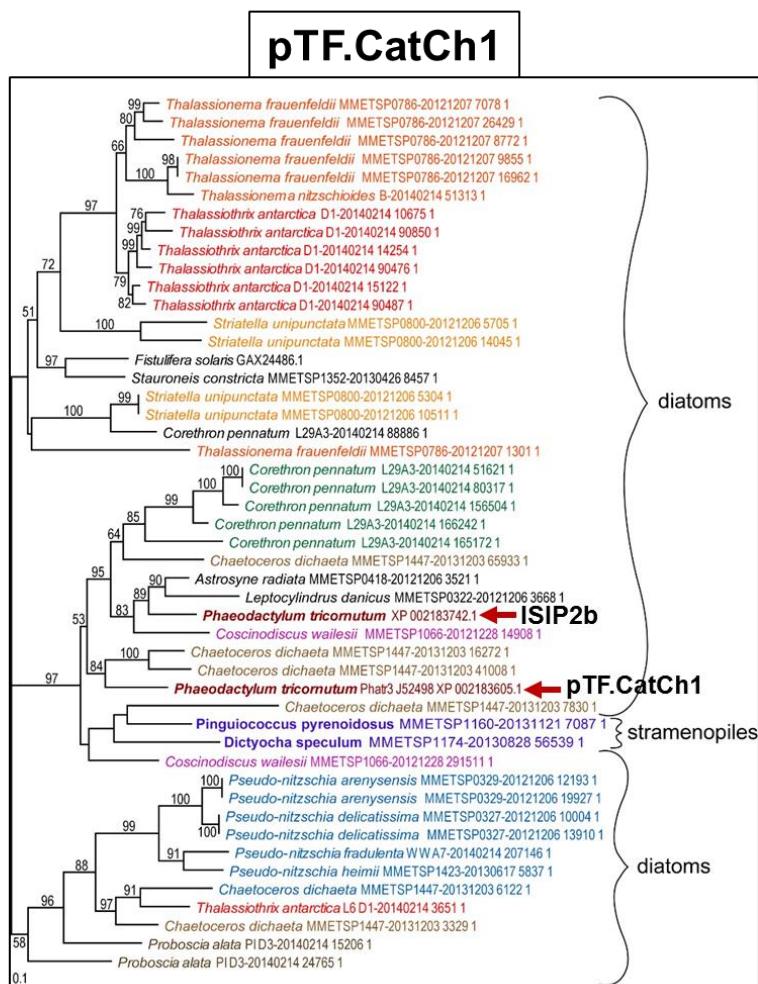

394
395 Interestingly, pTF.CREGr and its paralog Phatr3_J10972 contain a predicted flavin
396 mononucleotide (FMN)-binding domain (*Figure 7A*) hinting at a possibility that
397 pTF.CREGr is involved in oxidation-reduction reactions as opposed to having a more
398 canonical role associated with CREG1 homologs in multicellular organisms (*Ghobrial*
399 *et al., 2018*). To address potential enzymatic activity, various truncations of His6-tagged
400 pTF.CREGr were expressed in *Escherichia coli* and purified using Co²⁺ immobilized
401 metal affinity chromatography (IMAC) to test solubility (*Figure 7—figure supplement*
402 **1A**). A construct encoding pTF.CREGr with a 31 amino acid N-terminal deletion leading
403 to a soluble protein was selected for larger-scale purification. Despite slight precipitation
404 and degradation during the purification process, the Co²⁺-bound fraction exhibited
405 modest yet reproducible flavin reductase activity, as measured by the enzyme-facilitated
406 oxidation of NADPH in the presence of the potential flavin substrates riboflavin and
407 flavin mononucleotide (FMN) (*Figure 7B*; *Figure 7—figure supplement 1B*;
408 *Supplementary file 5*). Comparable consumption of NADPH was not seen when either
409 flavins or pTF.CREGr were omitted from the reaction (*Figure 7—figure supplement 2*;
410 *Supplementary file 5*), suggesting that pTF.CREGr is capable of reducing exogenous
411 flavins.


413 **Figure 6.** pTF.CREGr is a ubiquitous protein conserved across the tree of life. pTF.CREGr homolog
414 search was performed with the National Center for Biotechnology Information (NCBI) and the Marine
415 Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) databases (**Caron et al., 2016;**
416 **Keeling et al., 2014**). Notably, a clear division between the diatom-containing crown group (algae with
417 complex plastids) and animals can be seen suggesting distinct roles for this protein in multicellular versus
418 unicellular organisms. Red dots indicate predicted gene duplication events. pTF.CREGr clusters with its
419 paralog, Phatr3_J10972. Scale bar: 0.5 substitutions per position.

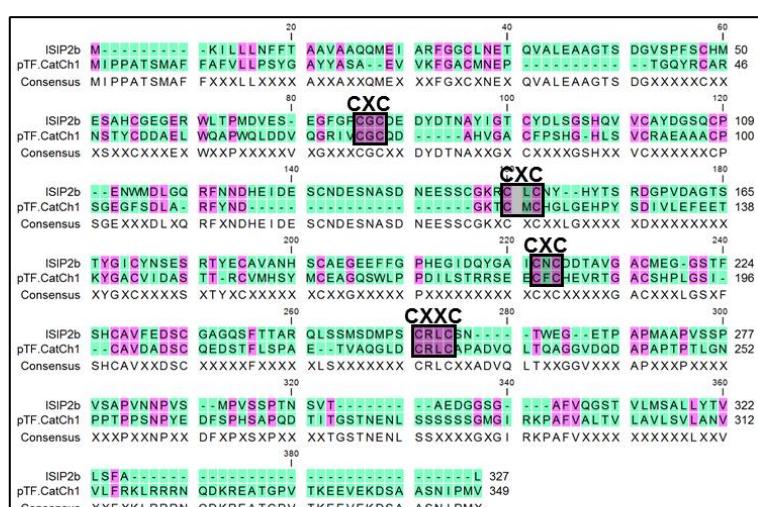
420

A

B


421

422


423 **Figure 7.** (A) pTF.CREGr and its paralog Phatr3_J10972 contain a putative FMN-binding domain
424 (shaded in gray). Considering the evolutionary link between human CREG1 and oxidoreductases, and the
425 observed colocalization of its diatom homolog with pTF, pTF.CREGr may be a ferric reductase. (B)
426 pTF.CREGr can reduce exogenous flavins. Comparison of NADPH oxidation (measured by decrease in
427 absorbance at 320 nm) by recombinant pTF.CREGr supplemented with flavins (flavin mononucleotide
428 (FMN) and riboflavin) versus a flavin-only, no enzyme treatment. Assays were started by the addition of
429 enzyme or water blank and carried out in triplicate for each treatment. Background 320 nm absorbance of
430 water blanks (approx. 0.186) was subtracted from each replicate. Standard deviation is shown.

431 In contrast, pTF.CatCh1 homologs were identified predominately in diatoms (*Figure*
432 **8A**). This protein is paralogous to ISIP2b which lies in the same chromosome 20 gene
433 cluster. They share 3 CXC and 1 CXXC motifs indicative of metal-binding proteins
434 (*Figure 8B*). One of the CXC motifs and the CXXC motif are conserved across the vast
435 majority of homologs in our phylogenetic analysis (*Figure 8—figure supplement 1A*)
436 and the latter is predicted to be located in the disordered C-terminal domain in
437 pTF.CatCh1 (*Figure 8—figure supplement 1B*) possibly indicating redox-controlled
438 coupling of metal coordination and order-disorder transitions (*Erdős et al, 2019*). The
439 pTF.CatCh1 region between amino acid residues 27 and 226 contains 20 cysteines,
440 further indicative of possible metal binding (*Poole, 2014*), and the predicted
441 transmembrane domain (296–315) is flanked by a polyserine and a short arginine-rich
442 stretch. These observations are synthesized in the putative domain organization
443 schematic shown in *Figure 8—figure supplement 1C*. Phylogenetic characterization
444 was performed with pTF.ap1 as well and numerous homologs with at least 5 highly
445 conserved motifs were identified in diatoms and other marine microeukaryotes,
446 including chlorophytes, cryptophytes and haptophytes (*Figure 8—figure supplements*
447 **2A, 2B**). These pTF.ap1 homologs contain 5 100% conserved cysteines indicating this
448 protein may, similarly to pTF.CatCh1, also coordinate metal ions, possibly iron (2
449 conserved cysteines are shown in *Figure 8—figure supplement 2B*).

A

B

451 **Figure 8.** pTF.CatCh1 may be a diatom metallochaperone. (A) pTF.CatCh1 homolog search was
452 performed with NCBI and marine microbial eukaryote (MMETSP) databases and numerous diatom
453 proteins were identified. Notably, pTF.CatCh1 is paralogous to ISIP2b. Scale bar: 0.1 substitutions per
454 position. (B) pTF.CatCh1 and ISIP2b share 3 CXC and 1 CXXC motifs, known divalent metal coordination
455 motifs in proteins such as metallochaperones.

456 **Discussion**

457

458 ISIP2a (iron starvation induced protein 2a) was previously identified in *P. tricornutum* as
459 a marker for iron (Fe) limitation (Allen et al., 2008), subsequently shown to be involved
460 in Fe acquisition (Morrissey et al., 2015) and is widespread in ocean phytoplankton
461 communities (Bertrand et al., 2015; Carradec et al., 2018). In a breakthrough study,
462 McQuaid et al., 2018 demonstrated that ISIP2a, is a type of transferrin, phytotransferrin
463 (pTF), that is crucial for acquisition of dissolved Fe; a critical micronutrient for cellular
464 biochemistry. McQuaid et al., 2018 showed that pTF is essential for high affinity iron
465 uptake in diatoms and that carbonate and Fe interact synergistically to control the iron
466 uptake rate. The finding that carbonate ions are required for the activity of a key diatom
467 iron transport system is noteworthy and suggests that ocean acidification might inhibit
468 iron uptake. The occurrence of transferrin in unicellular marine diatoms raises significant
469 evolutionary and functional questions concerning its origin and role within marine
470 phytoplankton. In the current work, we used phytotransferrin (pTF) as a bait to
471 implement APEX2-enabled proximity proteomics in a model marine diatom *P.*
472 *tricornutum*, and the resulting data provides several key advances regarding the
473 function of pTF and its putative downstream interaction partners.

474

475 McQuaid et al., 2018, observed pTF in intracellular puncta, showed that clathrin-
476 mediated endocytosis inhibitor reduces iron (Fe) uptake rates, visualized vesicles after
477 adding iron to an iron-limited WT *P. tricornutum* culture stained with the membrane dye
478 FM1-43, but our MDY-64 labeling data provide the first direct evidence that diatom pTF
479 is indeed associated with membranous compartments. Further studies are needed to
480 elucidate pTF dynamics upon internalization—especially after iron addition to iron-
481 deplete cells—and its trafficking in the endomembrane system (Naslavsky and Kaplan,
482 2018). This may include a combination of time-lapse microscopy using pTF-YFP
483 expressing *P. tricornutum* cells stained with the FM1-43 dye, pulse-chase experiments,
484 biophysical techniques, and mathematical modeling (Mayle et al., 2012).

485 Enzymatically active APEX2 in *P. tricornutum* was largely expected as heme-containing
486 horseradish peroxidase (HRP) had been successfully expressed in diatoms (*Sheppard*
487 *et al.*, 2012). However, it was less clear what the contribution of endogenous
488 peroxidases would be to the background signal in various APEX2 assays. In our
489 Amplex UltraRed assay experiments, an order of magnitude higher signal-to-noise ratio
490 was detected when live cells were reacted on ice as opposed to on room temperature,
491 suggesting endogenous *P. tricornutum* peroxidases, but not exogenous APEX2, are
492 largely inhibited on ice.

493
494 Identifying Amplex UltraRed assay conditions which minimized WT background was
495 promising, but not a guarantee that some endogenous enzymes would not be able to
496 process other APEX2 substrates, such as those crucial for electron microscopy
497 (diaminobenzidine) and proximity proteomics (biotin-phenol). Indeed, mitochondrial
498 background signal was detected in our electron microscopy experiments both in WT
499 and pTF-APEX2 expressing cells. Nevertheless, C-terminal tagging of pTF with APEX2
500 resulted in the expected cell surface and vesicular fusion protein localization away from
501 mitochondria indicating no spatial overlap between endogenous APEX2-like enzymes
502 and pTF-APEX2. Some off-target biotinylation in our proximity labeling experiments was
503 likely due to background mitochondrial peroxidase activity as indicated by the presence
504 of mitochondrial proteins in our MS data. Their APEX2/WT ratios were close to 1 which
505 provides us with more confidence that those with elevated ratios above 1.5 were
506 enriched due to APEX2 activity. Many of these have biologically relevant annotations for
507 proteins we might expect to play a role in endosomal Fe assimilation, which further
508 supports this notion. Additional efforts to express pTF tagged with N-terminal APEX2,
509 which should lead to intravesicular proximity labeling according to our pTF orientation
510 model, as well as optimizing conditions for APEX2 reactivation in iron-deplete conditions
511 with hemin chloride might lead to identification of additional proteins. Proteomic maps
512 with improved spatial and temporal resolution may emerge from experiments conducted
513 with synchronized cell lines sampled at different timepoints throughout diel cycle, as iron
514 metabolism genes, including *pTF*, are highly expressed at night (*Huysman et al.*, 2014;
515 *Lundberg and Borner*, 2019; *Smith et al.*, 2016). We are particularly excited by the

516 recent demonstration of using Turbold—an engineered biotin ligase—for proximity
517 proteomics in plants: *Arabidopsis thaliana* (**Kim et al., 2019; Mair et al., 2019**) and
518 *Nicotiana benthamiana* (**Zhang et al., 2019**). Due to its independency of Fe and
519 considering the presence of putative APEX2-like peroxidases in *P. tricornutum* causing
520 unwanted mitochondrial background, Turbold (**Branon et al., 2018**) could represent a
521 valuable proximity proteomics tool in this model diatom. These proposed next steps,
522 improvements, and alternative experimental approaches should cross-validate the
523 proteins identified in our experiments as well as lead to new ones.

524

525 The largely uncharacterized gene cluster on chromosome 20 we focused on is
526 transcriptionally upregulated in iron-deplete (**Allen et al., 2008; Smith et al., 2016**) and
527 silicic acid-replete (**Sapriel et al., 2009**) conditions corroborating a known, albeit
528 understudied, link between iron and silicon metabolism in diatoms (**Brzezinski et al.,**
529 **2015; Durkin et al., 2012; Hutchins et al., 1998; Leynaert et al., 2004**). Operon-like
530 gene clusters encoding secondary metabolite pathway components are common in
531 plants (**Boycheva et al., 2014; Nützmann et al., 2017**) and a tightly localized ~7 kbp
532 gene cluster encoding enzymes for domoic acid production has recently been
533 characterized in a cosmopolitan diatom *Pseudo-nitzschia multiseries* (**Brunson et al.,**
534 **2018**). We propose a term “nutritional gene cluster” to describe loci that are sensitive to
535 fluctuations in environmental nutrient status such as the studied ~5.6 kbp one in *P.*
536 *tricornutum*. Our phylogenetic analyses suggest all three proteins encoded by this locus
537 are broadly present in diatoms and other (marine) microeukaryotes while pTF.CREG is
538 evolutionarily conserved across the tree of life. Together with the rest of our proteomic
539 data they provide an emerging view of possible molecular parallels and differences
540 between metazoan transferrin and marine microbial phytotransferrin pathways.

541

542 In transferrin-mediated Fe uptake in human cells, endosome acidification induces
543 structural rearrangements and causes protonation of coordinated carbonate, facilitating
544 iron release (**Cheng et al., 2004**). This event is concurrent with or followed by iron
545 reduction by endosomal ferric reductase STEAP3 and export via an Fe(II)-specific
546 divalent metal transporter DMT1 (**Oghami et al., 2005**). Two putative proton pumps are

547 present among our MS hits: Phatr3_J23497—predicted as a P-type ATPase—and
548 Phatr3_J27923—a vacuolar-type H⁺-ATPase subunit A. Multisubunit V-ATPases
549 regulate pH homeostasis in virtually all eukaryotes and are known to function as
550 endosome acidifying protein complexes (*Finbow and Harrison, 1997; Maxson and*
551 *Grinstein, 2014; Merkulova et al., 2015*). This makes Phatr3_J27923 a candidate
552 protein involved in acidification of phytotransferrin-rich endosomes in *P. tricornutum*.
553 Notably, V-ATPase transcripts have been overrepresented in diatoms following iron
554 enrichment (*Marchetti et al., 2012*), possibly to account for an increase in the number
555 of endosomes associated with pTF-mediated Fe acquisition. V-ATPase has also been
556 predicted to be involved in silica deposition vesicle (SDV) acidification in diatoms
557 (*Vartanian et al., 2009; Hildebrand et al., 2018*). Such endosome acidification,
558 perhaps via V-ATPase, may thus facilitate phytotransferrin-bound Fe(III) release,
559 possibly for processing by an iron reducing enzyme that performs a function similar to
560 STEAP3.

561
562 Human cellular repressor of E1A-stimulated genes 1 (CREG1) is a homodimer with a
563 loop occluding the putative flavin mononucleotide (FMN)-binding pocket at the dimer
564 interface, typical of evolutionarily related FMN-binding split barrel fold oxidoreductases
565 such as those found in bacteria and yeast (*Sacher et al., 2005*). In humans, CREG1 is
566 involved in embryonic development, growth, differentiation, and senescence as part of
567 the endosomal-lysosomal system, though its exact function and role are debated (*Ghobrial*
568 *et al., 2018*). CREG1-like protein pTF.CREGr (Phatr3_J51183) was proposed to be
569 central for sustained growth of iron-limited *P. tricornutum* cells (*Allen et al., 2008*) or to
570 serve as a cell surface iron receptor (*Lommer et al., 2012*). CREG transcripts were
571 more commonly found in diatom transcriptomes from the Southern Ocean as opposed
572 to non-Southern Ocean regions suggesting their importance in coping with iron
573 limitation in this major HNLC zone (*Moreno et al., 2018*). This may also explain why
574 many more diatom homologs are not present in our phylogenetic tree as marine
575 microbial eukaryote transcriptomes from MMETSP (*Caron et al., 2016; Keeling et al.,*
576 *2014*) were not obtained from iron-limited cultures. Evolutionary link of CREG proteins
577 to oxidoreductases and phylogenetic classification of pTF.CREGr away from

578 multicellular organisms prompted us to investigate whether this protein could be a ferric
579 reductase. Importantly, none of the four canonical predicted ferric reductases (FRE1–4,
580 Phatr3_J IDs: 54486, 46928, 54940, 54409) that may have a role in cell surface iron
581 reduction processes (*Allen et al., 2008*) were present in our MS data. In contrast, our
582 data demonstrating punctate pTF.CREGr colocalization with pTF in the vicinity of
583 chloroplast periphery suggest that this protein has no cell surface-associated role, but
584 rather acts intracellularly, perhaps in an endosomal-lysosomal system. This localization
585 is consistent with the observation that proteins with low confidence ASAFind chloroplast
586 prediction (such as pTF.CREGr) can be associated with “blob-like structures” (BLBs)
587 adjacent to, but not inside, the chloroplast (*Gruber et al., 2015; Kilian and Kroth,
588 2005*). Biochemical characterization of pTF.CREGr revealed that the protein is able to
589 reduce free flavins in an NADPH-dependent manner. In bacteria, flavin reductases can
590 also function physiologically as ferric reductases, promoting the transfer of electrons to
591 ferric Fe(III) iron using reduced flavins as an intermediate (*Fontecave et al., 1994;
592 Schröder et al., 2003*). While the true physiological role of pTF.CREGr is unclear at
593 present, it is possible that the flavin reductase activity of the enzyme drives ferric iron
594 reduction as a part of the phytotransferrin (pTF)-dependent iron uptake system in
595 diatoms. We do, however, express concern if placing pTF.CREGr inside a vesicle is
596 justifiable considering likely, but not certain, APEX2 orientation away from the vesicle
597 interior in our proximity labeling experiment and the known inability for phenoxy radicals
598 created by APEX2 to penetrate endomembranes (*Rhee et al., 2013*). Considering pTF
599 orientation has not been experimentally validated, pTF.CREGr may have been labeled
600 while being recruited to the vesicle, and diatom membranes may be permeable to
601 phenoxy radical, pTF.CREGr localization to the vesicle interior remains plausible.

602
603 In summary, pTF.CREGr may be a ferric reductase critical for endosome-associated
604 iron reduction step facilitating further intracellular iron allocation and assimilation.
605 Intracellular Fe(III) reduction with pTF.CREGr would also be consistent with the
606 nonreductive cell surface Fe(III) uptake step proposed for pTF (*McQuaid et al., 2018;
607 Morrissey et al., 2015*). It is unclear at this point how would ferrous, Fe(II), iron be
608 exported from the endosome for cellular use. One possible candidate, although not

609 present in our MS data, is ferroportin (Fpn), the only known ferrous iron exporter in
610 mammalian cells (*Ward and Kaplan, 2012*). Ferroportin homologs in *Arabidopsis*
611 *thaliana* have been shown to be involved in iron and cobalt homeostasis both
612 intracellularly (vacuole) and on the cell surface (*Morrissey et al., 2009*). The *P.*
613 *tricornutum* genome contains a putative ferroportin gene, *Phatr3_J54495*. It is plausible
614 that such “phytoferroportins” in single-celled marine microeukaryotes such as diatoms
615 also function intracellularly, perhaps in Fe(II)-rich endosomes.

616

617 No functional annotations could be predicted for pTF.CatCh1 in Pfam (*Ei-Gebali et al.,*
618 *2019*). This protein contains a cysteine-rich domain and a disordered C-terminal domain
619 split in two by a predicted transmembrane region. The transmembrane (TM) region is
620 preceded by a flexible polyserine stretch and is followed by a short arginine-rich motif.
621 Such positively charged amino acid tracts in the vicinity of TM regions have been shown
622 to be orientation determinants in outer chloroplast membrane proteins (*May and Soll,*
623 *1998*). Disordered domains are known mediators of protein-protein interactions and play
624 an important role in the formation of protein complexes (*Uversky, 2015; Uversky,*
625 *2016*). It is therefore plausible pTF.CatCh1 interacts with pTF with its C-terminal
626 disordered region. The cysteine-rich domain contains two highly conserved motifs—
627 CXC and CXXC—which have been observed in a variety of metalloregulatory and metal
628 sensing proteins (*O'Halloran, 1993*) as well as metallothioneins (*Romero-Isart, 2002*)
629 and metallochaperones, particularly those involved in copper binding (*Blaby-Hass et*
630 *al., 2014; O'Halloran and Culotta, 2002; Robinson and Winge, 2012*). Two additional
631 CXC motifs are conserved in its paralog ISIP2b. Metallochaperones are known to
632 engage in protein-protein interactions (*Rosenzweig, 2002*) and are important in
633 preventing metal-induced toxicity caused by Fenton reactions, especially common with
634 iron (*Valko et al., 2005*). Taken together, these observations indicate that pTF.CatCh1
635 might be a metallochaperone localized to the chloroplast margin as suggested by our
636 fluorescence microscopy data, possibly binding iron Fe(II) downstream of the reduction
637 step and subsequently directing Fe traffic to the chloroplast interior. The observed
638 colocalization of pTF.CatCh1 with pTF at the chloroplast periphery may alternatively
639 indicate that Fe(III), as opposed to Fe(II), is offloaded directly from pTF to pTF.CatCh1

640 which would imply the existence of an additional intracellular Fe(III) reduction pathway.
641 It is unclear which proteins could mediate the subsequent ferrous, Fe(II), iron import into
642 the chloroplast. We note that transcripts for two putative organellar cation diffusion
643 facilitators (CDFs), divalent metal ion transporters, are enriched under iron limitation in
644 *P. tricornutum* (Allen et al., 2008), so they may fulfill this role.

645
646 Chloroplasts are the most iron-rich system in plant cells (López-Millán et al., 2016).
647 Iron—in particular iron-sulfur clusters (Balk and Schaedler, 2014)—serves as an
648 essential cofactor for the photosynthetic electron transfer chain, catalytic processes
649 such as chlorophyll biosynthesis, and chloroplast protein import (Marchand et al., 2018;
650 Soll and Schleiff, 2004). A complex vesicle-based system possibly in perpetual
651 dynamic exchange with cytosolic vesicles is present in chloroplasts (Lindquist and
652 Aronsson, 2018), an endoplasmic reticulum (ER) to Golgi to chloroplast protein
653 trafficking pathway exists (Villarejo et al., 2005; Radhamony and Theg, 2006), and
654 further hypotheses for such specialized vesicle-mediated plastid targeting of proteins
655 have been established (Baslam et al., 2016). Thus, while very little is known about
656 intracellular iron trafficking in diatoms or other algae with complex plastids, a direct link
657 between endocytic internalization of phytotransferrin-bound iron and its offloading in or
658 adjacent to chloroplasts as suggested by our results seems plausible. Analysis of our
659 mass spectrometry hits that were not co-expressed with pTF reveals four additional
660 proteins—ISIP1 (Phatr3_J55031), FBP (Phatr3_J46929), 14-3-3 protein
661 (Phatr3_J5651), and FBAC5 (Phatr3_J41423)—that support the idea of a direct cell
662 surface-to-chloroplast iron trafficking axis in *P. tricornutum*.

663
664 ISIP1 (iron starvation-induced protein 1; Phatr3_J55031) is induced by iron limitation in
665 *P. tricornutum* (Allen et al., 2008) and other marine microalgae (Marchetti et al., 2012)
666 and was the second most enriched protein in our MS dataset. It is an environmentally
667 ubiquitous protein that has been shown to have a role in iron uptake (Kazamia et al.,
668 2018) and more recently to colocalize with pTF adjacent to the chloroplast in what has
669 been referred to as an “iron processing” compartment (Kazamia et al., 2019). Metal
670 homeostasis by such discrete membranous compartments is widespread in nature

671 (Blaby-Haas and Merchant, 2014). Copper- and zinc-storing compartments,
672 cuprosomes and zincoxomes, respectively, are present in the model chlorophyte
673 microalga *Chlamydomonas reinhardtii* (Aron et al., 2015; Hong-Hermesdorf et al.,
674 2014; Merchant, 2019), and lipid-bound iron-accumulating ferrosome compartments
675 exist in diverse bacteria (Komeili, 2018). Phatr3_J46929—a siderophore ferrichrome-
676 binding protein (FBP) (Coale et al., 2019)—was another highly enriched protein in our
677 dataset indicating the internalization pathways for inorganic (i.e. phytotransferrin-bound)
678 and organic (i.e. siderophore-bound) iron in *Phaeodactylum tricornutum* may be
679 physically coupled intracellularly and similarly directed to iron-accumulating vesicles
680 close to the chloroplast.

681
682 Preproteins in *Arabodopsis thaliana* are targeted to the chloroplast—specifically to Toc
683 GTPases—by the cytosolic guidance complex consisting of a protein dimer comprised
684 of HSP70 (heat shock protein-70) and 14-3-3 (Bölter, 2018; Soll and Schleiff, 2004).
685 14-3-3 proteins are widespread regulatory proteins usually acting through protein-
686 protein interactions (Soll and Schleiff, 2004). They recognize phosphorylated serines
687 and threonines in preprotein transit peptides and serve as cytosolic chaperones
688 preventing premature chloroplast-specific activity of bound preproteins (May and Soll,
689 2000). One of our MS hits—Phatr3_J5651—is a 14-3-3 protein and it is plausible
690 pTF.CatCh1 localization to the chloroplast margin depends on this chloroplast targeting
691 pathway. Two small heat shock proteins are also among our highly enriched proteins—
692 Phatr3_J54656 and Phatr3_J46468—however they are of the HSP20 variety and it is
693 more likely they are involved in iron stress response more broadly (Carra et al., 2019)
694 as opposed to interacting with Phatr3_J5651 specifically.

695
696 Finally, the most enriched protein in our MS dataset was Phatr3_J41423, iron-sensitive
697 and iron-independent class I fructose-biophosphate aldolase 5 (FBAC5), which was
698 shown to localize to the pyrenoid in the interior of the *P. tricornutum* chloroplast and was
699 proposed to link Calvin-Benson cycle activity with the CO₂ concentrating mechanism
700 (Allen et al., 2012). FBAC5 is one of the most reliable markers for diatom iron stress as
701 demonstrated by laboratory culture (Cohen et al., 2018; Lommer et al., 2012),

702 microcosm incubation (*Cohen et al., 2017; Cohen et al., 2017*), and field studies
703 (*Bertrand et al., 2015*), however its exact role, despite some existing hypotheses,
704 remains elusive. FBAs are known moonlighting proteins (*Jeffrey, 2018*) and have been
705 shown to have a role in endosome acidification via direct interaction with V-ATPase
706 (*Merkulova et al., 2011*) which offers a tantalizing possibility for ancillary FBAC5
707 function in *P. tricornutum*.

708

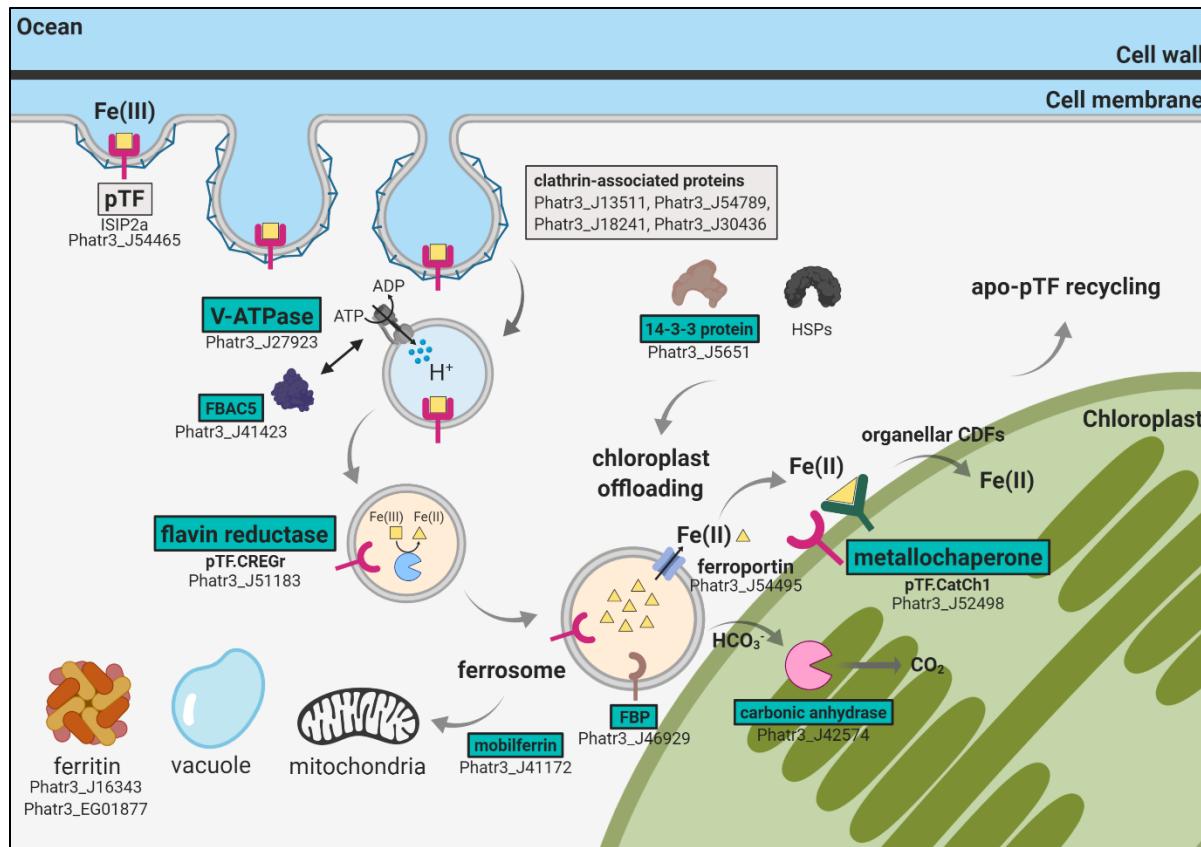
709 Additional notable proteins with APEX2/WT ratio of at least 1.5 include a Rab family
710 small GTPase Sec4 (Phatr3_J30139) which has been observed to localize between
711 chloroplasts and nuclei during cell division in *P. tricornutum* (*Tanaka et al., 2015*),
712 Phatr3_J41172, annotated as Ca²⁺-binding protein calreticulin, and an α -carbonic
713 anhydrase Phatr3_J42574 (predicted to be chloroplastic with low confidence).

714

715 Interestingly, rat calreticulin is homologous to an iron-binding protein mobilferrin
716 (*Conrad et al., 1993*). This protein has been shown to associate with transferrin-
717 containing vesicles and to act as an intermediate between the transferrin-bound iron
718 and the incorporation of iron into hemoglobin in erythroleukemia cells (*Conrad et al.,*
719 *1996*). It has also been identified as a constituent of a paraferritin protein complex with
720 ferrireductase activity in rats (*Umbreit et al., 2002; Umbreit et al., 1996*). This may
721 suggest that Phatr3_J41172, despite calreticulin annotation, has a role in intracellular
722 iron transport, perhaps to direct iron to mitochondria for incorporation into heme.

723

724 Considering carbonic anhydrases catalyze rapid conversion of HCO₃⁻ to CO₂ (*Matsuda*
725 *et al., 2017*), the presence of an α -carbonic anhydrase Phatr3_J42574 in our data
726 raises an intriguing possibility: could it be that pTF-bound carbonate not only
727 coordinates iron, but is itself a cargo? It would be conceivable that a protonated
728 carbonate released from pTF gets metabolized by a carbonic anhydrase with the
729 resulting CO₂ permeating through the chloroplast and increasing CO₂ levels around
730 RuBisCO for efficient CO₂ fixation. Such direct molecular bridge between iron
731 acquisition and CO₂ concentrating mechanism (CCM) would further explain commonly


732 observed prevalence of diatoms in phytoplankton blooms in times of oceanic iron
733 repletion.

734

735 Conclusion and Outlook

736

737 We here implemented the bifunctional genetically encoded probe APEX2 for use in
738 diatoms which will complement existing efforts to comprehensively map diatom
739 organellar proteomes (*Schober et al., 2019*). Direct imaging of APEX2-tagged
740 phytotransferrin in *Phaeodactylum tricornutum* revealed its tight cell membrane and
741 vesicular localization consistent with fluorescent microscopy results (*McQuaid et al.,*
742 *2018; Morrissey et al., 2015; this study*). APEX2-based imaging is thus
743 complementary to super-resolution microscopy in diatoms (*Gröger et al., 2016*) and
744 represents a basis for electron tomography applications (*Sengupta et al., 2019*). In the
745 proximity proteomics experiment, several proteins with a predicted role in iron
746 metabolism and protein transport were identified, and we showed that two of them—
747 pTF.CREGr and pTF.CatCh1—colocalize with pTF adjacent to the chloroplast
748 suggesting a direct cell surface-to-chloroplast iron trafficking axis. Initial biochemical
749 data for pTF.CREGr support its hypothesized role as a ferric reductase, similar to
750 bacterial flavin reductases. *In vivo* experiments involving either split fluorescent proteins
751 (*Kudla and Bock, 2016*) or fluorescence resonance energy transfer (FRET) (*Marshall*
752 *et al., 2012*) will determine if they directly interact with or are only vicinal to pTF.
753 Differential fluorophore tagging of these two and other identified proteins coupled with
754 time-lapse microscopy should shed light on their localization dynamics relative to pTF.
755 Finally, genome editing using either TALENs or CRISPR/Cas9 (*Kroth et al., 2018*)
756 coupled with physiological measurements of the resulting knockout cell lines under
757 various environmental conditions will also be crucial to advance the work herein.
758
759 Taken altogether, our data enable proposition of a model connecting cell surface ferric
760 iron binding, internalization and intracellular trafficking in *Phaeodactylum tricornutum*
761 (**Figure 9**) with many outstanding questions ripe for additional study.

762

763

764 **Figure 9.** Emerging view of inorganic iron allocation pathways in *Phaeodactylum tricornutum*. We
 765 propose a hypothetical model for clathrin-mediated internalization of phytotransferrin (pTF)-bound ferric
 766 iron, its trafficking and offloading to the chloroplast. Data from this proteomics study (teal panels) and a
 767 previous transcriptomics study (grey panels)—which identified additional endocytosis- and trafficking-
 768 related iron-sensitive transcripts—are synthesized. One phytotransferrin-Fe(III) complex is shown for
 769 clarity. Detailed chloroplast membrane layers are omitted (diatom chloroplasts contain four membranes).
 770 In this model, pTF undergoes a structural change upon endosome acidification mediated by a V-ATPase
 771 releasing Fe(III) which gets reduced by a ferric reductase, a role which may be served by the flavin
 772 reductase pTF.CREGr. Reduced iron may then be exported through an unknown endosomal ferrous
 773 transporter (perhaps ferroportin) and offloaded to a chloroplastic metallochaperone (perhaps
 774 pTF.CatCh1), possibly located in the outer chloroplast membrane, and from there shuttled into the
 775 chloroplast interior (perhaps by cation diffusion facilitators). Our colocalization data alternatively suggest
 776 pTF may be recruited to the chloroplast margin together with pTF.CatCh1 which would imply an additional
 777 Fe(III) reduction pathway. 14-3-3 proteins such as the identified Phatr3_J5651 could be involved in the
 778 offloading process. The whole pathway might intersect with that for internalizing siderophore-bound iron
 779 as indicated by the presence of a ferrichrome-binding protein (FBP) in our data. Finally, pTF-coordinated
 780 carbonate may itself be a cargo. Its endosomal protonation would provide bicarbonate acting as a
 781 substrate for the uncharacterized carbonic anhydrase Phatr3_J42574. Created with BioRender.com.

782 As our understanding of intracellular iron trafficking is relatively incomplete even in more
783 established systems (*Philpott and Jadhav, 2019*) and our knowledge of iron transport
784 into the chloroplast rudimentary (*Blaby-Haas and Merchant, 2012*), this work
785 represents an important advance beyond adding a new tool to the molecular toolbox of
786 this slowly maturing model system.

787

788 Diatoms more generally are suitable to address a range of questions related to
789 evolutionary cell biology, biotechnology and nanotechnology (*Figure 9—figure*
790 *supplement 1*). Elaborately patterned silica cell walls in diatoms have intrigued scientist
791 for hundreds of years (*Anonymous, 1703*). Cell wall synthesis happens in a silica
792 deposition vesicle and numerous proteins involved in this process have been identified
793 (*Hildebrand et al., 2018*) providing a rich pool of baits for APEX2 tagging. Elucidating
794 new proteins and protein-protein interactions in this pathway has the potential to inspire
795 novel nanotechnologies based on biologically directed mineral growth (*Kröger and*
796 *Brunner, 2014*). Similarly elusive is the composition of diatom pyrenoids—chloroplastic
797 RuBisCO-containing suborganelles at the core of CO₂ concentrating mechanism (*Tsuyi*
798 *et al., 2017*). Understanding their composition and biogenesis will inform existing efforts
799 to increase photosynthetic efficiency of important food crops (*Orr et al., 2017*).

800

801 In conclusion, APEX2 and related molecular approaches such as TurboID together with
802 emerging computational protein-protein interaction prediction methods (*Cong et al.,*
803 *2019*) will be instrumental in advancing diatom cell biology and hold potential for
804 establishment of cell-wide subcellular proteomic and interactomic maps, a vision that is
805 already being realized for a human cell (*Go et al., 2019*). Considering enormous marine
806 microbiome diversity (*de Vargas et al., 2015*) and the advent of new model marine
807 microeukaryotes (*Faktorová et al., 2019; Waller et al., 2018*) we also believe these
808 tools are well-positioned to impact evolutionary cell biology more broadly. This will have
809 important implications for understanding life on length scales from atomic to planetary
810 as well as on temporal scales ranging from emergence of life billions of years ago to
811 understanding the present impact of human activity on climate change.

812 **Materials and Methods**

813

814 **Vector construction**

815

816 **pJT_NR_pTF-AP2:** Gibson Assembly (*Gibson et al., 2009*) was performed with three
817 DNA fragments: (1) linearized pPt-BR322-1 episome backbone (Addgene, Cambridge,
818 MA, plasmid “pPtPBR1”, Catalog #80388) opened ~280 bp downstream of the
819 tetracycline resistance gene, (2) amplicon with nitrate reductase gene (*NR*) promoter, 5'
820 *NR* UTR and *pTF*, and (3) gBlocks Gene Fragment (Integrated DNA Technologies
821 (IDT), Coralville, IA) with linker sequence, *APEX2* codon optimized using IDT Codon
822 Optimization Tool (selecting “*Thalassiosira pseudonana*” from the “Organism” drop-
823 down menu), 3' *NR* UTR and *NR* terminator.

824

825 **pJT_native_pTF-mCherry:** Gibson Assembly was performed with three DNA
826 amplicons: (1) pPt-BR322-1 episome backbone split into two fragments and (2)
827 expression cassette including *pTF*, *mCherry* and *pTF* promoter and terminator.

828

829 **pJT_pTF-mCherry_MS hit-EYFP:** pJT_native_pTF-mCherry was split into two
830 fragments using PCR stitching (keeping ampicillin resistance gene split). MS hit genes
831 were amplified using cDNA from iron-starved WT *P. tricornutum* cells and assembled
832 with *EYFP* and flavodoxin (*Phatr_J23658*) promoter and terminator through two PCR
833 stitching rounds into a single fragment. Gibson Assembly was then performed to
834 combine all three final amplicons. Detailed assembly scheme is presented in *Figure 5—*
835 *figure supplement 2A*.

836

837 **pJT_Δ31_pTF.CREGr-His6:** Cloning of gene fragments into the *E. coli* protein
838 expression vector PtpBAD-CTHF was performed as described previously (*Brunson et*
839 *al., 2018*). Briefly, PtpBAD-CTHF was linearized by digestion with Xhol (New England
840 Biolabs (NEB), Ipswich, MA, Catalog #R0146S) and the resulting DNA was column
841 purified. Truncated Δ18_pTF.CREGr gene was obtained by PCR from *P. tricornutum*
842 gDNA with PrimeSTAR polymerase (Takara Bio, Kusatsu, Japan) and primer set

843 JT31/JT32 to incorporate the appropriate Gibson assembly overhangs and remove the
844 putative N-terminal signal peptide (amino acids 1–18). Insertion of truncated
845 pTF.CREGr into linearized PtpBAD-CTHF was performed using Gibson Assembly
846 Master Mix (NEB, Catalog #E2611S), 1 uL of the reaction mixture was transformed via
847 heat shock into chemically competent NEB 5-alpha cells (NEB, Catalog #C2988J), and
848 cells incubated on lysogeny broth (LB)-Tet10 plates overnight at 37°C. Transformants
849 were screened by colony PCR using the primer set JT37/JT38 and Sapphire
850 polymerase (Takara Bio), and positive clones were selected for outgrowth. Isolated
851 plasmids were sequence-validated by Sanger sequencing (Eurofins, Luxembourg,
852 Luxembourg). A sequence-validated clone was designated as PtpBAD-
853 Δ18_pTF.CREGr-CTHF and transformed into chemically competent BL21 *E. coli* cells
854 (NEB, Catalog #C2530H) which were plated on LB agar with tetracycline (10 µg/mL).
855 The resulting transformants were used for subsequent Δ18_pTF.CREGr expression
856 experiments. Following unsuccessful expression testing of the Δ18 N-terminal
857 truncation construct, an additional set of N-terminal truncations (Δ26, Δ31, Δ39, Δ43)
858 was generated by PCR using PrimeStar polymerase, primer sets JT33/JT32,
859 JT34/JT32, JT35/JT32, JT36/JT32, and PtpBAD-Δ18_pTF.CREGr-CTHF as a template.
860 Assembly, colony PCR screening, plasmid isolation, sequencing, and transformation
861 into chemically competent BL21 *E. coli* cells of all additional expression vectors,
862 including PtpBAD-Δ31_pTF.CREGr-CTHF (=pJT_Δ31_pTF.CREGr-His6), was
863 performed as above. An additional N-terminal His6 Δ39 construct was built (PtpBAD-
864 NTH-Δ39_pTF.CREGr) using the vector NTH-PtpBAD (constructed similarly to PtpBAD-
865 CTHF, see *Brunson et al., 2018* and *Savitsky et al., 2010*), but was not pursued
866 beyond initial expression testing.

867
868 *pTF* (*Phatr3_J54465*) in all episomes was in its native form (3 exons, 2 introns).
869 Molecular cloning primers are listed in **Supplementary file 1—Table S3**. Vector details,
870 further amplicon information, and fusion protein sequences are catalogued in
871 **Supplementary file 1—Table S4**. PrimeSTAR GXL DNA Polymerase (Takara Bio) is
872 recommended for amplifying (parts of) diatom episomes.

873 **Related resource:** Turnšek J. and Gholami P. 2017. Guidelines for highly efficient
874 construction of diatom episomes using Gibson Assembly. *protocols.io*. DOI:
875 dx.doi.org/10.17504/protocols.io.jy7cpzn

876

877 **Diatom culturing, conjugation and genotyping**

878

879 **Culturing:** Sequenced *Phaeodactylum tricornutum* strain CCMP632 (synonymous to
880 CCMP2561 and CCAP 1055/1; NCMA, East Boothbay, ME) was used throughout the
881 study and grown at 18°C and 300 μ mol quanta $m^{-2} s^{-1}$ in a 10 h:14 h dark:light cycle in
882 biotin-free L1 medium prepared by mixing 1 L Aquil salts, 2 mL nitrate and phosphate
883 (NP) nutrient stock, 1 mL trace metal stock, and 1 mL thiamine hydrochloride and
884 cyanocobalamin (TC) stock unless otherwise noted. Aquil salts: 0.5 L anhydrous salts
885 (0.5 L Milli-Q, 24.5 g NaCl, 4.09 g Na₂SO₄, 0.7 g KCl, 0.2 g NaHCO₃, 0.1 g KBr, 900 μ L
886 33.3 mg/mL H₃BO₃ stock, 300 μ L 10 mg/mL NaF stock) and 0.5 L hydrous salts (0.5 L
887 Milli-Q, 11.1 g MgCl₂ x 6H₂O, 1.54 g CaCl₂ x 2H₂O, 100 μ L 170 mg/mL SrCl₂ x 6H₂O
888 stock) were prepared separately, combined and filter sterilized (0.2 μ m). NP nutrient
889 stock: 37.5 g NaNO₃ and 2.5 g NaH₂PO₄ were dissolved in 100 mL Milli-Q, filter
890 sterilized (0.2 μ m) and stored at 4°C. Trace metal stock (for 1 L 1000x stock): 3.15 g
891 FeCl₃ x 6H₂O, 4.36 g Na₂EDTA x 2H₂O, 0.25 mL 9.8 g/L CuSO₄ x 5H₂O, 3.0 mL 6.3 g/L
892 Na₂MoO₄ x 2H₂O, 1.0 mL 22 g/L ZnSO₄ x 7H₂O, 1.0 mL 10 g/L CoCl₂ x 6H₂O, 1.0 mL
893 180 g/L MnCl₂ x 4H₂O, 1.0 mL 1.3 g/L H₂SeO₃, 1.0 mL 2.7 g/L NiSO₄ x 6H₂O, 1.0 mL
894 1.84 g/L Na₃VO₄, 1.0 mL 1.94 g/L K₂CrO₄, and Milli-Q up to 1 L were combined, filter
895 sterilized (0.2 μ m), and kept at 4°C. TC stock: 20 mg thiamine hydrochloride and 0.1 mL
896 1 g/L cyanocobalamin were mixed in 100 mL Milli-Q. The solution was stored at 4°C.
897 ΔpTF *P. tricornutum* strain (maintained in the Allen lab; *McQuaid et al., 2018*) was
898 additionally supplemented with 200 μ g/mL nourseothricin (GoldBio, Saint Louis, MO,
899 Catalog #N-500-1). All transconjugant *P. tricornutum* strains were supplemented with 50
900 or 100 μ g/mL phleomycin (InvivoGen, San Diego, CA, Catalog #ant-ph-10p).

901

902 **Conjugation:** (1) **Bacterial donor preparation:** Chemically competent pTA-Mob-
903 containing TransforMax™ EPI300™ *E. coli* cells (Lucigen, Middleton, WI, Catalog

904 #EC300110) were transformed with sequence-verified pPt-BR322-1 episomes.
905 Transformants were selected on gentamycin-, carbenicillin- and tetracycline-containing
906 LB agar plates. 3 mL overnight LB cultures supplemented with antibiotics were
907 inoculated from glycerol stocks. (2) P. tricornutum preparation: ~2 x 10⁸ *P. tricornutum*
908 cells (in 200 µL) from mid- to late-exponential phase were spread on pre-dried (=plates
909 with lid half open and kept in the laminar flow hood for at least 90 min) ½ L1 1% agar
910 plates with 5% LB and left growing for 1 or 2 days. Plates were additionally
911 supplemented with 200 µg/mL nourseothricin for conjugation of ΔpTF *P. tricornutum*
912 cells. (3) Conjugation: Overnight bacterial cultures were diluted 1:50 in 25 mL LB
913 supplemented with antibiotics, grown at 37°C until OD₆₀₀ 0.8–1, spun down,
914 resuspended in 150 µL Super Optimal broth with Catabolite repression (SOC) medium
915 and spread as evenly as possible on top of a *P. tricornutum* lawn. Plates with donor-*P.*
916 *tricornutum* co-culture were left for 90 min in dark at 30°C, then for 1 or 2 days at
917 standard growth conditions. (4) Selection: Co-culture lawn was scrapped off with 1 mL
918 fresh L1 medium, transferred to a microcentrifuge tube, and 200 µL spread on pre-dried
919 (see above) ½ L1 1% agar plates with 50 or 100 µg/mL phleomycin. Plates were
920 additionally supplemented with 200 µg/mL nourseothricin for conjugation of ΔpTF *P.*
921 *tricornutum* cells. Porous adhesive tape was used to seal the plates and
922 transconjugants emerged after ~10 days of incubation under standard growth
923 conditions. Please see *Karas et al., 2015* and *Diner et al., 2016* for further description
924 of diatom conjugation.

925
926 **Genotyping:** Candidate transconjugant colonies were inoculated in 300 µL L1 medium
927 supplemented with 50 or 100 µg/mL phleomycin (and 200 µg/mL nourseothricin in case
928 of ΔpTF *P. tricornutum* cells) and typically grown for ~1 week. 0.5 µL culture was then
929 genotyped using either Phire Plant Direct PCR Master Mix (Thermo Fischer Scientific,
930 Waltham, MA, Catalog #F160L) or Phire Plant Direct PCR Kit (Thermo Fischer
931 Scientific, Catalog #F130WH). 200 µL of each genotype positive strain was passaged in
932 30 mL L1 medium supplemented with 50 or 100 µg/mL phleomycin (and 200 µg/mL
933 nourseothricin).

934 **Related resource:** Turnšek J. 2017. Simple & rapid genotyping of marine
935 microeukaryotes. *protocols.io*. DOI: dx.doi.org/10.17504/protocols.io.jcdcis6
936

937 **RNA extraction and cDNA synthesis**

938

939 **Diatom culture:** 100 mL *P. tricornutum* culture was grown in iron-limiting conditions for
940 2 weeks (L1 medium with 7.5 nM total Fe). Cells were then centrifuged, supernatants
941 discarded, pellets flash frozen in liquid nitrogen and stored at -80°C.

942

943 **RNA extraction:** Pellets were resuspended in 800 µL Trizol, equal amount of 100%
944 ethanol, and centrifuged in spin columns. Columns were then washed with 400 µL RNA
945 Wash Buffer followed by on-column DNA digestion with 5 µL DNase I in 75 µL DNA
946 Digestion Buffer for 15 min at RT, washing twice with 400 µL Direct-zol RNA PreWash
947 and once with 700 µL RNA Wash Buffer. RNA was eluted with 50 µL DNase/RNase-
948 Free Water, RNA integrity number (RIN) evaluated with 2200 TapeStation (Agilent
949 Technologies, Santa Clara, CA; measured RIN was 7.0), concentration measured with
950 Qubit 2.0 Fluorometer (Thermo Fischer Scientific; measured concentration was 27.6
951 ng/µL), and samples stored at -80°C. Direct-zol™ RNA Miniprep Plus RNA extraction kit
952 was used (Zymo Research, Irvine, CA, Catalog #R2070).

953

954 **cDNA synthesis:** 1 µL total RNA was combined with 0.5 µL Oligo(dT)₂₀ Primer, 0.5 µL
955 10 mM dNTP Mix and 3 µL nuclease-free water followed by 5 min and 1 min incubation
956 at 65°C and on ice, respectively. After 5 µL cDNA Synthesis Mix (1 µL 10x Reverse
957 Transcription buffer, 2 µL 25 mM MgCl₂, 1 µL 0.1 M DTT, 0.5 µL RNase OUT, 0.5 µL
958 SuperScript III Reverse Transcriptase) was added, samples were incubated 50 min and
959 5 min at 50°C and 85°C, respectively, then chilled on ice. Finally, 1 µL RNase H was
960 added and sample kept for 20 min at 37°C. cDNA was stored at -20°C until use. cDNA
961 synthesis kit was from Thermo Fischer Scientific (SuperScript™ III First-Strand
962 Synthesis System, Catalog #18080-051).

963 **MDY-64 labeling and imaging**

964

965 10 mL of a ΔpTF *P. tricornutum* pTF-mCherry expressing strain grown in iron-limiting
966 conditions (L1 medium with 7.5 nM total Fe) was spun down, supernatant discarded,
967 and pellet resuspended in 50 μ L phosphate-buffered saline (PBS) (pH 7.4). 0.5 μ L 10
968 mM MDY-64 stock (in DMSO; Thermo Fischer Scientific, Catalog #Y7536) was added,
969 cells incubated for 10 min at RT, pelleted, resuspended in 50 μ L fresh PBS (pH 7.4) and
970 imaged. 5 μ L cell suspension was placed between a 1.5 mm microscope slide and a
971 cover slip (this setup applies to all imaging experiments in the study). Imaging
972 conditions: Leica TCS SP5 confocal microscope (Leica Microsystems, Wetzlar,
973 Germany), argon laser strength set to 30%, 458 nm laser line at 50%, emission window
974 set to 477–517 nm (MDY-64; MDY-64 excitation and emission maxima are 451 nm and
975 497 nm, respectively), 514 nm laser line at 50%, emission window set to 620–640 nm
976 (mCherry; mCherry excitation and emission maxima are 587 nm and 610 nm,
977 respectively).

978

979 **Protein expression analyses**

980

981 **pTF-APEX2 detection:** Cell pellets from 8 mL mid- to late-exponential WT or
982 transconjugant cultures were resuspended in 150 μ L cell lysis buffer (50 mM Tris-HCl,
983 200 mM NaCl, 1 mM DTT, 1 mM PMSF, pH 8.5) and sonicated for 5 min (30 sec on, 1
984 min off) with Bioruptor UCD-200TM. Lysates were centrifuged, total protein content in
985 supernatants measured with the Bradford Assay Kit (Thermo Fischer Scientific, Catalog
986 #23236), and insoluble fractions resuspended in 150 μ L cell lysis buffer. 1 μ g soluble
987 protein and 0.5 μ L resuspended insoluble protein fraction were resolved on NuPage 4–
988 12% Bis-Tris 1.5 mm gels (Thermo Fischer Scientific, Catalog #NP0335BOX), wet
989 transferred to polyvinylidene difluoride (PVDF) membranes (Thermo Fischer Scientific,
990 Catalog #LC2005) and visualized with WesternBreeze™ Chemiluminescent Kit, anti-
991 rabbit (Thermo Fischer Scientific, Catalog #WB7106).

992 **pTF-mCherry detection:** Cell pellets from 400 μ L mid- to late-exponential WT or
993 transconjugant cultures were resuspended in 50 μ L cell lysis buffer (50 mM Tris-HCl,
994 200 mM NaCl, 1 mM DTT, 1 mM PMSF, pH 8.5) and sonicated 15 min (30 sec on, 1
995 min off) with Bioruptor UCD-200TM. 1 μ L whole cell lysates were resolved on NuPage
996 4-12% Bis-Tris 1.5 mm gels, wet transferred to PVDF membranes and visualized with
997 WesternBreezeTM Chemiluminescent Kit, anti-rabbit.

998

999 **pTF antibody details:** The immunogen were amino acid residues 32–223 (N-terminal
1000 pTF region just downstream of the signal peptide). The antibody was produced in a
1001 rabbit. 1:10,000 dilution of 1.14 mg/mL antibody stock was used for background-free
1002 results.

1003

1004 **Protein ladder:** MagicMarkTM XP Western Protein Standard (Thermo Fischer Scientific,
1005 Catalog #LC5602).

1006

1007 **Related resource:** Turnšek J. 2017. HA tag enables highly efficient detection of
1008 heterologous proteins in *Phaeodactylum tricornutum* (*Pt*) exconjugants. *protocols.io*.
1009 DOI: dx.doi.org/10.17504/protocols.io.j7ncrme

1010

1011 **Amplex UltraRed assay and resorufin imaging**

1012

1013 **Amplex UltraRed assay:** 5 mL WT or pTF-APEX2 expressing cells in mid- to late-
1014 exponential phase were incubated on ice for 5 min, spun down, supernatant discarded,
1015 pellet resuspended in 500 μ L ice-cold PBS (pH 7.4), and transferred to microcentrifuge
1016 tubes. Cells were spun down again, resuspended in 200 μ L ice-cold reaction buffer (50
1017 μ M Amplex UltraRed (AUR; Thermo Fischer Scientific, Catalog #A36006), 2 mM H₂O₂,
1018 in PBS (pH 7.4)) and incubated on ice for 15 min unless otherwise noted. 50 μ L
1019 supernatant was mixed with 50 μ L PBS (pH 7.4) and resorufin fluorescence measured
1020 in a black microtiter plate with black bottom using Flexstation 3 microtiter plate reader
1021 (Molecular Devices, San Jose, CA; excitation: 544 nm, emission: 590 nm; resorufin
1022 excitation and emission maxima are 568 nm and 581 nm, respectively). Horseradish

1023 peroxidase was always included as a positive assay control. Fluorescence was
1024 normalized to OD₇₅₀ of experimental *P. tricornutum* cultures. Amplex UltraRed was
1025 prepared as 10 mM stock in DMSO and stored in 20 µL aliquots at -20°C. 3% (w/w)
1026 H₂O₂ stock (Sigma-Aldrich, Saint Louis, MO, Catalog #323381-25ML) was stored in 100
1027 µL aliquots at -20°C.

1028

1029 **Resorufin imaging:** WT and pTF-APEX2 expressing cells after performing the assay
1030 were imaged with Leica TCS SP5 confocal microscope using the following parameters:
1031 argon laser strength at 30%, 514 nm laser line at 50%, resorufin emission window: 575–
1032 605 nm, autofluorescence emission window: 700–750 nm.

1033

1034 **Transmission electron microscopy (TEM)**

1035

1036 **Part 1: Labeling**

1037 5 mL WT or pTF-APEX2 expressing cells from mid- to late-exponential phase were
1038 spun down (4000 rpm, 4°C, 10 min) and fixed in 5 mL ice-cold 2% (w/v)
1039 paraformaldehyde (PFA) and 2% (v/v) glutaraldehyde in 0.15 M sodium cacodylate
1040 buffer (pH 7.4) for 30 min on ice. Cells were rinsed in 5 mL 0.15 M sodium cacodylate
1041 buffer (pH 7.4) five times for 3 min on ice, then once again in 5 mL 0.15 M sodium
1042 cacodylate buffer (pH 7.4) with 10 mM glycine for 3 min on ice. Cells were then treated
1043 with 25 mM 3,3'-diaminobenzidine (DAB; Sigma-Aldrich, Catalog #D8001) as follows:
1044 5.36 mg DAB was dissolved in 1 mL 0.1 N HCl and sonicated for 45 min. 5 mL of 0.3 M
1045 sodium cacodylate buffer (pH 7.4) was added to dissolved DAB, final volume adjusted
1046 to 10 ml with ddH₂O, solution filtered through a 0.22 µm syringe filter, and 3 µL 30%
1047 (w/w) H₂O₂ added for 3 mM final concentration. Cells were incubated in 5 mL of this
1048 reaction buffer for 15 min on ice, rinsed five times for 3 min in 5 mL 0.15 M sodium
1049 cacodylate buffer (pH 7.4), post-fixed in 2 mL 1% osmium tetroxide (OsO₄) (Electron
1050 Microscopy Sciences, Hatfield, PA, Catalog #19150) in 0.15 M sodium cacodylate buffer
1051 (pH 7.4) for 30 min on ice, and rinsed in 5 mL ice-cold ddH₂O five times for 3 min. Cells
1052 were then resuspended in 300 µL melted 3% agar, poured onto a glass slide sitting on
1053 ice, and cut into small ~3 x 3 x 1 mm pieces which were transferred into scintillation

1054 vials with 10 mL ice-cold ddH₂O. All spin down steps were done at 4000 rpm and 4°C
1055 for 1.5 min. All buffers were used ice-cold.

1056

1057 **Part 2: TEM prep**

1058 Agar blocks were fixed in 10 mL 2% glutaraldehyde in ddH₂O to crosslink agar, rinsed
1059 five times for 2 min in 5 mL ice-cold ddH₂O, and left incubating in 5 mL 2% uranyl
1060 acetate (Electron Microscopy Sciences, Catalog #22400) overnight at 4°C. Next
1061 morning, agar blocks were first dehydrated in the following ethanol series: 20%, 50%,
1062 70%, 90%, 100% (on ice, 10 mL), 100%, 100% (at RT, 10 mL), then infiltrated in 10 mL
1063 50% resin for ~1 h. To prepare 20 mL 100% resin, Durcupan ACM mixture (Electron
1064 Microscopy Sciences, Catalog #14040) components were combined as follows: 11.4 g
1065 A (epoxy resin), 10 g B (964 hardener), 0.3 g C (964 accelerator) and 0.1 g D (dibutyl
1066 phthalate) in this exact order (for 50% resin 1 part 100% resin was combined with 1 part
1067 100% ethanol). Agar blocks were transferred into 10 mL 100% resin for ~4 h, then into
1068 fresh 10 mL 100% resin overnight, again into fresh 10 mL 100% resin for 4 h the
1069 following morning before being poured into aluminum boats and left to polymerize in
1070 60°C oven for at least 48 h (usually over the weekend). Polymerized resins were
1071 detached from aluminum boats, agar blocks dense with cells cut out, and glued to
1072 “dummy” blocks by incubation in a 60°C oven for at least 15 min. ~500 nm thick
1073 sections were cut with an ultramicrotome (Leica Ultracut), stained with 1% toluidine blue
1074 and observed under light microscope to make sure embedded cells were exposed.
1075 ~100 nm thick sections were then cut, placed on TEM grids, labeled and saved until
1076 imaging. Imaging was performed with JEOL JEM-1200 (Japan Electron Optics
1077 Laboratory, Akishima, Tokyo, Japan) transmission electron microscope at 80 keV.
1078 Backscatter scanning electron microscopy was performed with Zeiss Merlin
1079 (Oberkochen, Germany) scanning electron microscope (SEM) at 2 keV by placing ~80
1080 nm thick sections on a silicon wafer and imaged with inverted contrast which gives a
1081 TEM-like image.

1082 **Proximity labeling**

1083

1084 **Part 1: Labeling**

1085 25 mL WT and pTF-APEX2 expressing cells in mid- to late-exponential phase—cell
1086 density of all cultures at the time of harvest was $\sim 2 \times 10^7$ cells/mL which corresponds to
1087 OD₇₅₀ ~ 0.4 —were cooled on ice for 10 min and pelleted (4000 rpm, 4°C, 10 min).
1088 Supernatants were discarded, pellets resuspended in 0.5 mL ice-cold PBS (pH 7.4),
1089 transferred to microcentrifuge tubes, and spun down (4000 rpm, 4°C, 10 min). Cells
1090 were then resuspended in 0.5 mL ice-cold 1.2 M D-sorbitol in PBS (pH 7.4),
1091 supplemented with 2.5 mM biotin-phenol (Berry & Associates, Dexter, MI, Catalog #BT
1092 1015), incubated on a tube rotator at 4°C for 90 min, supplemented with 1 mM H₂O₂,
1093 and incubated on a tube rotator at 4°C for another 20 min. Labeling reaction was
1094 quenched by washing cells twice (4000 rpm, 4°C, 5 min) with 0.5 mL ice-cold quenching
1095 solution (10 mM sodium ascorbate (VWR International, Radnor, PA, Catalog #95035-
1096 692), 5 mM Trolox (Sigma-Aldrich, Catalog #238813-5G), 10 mM sodium azide (VWR
1097 International, Catalog #AA14314-22) in PBS (pH 7.4)). 50 μ L quenched cells was saved
1098 for streptavidin blot. The remaining 450 μ L was spun down (4000 rpm, 4°C, 10 min) and
1099 lysed in 250 μ L cell lysis buffer (50 mM Tris-HCl, 200 mM NaCl, 1 mM DTT, 1 mM
1100 PMSF, pH 8.5) by sonication for 15 min (30 sec on, 1 min off). Cell lysates were spun
1101 down at 4000 rpm and 4°C for 45 min and protein concentration in supernatants
1102 measured using Bradford Assay Kit. For streptavidin blot, 25 μ L saved quenched cells
1103 were first sonicated for 15 min (30 sec on, 1 min off). 2.5 μ L whole cell lysate and 1 ng
1104 biotinylated BSA positive control (Thermo Fischer Scientific, Catalog #29130) were then
1105 resolved on NuPage 4-12% Bis-Tris 1.5 mm gel and wet transferred to a PVDF
1106 membrane. Membrane was washed twice with 15 mL PBST (PBS (pH 7.4) with 0.1%
1107 Tween-20) for 5 min, left blocking overnight at RT and gentle shaking in PBST
1108 supplemented with 5% BSA (Sigma-Aldrich, Catalog #A9647-100G), and washed once
1109 with 15 mL PBST for 5 min. It was then incubated for 1 h at RT and gentle shaking in 15
1110 mL PBST supplemented with 5% BSA and 1:15,000 HRP-conjugated streptavidin
1111 (Thermo Fischer Scientific, Catalog #S911). Finally, membrane was washed three times
1112 with 15 mL PBST supplemented with 5% BSA for 5 min and once with 15 mL PBST for

1113 10 min after which it was visualized with SuperSignal™ West Dura Extended Duration
1114 reagent (Thermo Fischer Scientific, Catalog #34075) using C-DiGit® Blot Scanner (Li-
1115 COR, Lincoln, NE).

1116

1117 Protein ladder: WesternSure® Pre-stained Chemiluminescent Protein Ladder (HRP-
1118 conjugated protein ladder) (Li-COR, Catalog #926-98000).

1119

1120 **Part 2: Pull-down and mass spectrometry**

1121

1122 Pull-down: 50 µL streptavidin beads (Thermo Fischer Scientific, Catalog #88816) were
1123 pelleted with a magnetic rack (~5 min to pellet fully). Supernatant was discarded and
1124 beads washed twice with 1 mL ice-cold cell lysis buffer (50 mM Tris-HCl, 200 mM NaCl,
1125 1 mM DTT, 1 mM PMSF, pH 8.5). 360 µg protein in 500 µL total volume (x µL
1126 supernatant from cell lysis with 360 µg protein and 500-x µL cell lysis buffer) was
1127 incubated on a tube rotator overnight at 4°C. Streptavidin beads were washed to
1128 remove nonspecific binders the next morning as follows: 2x 1 mL cell lysis buffer, 1x 1
1129 mL 1 M KCl, 1x 1 mL 0.1 M Na₂CO₃ (pH 11.5), 1x 1 mL 2 M urea (pH 8) in 10 mM Tris-
1130 HCl, 2x 1 mL cell lysis buffer, 2x 1 mL PBS (pH 7.4). PBS after the final washing step
1131 was removed before storing beads at -80°C. Notes: All the collection steps were 5 min.
1132 All the washing solutions were ice-cold. Microcentrifuge tubes were either very briefly
1133 vortexed (~2 sec) or tapped by hand between each wash step to promote bead
1134 resuspension.

1135

1136 On-bead digestion and TMT labeling: Samples were prepared as previously described
1137 (*Kalocsay, 2019*). Liquid reagents used were HPLC quality grade. Washed beads were
1138 resuspended in 50 µL of 200 mM EPPS (4-(2-Hydroxyethyl)-1-
1139 piperazinepropanesulfonic acid) buffer (pH 8.5) and 2% (v/v) acetonitrile with 1 µL of 2
1140 mg/mL lysil endoproteinase Lys-C stock solution (FUJIFILM Wako Pure Chemical
1141 Corporation, Richmond, VA, Catalog #125-05061), vortexed briefly, and incubated at
1142 37°C for 3 hours. 50 µL of trypsin stock (Promega, Madison, WI, Catalog #V5111)
1143 diluted 1:100 (v/v) in 200 mM EPPS (pH 8.5) was then added. After mixing, digests

1144 were incubated at 37°C overnight and beads were magnetically removed. Peptides
1145 were then directly labeled as follows: acetonitrile was added to 30% (v/v) concentration
1146 and peptides were labeled with TMT 10-plex reagent (Thermo Fisher Scientific, Catalog
1147 #90406) for 1 hour. Labeling reactions were quenched with hydroxylamine at a final
1148 concentration of 0.3% (v/v) for 15 min and 1% of labeled peptides was analyzed for
1149 efficiency of label incorporation by mass spectrometry. After quenching, peptide
1150 solutions were first acidified with formic acid, trifluoroacetic acid (TFA) was then added
1151 to a concentration of 0.1%, and peptides were desalted by acidic C₁₈ solid phase
1152 extraction (StageTip). Labeled peptides were finally resuspended in 1% (v/v) formic acid
1153 and 3% (v/v) acetonitrile.

1154

1155 **Mass spectrometry:** Data were collected with a MultiNotch MS3 TMT method
1156 (*McAlister et al., 2014*) using an Orbitrap Lumos mass spectrometer coupled to a
1157 Proxeon EASY-nLC 1200 Liquid Chromatography (LC) system (both Thermo Fisher
1158 Scientific). The used capillary column was packed with C₁₈ resin (35 cm length, 100 µm
1159 inner diameter, 2.6 µm Accucore matrix (Thermo Fisher Scientific)). Peptides were
1160 separated for 3 or 4 hours over acidic acetonitrile gradients by LC prior to mass
1161 spectrometry (MS) analysis. Data from two 4 hour runs and one 3 hour run were
1162 recorded and combined. After an initial MS¹ scan (Orbitrap analysis; resolution 120,000;
1163 mass range 400–1400 Th), MS² analysis used collision-induced dissociation (CID, CE =
1164 35) with a maximum ion injection time of 150–300 ms and an isolation window of 0.5
1165 m/z. In order to obtain quantitative information, MS³ precursors were fragmented by
1166 high-energy collision-induced dissociation (HCD) and analyzed in the Orbitrap at a
1167 resolution of 50,000 at 200 Th. Further details on LC and MS parameters and settings
1168 were described recently (*Paulo et al., 2016*).

1169

1170 **pTF-mCherry and MS hit-EYFP co-expression and imaging**

1171

1172 Episomes with pTF-mCherry and MS hit-EYFP expression cassettes were conjugated
1173 into WT *P. tricornutum* cells, resulting transconjugants genotyped and screened for
1174 fluorescence. 5 µL fluorescent cells in mid- to late-exponential phase were imaged with

1175 settings that minimized cross-channel bleed-through: argon laser strength at 30%, 514
1176 nm laser line at 50%, mCherry emission window: 620–640 nm, EYFP emission window:
1177 520–540 nm, autofluorescence emission window: 700–750 nm.

1178

1179 **pTF.CREGr protein expression conditions**

1180

1181 Small scale expression testing for the Δ31_pTF.CREGr-His6 (and all other pTF.CREGr
1182 truncations not described here) was performed as follows: an overnight culture of BL21
1183 *E. coli* cells carrying the PtpBAD-Δ31_pTF.CREGr-CTHF (=pJT_Δ31_pTF.CREGr-His6)
1184 expression vector was used to inoculate 50 mL of Terrific Broth (TB) supplemented with
1185 tetracycline (10 ug/mL). The cultures were grown in a shaking refrigerated incubator
1186 (37°C, 200 rpm) until OD₆₀₀ of 0.4–0.6 was reached. The temperature in the shaker was
1187 then lowered to 18°C and flasks were allowed to adjust to this temperature for about 30
1188 min before arabinose was added to a final concentration of 0.5% (w/v). Growth at 18°C
1189 was continued overnight (12–18 hrs) after which 10 mL of cultures were harvested by
1190 centrifugation at 6000 g for 10 min. Large scale Δ31_pTF.CREGr-His6 expression was
1191 performed as above, but at 1 L total volume. Following arabinose induction and
1192 overnight growth of the 1 L culture, 500 mL was harvested for further processing.

1193

1194 **pTF.CREGr purification conditions**

1195

1196 All purifications were performed using cobalt, Co²⁺, TALON Metal Affinity Resin (Takara
1197 Bio, Catalog #635502) which binds His6-tagged proteins with high affinity. Pellets from
1198 small scale expression testing (10 mL culture) were resuspended in 800 uL of lysis
1199 buffer (50 mM NaH₂PO₄ (pH 7.5), 500 mM NaCl, 0.1% Triton X-100, 10 mM imidazole,
1200 1 mg/mL lysozyme, and 10 μM β-mercaptoethanol) and subjected to microtip sonication
1201 on ice until lysis was complete. Lysates were then clarified by centrifugation (10 min,
1202 15000 g, 4°C) and the supernatant (700 uL) was set aside. For each purification, 25 uL
1203 of TALON resin was equilibrated by washing three times with 10 volumes of lysis buffer
1204 and pelleting by centrifugation after each wash (30 sec, 3000 g, room temperature).
1205 After the third wash, 25 uL of lysis buffer was added to the resin to make a 50 uL slurry.

1206 The supernatants from the previously clarified lysates were then added to the TALON
1207 resin slurry and incubated for 1 hr at room temperature with end-over-end mixing.
1208 Following the 1 hr incubation, the resin was pelleted by centrifugation (30 sec, 3000 g,
1209 room temperature) and washed three times with 10 volumes of wash buffer (50 mM
1210 NaH₂PO₄ (pH 7.5), 500 mM NaCl, and 30 mM imidazole). Protein was then eluted with
1211 50 uL of elution buffer (50 mM NaH₂PO₄ (pH 7.5), 500 mM NaCl, 250 mM imidazole,
1212 and 10% glycerol) and was either subjected to immediate SDS-PAGE electrophoresis
1213 or stored at -80 °C.

1214
1215 Pellets from large scale expression (500 mL culture) were processed with a few
1216 modifications. For lysis, cell pellets were resuspended in 20 mL of lysis buffer. For
1217 purification, 1 mL of TALON resin (i.e. 2 mL of equilibrated slurry) was used in
1218 combination with approx. 19 mL of clarified lysate and allowed to incubate overnight at 8
1219 °C with end-over-end mixing. Final protein elution was performed using 5 mL of elution
1220 buffer. Purified protein was subjected to SDS-PAGE electrophoresis and concentrated
1221 using an Amicon Ultra-15 10 kDa cutoff concentrator (Millipore Sigma, Burlington, MA,
1222 Catalog #UFC901024). Following concentration, buffer exchange into 20 mM HEPES
1223 (pH 8.0), 10% glycerol, 300 mM KCl was performed using a PD-10 desalting column
1224 (GE Healthcare, Chicago, IL, Catalog #17-0851-01). Protein was then concentrated
1225 again and total protein content was determined by the Bradford method using the
1226 Protein Assay Dye Reagent (Bio-Rad, Hercules, CA, Catalog #5000006).

1227
1228 **pTF.CREGr enzymatic assay**
1229
1230 To test for flavin reductase activity, we set up the following enzyme assay conditions in
1231 100 uL final volume: 50 mM Tris-HCl (pH 7.5), 100 mM KCl, 10% glycerol, 30 µM flavin
1232 mononucleotide (FMN), 30 µM riboflavin, and 250 µM NADPH (**Coves and Fontecave,**
1233 **1993**). Assays were started by the addition of 50 µg of purified pTF.CREGr or Milli-Q
1234 water in the case of the no-enzyme controls. Oxidation of NADPH was measured by the
1235 decrease in absorbance at 320 nm on a Flexstation 3 microtiter plate reader. To
1236 demonstrate the role of flavins as a substrate, we also omitted both FMN and flavins in

1237 additional assays, both in the presence and absence of enzyme. All assays were
1238 conducted in triplicate.

1239

1240 **Bioinformatic and data analyses**

1241

1242 **Mass spectrometry data analysis:** Peptide-spectrum matches used a SEQUEST
1243 (v.28, rev. 12) algorithm (*Eng et al., 1994*). Data were searched against a size-sorted
1244 forward and reverse database of the *Phaeodactylum tricornutum* proteome (strain
1245 CCAP 1055/1, UniProt reference proteome UP000000759) with added common
1246 contaminant proteins and the pTF-APEX2 fusion protein sequence. Spectra were first
1247 converted to mzXML and searches were then performed using a mass tolerance of 50
1248 ppm for precursors and a fragment ion tolerance of 0.9 Da. For the searches, maximally
1249 2 missed cleavages per peptide were allowed. We searched dynamically for oxidized
1250 methionine residues (+15.9949 Da) and applied a target decoy database strategy. A
1251 false discovery rate (FDR) of 1% was set for peptide-spectrum matches following
1252 filtering by linear discriminant analysis (LDA) (*Beausoleil et al., 2006; Huttlin et al.,*
1253 *2010*). The FDR for final collapsed proteins was 1%. Quantitative information on
1254 peptides was derived from MS³ scans. Quant tables were generated with the following
1255 filter criteria: MS² isolation specificity of >70% for each peptide and a sum of TMT signal
1256 to noise (s/n) of >200 over all channels per peptide. Quant tables were exported to
1257 Excel and further processed therein. Details of the TMT intensity quantification method
1258 and additional search parameters applied were described previously (*Paulo et al.,*
1259 *2016*). Scaled proteomic data were subjected to two-way hierarchical clustering (Ward's
1260 method) using JMP software package. Vulcano plot with log₂-transformed average
1261 APEX2/WT ratios and associated P-values was made in R using ggplot2 data
1262 visualization package (*R Core Team, 2013*). Gene IDs corresponding to protein hits
1263 were inferred using Ensembl Phatr3 *P. tricornutum* genomic database.

1264

1265 **Protein feature identification:** Length, size and isoelectric point (pI) of proteins was
1266 determined with ProtParam (*Gasteiger et al., 2005*). Signal peptides and
1267 transmembrane regions were determined with SignalP 4.1 (*Petersen et al., 2011*) and

1268 TMHMM Server v. 2.0 (*Krogh et al., 2001*), respectively. Protein localizations were
1269 predicted with a combination of tools: TargetP 1.1 (*Emanuelsson et al., 2000*), SignalP
1270 4.1, and ASAFind (*Gruber et al., 2015*) (version 1.1.7). All putative chloroplastic
1271 localizations in the study mean a protein was predicted to be chloroplastic by ASAFind
1272 (state-of-the-art plastidial localization prediction tool for diatoms); chloroplast localization
1273 prediction confidences are noted. Low confidence prediction by ASAFind means that
1274 the protein satisfies the following filtering criteria: (1) it contains a signal peptide as
1275 detected by SignalP 4.1, (2) +1 position of ASAFind predicted cleavage site is
1276 phenylalanine (F), tryptophan (W), tyrosine (Y), or leucine (L) (making the protein
1277 “potentially plastid targeted”), and (3) one or both of the following is false: the ASAFind
1278 predicted cleavage site coincides with the SignalP 4.1 prediction and the transit peptide
1279 score is higher than 2. Peroxidase class prediction was done in RedoxiBase (*Savelli et*
1280 *al., 2019*).

1281
1282 **Protein alignments:** Protein sequences of APEX2-like *P. tricornutum* peroxidases were
1283 aligned with Clustal Omega (*Sievers et al., 2011*) using the default settings and CLC
1284 Sequence Viewer 7.7 (QUIAGEN) using the following parameters: Gap open cost: 10.0,
1285 Gap extension cost: 1.0, End gap cost: As any other, Alignment: Very accurate (slow).
1286 Putative substrate-binding loops were evaluated using the Clustal Omega alignment.
1287 Conserved motifs in protein alignments behind phylogenetic trees were displayed in
1288 CLC Sequence Viewer 7.7.

1289
1290 **Phylogenetic analyses:** Homologs of respective *P. tricornutum* proteins were retrieved
1291 from the National Center for Biotechnology Information (NCBI) non-redundant and the
1292 Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) databases
1293 using the blastp algorithm (e-value threshold set to 1e-15) (*Altschul et al., 1990*). The
1294 blast search retrieved only a handful of homologs for pTF.ap1 and no homologs were
1295 found for pTF.CatCh1 even among closely related diatoms. Therefore, more sensitive
1296 HMMER (*Eddy, 1998*) searches were employed to extend the datasets, which were
1297 afterward aligned using the Localpair algorithm as implemented in MAFFT (*Katoh et*
1298 *al., 2002*). Ambiguously aligned regions, regions composed mostly of gaps as well as

1299 short fragments were manually removed in SeaView 4 (*Guoy et al., 2009*). For each
1300 alignment, the maximum likelihood analysis was carried out in IQ-TREE (*Nguyen et al.,*
1301 *2015*) under the best-fitting substitution matrix as inferred by the built-in model finder.
1302 Branching support was estimated using “thorough” non-parametric bootstrap analysis
1303 from 500 replicates in IQ-TREE.

1304

1305 **Identification of disordered protein regions:** pTF.CatCh1 amino acid sequence was
1306 analyzed for the presence of disordered protein regions with PONDR (Predictor of
1307 Naturally Disordered Regions) VSL2 predictor (*Peng et al., 2006*) and IUPred2a long
1308 disorder prediction type (*Mészáros et al., 2018*).

1309

1310 **Other data analyses:** Amplex UltraRed assay and transcriptomic data were plotted
1311 with R using ggplot2 data visualization package (*R Core Team, 2013*). Biochemical
1312 assay data were plotted in Excel.

1313 **Acknowledgements**

1314 We would like to thank Andrea Thor and Mason Mackey for help with electron
1315 microscopy sample preparation and imaging; Marian Kalocsay for assistance with mass
1316 spectrometry experiments and data analyses; Pardis Gholami and Hong Zheng for
1317 laboratory assistance; Jeffrey D. Martell, Jeffrey B. McQuaid, Tyler Coale, and Sarah
1318 Smith for fruitful discussions. This project was supported by the Gordon and Betty
1319 Moore Foundation grants GBMF4958 (JT), GBMF3828 (AEA), and GBMF5006 (AEA),
1320 the National Science Foundation grants NSF-OCE-1756884 (AEA) and NSF-MCB-
1321 1818390 (AEA), and the United States Department of Energy Genomics Science
1322 program grant DE-SC0018344 (AEA). JKB was supported by the National Institutes of
1323 Health (NIH) Ruth L. Kirschstein Predoctoral Individual National Research Service
1324 Award F31 1F31ES030613-01. National Center for Microscopy and Imaging Research
1325 (NCMIR) is supported by the National Institute for General Medical Sciences (NIGMS)
1326 of the National Institutes of Health (NIH).

1327 **Additional information**

1328

1329 **Funding**

Funder	Grant reference number	Author
Gordon and Betty Moore Foundation (GBMF), Marine Microbial Initiative (MMI)	GBMF4958	Jernej Turnšek*
National Institutes of Health (NIH) Ruth L. Kirschstein Predoctoral Individual National Research Service Award F31	1F31ES030613-01	John K. Brunson
Gordon and Betty Moore Foundation (GBMF), Marine Microbial Initiative (MMI)	GBMF3828	Andrew E. Allen
Gordon and Betty Moore Foundation (GBMF), Marine Microbial Initiative (MMI)	GBMF5006	Andrew E. Allen
National Science Foundation, Biological Oceanography	NSF-OCE-1756884	Andrew E. Allen
National Science Foundation, Molecular and Cellular Biology	NSF-MCB-1818390	Andrew E. Allen
Department of Energy (DOE), Office of Biological and Environmental Research (BER)	DE-SC0018344	Andrew E. Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

1330

1331 *Jernej proposed the idea to use APEX2 in diatoms and wrote the proposal jointly with James J. Russell,
1332 Pamela A. Silver, and Julie A. Theriot.

1333

1334 **Author ORCIDs**

1335 Jernej Turnšek	https://orcid.org/0000-0002-9056-3565
1336 Aleš Horák	https://orcid.org/0000-0002-3364-7383
1337 Vincent A. Bielinski	https://orcid.org/0000-0002-8107-8752
1338 Andrew E. Allen	https://orcid.org/0000-0001-5911-6081

1339 **Additional files**

1340

1341 **Supplementary files**

1342

1343 • Supplementary file 1. **Table S1:** Predicted endogenous biotinylated proteins are
1344 present at similar levels in WT and pTF-APEX2 proteomic samples. **Table S2:** Features
1345 of the three proteins co-expressed with pTF. **Table S3:** Molecular cloning primers.
1346 **Table S4:** Constructed *Phaeodactylum tricornutum* episomes and *Escherichia coli*
1347 vectors with expression cassette details and fusion protein amino acid sequences.
1348 **Table S5:** Key chemicals and reagents used in the study.

1349

1350 • Supplementary file 2. Raw Amplex UltraRed assay data.

1351

1352 • Supplementary file 3. Scaled quantitative mass spectrometry data.

1353

1354 • Supplementary file 4. Raw quantitative mass spectrometry data, transcriptomic data,
1355 and functional annotations for proteins with APEX2/WT ratios ≥ 1.5 and P-value ≤ 0.05 .

1356

1357 • Supplementary file 5. Raw pTF.CREGr biochemical assay data.

1358

1359 **Data availability**

1360 All data generated or analyzed during this study are included in the manuscript and
1361 supporting files.

1362

1363 **Competing interests**

1364 The authors declare that no competing interests exist.

1365 **References**

1366

1367 **Allen AE**, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C.
1368 2008. Whole-cell response of the pennate diatom *Phaeodactylum tricornutum* to iron starvation. *Proc Natl
1369 Acad Sci U S A* **105**:10438–10443. DOI: <https://doi.org/10.1073/pnas.0711370105>, PMID: 18653757

1370

1371 **Allen AE**, Moustafa A, Montsant A, Eckert A, Kroth PG, Bowler C. 2012. Evolution and Functional
1372 Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms. *Mol Biol Evol*
1373 **29**:367–379. DOI: <https://doi.org/10.1093/molbev/msr223>, PMID: 21903677

1374

1375 **Altschul SF**, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol*
1376 **215**:403–410. DOI: [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2), PMID: 2231712

1377

1378 **Anonymous**. 1703. Two letters from a Gentleman in the Country, relating to Mr. Leeuwenhoek's Letter in
1379 Transaction, no. 283. Communicated by Mr. C. *Philos Trans R Soc Lond B* **23**:1494–1501. DOI:
1380 <https://doi.org/10.1098/rstl.1702.0065>

1381

1382 **Archibald JM**. 2009. The puzzle of plastid evolution. *Curr Biol* **19**:R81–8. DOI:
1383 <https://doi.org/10.1016/j.cub.2008.11.067>, PMID: 19174147

1384

1385 **Aron AT**, Ramos-Torres KM, Cotruvo JA Jr, Chang CJ. 2015. Recognition- and Reactivity-Based
1386 Fluorescent Probes for Studying Transition Metal Signaling in Living Systems. *Acc Chem Res* **48**:2434–
1387 2442. DOI: <https://doi.org/10.1021/acs.accounts.5b00221>, PMID: 26215055

1388

1389 **Ardyna M**, Lacour L, Sergi S, d'Ovidio F, Sallée J-B, Rembauville M, Blain S, Tagliabue A, Schlitzer R,
1390 Jeandel C, Arrigo KR, Claustre H. 2019. Hydrothermal vents trigger massive phytoplankton blooms in the
1391 Southern Ocean. *Nat Commun* **10**:2451. DOI: <https://doi.org/10.1038/s41467-019-09973-6>, PMID:
1392 [31165724](https://doi.org/10.1038/s41467-019-09973-6)

1393

1394 **Balk J**, Schaedler TA. 2014. Iron Cofactor Assembly in Plants. *Annu Rev Plant Biol* **65**:125–153. DOI:
1395 <https://doi.org/10.1146/annurev-arplant-050213-035759>, PMID: 24498975

1396

1397 **Baslam M**, Oikawa K, Kitajima-Koga A, Kaneko K, Mitsui T. 2016. Golgi-to-plastid trafficking of proteins
1398 through secretory pathway: Insights into vesicle-mediated import toward the plastids. *Plant Signal Behav*
1399 **11**:e1221558. DOI: <https://doi.org/10.1080/15592324.2016.1221558>, PMID: 27700755

1400 **Beausoleil SA**, Villén J, Gerber SA, Rush J, Gygi SP. 2006. A probability-based approach for high-
1401 throughput protein phosphorylation analysis and site localization. *Nat Biotechnol* **24**:1285–1292. DOI:
1402 <https://doi.org/10.1038/nbt1240>, PMID: 16964243

1403

1404 **Benoiston A-S**, Ibarbalz FM, Bittner L, Guidi L, Jahn O, Dutkiewicz S, Bowler C. 2017. The evolution of
1405 diatoms and their biogeochemical functions. *Philos Trans R Soc Lond B Biol Sci* **372**:20160397. DOI:
1406 <https://doi.org/10.1098/rstb.2016.0397>, PMID: 28717023

1407

1408 **Bersuker K**, Peterson CWH, To M, Sahl SJ, Savikhin V, Grossman EA, Nomura DK, Olzmann JA. 2018.
1409 A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet
1410 Proteomes. *Dev Cell* **44**:97–112. DOI: <https://doi.org/10.1016/j.devcel.2017.11.020>, PMID: 29275994

1411

1412 **Bertrand EM**, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, Post AF, Sipler RE,
1413 Spacken JL, Xu K, Bronk DA, Hutchins DA, Allen AE. 2015. Phytoplankton–bacterial interactions
1414 mediate micronutrient colimitation at the coastal Antarctic sea ice edge. *Proc Natl Acad Sci U S A*
1415 **112**:9938–9943. DOI: <https://doi.org/10.1073/pnas.1501615112>, PMID: 26221022

1416

1417 **Blaby-Haas CE**, Merchant SS. 2012. The ins and outs of algal metal transport. *Biochim Biophys Acta*
1418 **1823**:1531–1552. DOI: <https://doi.org/10.1016/j.bbamcr.2012.04.010>, PMID: 22569643

1419

1420 **Blaby-Haas CE**, Merchant SS. 2014. Lysosome-related Organelles as Mediators of Metal Homeostasis. *J
1421 Biol Chem* **289**:28129–28136. DOI: <https://doi.org/10.1074/jbc.R114.592618>, PMID: 25160625

1422

1423 **Blaby-Haas CE**, Padilla-Benavides T, Stübe R, Argüello JM, Merchant SS. 2014. Evolution of a plant-
1424 specific copper chaperone family for chloroplast copper homeostasis. *Proc Natl Acad Sci U S A*
1425 **111**:E5480–E5487. DOI: <https://doi.org/10.1073/pnas.1421545111>, PMID: 25468978

1426

1427 **Bogdan AR**, Miyazawa M, Hashimoto K, Tsuji Y. 2016. Regulators of Iron Homeostasis: New Players in
1428 Metabolism, Cell Death, and Disease. *Trends Biochem Sci* **41**:274–286. DOI:
1429 <https://doi.org/10.1016/j.tibs.2015.11.012>, PMID: 26725301

1430

1431 **Boiteau RM**, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, Sedwick PN, DeLong EF,
1432 Repeta DJ. 2016. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific
1433 Ocean. *Proc Natl Acad Sci U S A* **113**:14237–14242. DOI: <https://doi.org/10.1073/pnas.1608594113>,
1434 PMID: 27911777

1435 Böltter B. 2018. En route into chloroplasts: preproteins' way home. *Photosynth Res* **138**:263–275. DOI:
1436 <https://doi.org/10.1007/s11120-018-0542-8>, PMID: 29943212

1437

1438 Bonfio C, Valer L, Scintilla S, Shah S, Evans DJ, Jin L, Szostak JW, Sasselov DD, Sutherland JD, Mansy
1439 SS. 2017. UV-light-driven prebiotic synthesis of iron-sulfur clusters. *Nat Chem* **9**:1229–1234. DOI:
1440 <https://doi.org/10.1038/nchem.2817>, PMID: 29168482

1441

1442 Boycheva S, Daviet L, Wolfender J-L, Fitzpatrick TB. 2014. The rise of operon-like gene clusters in
1443 plants. *Trends Plant Sci* **19**:447–459. DOI: <https://doi.org/10.1016/j.tplants.2014.01.013>, PMID: 24582794

1444

1445 Boyd PW, Ellwood MJ. 2010. The biogeochemical cycle of iron in the ocean. *Nat Geosci* **3**:675–682.
1446 DOI: <https://doi.org/10.1038/ngeo964>

1447

1448 Bowler C, (75 authors), Grigoriev IV. 2008. The *Phaeodactylum* genome reveals the evolutionary history
1449 of diatom genomes. *Nature* **456**:239–244. DOI: <https://doi.org/10.1038/nature07410>, PMID: 18923393

1450

1451 Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N, Ting AY.
1452 2018. Efficient proximity labeling in living cells and organisms with TurboID. *Nat Biotechnol* **36**:880–887.
1453 DOI: <https://doi.org/10.1038/nbt.4201>, PMID: 30125270

1454

1455 Brett CL, Donowitz M, Rao R. 2006. Does the proteome encode organellar pH? *FEBS Lett* **580**:717–719.
1456 DOI: <https://doi.org/10.1016/j.febslet.2005.12.103>, PMID: 16413548

1457

1458 Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, Bielinski VA, Luhavaya H,
1459 Oborník M, Smith GJ, Hutchins DA, Allen AE, Moore BS. 2018. Biosynthesis of the neurotoxin domoic
1460 acid in a bloom-forming diatom. *Science* **361**:1356–1358. DOI: <https://doi.org/10.1126/science.aau0382>,
1461 PMID: 30262498

1462

1463 Brzezinski MA, Krause JW, Bundy RM, Barbeau KA, Franks P, Goericke R, Landry MR, Stukel MR.
1464 2015. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the
1465 California Current. *J Geophys Res C: Oceans* **120**:4654–4669. DOI: <https://doi.org/10.1002/2015JC010829>.

1467

1468 Camacho A, Walter XA, Picazo A, Zopfi J. 2017. Photoferrotrophy: Remains of an Ancient
1469 Photosynthesis in Modern Environments. *Front Microbiol* **8**:323. DOI:
1470 <https://doi.org/10.3389/fmicb.2017.00323>, PMID: 28377745

1471 **Caron DA**, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST,
1472 Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ. 2017. Probing the evolution,
1473 ecology and physiology of marine protists using transcriptomics. *Nat Rev Microbiol* **15**:6–20. DOI:
1474 <https://doi.org/10.1038/nrmicro.2016.160>, PMID: 27867198

1475

1476 **Carra S**, Alberti S, Benesch JLP, Boelens W, Buchner J, Carver JA, Cecconi C, Ecroyd H, Gusev N,
1477 Hightower LE, Klevit RE, Lee HO, Liberek K, Lockwood B, Poletti A, Timmerman V, Toth ME, Vierling E,
1478 Wu T, Tanguay RM. 2019. Small heat shock proteins: multifaceted proteins with important implications for
1479 life. *Cell Stress Chaperones* **24**:295–308. DOI: <https://doi.org/10.1007/s12192-019-00979-z>, PMID:
1480 30758704

1481

1482 **Carradec Q**, (37 authors), Wincker P. 2018. A global ocean atlas of eukaryotic genes. *Nat Commun*
1483 **9**:373. DOI: <https://doi.org/10.1038/s41467-017-02342-1>, PMID: 29371626

1484

1485 **Cheng Y**, Zak O, Aisen P, Harrison SC, Walz T. 2004. Structure of the Human Transferrin Receptor-
1486 Transferrin Complex. *Cell* **116**:565–576. DOI: [https://doi.org/10.1016/s0092-8674\(04\)00130-8](https://doi.org/10.1016/s0092-8674(04)00130-8), PMID:
1487 14980223

1488

1489 **Coale TH**, Horák A., Oborník M., Allen AE. (In Press) Reduction-dependent siderophore assimilation in a
1490 model pennate diatom. (In Press, *Proc Natl Acad Sci U S A*).

1491

1492 **Cohen NR**, A. Ellis K, Burns WG, Lampe RH, Schuback N, Johnson Z, Sañudo-Wilhelmy S, Marchetti A.
1493 2017. Iron and vitamin interactions in marine diatom isolates and natural assemblages of the Northeast
1494 Pacific Ocean: Iron and vitamin interactions in diatoms. *Limnol Oceanogr* **62**:2076–2096. DOI:
1495 <https://doi.org/10.1002/limo.10552>

1496

1497 **Cohen NR**, Ellis KA, Lampe RH, McNair H, Twining BS, Maldonado MT, Brzezinski MA, Kuzminov FI,
1498 Thambrakoln K, Till CP, Bruland KW, Sunda WG, Bargu S, Marchetti A. 2017. Diatom Transcriptional
1499 and Physiological Responses to Changes in Iron Bioavailability across Ocean Provinces. *Frontiers in
1500 Marine Science* **4**:360. DOI: <https://doi.org/10.3389/fmars.2017.00360>

1501

1502 **Cohen NR**, Gong W, Moran DM, Mcilvin MR, Saito MA, Marchetti A. 2018. Transcriptomic and proteomic
1503 responses of the oceanic diatom *Pseudo-nitzschia granii* to iron limitation. *Environ Microbiol* **20**:3109–
1504 3126. DOI: <https://doi.org/10.1111/1462-2920.14386>, PMID: 30117243

1505

1506 **Cong Q**, Anishchenko I, Ovchinnikov S, Baker D. 2019. Protein interaction networks revealed by
1507 proteome coevolution. *Science* **365**:185–189. DOI: <https://doi.org/10.1126/science.aaw6718>, PMID:
1508 31296772

1509 **Conrad ME**, Umbreit JN, Moore EG. 1993. Rat Duodenal Iron-Binding Protein Mobilferrin is a Homologue
1510 of Calreticulin. *Gastroenterology* **104**:1700–1704. DOI: [https://doi.org/10.1016/0016-5085\(93\)90648-v](https://doi.org/10.1016/0016-5085(93)90648-v),
1511 PMID: 8500729

1512

1513 **Conrad ME**, Umbreit JN, Moore EG, Heiman D. 1996. Mobilferrin is an intermediate in iron transport
1514 between transferrin and hemoglobin in K562 cells. *J Clin Invest* **98**:1449–1454. DOI:
1515 <https://doi.org/10.1172/JCI118933>, PMID: 8823311

1516

1517 **Coves J**, Fontecave M. 1993. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase
1518 from *Escherichia coli*. *Eur J Biochem* **211**:635–641. DOI: <https://doi.org/10.1111/j.1432-1033.1993.tb17591.x>, PMID: 8436123

1520

1521 **Crichton R**. 2016. Iron Metabolism: From Molecular Mechanisms to Clinical Consequences, Fourth
1522 Edition. John Wiley & Sons, Ltd., Hoboken, NJ, USA.1–556. DOI: <https://doi.org/10.1002/9781118925645>

1523

1524 **de Baar HJW**, (32 authors), Wong CS. 2005. Synthesis of iron fertilization experiments: From the Iron
1525 Age in the Age of Enlightenment. *J Geophys Res* **110**:C09S16. DOI:
1526 <https://doi.org/10.1029/2004JC002601>

1527

1528 **de Vargas C**, (52 authors), Karsenti E. 2015. Eukaryotic plankton diversity in the sunlit ocean. *Science*
1529 **348**:1261605 DOI: <https://doi.org/10.1126/science.1261605>, PMID: 25999516

1530

1531 **Del Olmo T**, Lauzier A, Normandin C, Larcher R, Lecours M, Jean D, Lessard L, Steinberg F, Boisvert F-
1532 M, Jean S. 2019. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-
1533 independent cargo sorting. *EMBO Rep* **20**. DOI: <https://doi.org/10.15252/embr.201847192>, PMID:
1534 30610016

1535

1536 **Dickinson MS**, Anderson LN, Webb-Robertson B-JM, Hansen JR, Smith RD, Wright AT, Hybiske K.
1537 2019. Proximity-dependent proteomics of the *Chlamydia trachomatis* inclusion membrane reveals
1538 functional interactions with endoplasmic reticulum exit sites. *PLoS Pathog* **15**:e1007698. DOI:
1539 <https://doi.org/10.1371/journal.ppat.1007698>, PMID: 30943267

1540

1541 **Diner RE**, Bielinski VA, Dupont CL, Allen AE, Weyman PD. 2016. Refinement of the Diatom Episome
1542 Maintenance Sequence and Improvement of Conjugation-Based DNA Delivery Methods. *Front Bioeng*
1543 *Biotechnol* **4**:65. DOI: <https://doi.org/10.3389/fbioe.2016.00065>, PMID: 27551676

1544 Durkin CA, Marchetti A, Bender SJ, Truong T, Morales R, Mock T, Armbrust EV. 2012. Frustule-related
1545 gene transcription and the influence of diatom community composition on silica precipitation in an iron-
1546 limited environment. *Limnol Oceanogr* **57**:1619–1633. DOI: <https://doi.org/10.4319/lo.2012.57.6.1619>
1547

1548 Eckenroth BE, Steere AN, Chasteen ND, Everse SJ, Mason AB. 2011. How the binding of human
1549 transferrin primes the transferrin receptor potentiating iron release at endosomal pH. *Proc Natl Acad Sci
1550 U S A* **108**:13089–13094. DOI: <https://doi.org/10.1073/pnas.1105786108>, PMID: 21788477
1551

1552 Eddy SR. 1998. Profile hidden Markov models. *Bioinformatics* **14**:755–763. DOI:
1553 <https://doi.org/10.1093/bioinformatics/14.9.755>, PMID: 9918945
1554

1555 El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar
1556 GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD. 2019. The Pfam
1557 protein families database in 2019. *Nucleic Acids Res* **47**:D427–D432. DOI:
1558 <https://doi.org/10.1093/nar/gky995>, PMID: 30357350
1559

1560 Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 2000. Predicting Subcellular Localization of
1561 Proteins Based on their N-terminal Amino Acid Sequence. *J Mol Biol* **300**:1005–1016. DOI:
1562 <https://doi.org/10.1006/jmbi.2000.3903>, PMID: 10891285
1563

1564 Eng JK, McCormack AL, Yates JR. 1994. An approach to correlate tandem mass spectral data of
1565 peptides with amino acid sequences in a protein database. *J Am Soc Mass Spectrom* **5**:976–989. DOI:
1566 [https://doi.org/10.1016/1044-0305\(94\)80016-2](https://doi.org/10.1016/1044-0305(94)80016-2), PMID: 24226387
1567

1568 Erdős G, Mészáros B, Reichmann D, Dosztányi Z. 2019. Large-Scale Analysis of Redox-Sensitive
1569 Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level
1570 Eukaryotic Processes. *Proteomics* **19**:1800070. DOI: <https://doi.org/10.1002/pmic.201800070>, PMID:
1571 [30628183](https://doi.org/10.1002/pmic.201800070)
1572

1573 Faktorová D., (104 authors), Lukeš, J. 2019. Genetic tool development in marine protists: Emerging
1574 model organisms for experimental cell biology. *bioRxiv*. DOI: <https://doi.org/10.1101/718239>
1575

1576 Fazal FM, Han S, Parker KR, Kaewsapsak P, Xu J, Boettiger AN, Chang HY, Ting AY. 2019. Atlas of
1577 Subcellular RNA Localization Revealed by APEX-Seq. *Cell* **178**:473–490. DOI:
1578 <https://doi.org/10.1016/j.cell.2019.05.027>, PMID: 31230715
1579

1580 Finbow ME, Harrison MA. 1997. The vacuolar H⁺-ATPase: a universal proton pump of eukaryotes.
1581 *Biochem J* **324**:697–712. DOI: <https://doi.org/10.1042/bj3240697>, PMID: 9210392

1582 **Fontecave M**, Covès J, Pierre JL. 1994. Ferric reductases or flavin reductases? *Biometals* **7**:3–8. DOI:
1583 <https://doi.org/10.1007/BF00205187>, PMID: 8118169

1584

1585 **Francius G**, Tesson B, Dague E, Martin-Jézéquel V, Dufrêne YF. 2008. Nanostructure and
1586 nanomechanics of live *Phaeodactylum tricornutum* morphotypes. *Environ Microbiol* **10**:1344–1356. DOI:
1587 <https://doi.org/10.1111/j.1462-2920.2007.01551.x>, PMID: 18248452

1588

1589 **Gasteiger E**, Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. 2005.
1590 Protein Identification and Analysis Tools on the ExPASy Server. (In:) The Proteomics Protocols
1591 Handbook, (Editor:) John M. Walker. Humana Press, Totowa, NJ, USA. 571–607. DOI:
1592 <https://doi.org/10.1385/1-59259-890-0:571>

1593

1594 **Ghobrial G**, Araujo L, Jinwala F, Li S, Lee LY. 2018. The Structure and Biological Function of CREG.
1595 *Front Cell Dev Biol* **6**:136. DOI: <https://doi.org/10.3389/fcell.2018.00136>, PMID: 30416997

1596

1597 **Gibson DG**, Young L, Chuang R-Y, Craig Venter J, Hutchison CA, Smith HO. 2009. Enzymatic assembly
1598 of DNA molecules up to several hundred kilobases. *Nat Methods* **6**:343–345. DOI:
1599 <https://doi.org/10.1038/nmeth.1318>, PMID: 19363495

1600

1601 **Go CD**, Knight JDR, Rajasekharan A, Rathod B, Hesketh GG, Abe KT, Youn J-Y, Samavarchi-Tehrani P,
1602 Zhang H, Zhu LY, Popiel E, Lambert J-P, Coyaud É, Cheung SWT, Rajendran D, Wong CJ, Antonicka H,
1603 Pelletier L, Raught B, Palazzo AF, Shoubridge EA, Gingras A-C. A proximity biotinylation map of a human
1604 cell. *bioRxiv*. DOI: <https://doi.org/10.1101/796391>

1605

1606 **Gröger P**, Poulsen N, Klemm J, Kröger N, Schlierf M. 2016. Establishing super-resolution imaging for
1607 proteins in diatom biosilica. *Sci Rep* **6**:36824. DOI: <https://doi.org/10.1038/srep36824>, PMID: 27827427

1608

1609 **Gruber A**, Rocap G, Kroth PG, Armbrust EV, Mock T. 2015. Plastid proteome prediction for diatoms and
1610 other algae with secondary plastids of the red lineage. *Plant J* **81**:519–528. DOI:
1611 <https://doi.org/10.1111/tpj.12734>, PMID: 25438865

1612

1613 **Gouy M**, Guindon S, Gascuel O. 2010. SeaView Version 4: A Multiplatform Graphical User Interface for
1614 Sequence Alignment and Phylogenetic Tree Building. *Mol Biol Evol* **27**:221–224. DOI:
1615 <https://doi.org/10.1093/molbev/msp259>, PMID: 19854763

1616

1617 **Han S**, Udeshi ND, Deerinck TJ, Svinkina T, Ellisman MH, Carr SA, Ting AY. 2017. Proximity
1618 Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells. *Cell Chem Biol*
1619 **24**:404–414. DOI: <https://doi.org/10.1016/j.chembiol.2017.02.002>, PMID: 28238724

1620 Hildebrand M, Lerch SJL, Shrestha RP. 2018. Understanding Diatom Cell Wall Silicification—Moving
1621 Forward. *Frontiers in Marine Science* **5**:125. DOI: <https://doi.org/10.3389/fmars.2018.00125>

1622

1623 Hogle SL, Barbeau KA, Gledhill M. 2014. Heme in the marine environment: from cells to the iron cycle.
1624 *Metalloomics* **6**:1107–1120. DOI: <https://doi.org/10.1039/c4mt00031e>, PMID: 24811388

1625

1626 Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW,
1627 Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS. 2014. Subcellular
1628 metal imaging identifies dynamic sites of Cu accumulation in *Chlamydomonas*. *Nat Chem Biol* **10**:1034–
1629 1042. DOI: <https://doi.org/10.1038/nchembio.1662>, PMID: 25344811

1630

1631 Hung V, Udeshi ND, Lam SS, Loh KH, Cox KJ, Pedram K, Carr SA, Ting AY. 2016. Spatially resolved
1632 proteomic mapping in living cells with the engineered peroxidase APEX2. *Nat Protoc* **11**:456–475. DOI:
1633 <https://doi.org/10.1038/nprot.2016.018>, PMID: 26866790

1634

1635 Hutchins DA, Boyd PW. 2016. Marine phytoplankton and the changing ocean iron cycle. *Nat Clim Chang*
1636 **6**:1072–1079. DOI: <https://doi.org/10.1038/nclimate3147>

1637

1638 Hutchins DA, Bruland KW. 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling
1639 regime. *Nature* **393**:561–564. DOI: <https://doi.org/10.1038/31203>

1640

1641 Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME,
1642 Gygi SP. 2010. A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression. *Cell*
1643 **143**:1174–1189. DOI: <https://doi.org/10.1016/j.cell.2010.12.001>, PMID: 21183079

1644

1645 Huysman MJJ, Vyverman W, De Veylder L. 2014. Molecular regulation of the diatom cell cycle. *J Exp*
1646 *Bot* **65**:2573–2584. DOI: <https://doi.org/10.1093/jxb/ert387>, PMID: 24277280

1647

1648 Hwang J, Espenshade PJ. 2016. Proximity-dependent biotin labelling in yeast using the engineered
1649 ascorbate peroxidase APEX2. *Biochem J* **473**:2463–2469. DOI: <https://doi.org/10.1042/BCJ20160106>,
1650 PMID: 27274088

1651

1652 Hwang J, Ribbens D, Raychaudhuri S, Cairns L, Gu H, Frost A, Urban S, Espenshade PJ. 2016. A Golgi
1653 rhomboid protease Rbd2 recruits Cdc48 to cleave yeast SREBP. *EMBO J* **35**:2332–2349. DOI:
1654 <https://doi.org/10.15252/embj.201693923>, PMID: 27655872

1655 **Jeffery CJ.** 2018. Protein moonlighting: what is it, and why is it important? *Philos Trans R Soc Lond B Biol Sci* **373**:20160523. DOI: <https://doi.org/10.1098/rstb.2016.0523>, PMID: 29203708

1657

1658 **Jin L**, Engelhart AE, Zhang W, Adamala K, Szostak JW. 2018. Catalysis of Template-Directed

1659 Nonenzymatic RNA Copying by Iron(II). *J Am Chem Soc* **140**:15016–15021. DOI:

1660 <https://doi.org/10.1021/jacs.8b09617>, PMID: 30335371

1661

1662 **Kalocsay M.** 2019. APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative

1663 Proteomics. (In:) Proximity Labeling, (Editors:) Murat Sunbul and Andreas Jäschke. Human Press,

1664 Totawa, NJ, USA. 41–55. DOI: https://doi.org/10.1007/978-1-4939-9537-0_4, PMID: 31124087

1665

1666 **Karas BJ**, Diner RE, Lefebvre SC, McQuaid J, Phillips APR, Noddings CM, Brunson JK, Valas RE,

1667 Deerinck TJ, Jablanovic J, Gillard JTF, Beeri K, Ellisman MH, Glass JI, Hutchison CA 3rd, Smith HO,

1668 Venter JC, Allen AE, Dupont CL, Weyman PD. 2015. Designer diatom episomes delivered by bacterial

1669 conjugation. *Nat Commun* **6**:6925. DOI: <https://doi.org/10.1038/ncomms7925>, PMID: 25897682

1670

1671 **Katoh K**, Misawa K, Kuma K-I, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence

1672 alignment based on fast Fourier transform. *Nucleic Acids Res* **30**:3059–3066. DOI:

1673 <https://doi.org/10.1093/nar/gkf436/>, PMID: 12136088

1674

1675 **Kazamia E**, Sutak R, Paz-Yepes J, Dorrell RG, Vieira FRJ, Mach J, Morrissey J, Leon S, Lam F, Pelletier

1676 E, Camadro J-M, Bowler C, Lesuisse E. 2018. Endocytosis-mediated siderophore uptake as a strategy

1677 for Fe acquisition in diatoms. *Sci Adv* **4**:eaar4536. DOI: <https://doi.org/10.1126/sciadv.aar4536>, PMID:

1678 [29774236](https://doi.org/10.1126/sciadv.aar4536)

1679

1680 **Kazamia E**, Mach J, McQuaid J, Olsinova M, Machan R, Coale T, Lesuisse E, Allen, A, Sutak R, Bowler,

1681 C. 2019. Monitoring the localization of three iron starvation induced proteins (ISIPs) in a single

1682 transformant of *Phaeodactylum tricornutum* under a range of iron supplementation regimes. The

1683 molecular life of diatoms Programme and Abstract Book: 95–96. URL:

1684 http://meetings.embo.org/files/abstractbooks/Program_%20Abstract%20book_MLD_5_for_print.pdf

1685

1686 **Keeling PJ**, (79 authors), Worden AZ. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing

1687 Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans Through

1688 Transcriptome Sequencing. *PLoS Biol* **12**:e1001889. DOI: <https://doi.org/10.1371/journal.pbio.1001889>,

1689 PMID: 24959919

1690 Kilian O, Kroth PG. 2005. Identification and characterization of a new conserved motif within the
1691 presequence of proteins targeted into complex diatom plastids. *Plant J* **41**:175–183. DOI:
1692 <https://doi.org/10.1111/j.1365-313X.2004.02294.x>, PMID: 15634195

1693

1694 Kim T-W, Park CH, Hsu C-C, Zhu J-Y, Hsiao Y, Branion T, Xu S-L, Ting AY, Wang Z-Y. 2019. Application
1695 of TurboID-mediated proximity labeling for mapping a GSK3 kinase signaling network in *Arabidopsis*.
1696 *bioRxiv*. DOI: <https://doi.org/10.1101/636324>

1697

1698 Kitadai N, Nakamura R, Yamamoto M, Takai K. 2019. Metals likely promoted protometabolism in early
1699 ocean alkaline hydrothermal systems. *Sci Adv* **5**:eaav7848. DOI: <https://doi.org/10.1126/sciadv.aav7848>,
1700 PMID: 31223650

1701

1702 Knoll AH, Bergmann KD, Strauss JV. 2016. Life: the first two billion years. *Philos Trans R Soc Lond B
1703 Biol Sci* **371**:20150493. DOI: <https://doi.org/10.1098/rstb.2015.0493>, PMID: 27672146

1704

1705 Kohli P, Höhne M, Jüngst C, Bertsch S, Ebert LK, Schauss AC, Benzing T, Rinschen MM, Schermer B.
1706 2017. The ciliary membrane-associated proteome reveals actin-binding proteins as key components of
1707 cilia. *EMBO Rep* **18**:1521–1535. DOI: <https://doi.org/10.15252/embr.201643846>, PMID: 28710093

1708

1709 Komeili A. 2018. Molecular Mechanisms of Organelle Formation in Bacteria. Grantome research
1710 proposal Abstract. URL: <http://grantome.com/grant/NIH/R37-GM042143-27>

1711

1712 Kröger N, Brunner E. 2014. Complex-shaped microbial biominerals for nanotechnology. *Wiley Interdiscip
1713 Rev Nanomed Nanobiotechnol* **6**:615–627. DOI: <https://doi.org/10.1002/wnan.1284>, PMID: 25154474

1714

1715 Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology
1716 with a hidden Markov model: application to complete genomes. *J Mol Biol* **305**:567–580. DOI:
1717 <https://doi.org/10.1006/jmbi.2000.4315>, PMID: 11152613

1718

1719 Kroth PG, Bones AM, Daboussi F, Ferrante MI, Jaubert M, Kolot M, Nymark M, Río Bártulos C, Ritter A,
1720 Russo MT, Serif M, Winge P, Falciatore A. 2018. Genome editing in diatoms: achievements and goals.
1721 *Plant Cell Rep* **37**:1401–1408. DOI: <https://doi.org/10.1007/s00299-018-2334-1>, PMID: 30167805

1722

1723 Kudla J, Bock R. 2016. Lighting the Way to Protein-Protein Interactions: Recommendations on Best
1724 Practices for Bimolecular Fluorescence Complementation Analyses. *Plant Cell* **28**:1002–1008. DOI:
1725 <https://doi.org/10.1105/tpc.16.00043>, PMID: 27099259

1726 **Lam SS**, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY. 2015. Directed evolution
1727 of APEX2 for electron microscopy and proximity labeling. *Nat Methods* **12**:51–54. DOI:
1728 <https://doi.org/10.1038/nmeth.3179>, PMID: 25419960

1729

1730 **Leynaert A**, Bucciarelli E, Clauquin P, Dugdale RC, Martin-Jézéquel V, Pondaven P, Ragueneau O. 2004.
1731 Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. *Limnol Oceanogr* **49**:1134–
1732 1143. DOI: <https://doi.org/10.4319/lo.2004.49.4.1134>

1733

1734 **López-Millán AF**, Duy D, Philipp K. 2016. Chloroplast Iron Transport Proteins - Function and Impact on
1735 Plant Physiology. *Front Plant Sci* **7**:178. DOI: <https://doi.org/10.3389/fpls.2016.00178>, PMID: 27014281

1736

1737 **Lommer M**, Specht M, Roy A-S, Kraemer L, Andreson R, Gutowska MA, Wolf J, Bergner SV, Schilhabel
1738 MB, Klostermeier UC, Beiko RG, Rosenstiel P, Hippler M, LaRoche J. 2012. Genome and low-iron
1739 response of an oceanic diatom adapted to chronic iron limitation. *Genome Biol* **13**:R66. DOI:
1740 <https://doi.org/10.1186/gb-2012-13-7-r66>, PMID: 22835381

1741

1742 **Lundberg E**, Borner GHH. 2019. Spatial proteomics: a powerful discovery tool for cell biology. *Nat Rev
1743 Mol Cell Biol* **20**:285–302. DOI: <https://doi.org/10.1038/s41580-018-0094-y>, PMID: 30659282

1744

1745 **Mair A**, Xu S-L, Branon TC, Ting AY, Bergmann DC. 2019. Proximity labeling of protein complexes and
1746 cell type-specific organellar proteomes in *Arabidopsis* enabled by TurboID. *eLife* [Epub ahead of print].
1747 DOI: <https://doi.org/10.7554/eLife.47864>, PMID: 31535972

1748

1749 **Marchand J**, Heydarizadeh P, Schoefs B, Spetea C. 2018. Ion and metabolite transport in the chloroplast
1750 of algae: lessons from land plants. *Cell Mol Life Sci* **75**:2153–2176. DOI: [https://doi.org/10.1007/s00018-018-2793-0](https://doi.org/10.1007/s00018-
1751 018-2793-0), PMID: 29541792

1752

1753 **Marchetti A**, Schruth DM, Durkin CA, Parker MS, Kodner RB, Berthiaume CT, Morales R, Allen AE,
1754 Armbrust EV. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological
1755 responses of phytoplankton to varying iron availability. *Proc Natl Acad Sci U S A* **109**:E317–E325. DOI:
1756 <https://doi.org/10.1073/pnas.1118408109>, PMID: 22308424

1757

1758 **Markmiller S**, Soltanieh S, Server KL, Mak R, Jin W, Fang MY, Luo E-C, Krach F, Yang D, Sen A,
1759 Fulzele A, Wozniak JM, Gonzalez DJ, Kankel MW, Gao F-B, Bennett EJ, Lécuyer E, Yeo GW. 2018.
1760 Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules. *Cell*
1761 **172**:590–604. DOI: <https://doi.org/10.1016/j.cell.2017.12.032>, PMID: 29373831

1762 Marshall KE, Robinson EW, Hengel SM, Paša-Tolić L, Roesijadi G. 2012. FRET Imaging of Diatoms
1763 Expressing a Biosilica-Localized Ribose Sensor. *PLoS One* **7**:e33771. DOI:
1764 <https://doi.org/10.1371/journal.pone.0033771>, PMID: 22470473

1765

1766 Martell JD, Deerinck TJ, Lam SS, Ellisman MH, Ting AY. 2017. Electron microscopy using the genetically
1767 encoded APEX2 tag in cultured mammalian cells. *Nat Protoc* **12**:1792–1816. DOI: <https://doi.org/10.1038/nprot.2017.065>, PMID: 28796234

1769

1770 Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY. 2012.
1771 Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. *Nat
1772 Biotechnol* **30**:1143–1148. DOI: <https://doi.org/10.1038/nbt.2375>, PMID: 23086203

1773

1774 Martin JH, (42 authors), Tindale NW. 1994. Testing the iron hypothesis in ecosystems of the equatorial
1775 Pacific Ocean. *Nature* **371**:123–129. DOI: <https://doi.org/10.1038/371123a0>

1776

1777 Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y. 2017. Mechanisms of carbon dioxide
1778 acquisition and CO₂ sensing in marine diatoms: a gateway to carbon metabolism. *Philos Trans R Soc
1779 Lond B Biol Sci. B* **372**:20160403 DOI: <https://doi.org/10.1098/rstb.2016.0403>, PMID: 28717013

1780

1781 May T, Soll J. 1998. Positive Charges Determine the Topology and Functionality of the Transmembrane
1782 Domain in the Chloroplastic Outer Envelope Protein Toc34. *J Cell Biol* **141**:895–904. DOI:
1783 <https://doi.org/10.1083/jcb.141.4.895>, PMID: 9585409

1784

1785 May T, Soll J. 2000. 14-3-3 Proteins Form a Guidance Complex with Chloroplast Precursor Proteins in
1786 Plants. *Plant Cell* **12**:53–64. DOI: <https://doi.org/10.1105/tpc.12.1.53>, PMID: 10634907

1787

1788 Maxson ME, Grinstein S. 2014. The vacuolar-type H⁺-ATPase at a glance – more than a proton pump. *J
1789 Cell Sci* **127**:4987–4993. DOI: <https://doi.org/10.1242/jcs.158550>, PMID: 25453113

1790

1791 Mayle KM, Le AM, Kamei DT. 2012. The Intracellular Trafficking Pathway of Transferrin. *Biochim Biophys
1792 Acta* **1820**:264–281. DOI: <https://doi.org/10.1016/j.bbagen.2011.09.009>, PMID: 21968002

1793

1794 McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi
1795 SP. 2014. MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential
1796 Expression Across Cancer Cell Line Proteomes. *Anal Chem* **86**:7150–7158. DOI:
1797 <https://doi.org/10.1021/ac502040v>, PMID: 24927332

1798 **McQuaid JB**, Kustka AB, Oborník M, Horák A, McCrow JP, Karas BJ, Zheng H, Kindeberg T, Andersson
1799 AJ, Barbeau KA, Allen AE. 2018. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in
1800 diatoms. *Nature* **555**:534–537. DOI: <https://doi.org/10.1038/nature25982>, PMID: 29539640

1801

1802 **Merchant S**. 2019. Nutritional Copper Signaling and Homeostasis. Grantome research proposal Abstract.
1803 URL: <http://grantome.com/grant/NIH/R35-GM127114-01>

1804

1805 **Merkulova M**, Hurtado-Lorenzo A, Hosokawa H, Zhuang Z, Brown D, Ausiello DA, Marshansky V. 2011.
1806 Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. *Am J
1807 Physiol Cell Physiol* **300**:C1442–C1455. DOI: <https://doi.org/10.1152/ajpcell.00076.2010>, PMID:
1808 21307348

1809

1810 **Merkulova M**, Păunescu TG, Azroyan A, Marshansky V, Breton S, Brown D. 2015. Mapping the H⁺ (V)-
1811 ATPase interactome: identification of proteins involved in trafficking, folding, assembly and
1812 phosphorylation. *Sci Rep* **5**:14827. DOI: <https://doi.org/10.1038/srep14827>, PMID: 26442671

1813

1814 **Mészáros B**, Erdos G, Dosztányi Z. 2018. IUPred2A: context-dependent prediction of protein disorder as
1815 a function of redox state and protein binding. *Nucleic Acids Res* **46**:W329–W337. DOI:
1816 <https://doi.org/10.1093/nar/gky384>, PMID: 29860432

1817

1818 **Morel FMM**, Kustka AB, Shaked Y. 2008. The role of unchelated Fe in the iron nutrition of phytoplankton.
1819 *Limnol Oceanogr* **53**:400–404. DOI: doi.org/10.4319/lo.2008.53.1.0400

1820

1821 **Moreno CM**, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A. 2018. Examination of gene
1822 repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. *Polar Biol*
1823 **41**:679–696. DOI: <https://doi.org/10.1007/s00300-017-2228-7>

1824

1825 **Morrissey J**, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML. 2009. The
1826 Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis. *Plant Cell*
1827 **21**:3326–3338. DOI: <https://doi.org/10.1105/tpc.109.069401>, PMID: 19861554

1828

1829 **Morrissey J**, Sutak R, Paz-Yepes J, Tanaka A, Moustafa A, Veluchamy A, Thomas Y, Botebol H, Bouget
1830 F-Y, McQuaid JB, Tirichine L, Allen AE, Lesuisse E, Bowler C. 2015. A Novel Protein, Ubiquitous in
1831 Marine Phytoplankton, Concentrates Iron at the Cell Surface and Facilitates Uptake. *Curr Biol* **25**:364–
1832 371. DOI: <https://doi.org/10.1016/j.cub.2014.12.004>, PMID: 25557662

1833 **Myers SA**, Wright J, Peckner R, Kalish BT, Zhang F, Carr SA. 2018. Discovery of proteins associated
1834 with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. *Nat Methods* **15**:437–439.
1835 DOI: <https://doi.org/10.1038/s41592-018-0007-1>, PMID: 29735997
1836

1837 **Naslavsky N**, Caplan S. 2018. The enigmatic endosome – sorting the ins and outs of endocytic
1838 trafficking. *J Cell Sci* **131**:jcs216499. DOI: <https://doi.org/10.1242/jcs.216499>, PMID: 29980602
1839

1840 **Nguyen L-T**, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic
1841 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**:268–274. DOI:
1842 <https://doi.org/10.1093/molbev/msu300>, PMID: 25371430
1843

1844 **Nitschke W**, McGlynn SE, Milner-White EJ, Russell MJ. 2013. On the antiquity of metalloenzymes and
1845 their substrates in bioenergetics. *Biochim Biophys Acta* **1827**:871–881. DOI:
1846 <https://doi.org/10.1016/j.bbabi.2013.02.008>, PMID: 23454059
1847

1848 **Nützmann H-W**, Huang A, Osbourn A. 2016. Plant metabolic clusters – from genetics to genomics. *New
1849 Phytol* **211**:771–789. DOI: <https://doi.org/10.1111/nph.13981>, PMID: 27112429
1850

1851 **Oborník M**, Füssy Z. 2018. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple
1852 Independent Events. (In:) Plastids. Methods in Molecular Biology, (Editor:) Eric Maréchal. Humana Press,
1853 New York, NY. **1829**:17–35. DOI: https://doi.org/10.1007/978-1-4939-8654-5_2
1854

1855 **Och LM**, Shields-Zhou GA. 2012. The Neoproterozoic oxygenation event: Environmental perturbations
1856 and biogeochemical cycling. *Earth-Sci Rev* **110**:26–57. DOI:
1857 <https://doi.org/10.1016/j.earscirev.2011.09.004>
1858

1859 **Ohgami RS**, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker
1860 JE, Fleming MD. 2005. Identification of a ferrireductase required for efficient transferrin-dependent iron
1861 uptake in erythroid cells. *Nat Genet* **37**:1264–1269. DOI: <https://doi.org/10.1038/ng1658>, PMID:
1862 [16227996](https://doi.org/10.1038/ng1658)
1863

1864 **O'Halloran TV**. 1993. Transition metals in control of gene expression. *Science* **261**:715 –725. DOI:
1865 <https://doi.org/10.1126/science.8342038>, PMID: 8342038
1866

1867 **O'Halloran TV**, Culotta VC. 2000. Metallochaperones, an Intracellular Shuttle Service for Metal Ions. *J
1868 Biol Chem* **275**:25057–25060. DOI: <https://doi.org/10.1074/jbc.R000006200>, PMID: 10816601

1869 **Orr DJ**, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÁA, Zsögön A, Araújo WL. 2017. Engineering
1870 photosynthesis: progress and perspectives. *F1000Res* **6**:1891. DOI:
1871 <https://doi.org/10.12688/f1000research.12181.1>, PMID: 29263782

1872

1873 **Otsuka Y**, Satoh T, Nakayama N, Inaba R, Yamashita H, Satoh AK. 2019. Parcas is the predominant
1874 Rab11GEF for rhodopsin transport in *Drosophila* photoreceptors. *J Cell Sci.* **132**:1–13. DOI:
1875 <https://doi.org/10.1242/jcs.231431>, PMID: 31296556

1876

1877 **Paek J**, Kalocsay M, Staus DP, Wingler L, Pascolutti R, Paulo JA, Gygi SP, Kruse AC. 2017.
1878 Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling. *Cell*
1879 **169**:338–349. DOI: <https://doi.org/10.1016/j.cell.2017.03.028>, PMID: 28388415

1880

1881 **Paulo JA**, O'Connell JD, Everley RA, O'Brien J, Gygi MA, Gygi SP. 2016. Quantitative mass
1882 spectrometry-based multiplexing compares the abundance of 5000 *S. cerevisiae* proteins across 10
1883 carbon sources. *J Proteomics* **148**:85–93. DOI: <https://doi.org/10.1016/j.jprot.2016.07.005>, PMID:
1884 [27432472](#)

1885

1886 **Peng K**, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. 2006. Length-dependent prediction of protein
1887 intrinsic disorder. *BMC Bioinformatics* **7**:208. DOI: <https://doi.org/10.1186/1471-2105-7-208>, PMID:
1888 [16618368](#)

1889

1890 **Petersen TN**, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from
1891 transmembrane regions. *Nat Methods* **8**:785–786. DOI: <https://doi.org/10.1038/nmeth.1701>, PMID:
1892 [21959131](#)

1893

1894 **Philpott CC**, Jadhav S. 2019. The ins and outs of iron: Escorting iron through the mammalian cytosol.
1895 *Free Radic Biol Med* **133**:112–117. DOI: <https://doi.org/10.1016/j.freeradbiomed.2018.10.411>, PMID:
1896 [30321701](#)

1897

1898 **Poole LB**. 2015. The basics of thiols and cysteines in redox biology and chemistry. *Free Radic Biol Med*
1899 **80**:148–157. DOI: <https://doi.org/10.1016/j.freeradbiomed.2014.11.013>, PMID: 25433365

1900

1901 **Qiu W**, Xu Z, Zhang M, Zhang D, Fan H, Li T, Wang Q, Liu P, Zhu Z, Du D, Tan M, Wen B, Liu Y. 2019.
1902 Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system.
1903 *Nucleic Acids Res* **47**:e52. DOI: <https://doi.org/10.1093/nar/gkz134>, PMID: 30805613

1904

1905 **R Core Team**. 2013. R: A language and environment for statistical computing. R Foundation for
1906 Statistical Computing, Vienna, Austria. URL: <http://www.R-project.org/>

1907 **Radhamony RN**, Theg SM. 2006. Evidence for an ER to Golgi to chloroplast protein transport pathway.
1908 *Trends Cell Biol* **16**:385–387. DOI: <https://doi.org/10.1016/j.tcb.2006.06.003>, PMID: 16815014

1909

1910 **Raven EL**. 2003. Understanding functional diversity and substrate specificity in haem peroxidases: what
1911 can we learn from ascorbate peroxidase? *Nat Prod Rep* **20**:367–381. DOI:
1912 <https://doi.org/10.1039/b210426c>, PMID: 12964833

1913

1914 **Rhee H-W**, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY. 2013. Proteomic Mapping of
1915 Mitochondria in Living Cells via Spatially Restricted Enzymatic Tagging. *Science* **339**:1328–1331. DOI:
1916 <https://doi.org/10.1126/science.1230593>, PMID: 23371551

1917

1918 **Robinson NJ**, Winge DR. 2010. Copper Metallochaperones. *Annu Rev Biochem* **79**:537–562. DOI:
1919 <https://doi.org/10.1146/annurev-biochem-030409-143539>, PMID: 20205585

1920

1921 **Rochaix J-D**. 2011. Regulation of photosynthetic electron transport. *Biochim Biophys Acta* **1807**:375–
1922 383. DOI: <https://doi.org/10.1016/j.bbabi.2010.11.010>, PMID: 21118674

1923

1924 **Romero-Isart N**, Vasák M. 2002. Advances in the structure and chemistry of metallothioneins. *J Inorg
1925 Biochem* **88**:388–396. [https://doi.org/10.1016/S0162-0134\(01\)00347-6](https://doi.org/10.1016/S0162-0134(01)00347-6), PMID: 11897355

1926

1927 **Rosenzweig AC** 2002. Metallochaperones: Bind and Deliver Minireview. *Chem Biol* **9**:673–677. DOI:
1928 [https://doi.org/10.1016/S1074-5521\(02\)00156-4](https://doi.org/10.1016/S1074-5521(02)00156-4), PMID: 12079778

1929

1930 **Sacher M**, Di Bacco A, Lunin VV, Ye Z, Wagner J, Gill G, Cygler M. 2005. The crystal structure of CREG,
1931 a secreted glycoprotein involved in cellular growth and differentiation. *Proc Natl Acad Sci U S A*
1932 **102**:18326–18331. DOI: <https://doi.org/10.1073/pnas.0505071102>, PMID: 16344469

1933

1934 **Sapriel G**, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ. 2009. Genome-Wide
1935 Transcriptome Analyses of Silicon Metabolism in *Phaeodactylum tricornutum* Reveal the Multilevel
1936 Regulation of Silicic Acid Transporters. *PLoS ONE* **4**:e7458. DOI:
1937 <https://doi.org/10.1371/journal.pone.0007458>, PMID: 19829693

1938

1939 **Savelli B**, Li Q, Webber M, Jemmat AM, Robitaille A, Zamocky M, Mathé C, Dunand C. 2019.
1940 RedoxiBase: A database for ROS homeostasis regulated proteins. *Redox Biol* **26**:101247. DOI:
1941 <https://doi.org/10.1016/j.redox.2019.101247>, PMID: 31228650

1942 **Savitsky P**, Bray J, Cooper CDO, Marsden BD, Mahajan P, Burgess-Brown NA, Gileadi O. 2010. High-
1943 throughput production of human proteins for crystallization: the SGC experience. *J Struct Biol* **172**:3–13.
1944 DOI: <https://doi.org/10.1016/j.jsb.2010.06.008>, PMID: 20541610
1945

1946 **Scheiber IF**, Pilátová J, Malych R, Kotabova E, Krijt M, Vyoral D, Mach J, Léger T, Camadro J-M, Prášil
1947 O, Lesuisse E, Sutak R. 2019. Copper and iron metabolism in *Ostreococcus tauri* - the role of
1948 phytotransferrin, plastocyanin and a chloroplast copper-transporting ATPase. *Metalomics*. [Epub ahead
1949 of print]. DOI: <https://doi.org/10.1039/c9mt00078j>, PMID: 31380866
1950

1951 **Schober AF**, Río Bártulos C, Bischoff A, Lepetit B, Gruber A, Kroth PG. 2019. Organelle Studies and
1952 Proteome Analyses on Mitochondria and Plastids Fractions from the Diatom *Thalassiosira pseudonana*.
1953 *Plant Cell Physiol* **0**:1–18. DOI: <https://doi.org/10.1093/pcp/pcz097>, PMID: 31179502
1954

1955 **Schröder I**, Johnson E, de Vries S. 2003. Microbial ferric iron reductases. *FEMS Microbiol Rev* **27**:427–
1956 447. DOI: [https://doi.org/10.1016/S0168-6445\(03\)00043-3](https://doi.org/10.1016/S0168-6445(03)00043-3), PMID: 12829278
1957

1958 **Sengupta R**, Poderycki MJ, Mattoo S. 2019. CryoAPEX – an electron tomography tool for subcellular
1959 localization of membrane proteins. *J Cell Sci* **132**. DOI: <https://doi.org/10.1242/jcs.222315>, PMID:
1960 30886003
1961

1962 **Sheppard VC**, Scheffel A, Poulsen N, Kröger N. 2012. Live Diatom Silica Immobilization of Multimeric
1963 and Redox-Active Enzymes. *Appl Environ Microbiol* **78**:211–218. DOI:
1964 <https://doi.org/10.1128/AEM.06698-11>, PMID: 22057862
1965

1966 **Sievers F**, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, Mcwilliam H, Remmert M, Söding J,
1967 Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence
1968 alignments using Clustal Omega. *Mol Syst Biol* **7**:539. DOI: <https://doi.org/10.1038/msb.2011.75>, PMID:
1969 21988835
1970

1971 **Smith SR**, Gillard JTF, Kustka AB, McCrow JP, Badger JH, Zheng H, New AM, Dupont CL, Obata T,
1972 Fernie AR, Allen AE. 2016. Transcriptional Orchestration of the Global Cellular Response of a Model
1973 Pennate Diatom to Diel Light Cycling under Iron Limitation. *PLoS Genet* **12**:e1006490. DOI:
1974 <https://doi.org/10.1371/journal.pgen.1006490>, PMID: 27973599
1975

1976 **Soll J**, Schleiff E. 2004. Protein import into chloroplasts. *Nat Rev Mol Cell Biol* **5**:198–208. DOI:
1977 <https://doi.org/10.1038/nrm1333>, PMID: 14991000

1978 Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA. 2017. The integral role of iron in
1979 ocean biogeochemistry. *Nature* **543**:51–59. DOI: <https://doi.org/10.1038/nature21058>, PMID: 28252066
1980
1981 Tanaka A, De Martino A, Amato A, Montsant A, Mathieu B, Rostaing P, Tirichine L, Bowler C. 2015.
1982 Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom *Phaeodactylum*
1983 *tricornutum*. *Protist* **166**:506–521. DOI: <https://doi.org/10.1016/j.protis.2015.07.005>, PMID: 26386358
1984
1985 Tesson B, Genet MJ, Fernandez V, Degand S, Rouxhet PG, Martin-Jézéquel V. 2009. Surface Chemical
1986 Composition of Diatoms. *Chembiochem* **10**:2011–2024. DOI: <https://doi.org/10.1002/cbic.200800811>,
1987 PMID: 19623594
1988
1989 Tsuji Y, Nakajima K, Matsuda Y. 2017. Molecular aspects of the biophysical CO₂-concentrating
1990 mechanism and its regulation in marine diatoms. *J Exp Bot* **68**:3763–3772. DOI:
1991 <https://doi.org/10.1093/jxb/erx173>, PMID: 28633304
1992
1993 Umbreit JN, Conrad ME, Hainsworth LN, Simovich M. 2002. The ferrireductase paraferritin contains
1994 divalent metal transporter as well as mobilferrin. *Am J Physiol Gastrointest Liver Physiol* **282**:G534–9.
1995 DOI: <https://doi.org/10.1152/ajppg.00199.2001>, PMID: 11842004
1996
1997 Umbreit JN, Conrad ME, Moore EG, Desai MP, Turrens J. 1996. Paraferitin: A Protein Complex with
1998 Ferrireductase Activity is Associated with Iron Absorption in Rats. *Biochemistry* **35**:6460–6469. DOI:
1999 <https://doi.org/10.1021/bi951927s>, PMID: 8639593
2000
2001 Uversky VN. 2015. The multifaceted roles of intrinsic disorder in protein complexes. *FEBS Lett*
2002 **589**:2498–2506. DOI: <https://doi.org/10.1016/j.febslet.2015.06.004>, PMID: 26073257
2003
2004 Uversky VN. 2016. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically
2005 Disordered Proteins. *J Biol Chem* **291**:6681–6688. DOI: <https://doi.org/10.1074/jbc.R115.685859>, PMID:
2006 26851286
2007
2008 Valko M, Morris H, Cronin MTD. 2005. Metals, Toxicity and Oxidative Stress. *Curr Med Chem* **12**:1161–
2009 1208. DOI: <https://doi.org/10.2174/0929867053764635>, PMID: 15892631
2010
2011 Vartanian M, Desclés J, Quinet M, Douady S, Lopez PJ. 2009. Plasticity and robustness of pattern
2012 formation in the model diatom *Phaeodactylum tricornutum*. *New Phytol* **182**:429–442. DOI:
2013 <https://doi.org/10.1111/j.1469-8137.2009.02769.x>, PMID: 19210721

2014 Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P,

2015 Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G. 2005. Evidence for a protein transported

2016 through the secretory pathway en route to the higher plant chloroplast. *Nat Cell Biol* **7**:1224–1231. DOI:

2017 <https://doi.org/10.1038/ncb1330>, PMID: 16284624

2018

2019 Waller RF, Cleves PA, Rubio-Brotóns M, Woods A, Bender SJ, Edgcomb V, Gann ER, Jones AC,

2020 Teytelman L, von Dassow P, Wilhelm SW, Collier JL. 2018. Strength in numbers: Collaborative science

2021 for new experimental model systems. *PLoS Biol* **16**:e2006333. DOI:

2022 <https://doi.org/10.1371/journal.pbio.2006333>, PMID: 29965960

2023

2024 Wang J, Pantopoulos K. 2011. Regulation of cellular iron metabolism. *Biochem J* **434**:365–381. DOI:

2025 <https://doi.org/10.1042/BJ20101825>, PMID: 21348856

2026

2027 Ward DM, Kaplan J. 2012. Ferroportin-mediated iron transport: expression and regulation. *Biochim*

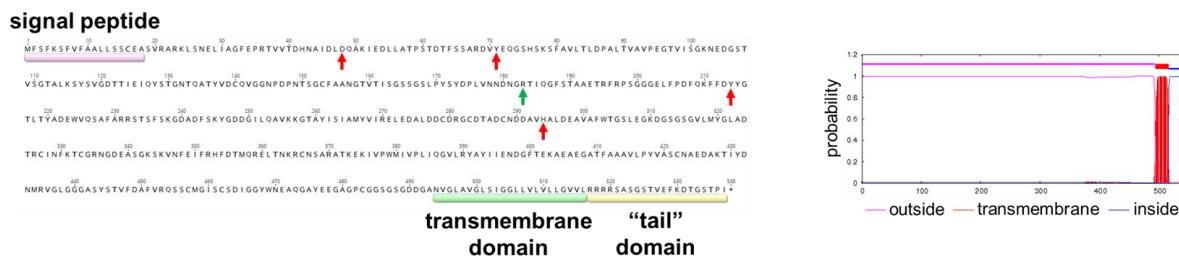
2028 *Biophys Acta* **1823**:1426–1433. DOI: <https://doi.org/10.1016/j.bbamcr.2012.03.004>, PMID: 22440327

2029

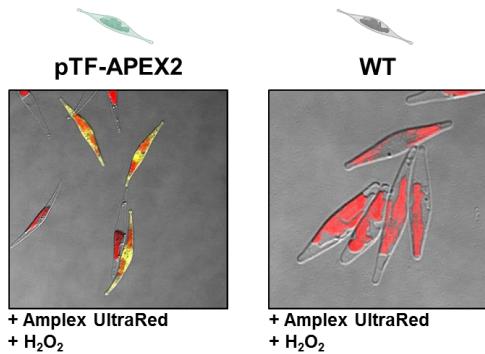
2030 Zhang Y, Song G, Lal NK, Nagalakshmi U, Li Y, Zheng W, Huang P, Branion TC, Ting AY, Walley JW,

2031 Dinesh-Kumar SP. 2019. TurboID-based proximity labeling reveals that UBR7 is a regulator of NLR

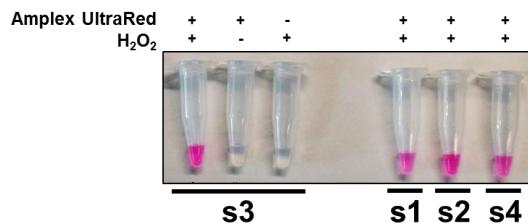
2032 immune receptor-mediated immunity. *Nat Commun* **10**:3252. DOI: <https://doi.org/10.1038/s41467-019-11202-z>, PMID: 31324801


2033

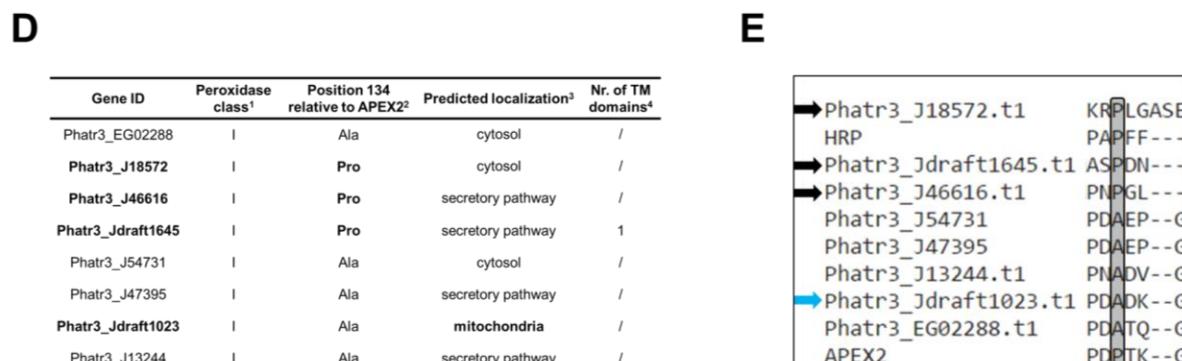
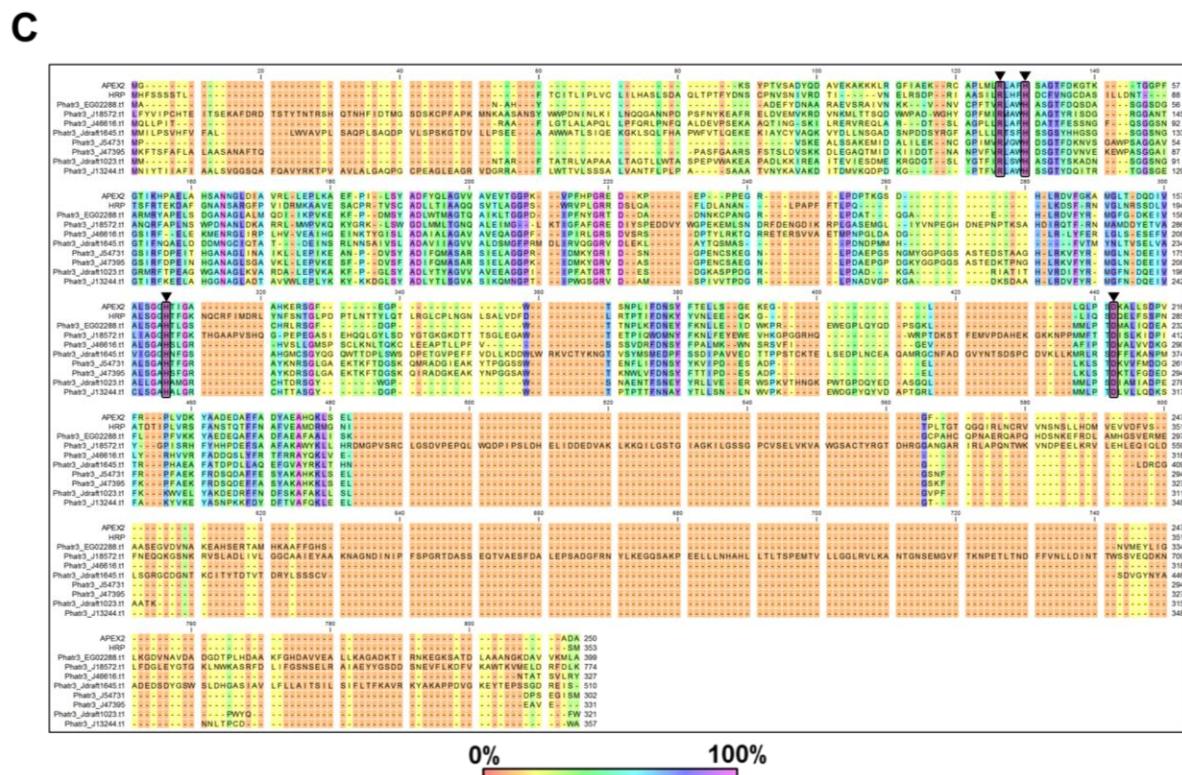
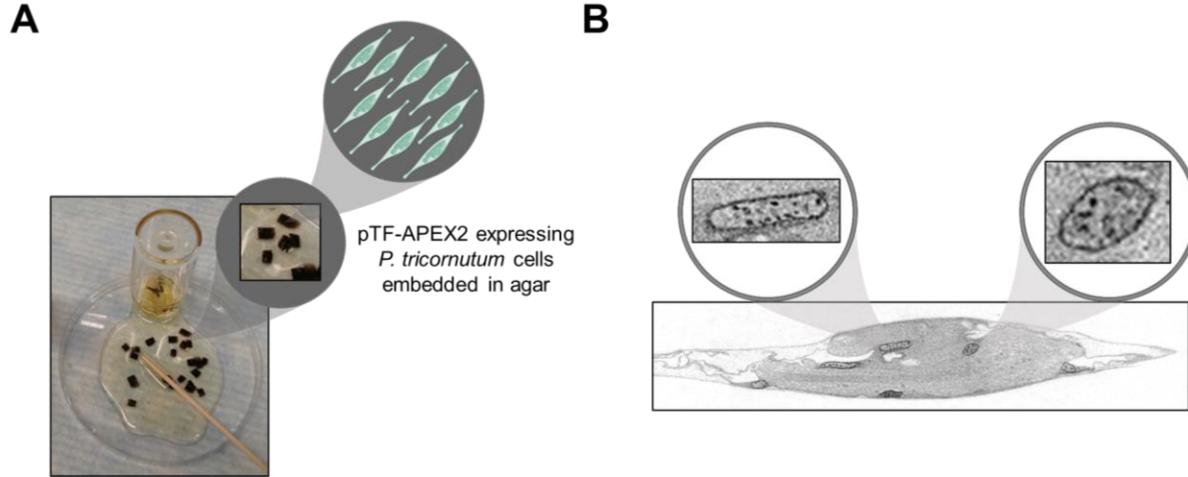
2034

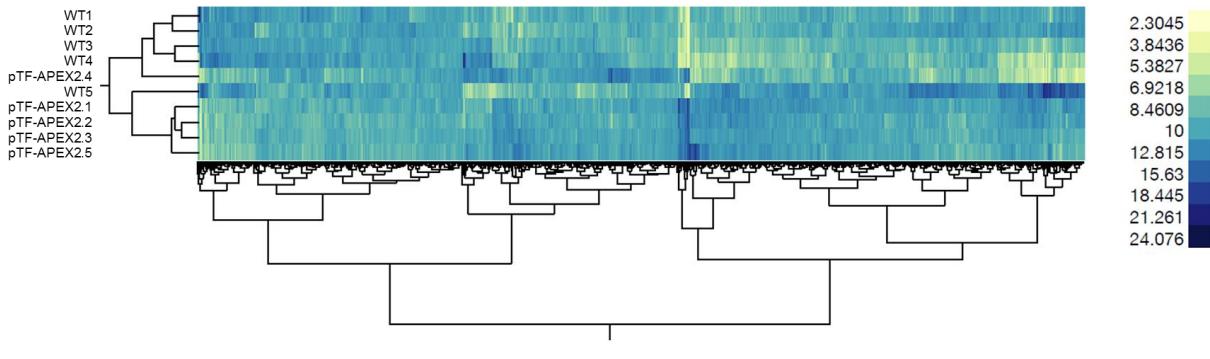

2035 **Supplementary Figures**

2036


A

B




C

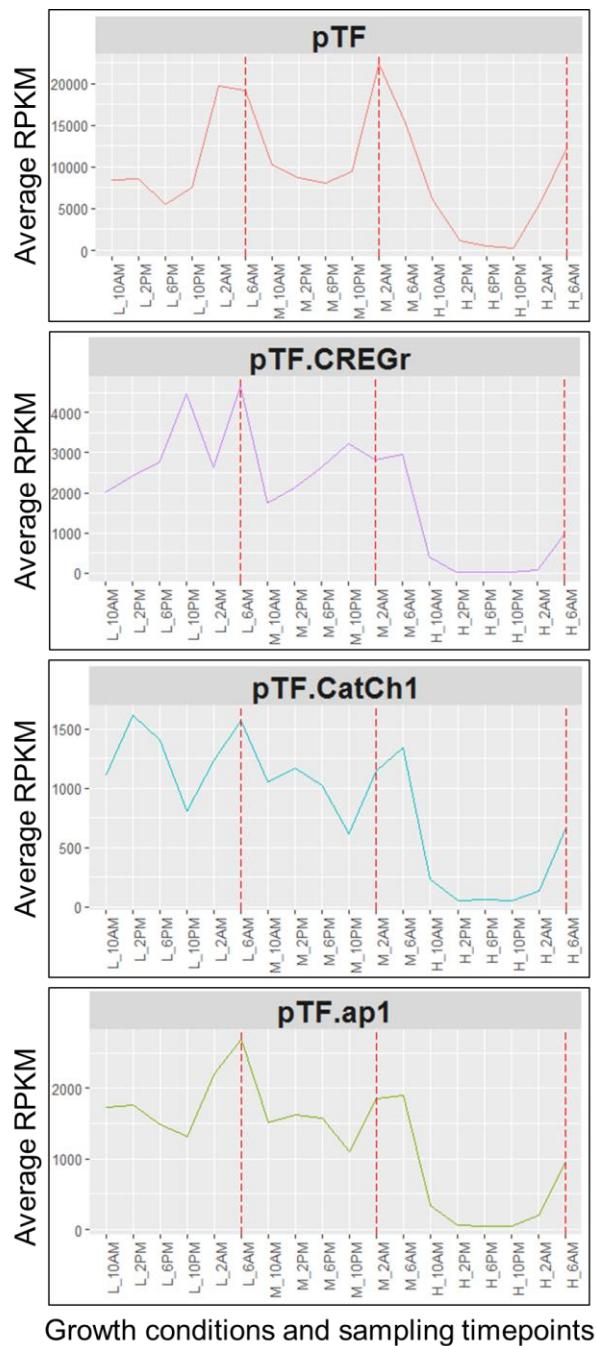

2037

2038

2039 **Figure 2—figure supplement 1.** pTF features, resorufin imaging in pTF-APEX2 expressing cells, and
2040 resorufin signal co-dependence on Amplex UltraRed and hydrogen peroxide. (A) pTF is a 537 amino acid
2041 residues (aa) long membrane-associated iron receptor protein consisting of a signal peptide (aa 1–18;
2042 predicted with SignalP 4.1), an iron-binding domain (aa 19–493), a transmembrane domain (aa 494–516;
2043 predicted with TMHMM Server v. 2.0), and a “tail” domain (aa 517–537). Red and green arrows are
2044 conserved putative iron- (Asp48, Tyr71, Tyr214, His294) and carbonate-coordinating (Arg183) residues,
2045 respectively. (B) Direct visualization of resorufin (yellow) in pTF-APEX2 expressing cells. Red is
2046 chloroplast autofluorescence. (C) Supernatants after incubating cells from 4 pTF-APEX2 expressing
2047 strains (s1–s4) in a reaction buffer (50 μM Amplex UltraRed, 2 mM H₂O₂, PBS (pH 7.4)) for 6 min at room
2048 temperature. Clear resorufin signal was observed only when both APEX2 substrates were present.

2050 **Figure 3—figure supplement 1.** Analysis of transcriptionally active *Phaeodactylum tricornutum*
2051 peroxidases reveals putative APEX2-like and mitochondrial enzymes. (A) Excerpt from the TEM labeling
2052 protocol: agar blocks with embedded DAB-treated pTF-APEX2 expressing diatom cells. *P. tricornutum*
2053 cartoon and “zoom in” objects created with BioRender.com. (B) Mitochondrial signal as shown here was
2054 observed in both WT and pTF-APEX2 expressing cells subjected to DAB and hydrogen peroxide. “Zoom
2055 in” objects created with BioRender.com. (C) Alignment of putative APEX2-like *P. tricornutum* peroxidases.
2056 Amino acid residues crucial for APX and likely crucial for APEX2 activity (Arg38, His42, His163 and
2057 Asp208) are conserved in eight *P. tricornutum* peroxidases (depicted with black triangles and shaded).
2058 (D) Three of the identified APEX2-like peroxidases contain proline instead of alanine at the critical
2059 position 134, an amino acid change rendering APEX2 much more active than its APEX predecessor. One
2060 of them may be mitochondrial. ¹RedoxiBase database. ²APEX2 and horseradish peroxidase (HRP) have
2061 proline at this position. ³TargetP 1.1. ⁴TMHMM Server v. 2.0. (E) Alignment of putative substrate binding
2062 loops in the identified APEX2-like *P. tricornutum* peroxidases. Black and blue arrows point to enzymes
2063 with proline at position 134 (shaded gray) and predicted mitochondrial localization, respectively.

2064

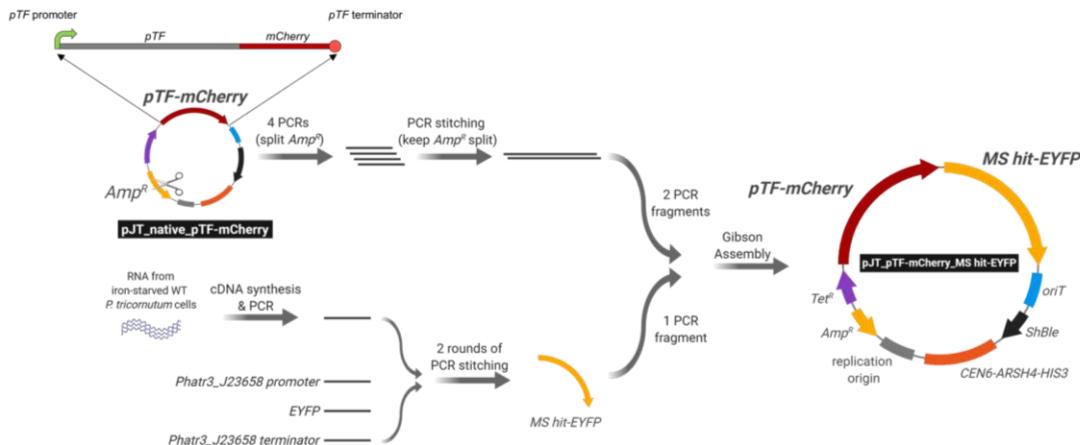

2065 **Figure 4—figure supplement 1.** WT and pTF-APEX2 proteomic replicates form distinct clusters.

2066 Hierarchical clustering (Ward's method as implemented in the JMP software package) of scaled

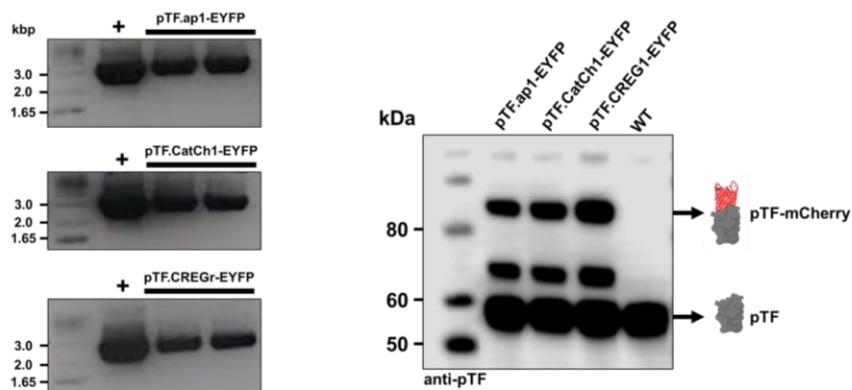
2067 quantitative proteomics data reveal WT- and pTF-APEX2-specific clusters. Samples "WT5" and "pTF-

2068 APEX2.4" differ slightly from other corresponding samples.

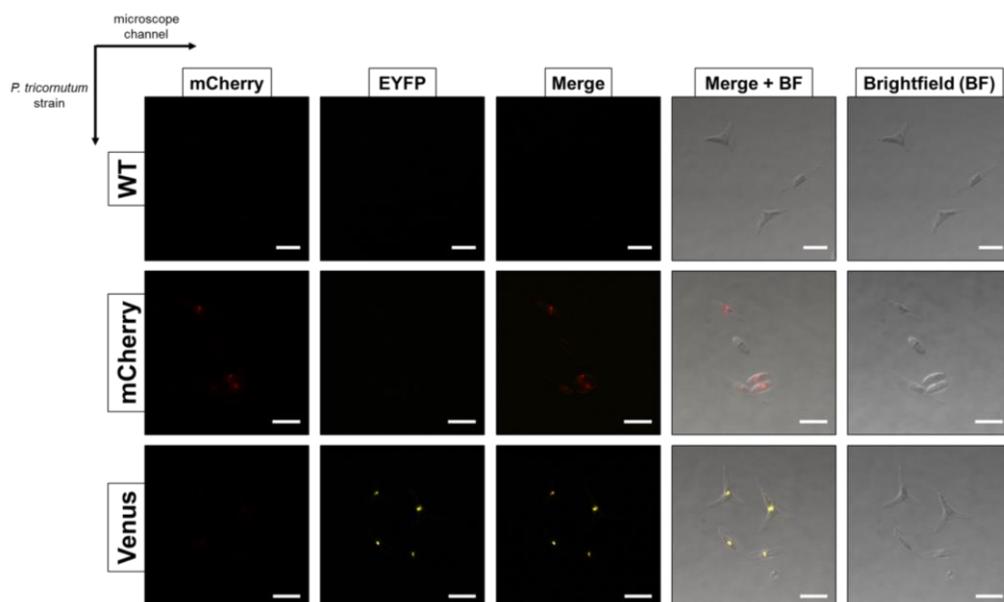
2069

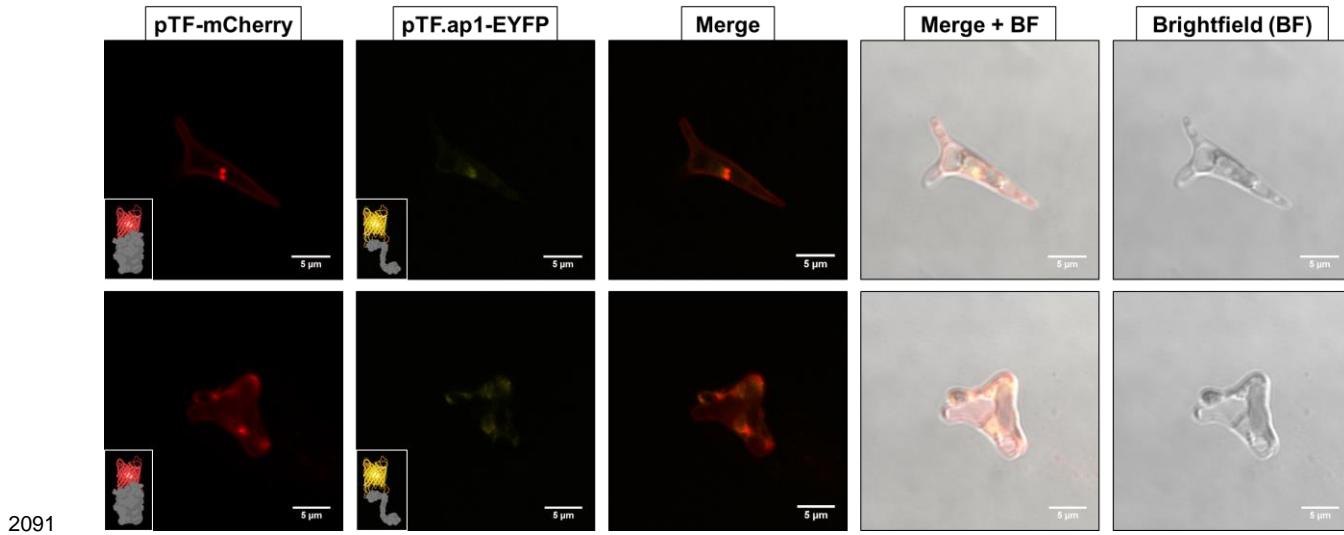


2070

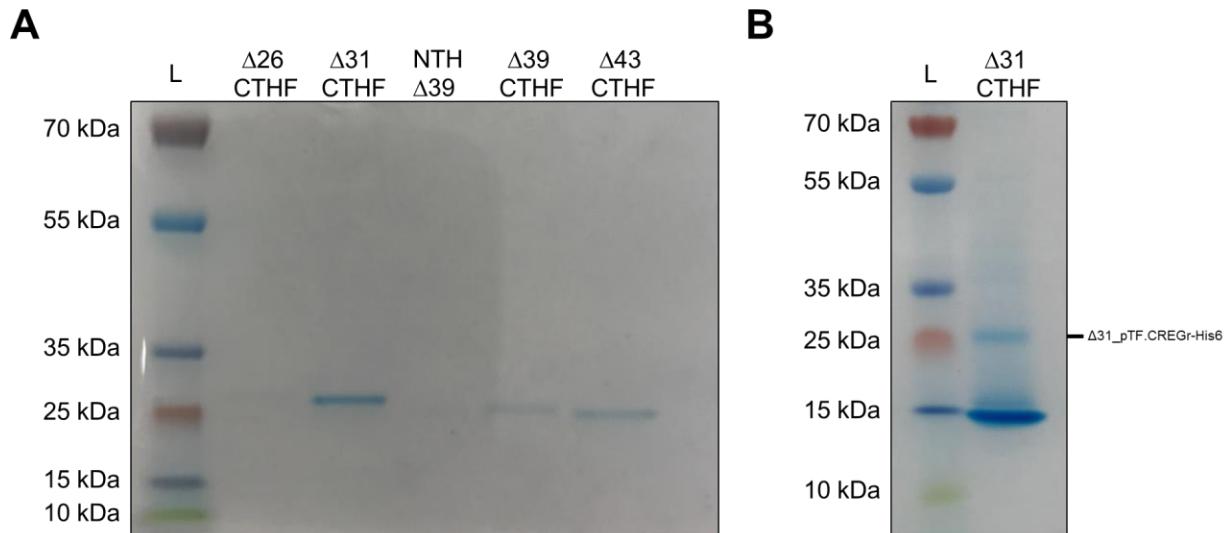

2071

2072 **Figure 5—figure supplement 1.** Transcriptional profiles of *pTF* and the three genes from the identified
2073 iron-sensitive gene cluster on chromosome 20 across different growth conditions (L (low): 20 pM Fe', M
2074 (medium): 40 pM Fe', H (high/replete): 400 pM Fe') and sampling timepoints (10AM, 2PM, 6PM, 10PM,
2075 2AM, 6AM). Fe': sum of all Fe species not complexed to EDTA. Red dashed lines correspond to genes'
2076 transcriptional peaks (late night). See *Supplementary file 4* for detailed description of the source of raw
2077 data.


A

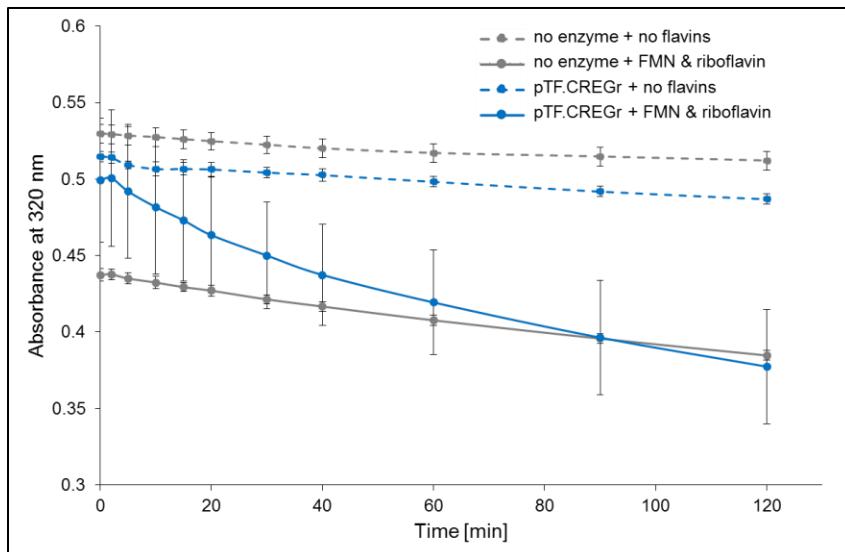

B

C


2079 **Figure 5—figure supplement 2.** Co-expression episome assembly overview, assessment of co-
2080 expression cell lines, and confocal microscopy bleed-through controls. (A) Summary of our co-expression
2081 episome assembly strategy. Created with BioRender.com. (B) Colony PCRs and Western blots
2082 suggesting full length proteins are present in co-expression cell lines. Left: Primers binding to flavodoxin
2083 promoter and terminator flanking MS hit-EYFP coding regions were used for PCR which resulted in the
2084 expected ~3 kbp amplicons. Positive controls: purified episomes. Negative controls: WT *P. tricornutum*
2085 and water which yielded no amplicons (not shown). Right: Anti-pTF Western blot revealed the expected
2086 ~83.8 kDa pTF-mCherry bands alongside native pTF. Protein schemes created with BioRender.com. (C)
2087 Lack of significant cross-channel bleed-through supports colocalization imaging data and conclusions.
2088 Imaging conditions with minimal bleed-through were determined with WT cells (top row), cells expressing
2089 only mCherry (middle row), and cells expressing a Venus-tagged protein (bottom row). Scale bar is 10
2090 μm .

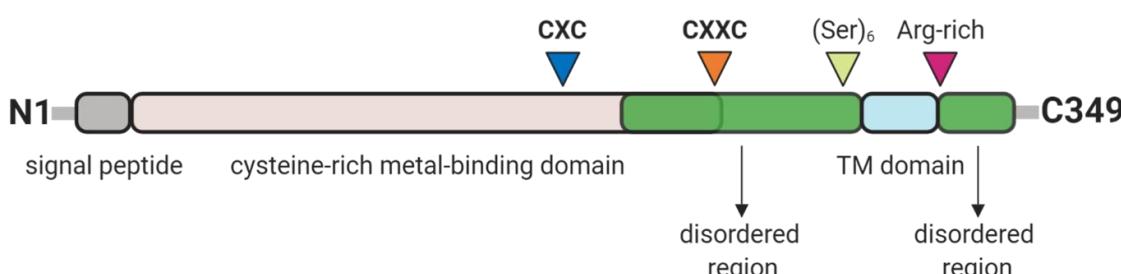
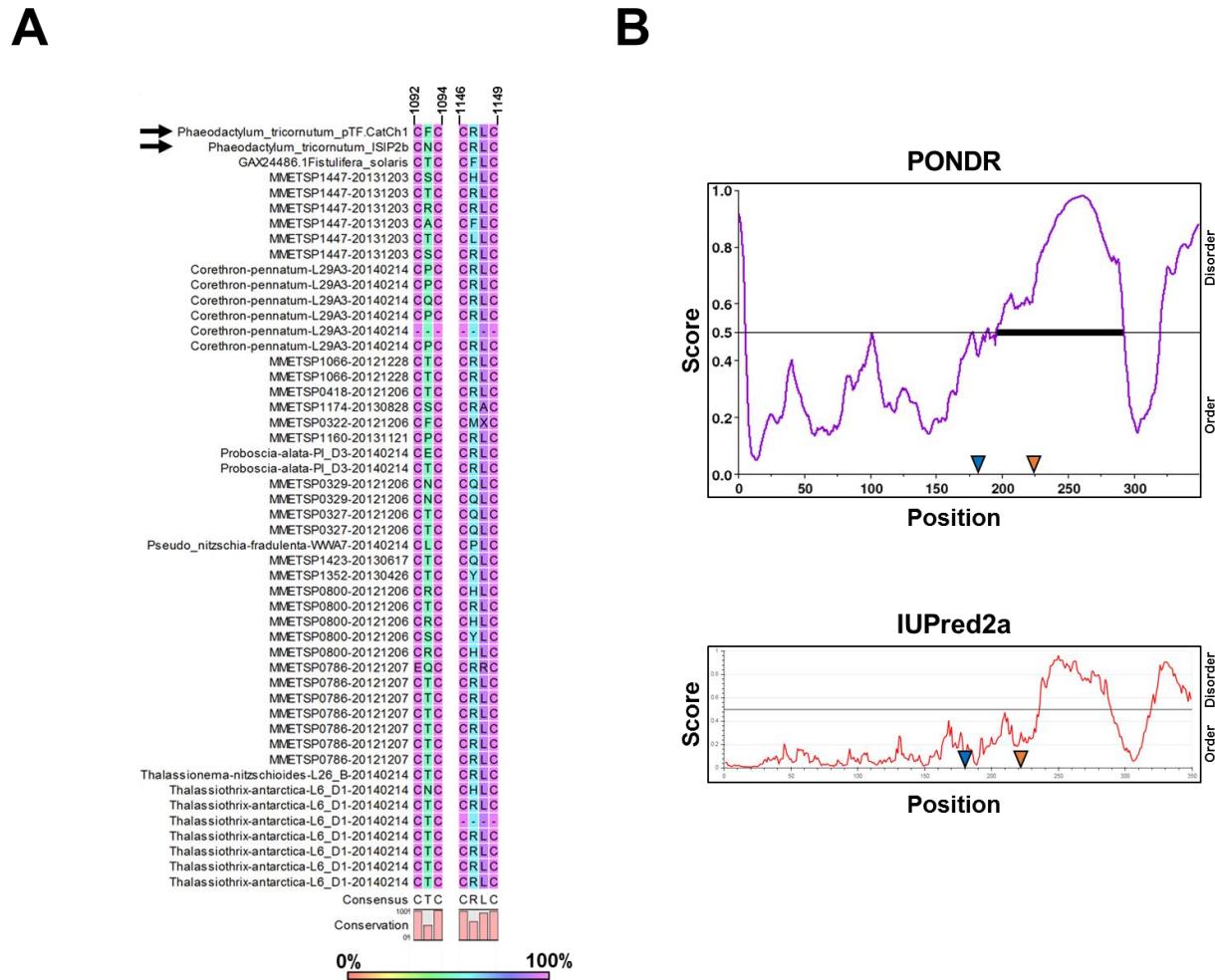
2091

2092


2093 **Figure 5—figure supplement 3.** pTF.ap1-EYFP was co-expressed with pTF-mCherry and colocalization
2094 of the two proteins—although not as precise—was observed. Scale bar is 5 μ m. Protein fusion schemes
2095 created with BioRender.com.

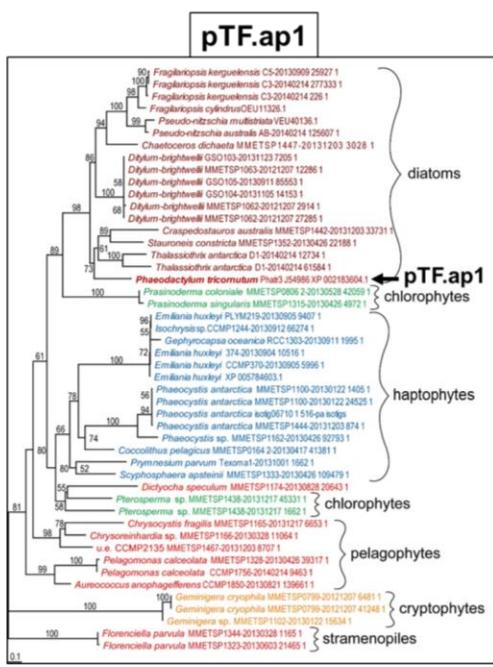
2096

2097



2098 **Figure 7—figure supplement 1.** Summary of pTF.CREGr expression and purification screen. NuPage 4-
2099 12% Bis-Tris gels loaded with (A) PageRuler Plus Prestained Protein Ladder and final elutions of various
2100 purified pTF.CREGr truncations from small scale protein expression experiments, and (B) PageRuler Plus
2101 Prestained Protein Ladder and a final elution of purified Δ 31_pTF.CREGr-His6 from a large scale protein
2102 expression experiment. CTHF: C-terminal His6 and FLAG tag. NTH: N-terminal His6 tag. L: protein
2103 ladder.

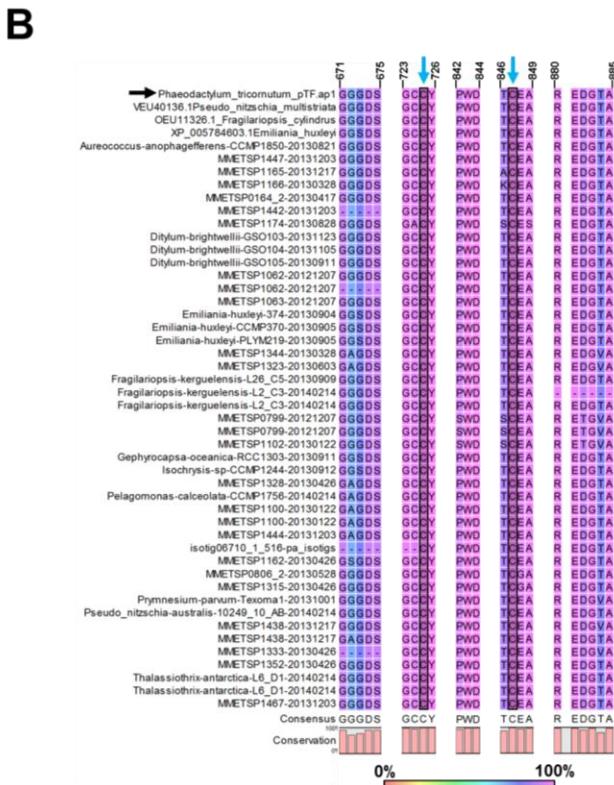
2104

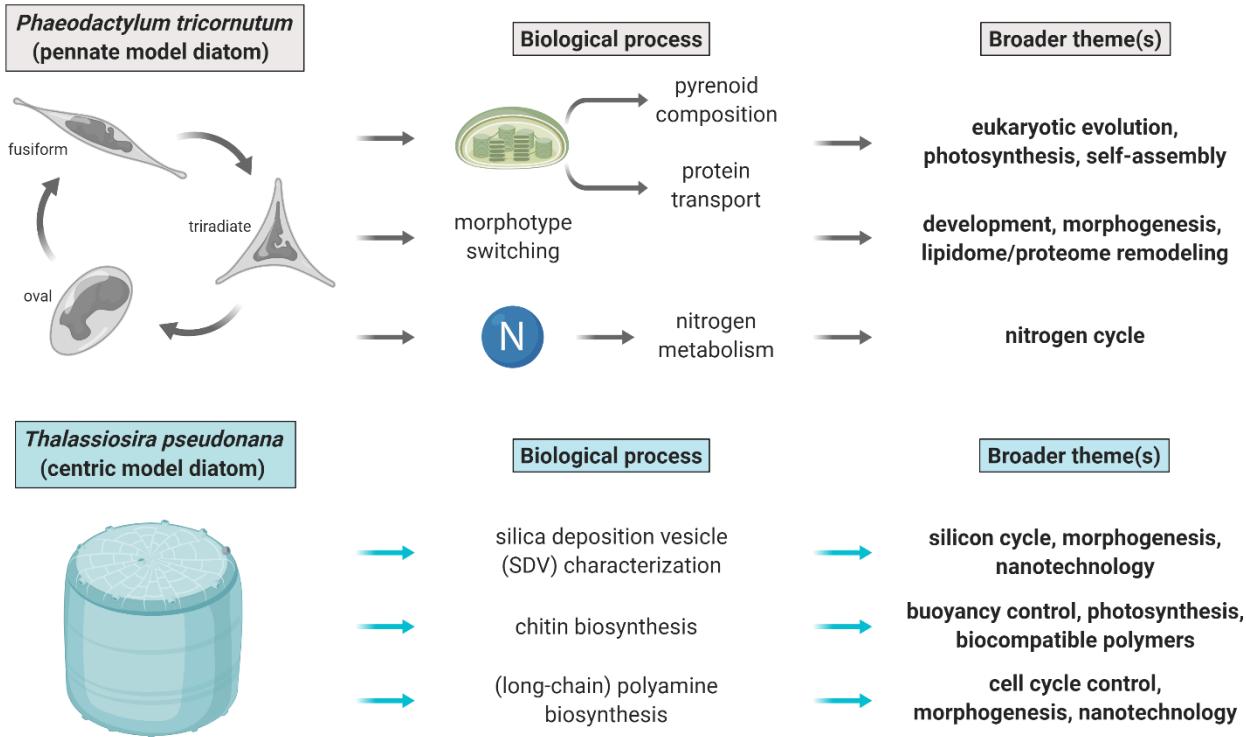
2105


2106 **Figure 7—figure supplement 2.** Comparison of NADPH oxidation (measured by decrease in
2107 absorbance at 320 nm) between pTF.CREGr supplemented with flavins (flavin mononucleotide (FMN)
2108 and riboflavin), a flavin-only, no enzyme treatment, pTF.CREGr with no additional flavins, and an NADPH-
2109 only treatment with no enzyme or flavins added. Assays were started by adding enzyme or water blank
2110 and were carried out in triplicate for each treatment. Standard deviation is shown.

2111

2112 **Figure 8—figure supplement 1.** Conservation of putative metal-binding sites in pTF.CatCh1 in marine
2113 microeukaryotes and proposed pTF.CatCh1 domain organization. (A) CXXC and adjacent CXC motifs are
2114 present in all, but two, identified pTF.CatCh1 homologs. 6 additional cysteines are 100% conserved (data
2115 not shown). pTF.CatCh1 and ISIP2b are marked with arrows. (B) pTF.CatCh1 contains a disordered C-
2116 terminal domain which may be involved in protein-protein interactions. CXXC is predicted to be in this
2117 region by PONDR VSL2 (top) possibly suggesting metal binding and disorder-order transitions are
2118 dependent on local redox environment. No cysteines are predicted to be in the disordered region by
2119 IUPred2a (bottom). The locations of conserved CXC and CXXC motifs are depicted with blue and orange
2120 triangles, respectively. (C) Features and proposed domain architecture in pTF.CatCh1 assuming disorder
2121 prediction with PONDR. Signal peptide (aa 1–26; grey) is followed by a cysteine-rich domain (20
2122 cysteines between amino acid residues 27 and 226; pale pink) possibly responsible for binding iron, and
2123 a disordered region (green) that may be involved in protein-protein interactions. The TM domain (aa 296–
2124 315; light blue) splitting the disordered region in two is flanked by a polyserine and an arginine-rich
2125 stretch. N- and C-terminus with numbered first and last residue are shown. Created with BioRender.com.


A



2126

2127

2128 **Figure 8—figure supplement 2.** (A) pTF.ap1 homologs are present in diatoms and other marine
 2129 microeukaryotes. Homolog search was performed with NCBI and marine microbial eukaryote (MMETSP)
 2130 databases. Some notable species include: common polar diatoms *Fragilariopsis kergulensis* and
 2131 *Fragilariopsis cylindrus*; toxin-producing microeukaryotes (diatoms from genus *Pseudo-nitzschia*,
 2132 haptophyte *Prymnesium parvum*, and pelagophyte *Aureococcus anophagefferens*), cosmopolitan diatom
 2133 *Ditylum brightwelli*, haptophyte *Emiliana huxleyi*, and an ultraplanktonic species *Pelagomonas calceolata*;
 2134 colonial species *Prasinoderma coloniale* and *Phaeocystis antarctica*. Scale bar: 0.1 substitutions per
 2135 position. (B) pTF.ap1 (arrow) contains highly conserved motifs. There are additional three 100%
 2136 conserved cysteines across pTF.ap1 homologs in addition to the two presented here (blue arrows and
 2137 grey shade) indicating this protein may be involved in metal binding similar to pTF.CatCh1 (data not
 2138 shown).

2139

2140

2141 **Figure 9—figure supplement 1.** Vision board summarizing biological problems in established model
2142 marine diatoms that could benefit from proximity proteomics approaches. Two diatom compartments of
2143 immediate interest are pyrenoid—proteinaceous RuBisCO-containing suborganelle—and silica deposition
2144 vesicle (SDV)—site of diatom cell wall biomineralization. We intentionally constrained ourselves to these
2145 two already genetically tractable diatoms appropriate for the immediate study of pyrenoid and SDV
2146 composition, but we expect APEX2 and related proximity proteomics approaches will be adopted in other
2147 emerging diatom models as well as other marine microeukaryotes. Created with BioRender.com.