

1 **Radiologic Evaluation of the Influence of Cleft Type on Nasal Dorsum**

2 **Growth**

3 Lingling Pu, M.D^{a,b}, Renkai Liu M.D^{a,b}, Bing Shi, M.D^{a,b}, David W Low, M.D^c,
4 Chenghao Li, M.D, PhD^{a,b,*}

5 ^a State Key Laboratory of Oral Disease, West China College of Stomatology, Sichuan
6 University, Chengdu 610041, the People's Republic of China.

7 ^b Department of Cleft Lip and Palate Surgery, West China Stomatological Hospital,
8 Sichuan University, Chengdu 610041, the People's Republic of China.

9 ^c Division of Plastic Surgery, The Children's Hospital of Philadelphia

10 ***Correspondence to:**

11 **1.** Cheng-hao Li, M.D., Ph.D., Department of Cleft Lip and Palate Surgery, West China
12 Stomatological Hospital, Sichuan University

13 **E-mail:** leechenghao_cn@yahoo.com

14 **Fax:** 86-28-85502570

15 **Telephone:** 86-28-85501462

16 **Address:** No. 14, Section 3, Ren Min Nan Road, Chengdu 610041,
17 People's Republic of China.

18

19

20

21

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 *Purpose:* The study was designed to evaluate whether intrinsic morphological
33 characteristics of the nasal dorsum are affected by cleft type, specifically cleft lip only
34 (CL) and cleft lip with cleft palate(CL/P).

35 *Methods:* 576 cleft patients (278 CL only, 298 CL/P), and 333 individuals without
36 orofacial clefts were retrospectively enrolled. Lateral cephalometric radiographs of all
37 individuals were taken to evaluate the nasal length and nasal dorsum height. Dunn's
38 test was used to analyze the difference ($p < 0.001$).

39 *Results:* In CL and control, the angulation of the nasal bone and nasal dorsum increase
40 by age similarly (5y-18y, $p > 0.05$). In CL, the total dorsal length is significantly shorter
41 (5y-18y, $p < 0.001$). Although the upper nasal dorsum is similar (except in 5y-6y), the
42 lower nasal dorsum is shorter (5y-18y, $p < 0.001$).

43 In CLP, there is no significant difference in the nasal bone angle compared with
44 controls between 5y-7y. However, it develops insufficiently as children grow (8y-18y,
45 $p < 0.001$). The nasal dorsum angle is notably smaller (5y-18y, $p < 0.001$). Nasal bone
46 length is not significantly different from control at all stages except during ages 11y-
47 13y ($p < 0.05$). Total nasal dorsal length is similar to the control at skeletal maturity
48 (17y-18y, $p > 0.05$), although it is shorter during 8y to 16y ($p < 0.05$). The upper nasal

49 dorsum is overdeveloped (14y-18y, $p<0.05$), whereas the lower nasal dorsum is
50 underdeveloped (5y-18y, $p<0.001$).

51 *Conclusion:* CL inhibits the growth of nasal dorsum length, leading to short nose
52 deformity. CL/P patients are prone to saddle-nose deformity because of the diminished
53 nasal height (decreased nasal angle).

54 *Keywords:* Cleft nose; nasal deformity; cephalometric; cleft lip and palate

55

56

57 **Introduction**

58 Cleft lip is frequently accompanied by nasal deformities. The congenital anatomic
59 deficiency or aberrancy, potential changes related to growth, the cleft itself, and even
60 scarring from previous procedures are the main factors which lead to a wide variability
61 in secondary cleft nasal deformities and the complexity of surgical techniques over the
62 past few years¹. Subsequently, secondary surgery for the cleft nasal deformity
63 undeniably presents a formidable challenge to the plastic surgeon, and the results are
64 not as ideal as expected due to lack the comprehensive inward characters that hidden
65 under complex deformed manifestations.

66 Due to its central location, the nose plays a prominent role in facial aesthetics ².

67 How does one distinguish the different factors that contribute to the cleft nasal

68 deformity, including cleft type, intrinsic potential changes, or surgical damage?

69 Nowadays, surgeons mainly define the cleft nasal malformation with regard to the alar

70 base, columella, nostril, nasal tip, nasal floor, and nasal septum , attaching more

71 importance to the dysmorphia of the nasal tip ^{3,4}. However, because of the complexity

72 of this anatomic structure, it is so difficult to define the key factors. As an important

73 part of nose, the nasal dorsum plays a major role in nasal and facial harmony

74 ⁵. Analysis of rhinoplasty results has shown that even slight differences in nasal shape

75 can transform the look of an individual's face ⁶, the key point being that one might be

76 able to distinguish the effect of different cleft types on nasal dorsum deformity,

77 because of its simpler anatomic structure.

78 Based on the above reasons, this study focused on evaluating morphologic

79 characteristics of the nasal dorsum, to analyze the role of cleft type on nasal dorsum

80 growth in cleft lip patients with and without cleft palate. The study population included

81 patients with cleft lip only (CL), cleft lip and cleft palate (CL/P), and healthy

82 individuals. The soft and hard tissue of the nasal dorsum was analyzed through lateral

83 cephalometric radiographs to obtain objective data of the hard and soft tissue

84 morphology of the three groups in different ages, then compared. Lateral cephalometric

85 radiographs of all individuals were taken to evaluate the nasal length, including the

86 length of the nasal bone, the nasal dorsum, upper nasal dorsum and lower nasal dorsum.

87 The angulation of the nasal bone and the nasal dorsum were evaluated as the indexes

88 of nasal dorsum height. The results indicate that CL inhibits the growth of nasal dorsum

89 length, leading to a short nose deformity, while CL/P tends to result in a saddle nose
90 because of decreased nasal height. These findings help characterize nasal dorsum
91 development, provide comprehensive characteristics of the secondary nasal deformity
92 in cleft patients, and potentially improve the outcome of secondary reconstructive
93 surgery.

94 **Methods**

95

96 **Ethics statement**

97 Samples were collected in accordance with the guidelines of The West China
98 Hospital of Stomatology Institutional Board(WCSHIRB). The experimental protocol
99 was approved by local ethics committee (WCSHIRB, Sichuan University,China).
100 Informed consent was obtained from all subjects or, if subjects are under 18, from a
101 parent and/or legal guardian.

102

103 **Sample**

104 The study sample comprised a total of 909 Chinese children aged between 5 and
105 18 years at the West China Hospital of Stomatology, Sichuan University, Chengdu,
106 China, between 2011 and 2016, who were divided into CL only, CL/P, and a control
107 group. The CL group was composed of 278 children with cleft lip, and the CL/P group
108 was comprised of 298 children with combined cleft lip and palate. They were non-
109 syndromic and had no other congenital anomalies. Following our cleft center protocol,
110 the CL group was treated with a modified Millard technique at 3-6 months⁷. The CL/P
111 group underwent the same lip repair technique, and then underwent a Sommerlad

112 palatoplasty at 9-12 months. None received any other secondary surgery such as lip
113 revision, fistula repair, rhinoplasty, or orthopedic treatment except for bone grafting at
114 9-12 years of age. The control group was composed of 333 healthy children without
115 cleft or any other congenital anomalies of the same age range as the CL and CL/P
116 groups randomly chosen from Department of Orthodontics in West China Stomatology.
117 These children underwent simple orthodontic treatment and had normal skeletal
118 relationships, symmetric faces, and no history of craniofacial surgery. All groups were
119 divided by age from 5 to 7 years, 8 to 10 years, 11 to 13 years, 14 to 16 years, and 17
120 to 18 years (Table 1).

121 **Cephalometric analysis**

122 Because our study was a retrospective case-control study using the archive, all the
123 patients took lateral cephalometric radiographs just for clinical needs. Lateral
124 cephalometric radiographs were taken for each subject under standardized conditions
125 with the head oriented along the Frankfort horizontal plane (FH) parallel to the
126 floor. Subjects were asked to relax their lips in a resting position, and to place their teeth
127 in centric occlusion. An EASYMTIC 3298-125 Cephalometry X-ray machine
128 (Chemetron Co., Chicago, IL, USA) was used for all subjects. In order to reduce the
129 influence of maxillary hypoplasia, a reliable craniofacial reference plane “Sella–nasion
130 S-N” was selected, and maxillary and nasal parts were separated by a vertical line
131 through point nasion. Three hard and three soft tissue landmarks were digitized by one
132 observer. Anthropometric landmarks on the nose were defined ^{8,9}. Nasal Dorsum was

133 measured by its length and angular of the hard and soft tissue. Fig.1 shows the
134 landmarks that were used in the cephalometric analysis directly and indirectly,
135 including four linear measurements and two angular measurements. The angulation of
136 the nasal bone and the nasal dorsum were evaluated as the indexes of nasal dorsum
137 height. The parameter measurements are shown in Fig.2. Each parameter was measured
138 three times repeatedly and the mean was recorded, P25 (First Quartile), and P75 (Third
139 Quartile).

140

141 **Statistical analysis**

142 All statistical analyses were performed with Statistical Package for Social Sciences
143 (SPSS) software version 22.0. ANOVA analysis was used to determine the differences
144 of age distribution in the three groups. Differences in the cephalometric results among
145 the three groups were based on Dunn's test. The significant difference was defined at
146 95% level.

147 **Reliability**

148 To calculate the method error, 100 cephalograms were selected randomly and
149 measured twice, to examine the intra-class correlation coefficient (ICC) ¹⁰. The ICC
150 results for test-retest reliability ranged between 0.90 and 0.98, suggesting dependable
151 reliability and reproducibility of the adopted measuring strategy. (Table 2)

152 **Results**

153 There was no significant difference in the age composition of CL, CL/P and Control
154 groups. Nasal morphology in three groups was comparable (Table 3). Fig 2 shows the

155 growth tendency of each index in the CL, CL/P and Control group. Fig 3 is the nasal
156 profile map of three groups in 17y-18y.

157 **1. CL patients show shorter nose and normal nasal angulation.**

158 In CL, compared with Control, the angulation of the nasal bone and nasal dorsum
159 increase similarly by age (5y-18y, $p>0.05$), (Fig2a, 2b), while the total dorsum length
160 is significantly shorter (5y-18y, $p<0.001$), (Fig2c,2d). In CL, the upper nasal dorsum is
161 similar to Control (except in 5y-6y), (Fig2e), but the lower nasal dorsum is shorter (5y-
162 18y, $p<0.001$), (Fig2f).

163 **2. CL/P patients have flatter angulation, but normal-length nose.**

164 In CL/P, there is no significant difference in the angulation of the nasal bone
165 compared with Control in the 5y-7y age range. However, it develops insufficiently as
166 children grow (8y-18y, $p<0.001$), (Fig2a). The angulation of the nasal dorsum is notably
167 smaller than that in non-cleft children (5y-18y, $p<0.001$), (Fig2b). Nasal bone length is
168 not significantly different from the control peers at all stages except the peers between
169 11y and 13y ($p<0.05$), (Fig2c). At skeletal maturity, the nasal dorsum grows as long as
170 the Control group (17y-18y, $p>0.05$), although it is shorter prior to that (8y-16y,
171 $p<0.05$), (Fig2c).

172 The upper nasal dorsum is overdeveloped (14y-18y, $p<0.05$) while the lower nasal
173 dorsum is underdeveloped (5y-18y, $p<0.001$), (Fig2d,2e), the net effect being a total
174 dorsum length similar to controls at skeletal maturity.

175 **Discussion**

176 Our previous works have analyzed the craniofacial and soft tissue morphology of
177 patients with CL/P and CP ^{11,12}. As mentioned earlier, this study was designed to
178 distinguish cleft type factors associated with nasal dorsum deformity. With secondary
179 rhinoplasty mainly aimed at patients with CL regardless of CP, and to eliminate the
180 influence of maxillary retrusion after primary repair on nasal dorsum shape, our study
181 encompassed patients with CL, CL/P, and healthy peers.

182 In this study, in CL only patients, we found the nasal bone and nasal dorsum were
183 significantly shorter (Fig.2c,2d). This is consistent with previous findings: prior
184 studies have demonstrated that in fetuses, newborns, children, and male adults,
185 compared with normal peers, patients with isolated cleft lip had a significantly
186 shorter nasal bone ^{13,14}. Nasal tip position is one of the important indicators for the
187 measurement of the length of nasal dorsum. Compared with healthy ones, CL (with or
188 without CP) showed significant upward deviation in the nasal tip, suggesting that CL
189 patients have a congenital tendency toward a short nose ¹⁵, but previous researchers
190 have not discussed the nasal features of CL and CL/P separately. Meanwhile, few
191 studies have presented the data from our research, specifically that the nasal dorsum
192 height in CL does not differ from controls (Fig2a, 2b).

193 The nasal bone length in CL/P was not significantly different compared with
194 control (Fig.2c), which was consistent with the conclusion of other authors who
195 have demonstrated that patients with CP +/- CL showed normal length of the nasal

196 bone^{13,14,16}. The length of the nasal dorsum of CL/P showed growth retardation,
197 which was significantly shorter than that of controls in 8y-16y, but there was no
198 significant difference in the 5y-6y and 17y-18y groups (Fig.2d). Moreira, et al. ¹⁷
199 analyzed the lateral cephalometries of 70 white children with CL/P who had undergone
200 primary operation and found that they had similar nasal dorsum length. But Ferrario,
201 Chiarella, Claudia, Laura, Armando ¹⁸ found that CL/P patients have a shorter nasal
202 dorsum. Considering the limit of the above sample sizes, we tried to resolve this issue
203 by enrolling a larger sample size, and analyzed the development of hard and soft tissues
204 of the nose in different groups in detail. Additionally, in order to reduce the influence
205 of maxillary hypoplasia, we presented a new evaluation method by utilizing
206 Bookstein, FL and Nadia, H's design. The results showed nasal dorsum height in
207 CL/P to be lower than controls (Fig.2a,2b). Therefore, in addition to maxillary
208 hypoplasia, CL/P also demonstrates a flatter nasal dorsum.

209 CL and CL/P both had a shorter lower nasal dorsum than control (Fig.2f). Shape
210 changes of the nasal dorsum are most closely related to angulation changes of the lower
211 dorsum ¹⁹, which may emphasize the malformation of the lower nasal dorsum leading
212 to the whole nasal deformity. The upper nasal dorsum of CL/P was longer than controls,
213 and the difference in 14y-18y was statistically significant (Fig.2e). However, there was
214 no significant difference in the length of the entire nasal dorsum in 17y-18y (Fig.2d).
215 We conclude that overdevelopment of upper nasal dorsal length in CL/P compensates
216 for hypodevelopment of lower nasal dorsal length, and the net result leads to a similar

217 length of the entire nasal dorsum compared with controls when growth is completed.
218 However, the developmental mechanism of the upper nasal dorsum deserved further
219 elucidation.

220 The deformity of the nasal dorsum in CL/P is mainly due to underdevelopment of
221 the height of the hard and soft tissues of the nose, and patients with CL present a shorter
222 nose instead of a flatter one. The characteristic features of the nose for CL, CL/P, and
223 control groups in 17y-18y are shown in Fig.3, providing a basis for a specific approach
224 to secondary rhinoplasty. Most of all, our study confirms that different types of clefts
225 indeed influence the features of nasal dorsum deformity. A flatter nasal dorsum
226 contributes to a flatter profile in patients with CL/P. Hence according to our results, for
227 CL, secondary rhinoplasty should lengthen the nasal dorsum, and for CL/P, the aim of
228 surgery should make the nose more prominent.

229 **Conclusion**

230 In this study, we evaluated whether morphologic characteristics of the nasal dorsum
231 were affected by cleft types in different ages after primary operation. The results
232 indicate that isolated CL inhibits the growth of nasal dorsum length which leads to a
233 short nose deformity, while the C/LP patients tends to develop a saddle nose because
234 of reduced dorsal angulation which leads to a decreased nasal height.

235

236

237 **References**

238 1. Pawar, S. S., and Wang, T. D. Secondary cleft rhinoplasty. *Jama Facial Plastic*
239 *Surgery*. 2014; 16(1):58.

240 2. Krane, N. A., J. D. Markey, L. B. Moneta, and M. M. Kim. Aesthetics of the Nasal
241 Dorsum: Proportions, Light, and Shadow. *Facial Plastic Surgery*. 2017
242 33(2):120-4 .

243 3. Henry C, Samson T, Mackay D. Evidence-based medicine: The cleft lip nasal
244 deformity. *Plastic & Reconstructive Surgery*. 2014; 133(5):1276-88.

245 4. Sykes JM, Tasman AJ, Suarez GA. Cleft Lip Nose. *Clinics in plastic surgery*.
246 2016;43(1):223-35.

247 5. Pereira ND, Tinoco C, Oliveira ECD, Paço J. Intermediate osteotomies in
248 rhinoplasty: a new perspective. *European Archives of Oto-Rhino-Laryngology*.
249 2017;274(7):2953-8.

250 6. Aston SJ, Guy CL. The nasal spine. *Clinics in plastic surgery*. 1977; 4(1):153-62.

251 7. He, X., Shi, B., Li, S., Zheng, Q.: A geometrically justified rotation advancement
252 technique for the repair of complete unilateral cleft lip. *J Plast Reconstr Aesthet*
253 *Surg*. 2009;62(9):1154-60.

254 8. Bookstein FL. Morphometric Tools for Landmark Data. 1991.

255 9. Hasanzadeh, N., Majidi, M. R., Kianifar, H., and Eslami, N. Facial soft-tissue
256 morphology of adolescent patients with nonsyndromic bilateral cleft lip and
257 palate. *Journal of Craniofacial Surgery*. 2014; 25(1):314-7.

258 10. Hopkins, Dr Will G. Measures of Reliability in Sports Medicine and Science.

259 Sports Medicine. 2000; 30(1):1.

260 11. Liu R., Wamalwa P, Lu DW, Li CH, Hu HK, Zou S.. Soft-Tissue Characteristics of

261 Operated Unilateral Complete Cleft Lip and Palate Patients in Mixed Dentition.

262 Journal of Craniofacial Surgery. 2011; 22(4):1275-9.

263 12. Liu, R. , Lu, D. , Wamalwa, P. , Li, C. , Hu, H. , and Zou, S.. Craniofacial morphology

264 characteristics of operated unilateral complete cleft lip and palate patients in

265 mixed dentition. Journal of Craniofacial Surgery. 2011;112(6):e16-25.

266 13. Hansen L, Skovgaard LT, Nolting D, Hansen BF, Kjaer I. Human prenatal nasal

267 bone lengths: normal standards and length values in fetuses with cleft lip and

268 cleft palate. The Cleft palate-craniofacial journal : official publication of the

269 American Cleft Palate-Craniofacial Association. 2005;42(2):165-70.

270 14. Nielsen BW, Mølsted K, Skovgaard LT, Kjaer I. Cross-sectional study of the

271 length of the nasal bone in cleft lip and palate subjects. The Cleft palate-

272 craniofacial journal : official publication of the American Cleft Palate-

273 Craniofacial Association. 2005;42(4):417.

274 15. Miyamoto J, Nakajima T. Anthropometric evaluation of complete unilateral

275 cleft lip nose with cone beam CT in early childhood. Journal of Plastic

276 Reconstructive & Aesthetic Surgery. 2009;63(1):9-14.

277 16. Goyenc, Y. B., H. G. Gurel, and B Memili. Craniofacial morphology in children

278 with operated complete unilateral cleft lip and palate.Journal of Craniofacial

279 *Surgery*. 2008;19(5):1396-401.

280 17. Moreira I, Suri S, Ross B, Tompson B, Fisher D, Lou W. Soft-tissue profile
281 growth in patients with repaired complete unilateral cleft lip and palate: A
282 cephalometric comparison with normal controls at ages 7, 11, and 18 years.
283 *American Journal of Orthodontics and Dentofacial Orthopedics*.
284 2014;145(3):341-58.

285 18. Ferrario VF, Chiarella S, Claudia D, Laura V, Armando C. Three-dimensional
286 nasal morphology in cleft lip and palate operated adult patients. *Ann Plast Surg*.
287 2003;51(4):390-7.

288 19. Buschang, P. H., La Cruz R De, A. D. Viazis, and A Demirjian. Longitudinal shape
289 changes of the nasal dorsum. *American journal of orthodontics and dentofacial*
290 *orthopedics : official publication of the American Association of Orthodontists*,
291 its constituent societies, and the American Board of Orthodontics. 1993;
292 104(6):539–543.

293

294 **Author information**

295 **Affiliations**

296 State Key Laboratory of Oral Disease, West China College of Stomatology, Sichuan
297 University

298 Department of Cleft Lip and Palate Surgery, West China Stomatological Hospital,
299 Sichuan University

300 Lingling Pu Email: plldangna@gmail.com

301 Renkai Liu Email:liurenkai_cn@hotmail.com

302 Bing Shi Email: shibingcn@vip.sina.com

303 Chenghao Li Email: leechenghao_cn@yahoo.com

304

305 Division of Plastic Surgery, The Children's Hospital of Philadelphia

306 David W Low Email: LOW@email.chop.edu

307

308 **Contributions**

309 All authors contributed extensively to this work. Conceived and designed the

310 experiments: L.L.P. and C.H.L. Performed the experiments: L.L.P. and R.K.L.

311 Analyzed the data: L.L.P. and B.S. Interpreted the data: L.L.P. and C.H.L. Wrote the

312 paper: L.L.P., D.W.L, and C.H.L. All authors reviewed the manuscript.

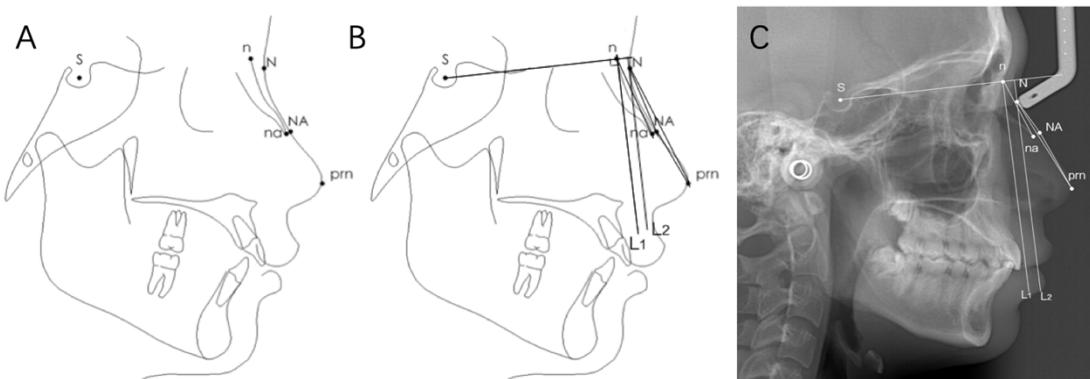
313 **Competing Interests**

314 The authors declare no competing interests.

315 **Corresponding author**

316 Correspondence to Chenghao Li

317


318

319

320

321

322

323

324 Fig1. The profile cephalometric radiographs and the cephalometric radiographs. (A)Reference points
325 on the profile cephalometric radiographs. S =sella, the center of sella turcica; n =nasion, junction of
326 frontal, maxillary, and nasal bones; N=soft nasion, closest point on soft tissue outline from hard tissue
327 nasion; na=nasale, point at the most anterior inferior part of the nasal bone; NA= soft nasale, closest
328 point on soft tissue outline from hard tissue nasale; Prn=pronasale, most anterior point on the contour of
329 nose. (B) Measurements of angles and lines on the profile cephalometric radiographs. L1=vertical line
330 of S to n, n is the foot point; L2=parallel to L1; na-n-L1(degrees):angulation of nasal bone; the angle
331 between na-n-L1 ; prn-N-L2(degrees): angulation of nasal dorsum; the angle between prn-N-L2 ; n-
332 na(mm):length of nasal bone, from the nasion to nasale; N-prn(mm):length of nasal dorsum,from soft-
333 tissue nasion to pronasale; N-NA(mm):upper nasal dorsum; NA-prn(mm):lower nasal dorsum. (C)
334 Measurements of angles and lines on the lateral cephalometric radiograph.

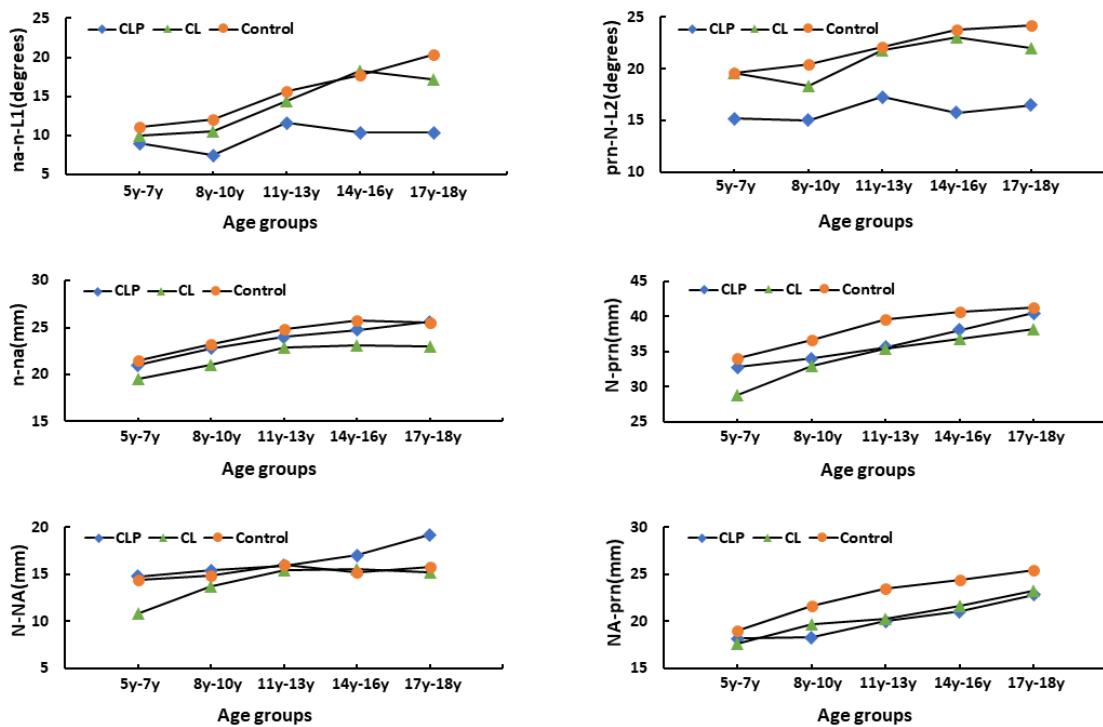
335

336

337

338

339


340

341

342

343

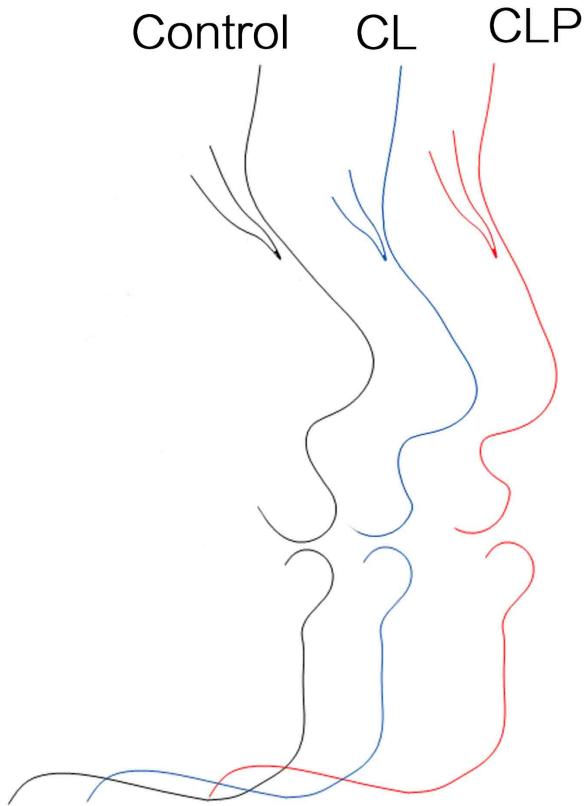
344

345

346 Fig.2 (A) Angulation of the nasal bone changes by years in different groups;(B) Angulation of the nasal
347 dorsum changes by years in different groups;(C) Length of the nasal bone changes by years in different
348 groups;(D) Length of the nasal dorsum changes by years in different groups;(E) Length of the upper
349 nasal dorsum changes by years different groups;(F) Length of the lower nasal dorsum changes by years
350 in different groups.

351

352


353

354

355

356

357

358

359 Fig.3 The characteristic features of 17y-18y group determined from our results. The CL patients have a
360 shorter nasal dorsum. The CL/P patients have a flatter nasal dorsum.

361

362

363

364

365

366

367

368

369

370

371

372

373 Table1. Sample distribution by age

5-7y					8y-10y					11y-13y					14y-16y					17y-18y				
	N	mean	SD	p	N	mean	SD	p	N	mean	SD	p	N	mean	SD	p	N	mean	SD	p				
CL	44	5.9	0.80		35	8.9	0.73		67	12.0	0.80		78	15.3	0.75		54	17.5	0.50					
CLP	68	6.1	0.84		63	8.9	0.84		63	11.9	0.74		58	15.1	0.83		46	17.5	0.50					
Control	64	6.1	0.77	0.17	74	9.0	0.83	0.79	75	12.0	0.82	0.90	73	15.0	0.82	0.17	47	17.5	0.51	0.91				
Total	176	6.1	0.81		172	9.0	0.81		205	12.0	0.79		209	15.1	0.80		147	17.5	0.50					

374

375 Table1 shows the sample distribution by age. There is no difference in sample distribution by age in each
376 Group

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405 Table2.Reliability analysis

intraobserver concordance			
Measurement	ICC	95%CI	
na-n-L1(degrees)	0.98	0.97	0.99
prn-N-L2(degrees)	0.9	0.86	0.93
n-na(mm)	0.97	0.96	0.98
N-prn(mm)	0.97	0.96	0.98
N-NA(mm)	0.97	0.96	0.98
NA-prn(mm)	0.96	0.94	0.97

406 Table2 shows the reliability analysis. The ICC results for test-retest reliability ranged between 0.90 and
407 0.98, suggesting dependable reliability and reproducibility of the adopted measuring strategy.

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431 Table3. Statistical descriptions of the angle of nasal bone, the angle of nasal dorsum, the length of nasal
 432 bone, the length of nasal dorsum, the length of upper nasal dorsum and the length of lower nasal dorsum
 433 by ages and results of Dunn's-test between CLP, CL and Control separately

		CLP			CL			Control			CLP vs Control	CL vs Control
		Median	P25	P75	Median	P25	P75	Median	P25	P75		
na-n- L1(degrees)	5y - 7y ^a	8.98 ^a	5.04 ^a	12.54 ^a	10.01 ^a	8.66 ^a	13.96 ^a	11.08 ^a	7.67 ^a	14.10 ^a	NS ^a	NS ^a
	8y - 10y ^a	7.43 ^a	4.63 ^a	11.13 ^a	10.48 ^a	7.59 ^a	13.39 ^a	12.08 ^a	8.43 ^a	14.72 ^a	<0.001*** ^a	NS ^a
	11y - 13y ^a	11.63 ^a	7.50 ^a	15.60 ^a	14.34 ^a	10.04 ^a	18.10 ^a	15.69 ^a	12.51 ^a	19.41 ^a	<0.001*** ^a	NS ^a
	14y - 16y ^a	10.37 ^a	7.75 ^a	12.68 ^a	18.21 ^a	13.40 ^a	21.30 ^a	17.67 ^a	14.59 ^a	20.90 ^a	<0.001*** ^a	NS ^a
	17y - 18y ^a	10.38 ^a	7.51 ^a	15.02 ^a	17.19 ^a	13.62 ^a	20.98 ^a	20.33 ^a	15.89 ^a	22.72 ^a	<0.001*** ^a	NS ^a
	5y - 7y ^a	15.19 ^a	12.42 ^a	17.50 ^a	19.64 ^a	16.80 ^a	21.43 ^a	19.62 ^a	16.84 ^a	22.72 ^a	<0.001*** ^a	NS ^a
prm-N- L2(degrees)	8y - 10y ^a	15.04 ^a	11.44 ^a	17.65 ^a	18.38 ^a	16.69 ^a	20.37 ^a	20.41 ^a	18.21 ^a	22.71 ^a	<0.001*** ^a	NS ^a
	11y - 13y ^a	17.26 ^a	14.34 ^a	21.10 ^a	21.82 ^a	19.27 ^a	24.73 ^a	22.08 ^a	19.20 ^a	24.99 ^a	<0.001*** ^a	NS ^a
	14y - 16y ^a	15.74 ^a	12.26 ^a	19.27 ^a	23.08 ^a	20.24 ^a	26.87 ^a	23.75 ^a	20.04 ^a	25.84 ^a	<0.001*** ^a	NS ^a
	17y - 18y ^a	16.49 ^a	12.41 ^a	20.16 ^a	22.00 ^a	18.27 ^a	26.50 ^a	24.14 ^a	21.61 ^a	25.97 ^a	<0.001*** ^a	NS ^a
	5y - 7y ^a	20.98 ^a	19.55 ^a	22.48 ^a	19.50 ^a	17.47 ^a	20.54 ^a	21.46 ^a	20.19 ^a	23.04 ^a	NS ^a	<0.001*** ^a
	8y - 10y ^a	22.76 ^a	20.58 ^a	24.85 ^a	21.05 ^a	19.71 ^a	22.95 ^a	23.17 ^a	21.63 ^a	23.99 ^a	NS ^a	0.003** ^a
n-na(mm)	11y - 13y ^a	24.00 ^a	22.17 ^a	25.60 ^a	22.85 ^a	21.44 ^a	24.56 ^a	24.79 ^a	23.09 ^a	27.22 ^a	0.045* ^a	<0.001*** ^a
	14y - 16y ^a	24.72 ^a	22.02 ^a	26.53 ^a	23.09 ^a	21.16 ^a	25.73 ^a	25.73 ^a	23.18 ^a	27.70 ^a	NS ^a	0.005* ^a
	17y - 18y ^a	25.61 ^a	24.34 ^a	27.75 ^a	22.94 ^a	20.86 ^a	25.89 ^a	25.51 ^a	23.26 ^a	27.28 ^a	NS ^a	0.008** ^a
	5y - 7y ^a	32.78 ^a	30.70 ^a	35.79 ^a	28.83 ^a	27.20 ^a	30.65 ^a	34.08 ^a	31.32 ^a	36.59 ^a	NS ^a	<0.001*** ^a
	8y - 10y ^a	34.00 ^a	30.44 ^a	35.64 ^a	32.91 ^a	30.77 ^a	35.63 ^a	36.66 ^a	34.46 ^a	38.73 ^a	<0.001*** ^a	<0.001*** ^a
	11y - 13y ^a	35.58 ^a	32.54 ^a	38.04 ^a	35.42 ^a	33.66 ^a	37.67 ^a	39.49 ^a	37.09 ^a	41.40 ^a	<0.001*** ^a	<0.001*** ^a
N-prn(mm)	14y - 16y ^a	38.05 ^a	36.69 ^a	40.79 ^a	36.78 ^a	34.94 ^a	39.63 ^a	40.58 ^a	37.96 ^a	42.95 ^a	0.012* ^a	<0.001*** ^a
	17y - 18y ^a	40.46 ^a	38.10 ^a	45.20 ^a	38.23 ^a	35.71 ^a	41.07 ^a	41.29 ^a	39.55 ^a	44.14 ^a	NS ^a	<0.001*** ^a
	5y - 7y ^a	14.75 ^a	12.69 ^a	17.03 ^a	10.81 ^a	9.73 ^a	12.80 ^a	14.34 ^a	13.07 ^a	15.89 ^a	NS ^a	<0.001*** ^a
	8y - 10y ^a	15.38 ^a	12.70 ^a	17.39 ^a	13.65 ^a	12.20 ^a	15.81 ^a	14.89 ^a	13.69 ^a	16.76 ^a	NS ^a	NS ^a
	11y - 13y ^a	15.92 ^a	13.59 ^a	18.37 ^a	15.43 ^a	13.86 ^a	16.84 ^a	16.01 ^a	13.77 ^a	18.12 ^a	NS ^a	NS ^a
	14y - 16y ^a	17.00 ^a	15.16 ^a	19.37 ^a	15.55 ^a	13.63 ^a	17.82 ^a	15.21 ^a	14.02 ^a	16.95 ^a	0.012* ^a	NS ^a
N-NA(mm)	17y - 18y ^a	19.20 ^a	16.02 ^a	20.62 ^a	15.21 ^a	13.00 ^a	16.44 ^a	15.76 ^a	13.98 ^a	17.07 ^a	0.011* ^a	NS ^a
	5y - 7y ^a	18.18 ^a	16.82 ^a	19.30 ^a	17.59 ^a	16.23 ^a	18.93 ^a	18.97 ^a	18.02 ^a	21.52 ^a	0.007* ^a	<0.001*** ^a
	8y - 10y ^a	18.29 ^a	16.79 ^a	19.22 ^a	19.64 ^a	17.07 ^a	20.71 ^a	21.61 ^a	20.40 ^a	22.68 ^a	<0.001*** ^a	<0.001*** ^a
	11y - 13y ^a	20.01 ^a	18.10 ^a	21.31 ^a	20.27 ^a	19.04 ^a	22.18 ^a	23.49 ^a	22.01 ^a	24.81 ^a	<0.001*** ^a	<0.001*** ^a
	14y - 16y ^a	21.02 ^a	19.23 ^a	22.81 ^a	21.68 ^a	20.02 ^a	22.96 ^a	24.42 ^a	23.16 ^a	26.21 ^a	<0.001*** ^a	<0.001*** ^a
	17y - 18y ^a	22.84 ^a	20.61 ^a	24.72 ^a	23.30 ^a	21.19 ^a	25.28 ^a	25.40 ^a	24.00 ^a	27.31 ^a	<0.001*** ^a	<0.001*** ^a

434 Abbreviations: na-n-L1(degrees):nasal bone angle;prm-N-L2(degrees):nasal dorsum angle; n-na(mm):the length of nasal bone; N-prn(mm):the length of nasal dorsum; N-NA(mm):the length of upper nasal dorsum; NA-prn(mm):the length of lower nasal dorsum.*p<.05, **p<.01, ***p<.001. NS =no significance

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453 **References**

454 1. Pawar, S. S., and Wang, T. D. Secondary cleft rhinoplasty. *Jama Facial Plastic Surgery*. 2014; 16(1):58.

455 2. Krane, N. A., J. D. Markey, L. B. Moneta, and M. M. Kim. Aesthetics of the Nasal Dorsum: Proportions, Light, and Shadow. *Facial Plastic Surgery*. 2017; 33(2):120-4.

456 3. Henry C, Samson T, Mackay D. Evidence-based medicine: The cleft lip nasal deformity. *Plastic & Reconstructive Surgery*. 2014; 133(5):1276-88.

457 4. Sykes JM, Tasman AJ, Suarez GA. Cleft Lip Nose. *Clinics in plastic surgery*. 2016;43(1):223-35.

458 5. Pereira ND, Tinoco C, Oliveira ECD, Paço J. Intermediate osteotomies in rhinoplasty: a new perspective. *European Archives of Oto-Rhino-Laryngology*. 2017;274(7):2953-8.

459 6. Aston SJ, Guy CL. The nasal spine. *Clinics in plastic surgery*. 1977; 4(1):153-62.

460 7. He, X., Shi, B., Li, S., Zheng, Q.: A geometrically justified rotation advancement technique for the repair of complete unilateral cleft lip. *J Plast Reconstr Aesthet Surg*. 2009;62(9):1154-60.

461 8. Bookstein FL. Morphometric Tools for Landmark Data. 1991.

462 9. Hasanzadeh, N., Majidi, M. R., Kianifar, H., and Eslami, N. Facial soft-tissue morphology of adolescent patients with nonsyndromic bilateral cleft lip and palate. *Journal of Craniofacial Surgery*. 2014; 25(1):314-7.

474 10. Hopkins, Dr Will G. Measures of Reliability in Sports Medicine and Science.

475 Sports Medicine. 2000; 30(1):1.

476 11. Liu R., Wamalwa P, Lu DW, Li CH, Hu HK, Zou S.. Soft-Tissue Characteristics of

477 Operated Unilateral Complete Cleft Lip and Palate Patients in Mixed Dentition.

478 Journal of Craniofacial Surgery. 2011; 22(4):1275-9.

479 12. Liu, R. , Lu, D. , Wamalwa, P. , Li, C. , Hu, H. , and Zou, S.. Craniofacial morphology

480 characteristics of operated unilateral complete cleft lip and palate patients in

481 mixed dentition. Journal of Craniofacial Surgery. 2011;112(6):e16-25.

482 13. Hansen L, Skovgaard LT, Nolting D, Hansen BF, Kjaer I. Human prenatal nasal

483 bone lengths: normal standards and length values in fetuses with cleft lip and

484 cleft palate. The Cleft palate-craniofacial journal : official publication of the

485 American Cleft Palate-Craniofacial Association. 2005;42(2):165-70.

486 14. Nielsen BW, Mølsted K, Skovgaard LT, Kjaer I. Cross-sectional study of the

487 length of the nasal bone in cleft lip and palate subjects. The Cleft palate-

488 craniofacial journal : official publication of the American Cleft Palate-

489 Craniofacial Association. 2005;42(4):417.

490 15. Miyamoto J, Nakajima T. Anthropometric evaluation of complete unilateral

491 cleft lip nose with cone beam CT in early childhood. Journal of Plastic

492 Reconstructive & Aesthetic Surgery. 2009;63(1):9-14.

493 16. Goyenc, Y. B., H. G. Gurel, and B Memili. Craniofacial morphology in children

494 with operated complete unilateral cleft lip and palate.Journal of Craniofacial

495 *Surgery*. 2008;19(5):1396-401.

496 17. Moreira I, Suri S, Ross B, Tompson B, Fisher D, Lou W. Soft-tissue profile
497 growth in patients with repaired complete unilateral cleft lip and palate: A
498 cephalometric comparison with normal controls at ages 7, 11, and 18 years.

499 *American Journal of Orthodontics and Dentofacial Orthopedics*.

500 2014;145(3):341-58.

501 18. Ferrario VF, Chiarella S, Claudia D, Laura V, Armando C. Three-dimensional
502 nasal morphology in cleft lip and palate operated adult patients. *Ann Plast Surg*.
503 2003;51(4):390-7.

504 19. Buschang, P. H., La Cruz R De, A. D. Viazis, and A Demirjian. Longitudinal shape
505 changes of the nasal dorsum. *American journal of orthodontics and dentofacial*
506 *orthopedics : official publication of the American Association of Orthodontists*,
507 its constituent societies, and the American Board of Orthodontics. 1993;
508 104(6):539–543.

509

510

511

512

513

514

515

516

517

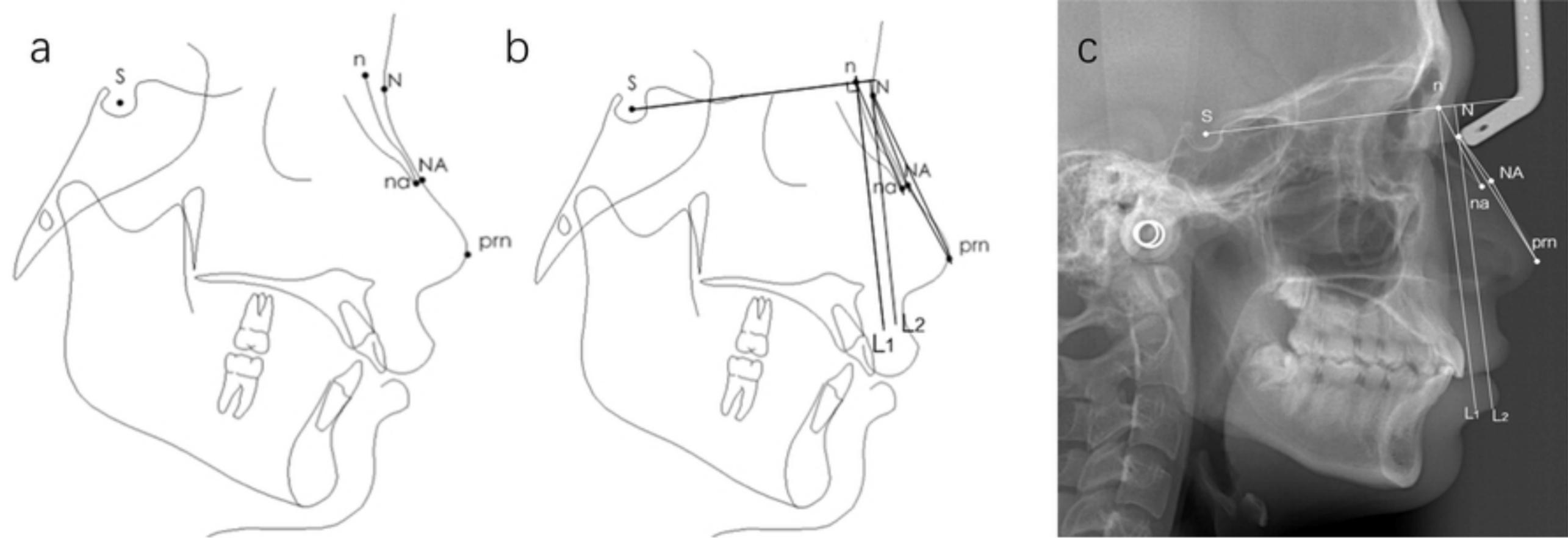


Fig.1

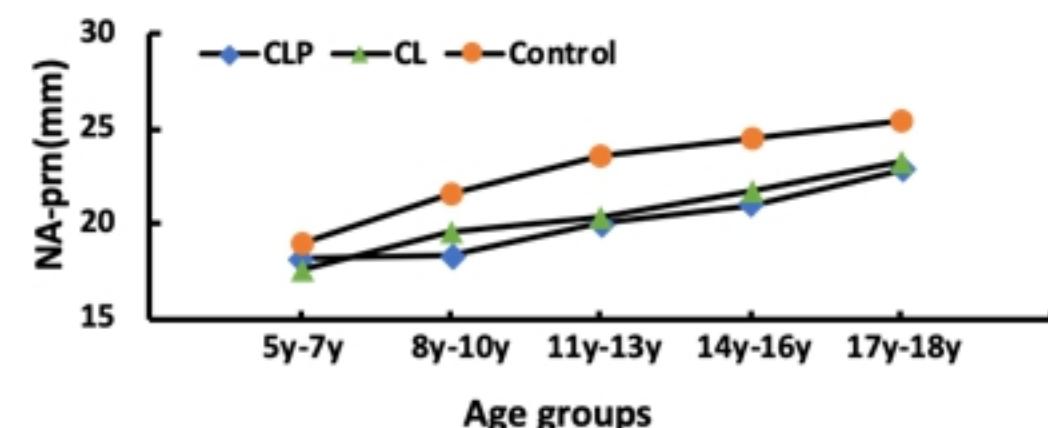
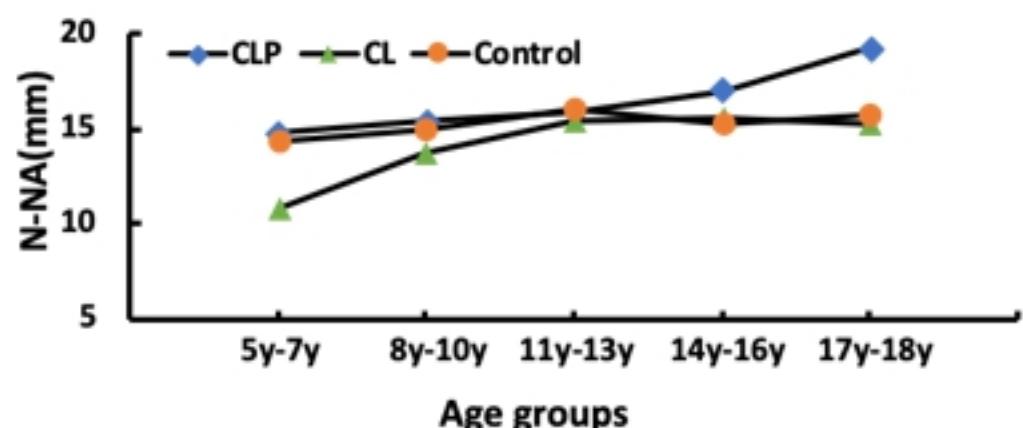
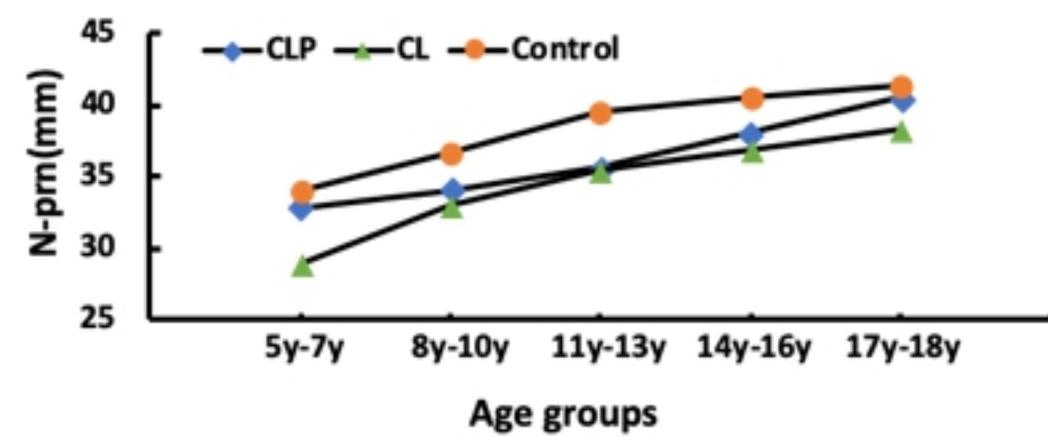
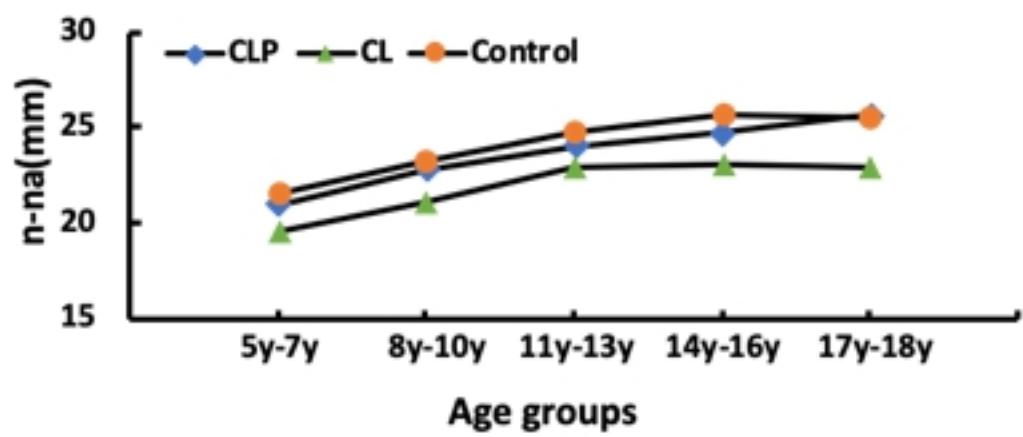
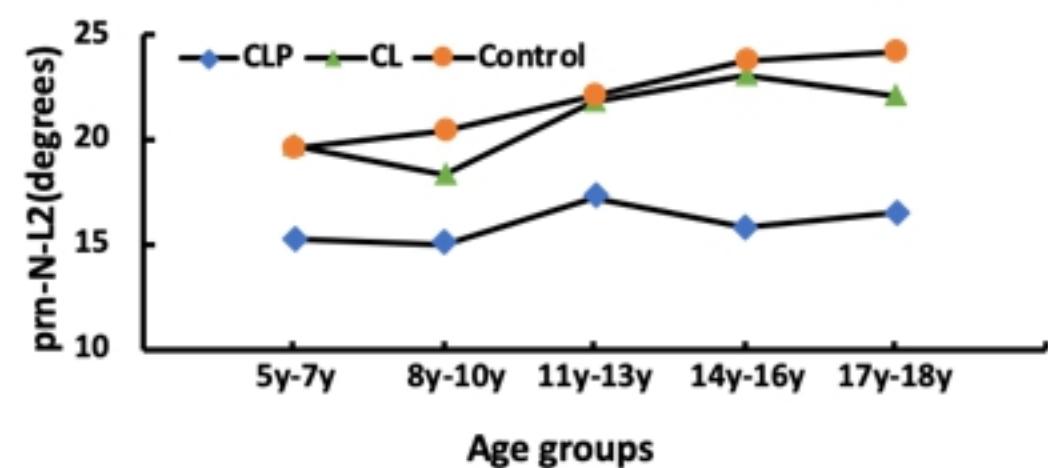
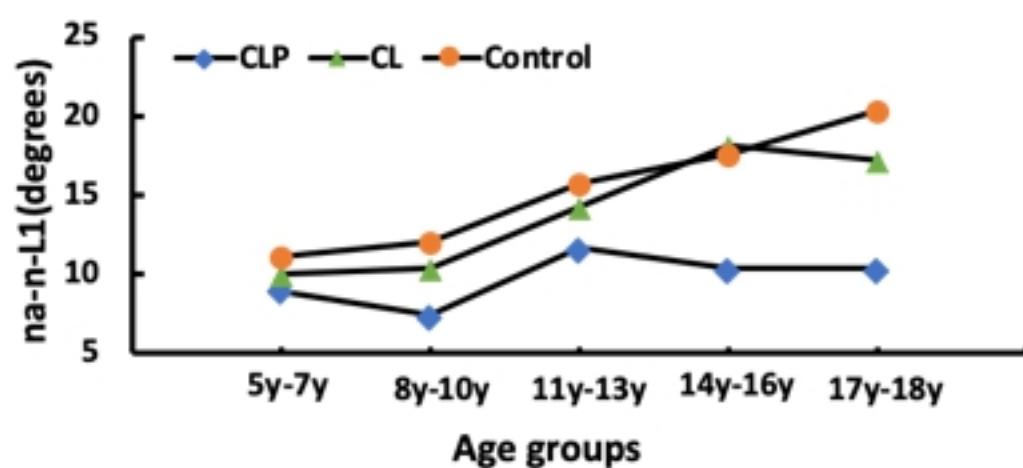







Fig.2

Control CL CLP

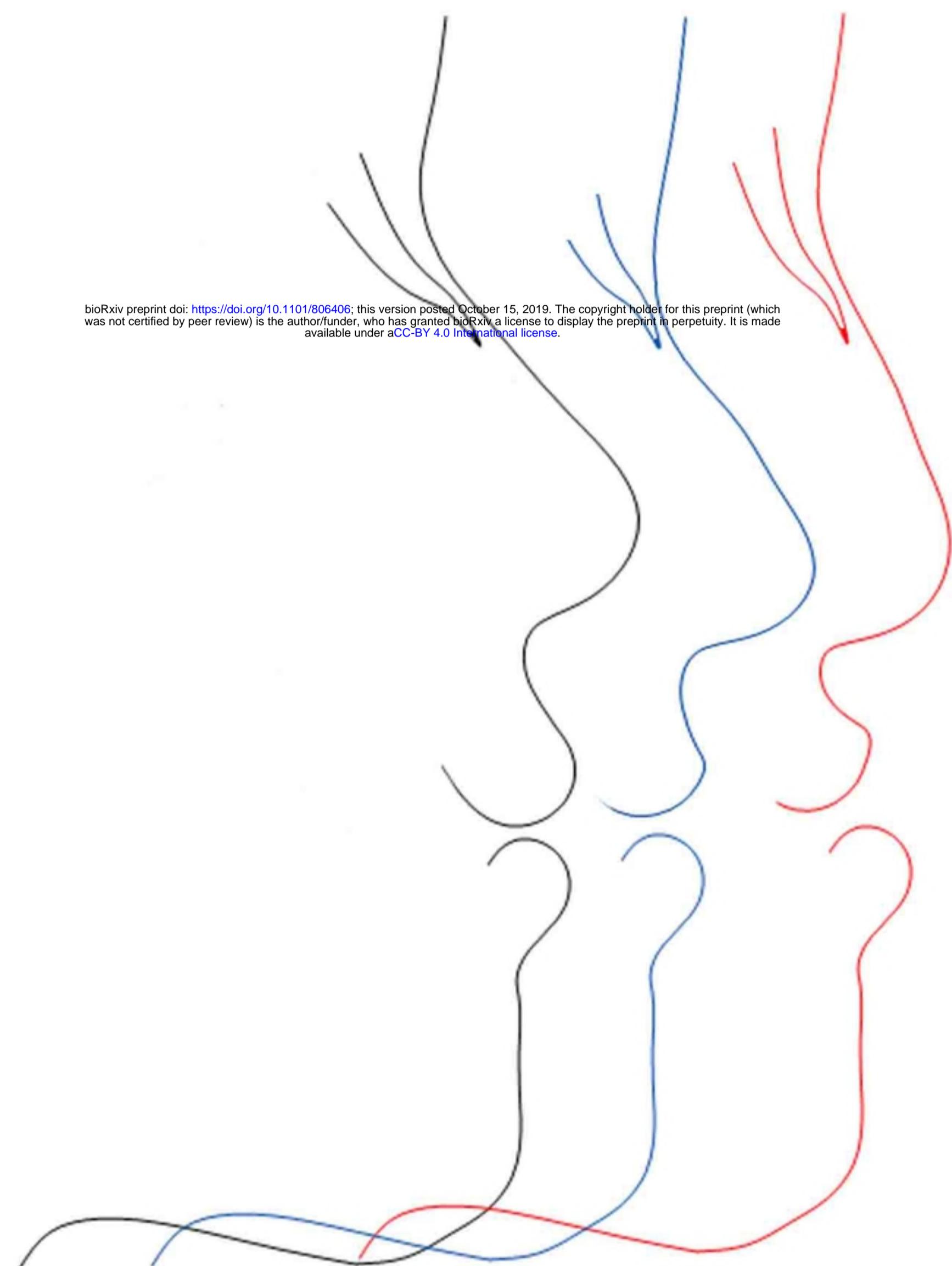


Fig.3