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Bursting plays an important role in neural communication. At the population level, macro-
scopic bursting has been identified in populations of neurons that do not express intrinsic
bursting mechanisms. For the analysis of such phase transitions, mean-field descriptions of
macroscopic bursting behavior pose a valuable tool. In this article, we derive mean-field
descriptions of populations of spiking neurons in which collective bursting behavior arises
via short-term adaptation mechanisms. Specifically, we consider synaptic depression and
spike-frequency adaptation in networks of quadratic integrate-and-fire neurons. We charac-
terize the emerging bursting behavior using bifurcation analysis and validate our mean-field
derivations by comparing the microscopic and macroscopic descriptions of the population
dynamics. Hence, we provide mechanistic descriptions of phase transitions between bursting
and non-bursting population dynamics which play important roles in both healthy neural
communication and neurological disorders.

Keywords: neural bursting, mean-field model, neural dynamics, integrate and fire, emergence,
population model, macroscopic dynamics

I. INTRODUCTION

The brain, composed of billions of single cells, has
been demonstrated to possess a hierarchical, modular or-
ganization, indicative of a complex dynamical system1.
Within this hierarchy, populations of neurons form func-
tional entities, the states of which are defined by the col-
lective dynamics of the population rather than by the
activity of each single cell. Mean-field descriptions of the
macroscopic dynamics of such populations are a valuable
tool for the mathematical analysis of collective phenom-
ena as well as for computational models of multiple cou-
pled populations of neurons. Population bursting is a
particular mode of collective behavior that plays a ma-
jor role in both healthy and pathological neural dynam-
ics. In healthy neural communication bursting activity
may allow for a more reliable information transmission
via chemical synapses2. This can be explained by the
synchronized activity of the population during the burst,
which stabilizes neural information transmission against
different types of noise3. On the other hand, increased
bursting activity has been found in various neurological
diseases such as epilepsy or Parkinson’s disease and may
thus also act disruptively on neural communication, if ex-
ceeding certain levels of occurrence4,5. Thus, mean-field
models of collective bursting are important for theoretical
investigations of information transmission between neu-
ral populations as well as transitions between healthy and
pathological states of population dynamics. The aim of
this article is to provide and validate mean-field descrip-
tions for collective bursting emerging from the dynamic
interaction of short-term adaptation mechanisms and re-
current excitation in populations of coupled spiking neu-
rons.

At the single neuron level, bursting is characterized
by the neuron firing a group of subsequent spikes, fol-
lowed by a period of quiescence6. This behavior has been
suggested to result from adaptive mechanisms introduc-
ing a slow time scale which enables dynamic regimes of
bursting and controls the burst period6,7. Mathematical
descriptions of such adaptation mechanisms have been
developed accordingly at the level of single cells. Impor-
tantly, bursting has also been reported in populations of
cells without intrinsic bursting mechanisms6,8,9. In such
cases, bursting can be conceived as a property of the col-
lective dynamic interactions within the population. The
mechanisms behind emergent bursting are not well un-
derstood, however, since most of the computational liter-
ature on bursting focuses on single cells6,10. Among the
few studies on emergent bursting, a common approach
to model bursting at the population level is to globally
couple an excitatory with an inhibitory population9,11.
Other suggested bursting mechanisms include the ac-
tion of neuromodulators8, feed-forward inhibition12 and
spike-frequency adaptation (SFA)13. For example, Van
Vreeswijk et al. demonstrated in a network of coupled,
excitatory leaky integrate-and-fire neurons that SFA can
lead to the emergence of network bursting13. Typi-
cally, such investigations employ numerical analyses of
single cell networks, where the macroscopic state vari-
ables have to be inferred from the single cell activities.
However, a direct mathematical description of the macro-
scopic dynamics would be beneficial for both mathemat-
ical analyses of emergent bursting and studies on mul-
tiple coupled bursting populations. Gigante and col-
leagues derived a mean-field description for the special
case of SFA in a network of coupled linear integrate-
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and-fire neurons, employing the Fokker-Planck formal-
ism and an adiabatic approximation given long SFA time
scales14. Analyzing this mean-field description, they were
able to identify two different types of collective burst-
ing. In the present study, we generalize these findings
and show under which conditions bursting can emerge as
a collective phenomenon from mere short-term adapta-
tion within an excitatory population of globally coupled
quadratic integrate-and-fire (QIF) neurons. To this end,
we employ a recently derived mean-field description of
the macroscopic dynamics of such a QIF population15.
We consider different short-term adaptation mechanisms
that have been reported to affect neural excitability and
incorporate them in the microscopic description of the
QIF population dynamics. We show for which of these
adaptation mechanisms a mean-field description can be
derived according to the approach of Montbrió et al.15.
Employing those mean-field descriptions, we analyze the
emergence of states of collective bursting and identify
boundary conditions for such bursting to occur.

II. MODEL DEFINITION

The QIF neuron is the canonical form of type-I neu-
rons and has previously been used in combination with
linear adaptation as a basis for models of bursting cells6.
The evolution equation of the membrane potential Vi of
a single QIF neuron i is given by

τ V̇i = V 2
i + ηi + I(t) + Jsτ, (1)

s =
1

N

N∑
j=1

∑
k\tkj<t

δ(t− tkj ), (2)

with background current ηi, synaptic strength J , evolu-
tion time constant τ , extrinsic input I(t) and synaptic
activation s. The latter represents instantaneous synap-
tic coupling in an all-to-all coupled network of N neurons.
A neuron i emits its kth spike at time tki when it reaches
Vθ upon which Vi is reset to Vr. Recently, Montbrió et
al.15 have shown that there exists an exact mean-field de-
scription for the macroscopic dynamics of the population
dynamics given by (1) and (2) in the limit of N → ∞
and Vθ = −Vr →∞. These can be expressed in terms of
the evolution of the average firing rate r and membrane
potential v.

τ ṙ =
∆

πτ
+ 2rv, (3)

τ v̇ = v2 + η̄ + I(t) + Jrτ − (πrτ)2. (4)

Here, η̄ and ∆ are the center and full width at half max-
imum of a Lorentzian distribution over the single neuron
parameters ηi. Furthermore, synaptic conversion is as-
sumed to be instantaneous, which allows to set r = s.
For simplicity, we set the evolution time constant to
τ = 1 and define all other time-dependent variables used
throughout this article in units of τ . As shown in15, the

variables V of the microscopic system always follow a
Lorentzian distribution,

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
, (5)

where x(η, t) is associated with the firing rate r(η, t) via
x(η, t) = πr(η, t), and y(η, t) is the mean of the mem-
brane potential v(η, t). Note that x(η, t) and y(η, t) are
microscopic variables pertaining to neurons with specific
η. The microscopic system follows the continuity equa-
tion

∂tρ+ ∂V [(V 2 + η + Js+ I)ρ] = 0, (6)

and by inserting eq. 5 into eq. 6 one obtains the dynamics
of x(η, t) and y(η, t) in complex form

∂tw(η, t) = i[−w(η, t)2 + η + Js(t) + I(t)], (7)

with w(η, t) = x(η, t)+iy(η, t). Eq. 7 can then be reduced
to 3 using the Lorentzian distribution

g(η) =
1

π

∆

(η − η̄)2 + ∆2
, (8)

given in complex form by

πṙ + iv̇ = i
[
η̄ − i∆ + Js− (πr + iv)2

]
. (9)

As shown by Montbrió et al.15, there exists a regime in
which two stable states of the system defined by (3) and
(4) can co-exist, a stable fixed point representing low ac-
tivity and a stable focus representing high activity. To in-
troduce bursting to this system, a mechanism is required
that alternatingly switches between those two states.

III. SYNAPTIC DEPRESSION

The first short-term adaptation mechanism we con-
sider is synaptic depression (SD) which is a multiplicative
down-scaling of the synaptic efficacy. Neurobiologically,
this can be implemented in various ways, such as post-
synaptic receptor desensitization, alterations in the den-
sity of post-synaptic receptors or resource depletion at
the synapse16,17.

III.A. Mathematical Definition of SD

To introduce SD to our system, we change (2) as fol-
lows

si = (1−Ai)
1

N

N∑
j=1

∑
k\tkj<t

δ(t− tkj ) = (1−Ai)r. (10)

This adds a dependency of the post-synaptic activation si
on an adaptation variable Ai pertaining to the ith post-
synaptic neuron. The latter follows the microscopic evo-
lution equations

τAȦi = Bi, (11)

τAḂi = −2Bi −Ai +
α

N

N∑
j=1

∑
k\tkj<t

δ(t− tkj ), . (12)
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with adaptation rate α and time scale τA. The adapta-
tion dynamics given by (11) and (12) can be re-written
as a convolution of the average firing rate r with an alpha
kernel:

A = αGA ⊗ r, (13)
GA(t) = τ−2A t exp(−t/τA). (14)

This choice accounts for the delay between post-synaptic
activation and peak adaptation as well as for the slow de-
cay of the adaptation to baseline that have been reported
in experimental studies16–18. Importantly, this kind of
adaptive mechanism has no effect on an isolated neuron,
because it only affects the susceptibility to synaptic in-
put which is effectively zero shortly after it spiked (due
to refractoriness). Therefore, any changes to the net-
work behavior caused by SD have to emerge from the
interaction dynamics of the network units. Furthermore,
the adaptation is coupled to the mean-field firing rate of
the population, i.e. each spike in the network triggers
post-synaptic adaptation at all network units. Hence, to
introduce SD at the macroscopic level, we merely need
to change (3) and (4) to

τ ṙ =
∆

πτ
+ 2rv, (15)

τ v̇ = v2 + η̄ + I(t) + Jrτ(1−A)− (πrτ)2. (16)

III.B. Effects of SD

Next, we applied bifurcation analysis to the 4 dimen-
sional system defined by (13-16). For different values of
α, we initialized the model at a low activity state and
continued the model in η̄. To this end, and for all other
parameter continuations reported in this article, we used
the software package AUTO-07p19. The adaptation time
scale was chosen as τA = 10τ , corresponding to slow
adaptation relative to the evolution of the average mem-
brane potential and firing rate. In accordance with the
analysis of Montbrió et al.15, we found two fold bifurca-
tions for α = 0, defining the borders of a bi-stable regime
in η̄. For an increasing adaptation rate α, we identified a
parameter regime in which a supercritical and a subcriti-
cal Andronov-Hopf bifurcation occur (see Figure 1A). As
shown in Figure 1B, the unstable limit cycle emerging
from the subcritical Andronov-Hopf bifurcation turned
into a stable limit cycle via a fold bifurcation. Further
continuation of the stable region of the limit cycle in
η revealed a boundary at which the limit cycle period
grew towards infinity, indicative of a homoclinic bifur-
cation. The stable regime of the bursting limit cycle is
visualized in green in Figure 1B. It can co-exist with the
high-activity focus and hence allows for various transi-
tions between bursting and steady-state behavior. As
illustrated in Figure 1C-D, the stable bursting state can
be transiently entered from either a low-activity state
through excitation (Figure 1C) or from a high-activity
state through inhibition (Figure 1D). Furthermore, the

bi-stable regime allows for hysteresis, i.e. switching be-
tween limit cycle and focus equilibrium through tran-
sient excitatory and inhibitory inputs (Figure 1E). In
neural communication, this regime is particularly rele-
vant, since it allows for quick transitions between highly
different firing modes via transient inputs and introduces
a form of network memory. However, it is also of inter-
est for pathological neural dynamics such as observed in
epilepsy, which have been proposed to reflect switching
between a healthy state of low neural synchrony and a
co-existing pathological, synchronous state20,21. Impor-
tantly, Figure 1C-E show a close correspondence between
numerical simulations of the macroscopic and the micro-
scopic population descriptions.

III.C. Limit cycle characteristics

For a better understanding of the bi-stable regime, we
mapped out the basins of attraction with respect to all
four state variables of the model. Figure 2 visualizes dif-
ferent trajectories of the system when initialized at dif-
ferent points near the unstable limit cycle that separates
the limit cycle (bursting activity) and the stable fixed
point (steady state activity). This unstable limit cycle
behaves like a separatrix along the fast sections of its or-
bit. In fact, it can be understood as the cross-section
through the actual hyperplane delimiting the two basins
of attraction. However, near the slowly varying section of
the trajectory, the unstable limit cycle maps out points
that behave like a stable focus in the fast system.

In a next step, we performed a two-parameter contin-
uation of the subcritical Andronov-Hopf bifurcation in η̄
and α, to examine the dependence of population bursting
on the interplay between network excitation and adapta-
tion rate. From Figure 3A, we can conclude that dy-
namic regimes of stable bursting (marked in green) can
be found for a substantial but limited range of the two
parameters. This range is bounded by fold of limit cy-
cle bifurcations that mark the disappearance of the stable
limit cycle. For η̄, the parameter range in which the limit
cycle exists corresponds to most of the cells in the popu-
lation being in an excitable regime and has been reported
for a number of models using QIF neurons (e.g.15,22,23).
Within this range, the inter-burst period can be varied
from 13τ up to 105τ via changes in α and η̄ (see Fig-
ure 3B). Thus, the burst frequency scales with the input
strength, which is a desirable property for encoding in-
formation about the population input via its activity. In
summary, we identified SD as a potential mechanism for
bursting to occur in networks of globally coupled spiking
neurons. We demonstrated that this bursting mechanism
could be transiently switched on and off via transient in-
put currents and found that the inter-burst frequency can
encode information about the input strength.
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Fig. 1 Bursting due to synaptic depression. (A) Bifurcation diagram of fixed points in η for various values of α. Stable fixed points are
marked by solid lines whereas unstable fixed points are marked by dashed lines. (B) The subcritical Hopf bifurctions give rise to limit
cycles representing bursting behavior. Minimum and maximum firing firing rates of the limit cycle are depicted in green. Fold bifurcations
of the limit cycles delimit the bistable regime of bursting and regular firing. Vertical lines with letters indicate initialization points used
for C-E, respectively. (C) Below the bistable regime, a positive stimulus leads to transient bursting. (D) Above the bistable regime,
a negative stimulus leads to temporary bursting. (E) In the bistable regime, positive and negative stimuli switch the system between
sustained bursting and sustained regular firing. Model parameters were set to ∆ = 2, J = 15

√
∆, τ = 1, τA = 10.

Fig. 2 Co-existence of bursting and steady-state behavior. Re-
duced, 3-dimensional state-space representation of the system dy-
namics in r, v, and A. For the present parameters the stable limit
cycle (bold green curve, representing bursting behavior) coexists
with a stable focus (purple dot) and an unstable limit cycle (black
dashed curve). Thin curves mark trajectories that end in the basin
of attraction of the limit cycle (green) or the focus (purple). Model
parameters: ∆ = 2, J = 15

√
∆, τ = 1.0, τA = 10, α = 0.05,

η̄ = −4.6.

III.D. Pre-Synaptic SD

Since the mean-field description for SD has been de-
rived under the assumption of post-synaptic adaptation,
it cannot describe pre-synaptic multiplicative adaptation
such as vesicle depletion24. To derive a mean-field de-
scription for such a case, a pre-synaptic adaptation vari-

Fig. 3 Existence and period of bursting. Lines indicate two-
parameter continuations of codimension 1 bifurcations in the (η,α)
plane. The color-coded region shows the inter-burst period of the
stable limit cycle (depicted in units of τ).

able Aj has to be considered:

s =
1

N

N∑
j=1

Aj
∑

k\tkj<t

δ(t− tkj ), (17)

Aj = αGA ⊗ rj . (18)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/806273doi: bioRxiv preprint 

https://doi.org/10.1101/806273
http://creativecommons.org/licenses/by/4.0/


Bursting in spiking neural networks 5

One may (naively) assume that ρ(V ) still obeys the
Lorentzian distribution eq. (5). Then, the dynamics of w
would be given by

∂tw = i
[
η + J(1− αGA ⊗<[w])<[w] + I − w2

]
.

(19)

Here we make use of si = x(ηi, t)/π again. This raises the
problem of evaluating the integral containing the product
of the microscopic firing rate with its temporal convolu-
tion. Also, with the firing rates being weighted in such a
manner it is uncertain whether eq. (5) still holds, even if
τA � τ . Thus, it is not obvious how to derive the mean
field description for this particular scenario.

IV. SPIKE-FREQUENCY ADAPTATION

In this section, we examine how well our results for
multiplicative adaptation generalize to additive short-
term adaptation mechanisms, known as spike-frequency
adaptation (SFA). SFA differs from the above described
adaptation mechanism in two aspects: (1) It affects the
pre-synaptic activity instead of the post-synaptic efficacy,
and (2) it acts additive instead of multiplicative13,14.

IV.A. Mathematical Defition of SFA

SFA is a homeostatic mechanism that acts at the single
cell level via spike-triggered balancing currents10,25. As
such, SFA is an adaptive mechanism driven by the firing
rate of a single cell rather than the firing rate of the
whole network. Therefore, we introduce neuron-specific
adaptation variables Ai and Bi:

τAȦi = Bi, (20)
τAḂi = −2Bi −Ai + αsi, (21)

with a neuron-specific firing rate si given by

si =
∑

k\tki<t

δ(t− tki ). (22)

Adding the adaptation variable Ai to (1), we get the
following evolution equation for the membrane potential
of the single neuron:

τ V̇i = V 2
i + ηi + I(t)−Ai + Jsτ. (23)

If τA � τ , then we may assume that the adaption vari-
able Ai changes very slowly in comparison to Vi, and
that the Lorentzian ansatz (eq. (5)) holds. Effectively,
the variable Ai can be regarded as constant and be ab-
sorbed into ηi in this limit (for a similar approach, see14).
We note here that the Lorentzian ansatz eq (5) is inde-
pendent of the distribution of {ηi}. The neuron-specific
firing rate si is associated with x(η, t) via si = x(ηi, t)/π.
Hence, the microscopic dynamics are given by

∂tw = i[η + Js+ I − w2 − αGA ⊗<[w]/pi]. (24)

If g(η) follows the Lorentzian distribution, then eq. (24)
results in

πṙ+ iv̇ = i[η̄− i∆ + Js− (πr+ iv)2 −αGA ⊗ r]. (25)

Fig. 4 Bursting due to SFA. (A) Similar to SD, SFA changes fixed-
point structure and stability of the system via Hopf bifurcations.
The limit cycle minima and maxima are visualized in green. Stable
(unstable) equilibria are marked by solid (dotted) lines. The dashed
horizontal line marks the initialization point used for B. (B) In the
bistable regime, positive and negative stimuli switch the system
between sustained bursting and sustained regular firing. Model
parameters: ∆ = 2, J = 15

√
∆, τ = 1, τA = 10, α = 1.0.

Thus, the pre-synaptic additive model is identical to a
post-synaptic additive model at the macroscopic scale if
τA � τ . At the macroscopic scale, post-synaptic SFA is
straightforward to realize by adding A on the r.h.s. of
(3), leading to the macroscopic evolution equations

τ ṙ =
∆

πτ
+ 2rv, (26)

τ v̇ = v2 + η + I(t)−A+ Jrτ − (πrτ)2, (27)

where s = r and A is still given by (13) and (14). Note
that (26) and (27) are equivalent to the complex differ-
ential form given by (25).

IV.B. Effects of SFA

Using the system defined by (13), (14), (26) and (27),
we repeated the parameter continuation in η̄ for differ-
ent values of α. This was done to examine whether the
results we obtained for SD-induced population bursting
would translate to an additive adaptation mechanism. As
can be seen in Figure 4A, we found results strikingly sim-
ilar to the ones we found for SD. For sufficiently strong
levels of SFA (parametrized via α), we found a subcritical
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Andronov-Hopf bifurcation marking the birth of a burst-
ing limit cycle. Furthermore, we again found a bi-stable
region, in which the bursting limit cycle co-exists with the
stable focus, separated by an unstable limit cycle. These
regimes could be well traversed via transient inputs, as
depicted in Figure 4B. Driving the microscopic model
given by (2) and (20-23) with the same transient inputs,
we found that the spiking dynamics were still attracted
to the low-dimensional manifold described by the macro-
scopic system. This shows, that even with τA = 10τ , the
condition τA � τ is sufficiently satisfied for the macro-
scopic description of the population bursting dynamics
to be valid.

V. DISCUSSION

In this work, we examined the dynamic impact of
two different short-term adaptation mechanisms on the
collective behavior of a globally coupled QIF popula-
tion: a multiplicative and an additive one. For both
of these mechanisms, we derived and validated mean-
field descriptions of the macroscopic dynamics via the
approach described in15. Using bifurcation analysis, we
identified and characterized regimes of collective burst-
ing that emerged given a sufficiently strong adaptation
rate. These bursting regimes could co-exist with non-
bursting regimes, allowing for dynamic phase transitions
between bursting and steady-state behavior via transient
inputs. Such bi-stable regimes may be used to describe
(1) short-term or working memory as a dynamic property
of the collective behavior of neural populations23, or (2)
transitions between healthy and pathological neurody-
namic states such as Epilepsy or Parkinson’s disease4,5.
Furthermore, due to the boundedness of the bursting
regime in η̄, it allows to implement transient forms of
population bursting as a response to strong excitatory
or inhibitory inputs to the population. Indeed, it has
been suggested that bursting in neural populations can
be explained by an interaction between alterations in
the average population input and post-synaptic home-
ostatic plasticity26. Since the bursting frequency and
amplitude scale with the input strength, such types of
transient population bursting may even be used to dif-
ferentiate between different inputs. In summary, this ren-
ders our mean-field models applicable to a broad range
of neurodynamic scenarios. They provide a description
of the emergence of synchronous, bursting neural dynam-
ics in recurrently connected populations of spiking neu-
rons that could either arise from spike-frequency adapta-
tion (additive), or post-synaptic efficacy reduction (mul-
tiplicative). Experimental work suggests that the for-
mer is a result of different balancing currents which are
triggered at a single cell after it generated a spike25,27.
The latter, on the other hand, has been linked to various
mechanisms such as receptor desensitization16,28, recep-
tor density reduction29,30, or resource depletion at glial
cells involved in synaptic transmission31,32. Even though
these adaptation mechanism can express tremendously

different time scales, ranging from a few hundred millisec-
onds (e.g. spike-frequency adaptation27) to days (e.g.
post-synaptic receptor density reduction30), our mean-
field descriptions remain applicable. Furthermore, the
results of our bifurcation analysis will hold for different
adaptation time scales, as long as α is re-scaled accord-
ingly. Finally, our mean-field derivations are independent
of the particular form of adaptation that is used. That
is, the convolution with an alpha kernel we employed
as a second-order approximation of the dynamics of the
adaptation variable A could be replaced with any other
description. This allows future studies the examination
of the influence of specific short-term adaptation charac-
teristics on population dynamics.
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