

1 Reference transcriptome data in silkworm

2 *Bombyx mori*

3

4 Kakeru Yokoi^{1,2,*,**}, Takuya Tsubota^{3,*}, Jianqiang Sun², Akiya Jouraku¹, Hideki
5 Sezutsu³, Hidemasa Bono⁴

6

7 1 Insect Genome Research and Engineering Unit, Division of Applied Genetics,
8 Institute of Agrobiological Sciences (NIAS), National Agriculture and Food Research
9 Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan

10 2 Research Center for Agricultural Information Technology (RCAIT), National
11 Agriculture and Food Research Organization (NARO), Kintetsu Kasumigaseki Building
12 Kasumigaseki 3-5-1 Chiyoda-ku, Tokyo 100-0013, Japan

13 3 Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of
14 Agrobiological Sciences (NIAS), National Agriculture and Food Research Organization
15 (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan

16 4 Database Center for Life Science (DBCLS), Joint Support-Center for Data Science
17 Research, Research Organization of Information and Systems, 1111 Yata, Mishima,
18 Shizuoka 411-8540, Japan

19 *These authors equally contributed to this work.

20 **Corresponding author: Kakeru Yokoi

21

22 Email addresses

23 Kakeru Yokoi: yokoi123@affrc.go.jp

24 Takuya Tsubota: tsubota@affrc.go.jp

25 Sun Jianqiang: j.sun@affrc.go.jp

26 Akiya Jouraku: joraku@affrc.go.jp

27 Hideki Sedutsu: hsezutsu@affrc.go.jp

28 Hidemasa Bono: bono@dbcls.rois.ac.jp

29 Abstract

30 The silkworm *Bombyx mori* has long been used in the silk industry and utilized in
31 studies of physiology, genetics, molecular biology, and pathology. We recently reported
32 high quality reference genome data for *B. mori*. In the present study, we constructed a

33 reference transcriptome data set using the reference genome data and RNA-seq data
34 of 10 tissues from P50T strain larvae. Reference transcriptome data contained 51,926
35 transcripts, with 39,619 having one or more coding sequence region. The abundance
36 of each transcript in the 10 tissues as well as 5 tissues from other strain larvae was
37 estimated, and hierarchical clustering was performed. The results obtained showed
38 that data on abundance were highly reproducible and there here is a little difference of
39 transcriptome abundance between the two strain larvae. New isoforms of silk-related
40 genes were searched for in the reference transcriptomes, and the longest isoform of
41 *sericin-1* possessing a long exon was identified. We also extracted transcripts that
42 were strongly expressed in one or more parts of the silk glands. An enrichment
43 analysis performed using the functional annotation data of the transcripts provided
44 novel insights into the functions of the silk gland parts. Therefore, the reference
45 transcriptome data set obtained has extended *B. mori* genomic and transcriptomic
46 insights and may contribute to advances in entomologic and vertebrate research,
47 including that on humans.

48 Introduction

49 The silkworm *Bombyx mori* is a lepidopteran insect that has been utilized in
50 studies of physiology, genetics, molecular biology, and pathology. Functional analyses
51 of genes related to hormone synthesis/degradation, pheromone reception, larval
52 marking formation, and virus resistance have been performed using this silkworm (Tan
53 et al., 2005; Ito et al., 2008; Sakurai et al., 2011; Daimon et al., 2015; Kondo et al.,
54 2017), and the findings obtained have contributed to the promotion of insect science.
55 The silkworm has the ability to produce large amounts of silk proteins, which is one of
56 the most prominent characteristics of this species. Silk proteins are mainly composed
57 of the fibrous protein Fibroin and aqueous protein Sericin and are produced in the
58 larval tissue silk gland (SG) (Yukuhiro et al., 2016). A transgenic technique has been
59 applied to the silkworm (Tamura et al., 2000), and has enabled the production of a
60 large amount of recombinant proteins through the introduction of transgenes, which are
61 overexpressed in the SG (Tatematsu et al., 2010). Through this method, it is possible
62 to utilize the silkworm as a significant bioreactor.

63 Based on its biological and industrial importance, the whole genome sequence
64 data of the silkworm was reported in 2004 from two research groups (Mita et al., 2004;
65 Xia et al., 2004), and was the first lepidopteran whole genome data. Silkworm whole
66 genome data was updated in 2008 from an international research group (International
67 Silkworm Genome Consortium 2008). Several data related to the silkworm genome

68 have since become available (e.g. microarray-based gene expression profiles in
69 multiple tissues, BAC-based linkage map full-length cDNA data and of *B. mori* in
70 KaikoBase) (Xia et al., 2007; Yamamoto et al., 2008; Suetsugu et al., 2013). These
71 findings have strongly promoted studies on *B. mori* and other lepidopteran insects in
72 the past decade.

73 In 2019, we reported a new and high-quality genome silkworm reference
74 genome assembly the silkworm p50T strain using PacBio long-read and Illumina short-
75 read sequencers (Kawamoto et al., 2019). The new genome assembly consists of 696
76 scaffolds with N50 of 16.8 M and only 30 gaps, and a new gene model based on this
77 sequence was predicted. These data are expected to be utilized in silkworm and
78 Lepidopteran research. Reference transcriptome data using this genome sequence
79 and the predicted gene set and transcriptome profile of important tissues significantly
80 contribute to advances in silkworm and Lepidopteran research. In the present study,
81 we constructed a reference transcript sequence data set using the RNA-seq data of 10
82 important tissues from silkworm larvae and reference genome data for improving the
83 predicted gene set data of Kawamoto et al. (2019) (Fig. 1). We also showed
84 comprehensive expression data for 10 different organs. These results will contribute
85 to further advances in silkworm as well as entomological and vertebrate research,
86 including that on humans.

87 Results

88 Reference transcriptome data

89 Total RNAs were extracted from the fat body (FB), midgut (MG), Malpighian
90 tubules (MT), testis (TT), anterior silk gland (ASG), anterior part of the middle silk gland
91 (MSG-A), middle part of the middle silk gland (MSG-M), posterior part of the middle silk
92 gland (MSG-P) and posterior silk gland (PSG) of one male P50T larva and from the
93 ovary (OV) of a female larva. Extraction was repeated three times. Total RNAs were
94 sequenced and thirty sets of sequenced data were used as RNA-seq data. We
95 obtained “reference transcriptome data” by using the reference genome, gene model
96 data (Kawamoto et al., 2019), and RNA-seq data. Transcriptome data contains 51,926
97 transcripts in 24236 loci (Supporting data 1). The previously constructed gene model
98 data contained 16,880 genes in 16,845 loci, while our reference transcriptome data
99 contains new transcripts and loci (Fig. 2A). Among 51,926 transcripts, 7,704 transcripts
100 belonged to new loci while 27,342 transcripts are newly identified isoforms of which loci
101 was already identified in Kawamoto et al., (2019) (Fig. 2B). These results suggest that
102 our reference transcriptome data extend gene model data and contain many

103 unidentified transcripts and loci. To annotate transcripts, we predicted the coding
104 sequence region (CDS) and amino acid sequences (Supporting data 2) against all
105 transcripts. We found that 39,619 transcripts and 16,632 loci had at least one CDS.
106 The predicted amino acid sequences were used for gene functional annotations by a
107 homology search against human and *Drosophila* gene sets (Supporting data 3).

108

109 Estimating the abundance of the reference transcriptome in multiple tissues

110 We calculated the abundance of each transcript in ten tissues: FB, MG, MT, TT,
111 OV, ASG, MSG-A, MSG-M, MSG-P, PSG, TT, and OV. In comparisons of our
112 calculated results and evaluations of the reliability of our expression analysis, we
113 additionally quantified transcript expression by using public RNA-seq data that were
114 sequenced from the FB, MG, MT, TT, and SG of the *B. mori* o751 strain (Kikuchi et al.,
115 2017; Ichino et al., 2018; Kobayashi et al., 2019). To distinguish between our RNA-seq
116 data and public data, we referred to the FB, MG, MT, TT, and SG of the o751 strain as
117 BN_FB, BN_MG, BN_MT, BN_TT, and BN_SG, respectively. Abundance values are
118 shown as transcripts per million (tpm) and listed in Supporting data 4.

119 Hierarchical clustering was performed for comparisons of transcriptome
120 abundance between multiple tissues (Fig. 3). The results obtained showed that, except
121 for MSG_P and MSG_M, all samples were clearly grouped by tissue types. Moreover,
122 clusters of samples that were the same tissues, but extracted from different strain
123 larvae, namely, FB and BN_FB, MT and BN_MT, MG and BN_MG, and TT and
124 BN_TT, were placed in adjacent positions, of which samples were obtained from
125 different studies as well as different strains. These results suggest that the data
126 obtained on abundance were highly reproducible and there were a little difference in
127 transcriptome profiles between P50T and o751 larvae. These results also indicated
128 that there were slight individual genetic differences between the larval samples used
129 and a marginal artificial effect, demonstrating that our abundance data may be used as
130 reference expression data for silkworm larvae.

131 Transcripts of sericin, fibroin, and fibrohexamerin genes

132 The *sericin*, *fibroin*, and *fibrohexamerin* (*fhx*) genes are known to play
133 important roles in silk synthesis in *B. mori*. Our transcriptome data contains several
134 isoforms of *sericin*, *fibroin*, and *fhx* (Table 1). A detailed sequence analysis was
135 performed to elucidate isoform structures. A previous analysis of *sericin-1* revealed that
136 this gene is composed of 9 exons, with exons 3-6 being under the selection of
137 alternative splicing (Garel et al., 1997; Yukuhiro et al., 2016). Within these exons, exon
138 6 is responsible for the most abundant component of the sericin protein (Sericin M),

139 which is ~6500 bp in length and encodes a serine-rich repetitive sequence (Yukihiro et
140 al., 2016). However, the structure of this exon has not yet been elucidated in detail. We
141 herein found that exon 6 of MSTRG.2477.1, the longest *sericin-1* isoform identified in
142 the present study, had a length of 6234 bp (from 2,552,212 to 2,558,445 bp in
143 chromosome 11, see Supporting data 2 and Fig. 4A) In the present study, we newly
144 identified a *sericin-1* isoform that contained exon 6 with 6234 bp. We speculate that
145 this isoform corresponds to the full-length or nearly full-length transcript of *sericin-1*.
146 The product from this exon is enriched with serine residues and also has abundant
147 residues of glycine, asparagine and threonine (Supplemental Fig. 1).

148 Sericin-3 is another major silk protein that has a relatively soft texture (Takasu
149 et al., 2006; 2007). In gene model data, there is a frame shift in the predicted amino
150 acid sequence (KWMTBOMO08464), presumably due to the 73-bp deletion present in
151 exon 3. In the present study, we found that reference transcriptome data
152 (MSTRG.2595.1) provided an accurate gene structure. Sericin-4 is another recently
153 identified sericin protein that is composed of 34 exons (Dong et al., 2019). In gene
154 model data, it is split into three genes (KWMTBOMO06324, KWMTBOMO06325 and
155 KWMTBOMO06326) whereas our reference transcriptome data represent an exact
156 structure (MSTRG.2610.1, Fig. 4B).

157 In contrast, a better structure is provided by gene model data for the fibroin
158 heavy chain (*h-fib*); this gene encodes a protein with a large and highly repetitive
159 sequence (Zhou et al., 2000) and although there is a small deletion in the repeat motifs
160 for both models, the deletion length is shorter for gene model data (32 amino acid
161 deletion for gene model data and 223 for reference transcriptome data). Regarding
162 other silk genes (*sericin-2*, *fibroin light chain (l-fib)*, and *fhx*), both models provide exact
163 structures (data not shown).

164 Transcript abundance in the silk gland

165 As described above, silk is synthesized in the SG. While the role of each SG
166 part in silk synthesis is known, the underlying molecular and genetic mechanisms
167 remain unclear. Therefore, the genes or transcripts that are strongly expressed in each
168 SG part need to be identified in order to elucidate these mechanisms. We searched for
169 transcripts that showed values of more than 30 transcripts per kilobase million (tpm) in
170 the five SG parts. The results obtained are shown in Fig. 5. The numbers of transcripts
171 that were strongly expressed in only ASG, MSG_A, MSG_M, MSG_P, and PSG were
172 351, 180, 99, 71, and 100, respectively, while more than 1,000 transcripts were
173 strongly expressed in all parts of the SG.

174 By using the annotation data of the strongly expressed transcripts, a functional
175 enrichment analysis (FEA) was performed using the transcripts strongly expressed in
176 each part of the SG to predict their role. In the enrichment analysis, we utilized the
177 annotation results against the human gene set. Fig. 6A shows the results of FEA using
178 the annotation of transcripts strongly expressed in MSG_P, MSG_M specific plus both
179 in MSG_P and MSG_M. The reason for utilizing MSG_P, MSG_M specific plus MSG_P
180 and MSG_M classes is that the samples of MSG_P and MSG_M in Fig. 3 did not form
181 different clusters, suggesting that both tissues have the same functions. The highly
182 enriched function of the category ($-\log(P) > 10$) was “Metabolism of RNA”, while the
183 moderately enriched functions ($6 < -\log(P) < 10$) were “ncRNA metabolic process”,
184 “regulation of mRNA processing”, “HIV Infection”, and “Asparagine N-linked
185 glycosylation”. In MSG_A, the moderately enriched function was “Metabolism of
186 vitamins and cofactors”, while the highly enriched functions of the category were not
187 found (Fig. 6B). In ASG, the highly enriched functions of the category were
188 “carbohydrate metabolic process” and “Transport of small molecules” (Fig. 6C). The
189 moderately enriched functions were “anion transport”, “Glycolysis/Gluconeogenesis”,
190 “Ascorbate and aldarate metabolism”, and “Metabolism of carbohydrates”. In PSG, the
191 moderately enriched function was “tRNA modification”, while the highly enriched
192 function of the category was not found (Fig. 6D).

193 Discussion

194 In the present study, we obtained RNA-seq data on ten tissues of *B. mori* on the
195 3rd day of fifth instar larvae from the P50T strain. Using RNA-seq data and new
196 reference genome data (Kawamoto et al., 2019), we constructed reference
197 transcriptome data. Our transcriptome data contained new loci and isoforms, thereby
198 updating the reference genomic and transcriptome data of *B. mori*. The reference
199 transcriptome consists of 51,926 transcripts in 24,236 loci (16,632 loci have coding
200 genes), and 39,619 transcripts contain single or multiple CDS. In the mouse reference
201 data set (GRCm38.p6), there are 52332 loci (22,480 coding genes, 16,324 non-coding
202 genes, and 13,528 pseudogenes) and 142,333 transcripts
203 (http://asia.ensembl.org/Mus_musculus/Info/Annotation). In the human reference data
204 set (GRCh38.p12), there are 63,048 loci (20,454 coding genes, 23,940 non-coding
205 genes, and 15,204 pseudogenes) and 226,950 transcripts
206 (http://asia.ensembl.org/Homo_sapiens/Info/Annotation). In *Drosophila melanogaster*
207 (BDGP6.22), there are 17,753 loci (13,931 coding genes, 3,513 non-coding genes, and
208 309 pseudogenes) and 34,802 transcripts

209 (http://asia.ensembl.org/Drosophila_melanogaster/Info/Annotation). In Zebrafish
210 (GRCz11), there are 32,506 loci (25,592 coding genes, 6,599 non-coding genes, and
211 315 pseudogenes) and 59,878 transcripts
212 (http://asia.ensembl.org/Danio_reario/Info/Annotation). In consideration of the basic
213 status of the reference data of these model species, our transcriptome data is not
214 unusual. It suggests that transcriptome data cover the majority of actual transcripts.

215 We estimated transcriptome abundance in multiple tissues plus several
216 tissues of other strain larvae. Transcriptome abundance in the tissues MG, TT, MT,
217 and FB did not markedly differ between the P50T and o751 strains. These results
218 suggest that these tissues at this stage did not contribute to phenotypic differences
219 between the two strains. To elucidate the underlying genetic mechanisms for
220 phenotypic differences, the RNA-seq data and transcriptome data of other stages are
221 needed. On the other hand, transcriptome abundance in MSG_M and MSG_P samples
222 was not divided into two independent clusters, suggesting that both parts have similar
223 roles in this stage, while MSG_A has distinct roles from the other parts.

224 We searched for new or previously unidentified isoforms of the *sericin*, *fibroin*,
225 and *fhx* genes in reference transcriptome data. While new or previously unidentified
226 isoforms of *sericin-2*, *l-fib*, *h-fib*, and *fhx* were not found, the long or structured isoforms
227 of *Sericin-1*, *Sericin-3*, and *Sericin-4* were identified in the reference transcriptome. The
228 longest isoform of *Sericin-3* (MSTRG.2595.1) possessed slightly more extensive
229 nucleotide sequences than that of KWMTBOMO08464, in which 73 bases of exon 3
230 were deleted, resulting in the prediction of incorrect ORF. The predicted amino acid
231 sequences of KWMTBOMO08464 were not similar to the sericin-3 amino acid
232 sequence in UniProtKB (ID: A8CEQ1), while that of MSTRG.2595.1 was similar.
233 Therefore, our transcriptome data provide more precise gene predictions. In the case
234 of *Sericin-4*, which was recently identified (Dong et al., 2019), we found a longer
235 transcript in our transcriptome data than the gene model reported by Dong et al.
236 (2019), which may contribute to the further characterization of sericin-4. The new
237 isoform of *Sericin-1* contains CDS that code glycine-, asparagine-, and threonine-rich
238 regions. It was not possible to elucidate the sequences of CDS because they were very
239 repetitive. Using long-read sequencers, repetitive sequences have been accurately
240 elucidated in the new reference genome. We consider our reference transcriptome
241 data to have significantly improved gene model data.

242 We searched for strongly expressed transcripts in one or more SG parts.
243 While more than 1,000 transcripts were strongly and ubiquitously expressed in the SG,
244 801 transcripts were strongly expressed in single parts of the SG. FEA with annotation

245 data on these transcripts in each part of the SG, except for the categories of MSG_A,
246 MSG_M specific plus MSG_A and MSG_M, was performed. The FEA results for
247 MSG_A, MSG_M specific plus MSG_A and MSG_M showed that these parts have
248 roles in coding or non-coding RNA processing. Some functional descriptions of these
249 ontologies are related to “splice variant processing”. Some isoforms of *sericin-1* (IDs of
250 MSTRG.2477.1 - MSTRG.2477.16, and KWMTBOMO06216.mrna1) were strongly
251 expressed in MSG_A and MSG_M. Moreover, the FEA result contained “Asparagine
252 N-linked glycosylation”. These results suggest that the splice variant processing of
253 *sericin-1* and asparagine processing of the *sericin-1* protein, which possesses many
254 asparagine residues, occurred in MSG_A and MSG_M. The FEA results for ASG
255 suggested that ASG produced large amounts of energy via carbohydrate metabolic
256 processes. Silk proteins are mainly synthesized in PSG and MSG. After several
257 processes, matured silk protein, which is a large complex, is exported and released
258 through ASG (Takiya et al., 2016). Therefore, the strong expression of “carbohydrate
259 metabolic”-related transcripts may contribute to the export of silk protein. Since there is
260 moderate ontology for MSG_A and PSG, we cannot predict the roles of these parts.

261 In the present study, we performed RNA-seq on multiple tissues of *B. mori* and
262 constructed reference transcriptome data. The reference transcriptome data
263 constructed using RNA-seq data and new reference genome data contained
264 unidentified loci and isoforms, including a long and almost complete *sericin-1* isoform,
265 which are not present in the gene model data based on a reference new genome
266 (Kawamoto et al., 2019). Moreover, comprehensive transcriptome abundance and
267 annotation data will contribute to elucidating the functions of SG parts previously not
268 proven. The transcript data obtained herein will lead to advances in entomologic and
269 vertebrate research, including that on humans (Tabunoki et al., 2016).

270 Methods

271 Silkworm rearing, RNA extraction, and sequencing

272 The silkworm P50T (*daizo*) strain was reared on an artificial diet (Nihon Nosan
273 Kogyo, Yokohama, Japan) at 25°C under a 12-hour light/dark photoperiod. Tissues of
274 the SG, FB, MG, MT, TT, and OV were dissected on the 3rd day of fifth instar larvae.
275 The SG was further subdivided into ASG, MSG-A, MSG-M, MSG-P, and PSG. Each
276 tissue was dissected from one individual, except for OV, and three biological replicates
277 were obtained and analyzed separately. Tissues were homogenized using ISOGEN
278 (NIPPON GENE, Tokyo, Japan) and the SV Total RNA Isolation System (Promega,

279 Madison, WI) was used for RNA extraction. Extracted total RNA samples were
280 sequenced by Illumina Novaseq6000 (Macrogen Japan Corp., Kyoto, Japan).
281 Construction of reference transcription data and estimation of the expression of
282 each transcript

283 The raw RNA-seq data of 30 samples were trimmed by Trimmomatic-version
284 0.36 (Bolger et al., 2014). The trimmed RNA-seq data of each tissue were mapping to
285 the new reference genome with the new gene model (Kawamoto et al., 2019) by Hisat2
286 version 2.1.0. Each mapped data were assembled to transcriptome data by stringtie
287 version 1.3.3 (Pertea et al., 2016). The 30 transcriptome data sets were merged to one
288 transcriptome data set referred to as “a reference transcriptome” by the stringtie.
289 gffcompare v0.10.6 was used (<https://ccb.jhu.edu/software/stringtie/gffcompare.shtml>)
290 for comparisons with the reference transcriptome and gene set of Kawamoto et al.
291 (2019).

292 To estimate the expression of the reference transcriptome in 30 samples, the
293 raw fastq data of each sample and reference transcript data were used with Kallisto
294 ver0.44.0 (Bray et al., 2016). In comparisons of transcriptome data, the raw RNA-seq
295 data of multiple tissues in *B. mori* strain o751 from the Sequence Read Archive (SRA)
296 and reference transcript data were used: the accession numbers of raw RNA-seq data
297 are DRA005094, DRA005878 and DRA005094 (Kikuchi et al., 2017; Ichino et al.,
298 2018; Kobayashi et al., 2019).

299 We used TIBCO Spotfire Desktop (v7.6.0) software with the “Better World”
300 program license (TIBCO, Inc., Palo Alto, CA; <http://spotfire.tibco.com/better-world-donation-program/>) for the classification of differentially expressed samples in silkworm
301 tissues in hierarchical clustering using Ward’s method.

303 Annotation for the reference transcriptome and functional enrichment analysis

304 Transcoder (v5.5.0) was used to identify coding regions within transcript
305 sequences and convert transcript sequences to amino acid sequences
306 (<https://transdecoder.github.io/>).
307 Transcriptome sequence sets were compared at the amino acid sequence level by the
308 successive execution of the blastp program in the NCBI BLAST software package
309 (v2.9.0+) with default parameters and an E-value cut-off of 1e-10 (Altschul et al., 1997).
310 Regarding the reference database sets to be blasted, human and fruit fly (*D.*
311 *melanogaster*) protein datasets in the Ensembl database (v.97) were used because the
312 sequences of these organisms were functionally well-annotated and amenable to
313 computational methods, such as a pathway analysis (Tabunoki et al., 2013). The
314 names of top-hit genes in the human and fruit fly datasets were annotated to *B. mori*

315 transcripts utilizing Ensembl Biomart (Kinsella et al., 2011) and Spotfire Desktop
316 software under TIBCO Spotfire's "Better World" program license (TIBCO Software, Inc.,
317 Palo Alto, CA, USA) (<https://spotfire.tibco.com/better-world-donation-program/>).
318 Functional enrichment analyses were performed using the metascape portal site
319 with annotation results against the human gene set (URL:
320 <http://metascape.org/gp/index.html#/main/step1>, Zhou et al., 2019).

321 Investigation of gene structures of *sericin*, *fibroin*, and *fhx*

322 In investigations on the *sericin*, *fibroin*, and *fhx* gene structures, we visualized
323 the positions of the new gene set and reference transcript data in the new reference
324 genome (Kawamoto et al., 2019) using the Integrative genomics viewer (IGV) (James
325 et al., 2011). In the gene model data set, *sericin-1* corresponded to
326 KWMTBOMO06216, *sericin-2* KWMTBOMO06334, *sericin-3* KWMTBOMO06311,
327 *sericin-4* KWMTBOMO06324-06326, fibroin heavy chain (*h-fib*) KWMTBOMO15365,
328 fibroin light chain *l-fib* KWMTBOMO08464, and *fhx* KWMTBOMO01001. The structures
329 of these models were compared visually with our new reference transcriptome data.
330 The several isoforms identified are listed in Table 1. We performed sequence
331 alignment using gene model sequence data and public sequences deposited in the
332 NCBI database.

333 Data Availability

334 The RNA-seq reads supporting the conclusions of this study are available in the SRA
335 with accession number DRA008737 (The accession number of RNA-seq data of each
336 sample is shown in Table 2A).
337 Assembled transcriptome sequences are available at the Transcriptome Shotgun
338 Assembly (TSA) database under accession IDs ICPK01000001-ICPK01051926.
339 The estimated abundance of transcripts is available from the Gene Expression Archive
340 (GEA) in DDBJ under accession ID E-GEAD-315.
341 Supporting data are available in The Life Science Database Archive. The title in the
342 Archive is "KAIKO - Metadata of reference transcriptome data"
343 (DOI:10.18908/lsdba.nbdc02443-000.V001).

344 References

345 Altschul, S.F. et al. "Gapped BLAST and PSI-BLAST: a new generation of protein
346 database search programs." Nucleic Acids Research 25:3389-3402 (1997). DOI:
347 10.1093/nar/25.17.3389

348 Bolger, A. M. et al. Trimmomatic: A flexible trimmer for Illumina Sequence Data.
349 Bioinformatics, btu170 (2014). DOI: 10.1093/bioinformatics/btu170

350 Bray, N. L. et al. Near-optimal probabilistic RNA-seq quantification. Nature
351 Biotechnology 34:525–527 (2016). DOI: 10.1038/nbt.3519

352 Daimon, T. et al. Knockout silkworms reveal a dispensable role for juvenile hormones
353 in holometabolous life cycle. Proceedings of the National Academy of Sciences of
354 the United States of America 112 E4226-E4235 (2015). DOI:
355 10.1073/pnas.1506645112

356 Dong, Z. et al. Identification of *Bombyx mori* sericin 4 protein as a new biological
357 adhesive. International Journal of Biological Macromolecules 132:1121-1130 (2019).
358 DOI: 10.1016/j.ijbiomac.2019.03.166

359 Garel, A. et al. Structure and organization of the *Bombyx mori* sericin 1 gene and of the
360 sericins 1 deduced from the sequence of the Ser 1B cDNA. Insect Biochemistry and
361 Molecular Biology 27:469–477 (1997). DOI: 10.1016/S0965-1748(97)00022-2

362 Ichino, F. et al. Construction of a simple evaluation system for the intestinal absorption
363 of an orally administered medicine using *Bombyx mori* larvae. Drug Discoveries and
364 Therapeutics 12:7-15 (2018). DOI: 10.5582/ddt.2018.01004

365 International Silkworm Genome Consortium. The genome of a lepidopteran model
366 insect, the silkworm *Bombyx mori*. 38(12):1036-45 (2008). DOI:
367 10.1016/j.ibmb.2008.11.004.

368 Ito, K. et al. Deletion of a gene encoding an amino acid transporter in the midgut
369 membrane causes resistance to a *Bombyx* parvo-like virus. Proceedings of the
370 National Academy of Sciences of the United States of America 105 7523-7527
371 (2008). DOI: 10.1073/pnas.0711841105

372 James, T. et al. Integrative genomics viewer. Nature Biotechnology 29:24–26 (2011).
373 DOI: 10.1038/nbt.1754

374 Kawamoto, M. et al. High-quality genome assembly of the silkworm, *Bombyx mori*.
375 Insect Biochemistry and Molecular Biology 107:53-62 (2019). DOI:
376 10.1016/j.ibmb.2019.02.002

377 Kikuchi, A. et al. Identification of functional enolase genes of the silkworm *Bombyx mori*
378 from public databases with a combination of dry and wet bench processes. BMC
379 Genomics 18: 83 (2017). DOI: 10.1186/s12864-016-3455-y

380 Kinsella, R.J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space.
381 Database (Oxford) 2011:bar030 (2011). DOI: 10.1093/database/bar030

382 Kobayashi, Y. et al. Comparative analysis of seven types of superoxide dismutases for
383 their ability to respond to oxidative stress in *Bombyx mori*. *Scientific Reports* 9, 2170
384 (2019). DOI: 10.1038/s41598-018-38384-8

385 Kondo, Y. et al. Toll ligand Spätzle3 controls melanization in the stripe pattern
386 formation in caterpillars. *Proceedings of the National Academy of Sciences of the*
387 *United States of America* 114 8336-8341 (2017). DOI: 10.1073/pnas.1707896114

388 Mita, K. et al. The genome sequence of silkworm, *Bombyx mori*. *DNA Research*
389 29;11(1):27-35 (2004). DOI:10.1093/dnare/11.1.27

390 Pertea, M. et al. Transcript-level expression analysis of RNA-seq experiments with
391 HISAT, StringTie and Ballgown. *Nature Protocols* 11:1650-1667 (2016).
392 DOI:10.1038/nprot.2016.095

393 Sakurai, T. et al. A single sex pheromone receptor determines chemical response
394 specificity of sexual behavior in the silkworm *Bombyx mori*. *PLoS Genetics*
395 7:e1002115 (2011). DOI 10.1371/journal.pgen.1002115

396 Suetsugu, Y. et al. Large scale full-Length cDNA sequencing reveals a unique
397 genomic landscape in a lepidopteran model insect, *Bombyx mori*. *G3* 3(9):1481-
398 1492 (2013). DOI:10.1534/g3.113.006239

399 Takiya, S. et al. Regulation of Silk Genes by Hox and Homeodomain Proteins in the
400 Terminal Differentiated Silk Gland of the Silkworm *Bombyx mori*. *Journal of*
401 *Developmental Biology* 4(2):19 (2016). DOI:10.3390/jdb4020019

402 Tabunoki, H. et al. Can the silkworm (*Bombyx mori*) be used as a human disease
403 model? *Drug Discoveries and Therapeutics* 10:3-8 (2016).
404 DOI:10.5582/ddt.2016.01011

405 Takasu, Y. et al. The silk sericin component with low crystallinity. *Sanshi-Konchu*
406 *Biotech* 75:133–139 (2006) DOI: 10.11416/konchubiotec.75.133

407 Takasu, Y. et al. Identification and characterization of a novel sericin gene expressed
408 in the anterior middle silk gland of the silkworm *Bombyx mori*. *Insect Biochemistry*
409 and *Molecular Biology* 37:1234–1240 (2007) DOI: 10.1016/j.ibmb.2007.07.009

410 Tamura, T. et al. Germline transformation of the silkworm *Bombyx mori* L. using a
411 piggyBac transposon-derived vector. *Nature Biotechnology* 18:81–84 (2000)
412 DOI:10.1038/71978

413 Tan, A. et al. Precocious metamorphosis in transgenic silkworms overexpressing
414 juvenile hormone esterase. *Proceedings of the National Academy of Sciences of the*
415 *United States of America*. 102:11751-11756. (2005) DOI:
416 10.1073/pnas.0500954102

417 Tatematsu, K. et al. Construction of a binary transgenic gene expression system for
418 recombinant protein production in the middle silk gland of the silkworm *Bombyx*
419 *mori*. *Transgenic Research*, 19:473-487 (2010). DOI:10.1038/71978
420 Xia, Q. et al. A draft sequence for the genome of the domesticated silkworm (*Bombyx*
421 *mori*). *Science* 10;306(5703):1937-40 (2004). DOI:10.1126/science.1102210
422 Xia, Q. et al. Microarray-based gene expression profiles in multiple tissues of the
423 domesticated silkworm, *Bombyx mori*. *Genome Biology* 8(8):R162 (2007).
424 DOI:10.1186/gb-2007-8-8-r162
425 Yamamoto, K. et al. A BAC-based integrated linkage map of the silkworm *Bombyx*
426 *mori*. *Genome Biology*. 9:R21 (2008). DOI:10.1186/gb-2008-9-1-r21
427 Yukihiko, K. et al. Insect silks and cocoons: structural and molecular aspects.
428 Extracellular composite matrices in Arthropods (eds. E. Cohen & B. Moussian),
429 pp.515-555. Springer, Cham. (2016) DOI: 10.1007/978-3-319-40740-1_18
430 Zhou, C. et al. Fine organization of *Bombyx mori* fibroin heavy chain gene. *Nucleic*
431 *Acids Research* 28:2413–2419 (2000). DOI: 10.1093/nar/28.12.2413
432 Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of
433 systems-level datasets. *Nature Communications* 10(1):1523 (2019).
434 DOI:10.1038/s41467-019-09234-6

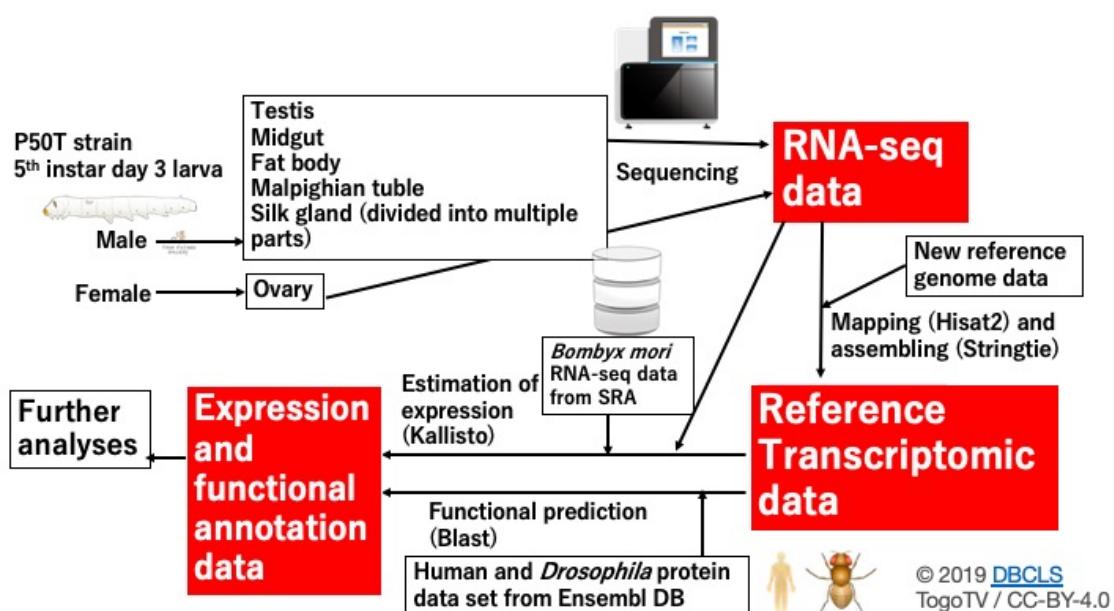
435 Funding

436 This work was supported by the National Bioscience Database Center of the Japan
437 Science and Technology Agency (JST) to HB.
438 This work was supported by the Cabinet Office, Government of Japan, Cross-
439 ministerial Strategic Innovation Promotion Program (SIP), “Technologies for Smart Bio-
440 industry and Agriculture” (funding agency: Bio-oriented Technology Research
441 Advancement Institution, NARO) to KY, TT, JS, and HS.
442 This work was supported by a grant from the Ministry of Agriculture, Forestry
443 and Fisheries of Japan (Research Project for Sericultural
444 Revolution) to KY, TT, and HS.

445 Acknowledgments

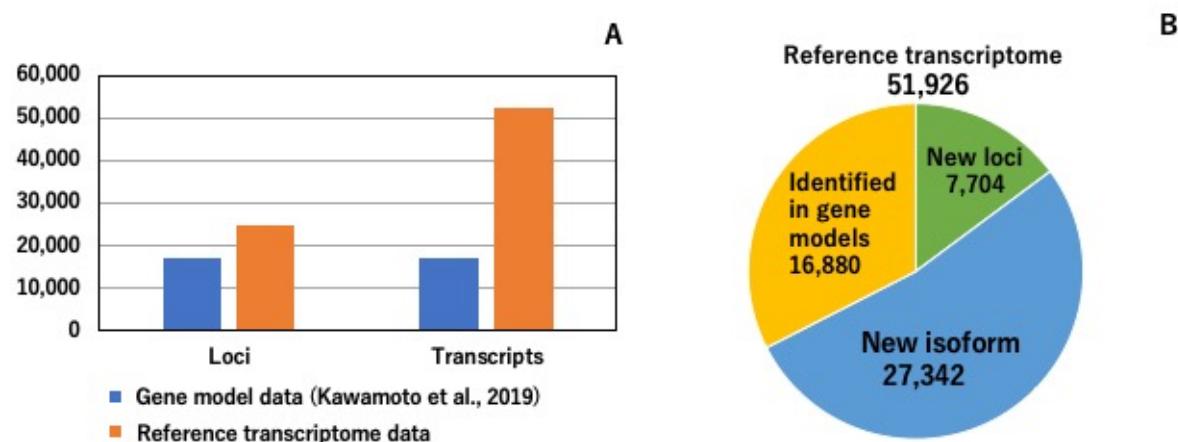
446 The computing resource was partly provided by the super computer system at the
447 National Institute of Genetics (NIG), Research Organization of Information and
448 Systems (ROIS), Japan.

449 Author contributions


450 Conceived and designed the experiments: K.Y., T.T., and H.S.
451 Performed the experiments: T.T.
452 Contributed reagents/materials/analysis tools: H.S.
453 Analyzed the data: K.Y., J.S., A.J., and H.B.
454 Contributed to the writing of the manuscript under draft version: K.Y., T.T., and H.B.
455 All authors discussed the data and helped with manuscript preparation. K.Y.
456 supervised the project.
457 All authors read and approved the final manuscript.

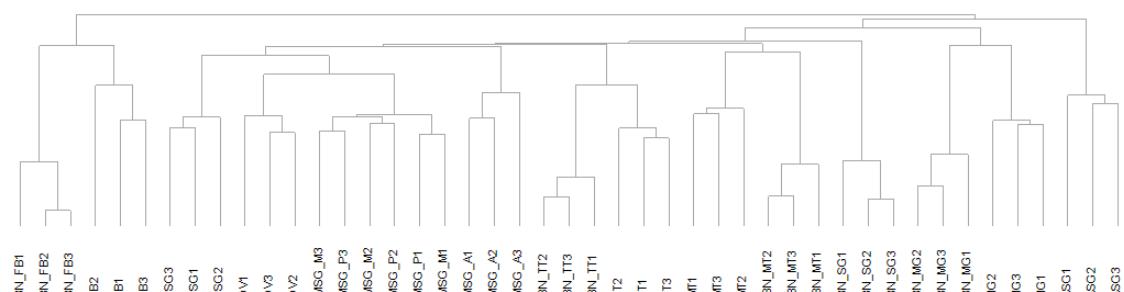
458 Competing interests

459 The authors declare no conflicts of interest.


460 Figures

461 Fig. 1 Workflow of the data analysis performed in the present study. To obtain
462 reference transcriptome sequences, Fastq data of 10 tissues from 5th instar larvae
463 were mapped to the new reference genome (Kawamoto et al., 2019). Kallisto software
464 was used to estimate the expression abundance of each transcript in these tissues
465 plus other *B. mori* samples of which RNA-seq data were obtained from a public
466 database (Accession numbers are listed in Table 2B). We performed a Blast search
467 against human and *Drosophila* genome data to perform functional annotations of the
468 reference transcriptome. Insect, human, database image, and sequencer drawings
469 (<http://togotv.dbcls.jp/ja/pics.html>) are licensed at
470 (<http://creativecommons.org/licenses/by/4.0/deed.en>).

471


472 Fig. 2 Basal characteristics of the reference transcriptome. (A) Comparison of gene
473 model data (Kawamoto et al., 2019) and the reference transcriptome data of the
474 present study. The number of loci and transcripts are shown. These numbers were
475 calculated from gff files of the two data sets. (B) Classification of 51,926 transcripts.
476 Each transcript was classified into three categories, and the numbers of the three
477 categories are shown in a pie chart. Definitions of the three categories were described
478 in the main text.

479

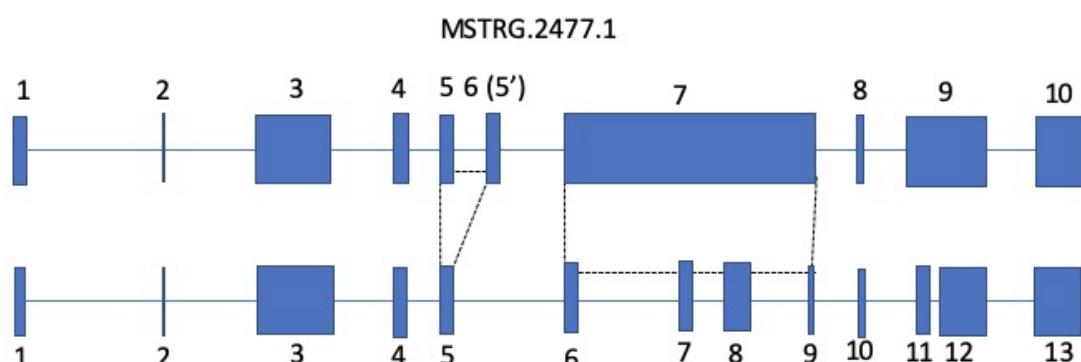
480 Fig. 3 Hierarchical clustering of expression data in 45 samples. Hierarchical clustering
481 was performed using transcriptome expression data (tpm values). Abbreviations of the
482 samples are shown and described in the main text. The numbers added to the

483 abbreviations mean biological replicates.

484

485

486 Fig. 4 Longest isoforms of *sericin-1* and *sericin-4* in the reference transcriptome.

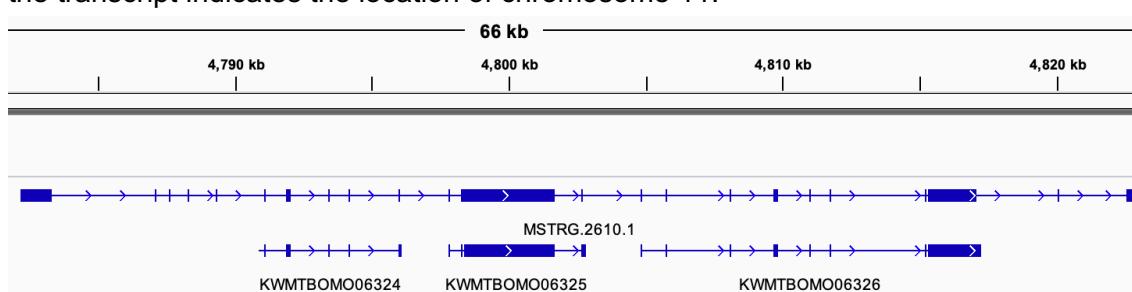

487 (A) A schematic drawing showing the exon positions of isoform MSTRG.2477.1

488 (longest isoform of *sericin-1*) and a gene model of *sericin-1* (Kawamoto et al., 2019).

489 Squares indicate exons with exon numbers in the gff file (Supporting data 1). Exon 6 of

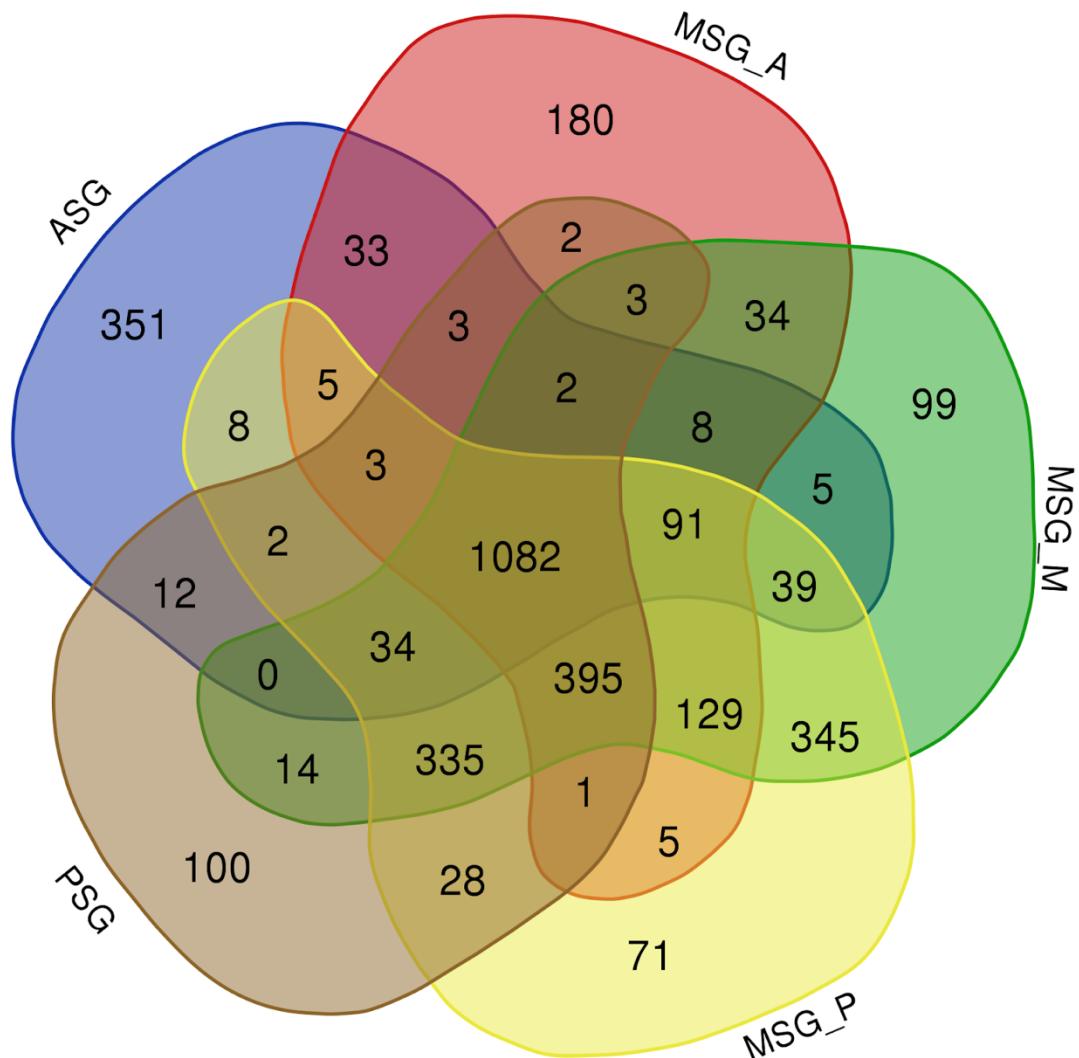
490 MSTRG.2477.1 corresponds to exon 5' and exons 7-10 correspond to exons 6-9 in

491 KWMTBOMO06216 (each group of exons are connected with dashed lines).

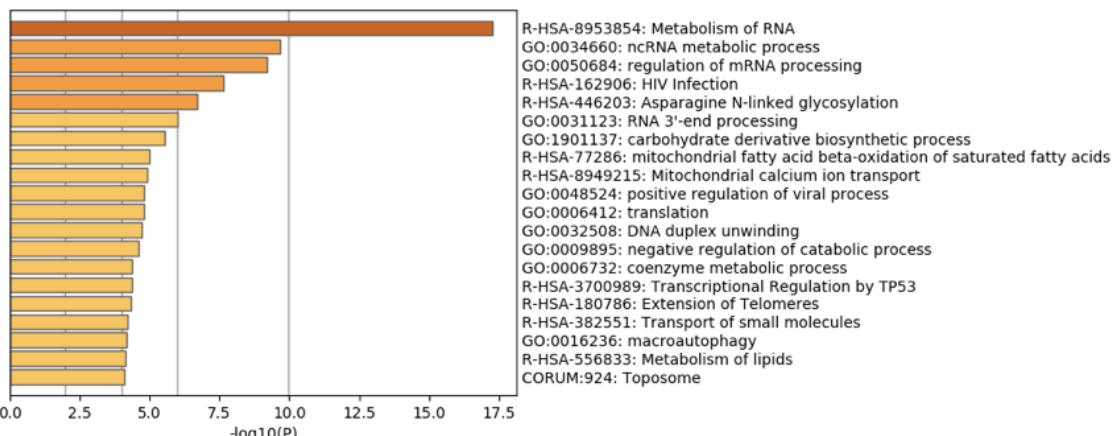

492

493 (B) Exon positions of isoform MSTRG.2477.1 (the longest isoform of *sericin-4*) and the

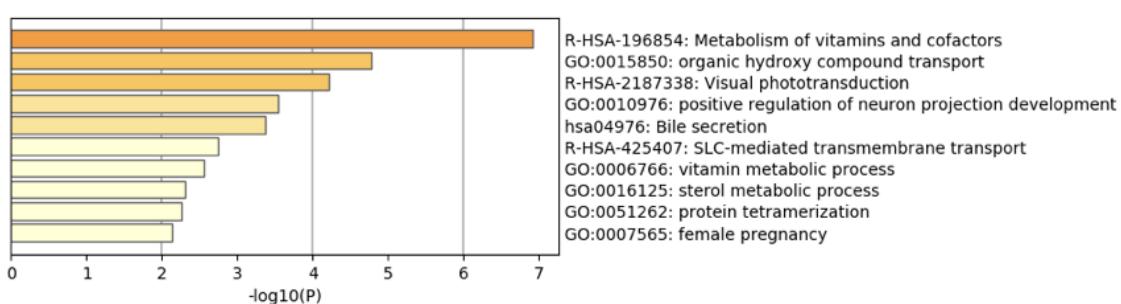
494 gene model of *sericin-4* (KWMTBOMO06325, KWMTBOMO06325, and

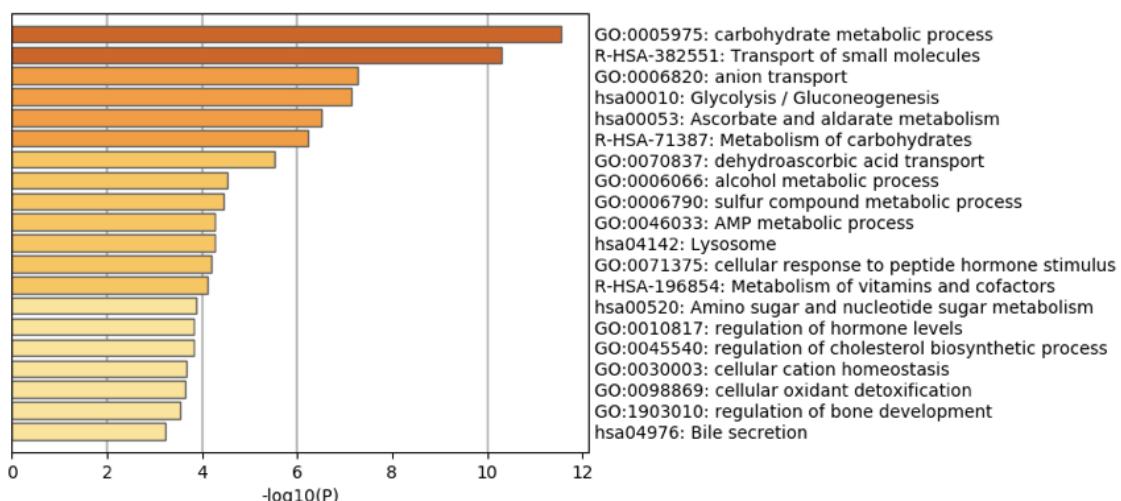

495 KWMTBOMO06326) in the new reference genome is shown by IGV. The scale above

496 the transcript indicates the location of chromosome 11.



497


498 Fig. 5 Strongly expressed transcripts within the silk gland. The numbers in the Venn
499 diagrams indicate the number of transcripts of which values of tpm were more than 30
500 in the corresponding silk gland parts.


502 Fig. 6 Results of the enrichment analysis by Metascape. Using annotation data against
503 the human gene set of the reference transcripts expressed in one or several parts of
504 the silk gland (Fig. 5), an enrichment analysis was performed (numbers in brackets
505 after the silk gland parts indicate the numbers of transcripts). $-\log_{10}(P)$ represents $-\log_{10}(P\text{-value})$. For example, $-\log_{10}(P)=5$ represents $P\text{-value}=10^{-5}$. (A) Transcripts
506 showing $\text{tpm} > 30$ in MGM_M (99), MGM_P (71), and MGM_M and MGM_P (345).

509 (B) Transcripts showing tpm > 30 in MSG_A (180).



511 (C) Transcripts showing tpm > 30 in ASG (351).

513 (D) Transcripts showing tpm > 30 in PSG (100).

514

515

516 Table

517 Table 1

518 *Sericin*, *fibroin*, and *fibrohexamerin* genes and isoform IDs

Gene name	Gene model ID in Kawamoto et al., 2019	Isoform IDs in Supporting data 1 (GenBank IDs)
<i>sericin-1</i>	KWMTBOMO06216	MSTRG.2477.1 - MSTRG.2477.16, KWMTBOMO06216.mrna1 (ICPK01006046 -ICPK01006062)
<i>sericin-2</i>	KWMTBOMO06334	MSTRG.2627.1, MSTRG.2627.2, KWMTBOMO06334.mrna1 (ICPK01006484 -ICPK01006486)
<i>sericin-3</i>	KWMTBOMO06311	MSTRG.2595.1 - MSTRG.2595.9, KWMTBOMO06311.mrna1 (ICPK01006421 -ICPK01006430)
<i>sericin-4</i>	KWMTBOMO06324-06326	MSTRG.2610.1 (ICPK01006453)
fibroin heavy chain (<i>h-fib</i>)	KWMTBOMO15365	MSTRG.14927.1 - MSTRG.14927.23, KWMTBOMO15365.mrna1 (ICPK01035046 -ICPK01035068)

fibroin light chain (<i>l-fib</i>)	KWMTBOMO08464	MSTRG.5511.1, KWMTBOMO08464.mrna1 (ICPK01013031 -ICPK01013032)
<i>fibrohexamerin</i>	KWMTBOMO01001	

519

520 Table 2

521 A. Samples for RNA-seq and run accession IDs

Sample	SRA Run ID	Sex
Anterior silk gland (ASG)	DRR186474, DRR186475, DRR186476	Male
Anterior part of the middle silk gland (MSG_A)	DRR186477, DRR186478, DRR186479	Male
Middle part of the middle silk gland (MSG_M)	DRR186480, DRR186481, DRR186482	Male
Posterior part of the middle silk gland (MSG_P)	DRR186483, DRR186484, DRR186485	Male
Posterior silk gland (PSG)	DRR186486, DRR186487, DRR186488	Male
Fat body (FB)	DRR186489, DRR186490, DRR186491	Male
Midgut (MG)	DRR186492, DRR186493, DRR186494	Male
Malpighian tubules (MT)	DRR186495, DRR186496, DRR186497	Male
Testis (TT)	DRR186498, DRR186499, DRR186500	Male

Ovary (OV)	DRR186501, DRR186502, DRR186503	Female
------------	------------------------------------	--------

522

523 B. RNA-seq data from SRA

Sample	SRA Run ID	Reference
Testis	DRR068893, DRR068894, DRR068895	Kikuchi et al. 2017
Fat body	DRR095105, DRR095106, DRR095107	Kobayashi et al. 2019
Midgut	DRR095108, DRR095109, DRR095110	Ichino et al. 2018
Malpighian tubules	DRR095111, DRR095112, DRR095113	Kobayashi et al. 2019
Silk gland	DRR095114, DRR095115, DRR095116	Kobayashi et al. 2019

524

525 **Supporting data**

526 All supporting data are available in The Life Science Database Archive
527 (<https://dbarchive.biosciencedbc.jp/index-e.html>).

528

529 Supporting data 1

530 Metadata of reference transcriptome data

531 URL:https://togodb.biosciencedbc.jp/db/kaiko_trascnript_data

532 DOI:10.18908/lsdba.nbdc02443-001.V001

533

534 Supporting data 2

535 Predicted amino acid sequences of the reference transcriptome

536 DOI:10.18908/lsdba.nbdc02443-004.V001

537

538 Supporting data 3

539 Annotations of each transcript (blast against human and *Drosophila* gene sets)

540 URL:https://togodb.biosciencedbc.jp/db/kaiko_annotation_human_drosophila_data

541 DOI:10.18908/lsdba.nbdc02443-003.V001

542

543 Supporting data 4

544 Expression data of each transcript in multiple tissues

545 URL:https://togodb.biosciencedbc.jp/db/kaiko_transcript_tpm_data

546 DOI:10.18908/lsdba.nbdc02443-002.V001

547 Supplemental Figure

548 Supplemental Fig. 1

549 Predicted amino acid sequences of the longest *sericin1* isoforms (MSTRG.2477.1.p1

550). Glycine, asparagine and threonine residues are colored in red. The region of exon7
551 is underlined.

552 DOI:10.6084/m9.figshare.998056