

1
2
3 **Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related**
4 **organelles generating no ATP.**

5
6 Euki Yazaki^{1*}, Keitaro Kume², Takashi Shiratori³, Yana Eglit^{4,5}, Goro Tanifuji⁶, Ryo
7 Harada⁷, Alastair G.B. Simpson^{4,5}, Ken-ichiro Ishida^{7,8}, Tetsuo Hashimoto^{7,8} and Yuji
8 Inagaki^{7,9*}

9
10 ¹Department of Biochemistry and Molecular Biology, Graduate School and Faculty of
11 Medicine, The University of Tokyo, Tokyo, Japan
12 ²Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
13 ³Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology,
14 Yokosuka, Japan
15 ⁴Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
16 ⁵Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University,
17 Halifax, Nova Scotia, Canada
18 ⁶Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan
19 ⁷Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba,
20 Ibaraki, Japan
21 ⁸Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
22 ⁹Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

23
24 Running head: Phylogeny and putative MRO functions in a new metamonad clade.

25

26 *Correspondence addressed to Euki Yazaki, euki87@gmail.com and Yuji Inagaki,
27 yuji@ccs.tsukuba.ac.jp

28 **Abstract**

29 We here report the phylogenetic position of barthelonids, small anaerobic flagellates
30 previously examined using light microscopy alone. *Barthelona* spp. were isolated from
31 geographically distinct regions and we established five laboratory strains. Transcriptomic data
32 generated from one *Barthelona* strain (PAP020) was used for large-scale, multi-gene
33 phylogenetic (phylogenomic) analyses. Our analyses robustly placed strain PAP020 at the
34 base of the Fornicata clade, indicating that barthelonids represent a deep-branching
35 Metamonad clade. Considering the anaerobic/microaerophilic nature of barthelonids and
36 preliminary electron microscopy observations on strain PAP020, we suspected that
37 barthelonids possess functionally and structurally reduced mitochondria (i.e. mitochondrion-
38 related organelles or MROs). The metabolic pathways localized in the MRO of strain PAP020
39 were predicted based on its transcriptomic data and compared with those in the MROs of
40 fornicates. Strain PAP020 is most likely incapable of generating ATP in the MRO, as no
41 mitochondrial/MRO enzymes involved in substrate-level phosphorylation were detected.
42 Instead, we detected the putative cytosolic ATP-generating enzyme (acetyl-CoA synthetase),
43 suggesting that strain PAP020 depends on ATP generated in the cytosol. We propose two
44 separate losses of substrate-level phosphorylation from the MRO in the clade containing
45 barthelonids and (other) fornicates.

46

47 **Key word:** Metamonada, phylogenomics, mitochondrion-related organelles

48

49 **Introduction**

50 Elucidating the evolutionary relationships among the major groups of eukaryotes is
51 one of the most fundamental but unsettled questions in biology. It is widely accepted that
52 large-scale molecular data for phylogenetic analyses (so-called phylogenomic data) are
53 indispensable to infer ancient splits in the tree of eukaryotes (Burki 2014; Burki et al. 2019;
54 Keeling and Burki 2019). Preparing phylogenomic data has been greatly advanced by the
55 recent technological improvements in sequencing that generate a large amount of molecular
56 data at an affordable cost and in a reasonable time-frame (Bleidorn 2016; Vincent et al.
57 2017). Further, some recent phylogenomic analyses have included uncultured microbial
58 eukaryotes (e.g., Lax et al. 2018), since the libraries for sequencing of the whole-
59 genome/transcriptome can be prepared from a small number of cells (or even a single cell)
60 isolated from an environment sample (Kolisko et al. 2014; Strassert et al. 2019).

61 Despite these advances in experimental techniques, it is realistic to assume that no
62 current phylogenomic analysis has covered the true diversity of eukaryotes. A large number
63 of extant microbial eukaryotes have never been examined using transcriptomic or genomic
64 techniques, and some of them may hold the keys to resolving important unanswered questions
65 in eukaryotic phylogeny and evolution. Thus, to reconstruct the evolutionary relationships
66 among the major eukaryotic assemblages to a resolution that is both accurate and informative,
67 the taxon sampling in phylogenomic analyses has been improved by targeting two classes of
68 organisms: (i) Novel microbial eukaryotes that represent lineages that were previously
69 unknown to science, and (ii) “orphan eukaryotes” that had been reported before, but whose
70 evolutionary affiliations were unresolved by morphological examinations and/or single-gene
71 phylogenies (Zhao et al. 2012; Kamikawa et al. 2014; Yabuki et al. 2014; Burki et al. 2016;
72 Janouškovec et al. 2017; Brown et al. 2018; Lax et al. 2018; Gawryluk et al. 2019; Strassert et
73 al. 2019).

74 Many of “orphan eukaryotes” were described based solely on morphological
75 information prior to the regular use of gene sequences in phylogenetic/taxonomic studies.
76 One such organism is the small free-living heterotrophic biflagellate *Barthelona vulgaris*
77 (Bernard et al. 2000). The initial description of *B. vulgaris* was based on light microscopy
78 observations of cells isolated from marine sediment from Quibray Bay, Australia, and
79 maintained temporarily in nominally anoxic crude culture (Bernard et al. 2000). The
80 morphospecies was later identified at different geographical locations (Lee 2002; Lee 2006)
81 but never examined with methods incorporating molecular data. These past studies identified
82 no special morphological similarity between *B. vulgaris* and any eukaryotes described to date
83 at the morphological level (Bernard et al. 2000; Lee 2002; Lee 2006). Thus, to clarify the
84 phylogenetic placement of *B. vulgaris* in the tree of eukaryotes, molecular phylogenetic
85 analyses are required, preferably at the “phylogenomic” scale.

86 We here report five laboratory strains of *Barthelona* (EYP1702, FB11, LRM2,
87 PAP020 and PCE; Figs. 1A-E) isolated from separate geographical regions, and infer their
88 phylogenetic positions assessed by analyzing both SSU rDNA and phylogenomic data. A
89 SSU rDNA phylogeny robustly united all of the *Barthelona* strains together, but the precise
90 placement of *Barthelona* spp. among other eukaryotes remained inconclusive. To infer the
91 precise phylogenetic position of barthelonids, we obtained a transcriptome data from strain
92 PAP020, and analyzed its phylogenetic position from a eukaryote-wide dataset containing
93 148 genes. The transcriptome data of strain PAP020 was also used for reconstructing the
94 metabolic pathways in a functionally and structurally reduced mitochondrion that is the result
95 of adaptation to anaerobiosis.

96

97 **Results and Discussion**

98

99 **Phylogenetic position of barthelonids**

100 Overall, the maximum-likelihood (ML) and Bayesian phylogenetic analyses of small
101 subunit ribosomal RNA gene (SSU rDNA) sequences resolved known major eukaryote
102 groups with moderate to high statistical support values, but the backbone of the tree remained
103 unresolved (Fig. 2). In the SSU rDNA tree, all of *Barthelona* sp. strains PAP020, EYP1702,
104 FB11, PCE, and LRM2 grouped together with a ML bootstrap value (MLBP) of 83% and a
105 Bayesian posterior probability (BPP) of 0.98. In this *Barthelona* clade, strains EYP1702 and
106 PCE were the earliest and second earliest diverging taxa, respectively, and strains PAP020,
107 LRM2 and FB11 formed a tight subclade. The *Barthelona* clade was sister to a Fornicata
108 clade comprising *Carpediemonas membranifera*, *Kipferlia bialata*, *Dysnectes brevis*,
109 *Retortamonas* sp. and *Giardia intestinalis* (Fig. 2), but statistical support was equivocal
110 (MLBP 56%; BPP 0.86). This possible affinity between *Barthelona* and fornicates in the SSU
111 rDNA phylogeny is provocative, as both lineages thrive in oxygen-poor environments and
112 possess double-membrane bound MROs instead of typical mitochondria (Simpson and
113 Patterson 1999; Tovar et al. 2003; Yubuki et al. 2007; Yubuki et al. 2013; Kulda et al. 2017;
114 see Fig. S2 for the putative MRO in strain PAP020). Thus, we took a phylogenomic approach
115 to more robustly resolve the position of barthelonids in the tree of eukaryotes.

116 As anticipated, both ML and Bayesian phylogenetic analyses of a multi-gene
117 alignment comprising 148 genes (148-gene alignment) provided us deeper insights into the
118 backbone of the tree of eukaryotes (Fig. 3) than the SSU rDNA analyses (Fig. 2). The
119 backbone tree topology and statistical support values (Fig. 3) agreed largely with those
120 reported in Kamikawa et al. (2014), Yabuki et al. (2014) and Yabuki et al. (2018), which
121 analyzed multi-gene alignments generated from the same core set of 157 single-gene

122 alignments with mostly similar taxon sampling. The topology includes well established clades
123 including SAR, Amorphea, Cryptophyceae and Discoba, but, as is common, did not infer a
124 monophyletic Archaeplastida (Cenci et al. 2018; Strassert et al. 2019). Likewise, the 148-gene
125 phylogeny recovered neither the clade of *Telonema subtilis* and SAR (“T-SAR”; Strassert et
126 al. 2019) nor that of centrohelids and haptophytes (Haptista; Burki et al. 2016). We suspect
127 that large proportions of missing data in the sequence of *T. subtilis* and the single included
128 centrohelid (34 and 35%, respectively), which derived from the transcriptomic data generated
129 by 454 pyrosequencing (Burki et al. 2009), hindered the recoveries of T-SAR and Haptista in
130 the 148-gene phylogeny.

131 The 148-gene phylogeny grouped *Barthelona* sp. strain PAP020 and 6 fornicates
132 together with a MLBP of 99% and a BPP of 1.0 (Fig. 3). In this clade, strain PAP020
133 occupied the basal position, which was supported fully by both ML and Bayesian analyses.
134 The clade of strain PAP020 and fornicates was connected sequentially with parabasalids
135 (MLBP 100%; BPP 0.70), then with *Paratrimastix pyriformis* (representing Preaxostyla), to
136 form the Metamonada clade with a MLBP of 98% and a BPP of 0.98 (Fig. 3). Support for
137 these relationships was hardly affected by exclusion of rapidly evolving alignment positions,
138 until >60% of site were excluded (Fig. S1). We applied the ML tree and three alternative
139 trees, wherein strain PAP020 branched at the base of the Parabasalia clade, the clade of
140 Fornicata + Parabasalia and the Metamonada clade, to an approximately unbiased (AU) test,
141 and all of the alternative trees were rejected ($p < 0.001$). The results from the phylogenetic
142 analyses of 148-gene alignment consistently and robustly indicated that barthelonids are a
143 previously overlooked Metamonada lineage, which has a specific affinity with the Fornicata
144 clade.

145 There are two uncertain issues related to the taxonomic treatment of barthelonids for
146 future studies. Firstly, molecular phylogenetic analyses alone cannot determine whether

147 barthelonids are (a) a sister taxon to Fornicata, or (b) the deepest known branch within the
148 taxon of Fornicata. Fornicata is defined by a key ultrastructural characteristic in the flagellar
149 apparatus, namely the so-called “B fiber” forms a conspicuous arching bridge between the
150 two flagellar roots supporting the ventral feeding groove (Simpson 2003). Therefore, we need
151 to investigate the ultrastructure of barthelonid cells in detail for their higher-level taxonomic
152 treatment. The second issue for future studies is whether it is appropriate to classify all of the
153 five strains examined in this study into a single genus *Barthelona*. In the *Barthelona* clade
154 recovered in the SSU rDNA phylogeny (Fig. 2), strains PAP020, LRM2 and FB11 appeared
155 to be closely related to one another but are distant from strains PCE and EYP1702. We need
156 to assess their morphological characteristics to settle this issue.

157 **Lack of substrate-level phosphorylation in the mitochondrion-related organelle of**
158 ***Barthelona* sp. PAP020.**

159 All of the *Barthelona* strains assessed in this study (strains PAP020, EYP1702, PCE, LRM2
160 and FB11) are grown under oxygen-poor conditions in the laboratory. Our preliminary
161 ultrastructural observation of strain PAP020 did not reveal a typical mitochondrion. Instead
162 we observed a densely stained, double membrane-bounded organelle (Fig. S2). As all
163 metamonads studied so far lack typical mitochondria, we suspect that the double membrane-
164 bounded organelle identified in strain PAP020 is the MRO. According to the phylogenetic
165 position of barthelonids deduced from the SSU rDNA and 148-gene phylogeny (Figs. 2 & 3),
166 the metabolic pathways retained in the barthelonid MROs are significant to infer the
167 evolutionary history of the MROs in the Fornicata clade.

168 Leger et al. (2017) proposed that the ancestral fornicate species possessed an MRO
169 with a metabolic capacity similar to that of the hydrogenosomes in parabasalids like
170 *Trichomonas vaginalis*. Thus, we surveyed the transcriptomic data from strain PAP020 for
171 transcripts encoding hydrogenosomal/MRO proteins that are homologous to *Trichomonas*

172 proteins localized in the hydrogenosome. Strain PAP020 was predicted to possess the MRO
173 proteins involved in hydrogen production, pyruvate metabolism, amino acid metabolism, Fe-
174 S cluster assembly, anti-oxidant system and protein modification (chaperones and proteases)
175 (Figure 4A; purple and grey ellipses represent the proteins found and not found, respectively;
176 see also Table S2). This suggests that the overall function of the MRO of strain PAP020 is
177 similar to that of the *Trichomonas* hydrogenosome, except in ATP generation capacity. We
178 did not identify any transcripts encoding two enzymes for anaerobic ATP generation through
179 substrate-level phosphorylation, namely (i) acetate:succinate CoA transferase (ASCT) that
180 transfers coenzyme A (CoA) from acetyl-CoA to succinate and (ii) succinyl-CoA synthase
181 (SCS) that phosphorylates ADP to produce ATP coupled with converting succinyl-CoA back
182 to succinate. We propose that strain PAP020 genuinely lacks ASCT and SCS and that its
183 MRO is incapable of generating ATP.

184 We additionally surveyed the PAP020 data for transcripts encoding cytosol-localizing
185 acetyl-CoA synthase (ACS), which is an alternative mechanism to generate ATP in fornicate
186 cells. Intriguingly, two distinct ACS sequences were retrieved, designated here as ACS2 and
187 ACS3. Although the transcripts encoding both ACS versions most likely cover their N-
188 termini, neither of them was predicted to bear the typical signal to be localized in
189 mitochondria or MROs (i.e. an inferred N-terminal transit peptide). The abundances of the
190 ACS2 and ACS3 transcripts in strain PAP020 were 2249 and 2208 Transcripts Per kilobase
191 Million (TPM; Li and Dewey 2011), respectively, implying that the two *Barthelona* ACS
192 genes are indistinguishable at the transcription level. We subjected the two ACS sequences to
193 a phylogenetic analysis along with the homologues sampled from diverse bacteria, archaea
194 and eukaryotes (Fig S3). The PAP020 ACS2 sequence formed a clade with fornicate “ACS2”
195 sequences, which Leger et al. (2017) proposed to be cytosolic enzymes. Thus, we suggest that
196 ACS2 is most likely a cytosolic enzyme in strain PAP020 as well. The ACS phylogeny

197 recovered no strong affinity between PAP020 ACS3 sequence and other homologues (Fig.
198 S3). Neither of our analyses on the ACS3 sequence provided any positive support for MRO
199 localization, and we tentatively consider ACS3 as a cytosolic enzyme in strain PAP020.
200 Altogether, we conclude that strain PAP020 depends entirely on ATP generated by the two
201 cytosol-localizing ACS, as its MRO lacks substrate-level phosphorylation. For a better
202 understanding of ATP synthesis in this organism, the precise subcellular localizations of
203 ACS2 and ACS3 in strain PAP020 need to be confirmed experimentally in the future.

204 Leger et al. (2017) proposed a complex evolution of ATP-generating mechanisms in
205 the Fornicata clade, as follows: (i) The ancestral fornicate species possessed both substrate-
206 level phosphorylation in the MRO as well as ACS2 in the cytosol. (ii) Substrate-level
207 phosphorylation has been inherited vertically to the extant fornicate species, except *D. brevis*
208 and diplomonads (see below). (iii) During the evolution of Fornicata, the ancestral cytosol-
209 localizing ACS (i.e. ACS2) was replaced by an evolutionarily distinct ACS (ACS1). (iv) The
210 redundancy in the ATP-generating system allowed the secondary loss of substrate-level
211 phosphorylation in the MRO prior to the separation of the *D. brevis* plus diplomonad clade.
212 We here extend the scenario proposed by Leger et al. (2017) by incorporating the data from
213 *Barthelona* sp. strain PAP020 (See Fig. 4B). Acquisition of ACS2 was hypothesized at the
214 base of the Fornicata clade in the previous work (Leger et al. 2017), but after assessing the
215 data from stain PAP020, this particular event needs to be pushed back at least to the common
216 ancestor of fornicates and barthelonids, as strain PAP020 and multiple early-branching CLOs
217 (e.g., *C. membranifera*) share ACS2. It is worthy to note that acquisition of ACS2 may extend
218 back to the last common metamonad ancestor, since a possibly directly related ACS2 is also
219 present in *Trimastix* (Fig. S3). Secondly, as barthelonids are distantly related to *D. brevis* and
220 diplomonads, loss of substrate-level phosphorylation in barthelonid MROs can be assumed to
221 have occurred independently from the loss in the common ancestor of *D. brevis* and

222 diplomonads (highlighted by blue diamonds in Fig. 3B). Further, barthelonids and the common
223 ancestor of *D. brevis* and diplomonads seem to have accommodated the loss of MRO-localized
224 substrate-level phosphorylation via possessing evolutionarily distinct ACS homologs (ACS2 and
225 ACS1, represented by yellow and red lines, respectively in Fig. 4B).

226 In the current study, we reconstructed the metabolic pathways in the MRO of only one
227 of the five strains of *Barthelona* sp. We anticipate that stains PAP020, LRM2 and FB11,
228 which formed a tight clade in the SSU rDNA phylogeny (Fig. 2), may have MROs with the
229 same or a very similar set of metabolic pathways. In future studies, it is important to
230 reconstruct the metabolic pathways in the MROs of strains PCE and/or EYP1702 to further
231 resolve the evolution of MROs and anaerobic metabolism in the Metamonada clade.

232 Considering the large evolutionary distance between PCE/EYP1702 and
233 PAP020/LRM2/FB11 in the SSU rDNA phylogeny (Fig. 2), we may find that the MRO
234 functions of strains PCE and EYP1702 are substantially different from that of strain PAP020
235 deduced in the current study.

236

237 **Materials & Methods**

238 **Isolation and Cultivation**

239 We established five laboratory strains of *Barthelona* sp. in this study (Fig. 1A-E).
240 Strains PAP020 and EYP1702 (Figs. 1A & 1D) were isolated from anaerobic mangrove
241 sediments collected at a seawater lake in the Republic of Palau in November 2011 and
242 October 2017, respectively. The laboratory cultures have been maintained in mTYGM-9
243 medium (<http://mcc.nies.go.jp/medium/ja/mtygm9.pdf>) with prey bacteria at 18-20 °C. An
244 anaerobic environment within the laboratory cultures was created by the respiration of prey
245 bacteria. LRM2 (Fig 1B) was isolated from mud of a defunct saltern (now normal salinity) on

246 the Ebre Delta near San Carles de la Ràpita, Catalonia, Spain in February 2015. FB11 (Fig1C)
247 was isolated from False Bay, an intertidal mud flat on San Juan Island, WA, US in June 2015.
248 PCE (Fig 1E) was isolated from intertidal sediment near Cavendish, PEI, Canada in July,
249 2016. The established cultures were maintained with co-cultured bacteria on 3% LB in sterile
250 natural seawater at 18-21°C.

251 **SSU rDNA phylogenetic analysis**

252 Total DNA samples of *Barthelona* sp. strains PAP020, EYP1702, FB11, PCE and
253 LRM2 were extracted from the cultured cells using a DNeasy Plant mini kit (Qiagen) or
254 NucleoSpin® Tissue kit (Macherey-Nagel). Near-complete SSU rDNA fragments were
255 amplified from each DNA sample by PCR, using either primers SR1 and SR12 (Nakayama et
256 al. 1998) or 18F and 18R (Yabuki et al. 2010). The amplification program consisted of 30
257 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 30 s and extension at 72 °C for
258 90 s. The amplified product was gel-purified, cloned and sequenced by the Sanger method.

259 We aligned the SSU rDNA sequences of the five *Barthelona* strains with those of 91
260 phylogenetically diverse eukaryotes by using MAFFT 7.205 (Katoh 2002; Katoh and
261 Standley 2014). After manual exclusion of ambiguously aligned positions, 1,573 nucleotide
262 positions were subjected to ML phylogenetic analyses by using IQTREE v 1. 5. 4 (Nguyen et
263 al. 2015) with the GTR + R6 model, with MLBPs derived from 500 non-parametric bootstrap
264 replicates. The SSU rDNA alignment was also subjected to Bayesian phylogenetic analysis
265 using MrBayes 3.2.3 (Ronquist et al. 2012) with GTR + Γ model. The Markov Chain Monte
266 Carlo (MCMC) run was performed with one cold and three heated chains with default chain
267 temperatures. We ran 3,000,000 generations, and sampled log-likelihood scores and trees
268 with branch lengths every 1,000 generations (the stationarity was confirmed by plotting the
269 log-likelihoods sampled during the MCMC). The first 25% generations were discarded as

270 burn-in. The consensus tree with branch lengths and BPPs were calculated from the
271 remaining trees.

272 **RNA-seq analyses**

273 We conducted two RNA-seq runs of *Barthelona* sp. strain PAP020. The sequence
274 reads from the first analysis was used for a phylogenomic analysis assessing the position of
275 *Barthelona* spp. in the tree of eukaryotes, while those from the second sequencing run were
276 for surveying the proteins localized in the mitochondrial-related organelle (MRO) in strain
277 PAP020 (see below).

278 For the first RNA-seq run, PAP020 cells, together with bacterial cells in the culture
279 medium, were harvested and subjected to RNA extraction using TRIzol (Life Technologies)
280 by following the manufacturer's protocol. We shipped the RNA sample to a biotech company
281 (Hokkaido System Science) for cDNA library construction and subsequent sequencing using
282 the Illumina HiSeq 2500 platform, which generated 2.9×10^7 paired-end 100-bp reads (2.9
283 Gb in total). The initial reads were then assembled into 29,251 unique contigs by TRINITY
284 (Grabherr et al. 2011; Haas et al. 2013).

285 For the second RNA-seq run, we separated PAP020 cells from the bacterial cells in
286 the culture medium by a gradient centrifugation using Optiprep (Axis Shield), as reported
287 previously (Tanifuji et al. 2018), with slight modifications (the Optiprep solution containing
288 the eukaryotic cells and bacteria was centrifuged at 2,000 g for 20 min, instead of 800 g for
289 20 min). Total RNA was extracted from the harvested eukaryote-enriched fraction, using
290 TRIzol by following the manufacturer's protocol. Poly-A tailed RNAs in the RNA sample
291 described above were purified with a Dynabeads™ mRNA Purification Kit (Thermo Fisher
292 Scientific), and then used to construct the cDNA library using the SMART-Seq v4 Ultra Low
293 Input RNA Kit (Takara Bio USA) for Sequencing and Nextera XT DNA Library Preparation
294 Kit (Illumina). The resultant cDNA library was sequenced with the Illumina MiSeq platform,

295 yielding 3.7×10^7 paired-end 300-bp sequence reads (8.6 Gb in total). These were assembled
296 into 21,286 unique contigs using TRINITY.

297 **Phylogenomic analyses**

298 To elucidate the phylogenetic position of *Barthelona* sp. strain PAP020, we prepared a
299 phylogenomic alignment by updating an existing dataset comprising 157 genes (Kamikawa et
300 al. 2014; Yabuki et al. 2014; Yabuki et al. 2018, see Table S1). For each of these 157 genes,
301 we added the homologous sequences retrieved from the transcriptomic data of strain PAP020
302 (this study) and four fornicates (*Carpediemonas membranifera*, *Aduncisulcus paluster*,
303 *Kipferlia bialata* and *Dysnectes brevis*; Leger et al. 2017). Each single-gene alignment was
304 aligned individually by MAFFT 7.205 with the L-INS-i algorithm followed by manual
305 correction and exclusion of ambiguously aligned positions. For each of the single-gene
306 alignments, the ML phylogenetic tree was inferred by RAxML 8.1.20 (Stamatakis 2014)
307 under the LG + Γ + F model with robustness assessed with a 100 replicate bootstrap analysis.

308 Individual single-gene trees were inspected to identify the alignments bearing aberrant
309 phylogenetic signal that disagreed strongly with any of a set of well-established monophyletic
310 assemblages in the tree of eukaryotes, namely Opisthokonta, Amoebozoa, Alveolata,
311 Stramenopiles, Rhizaria, Rhodophyta, Viridiplantae, Glaucophyta, Haptophyta, Cryptophyta,
312 Jakobida, Euglenozoa, Heterolobosea, Diplomonadida, Parabasalia and Malawimonadidae.
313 Nine out of the 157 single-gene alignments were found to bear idiosyncratic phylogenetic
314 signal and were excluded from the phylogenomic analyses described below. After inspection
315 of single-gene alignments/trees, the remaining 148 single-gene alignments (Table S1) were
316 concatenated into a single phylogenomic alignment containing 83 taxa with 38,816
317 unambiguously aligned amino acid positions (148-gene alignment). The coverage for each
318 single-gene alignment is summarized in Table S1.

319 ML analyses of 148-gene alignment were conducted by using IQ-TREE v. 1.5.4 with
320 the LG + Γ + F + C60 + PMSF (posterior mean site frequencies) model (Wang et al. 2018)
321 and robustness evaluated with a ML bootstrap analysis on 100 replicates. We also conducted
322 a Bayesian phylogenetic analysis with the CAT + GTR model using PHYLOBAYES 1.5a
323 (Lartillot and Philippe 2004; Lartillot and Philippe 2006; Lartillot et al. 2007). In each
324 analysis, two MCMC runs were run for 5,000 cycles with “burn-in” of 1,250 (‘maxdiff’ value
325 was 0.96743). The consensus tree with branch lengths and Bayesian posterior probabilities
326 (BPPs) were calculated from the remaining trees.

327 The phylogenetic position of *Barthelona* sp. strain PAP020 inferred from the 148-
328 gene alignment was assessed by an approximately unbiased test (Shimodaira 2002). We
329 modified the ML tree to prepare four alternative tree topologies, in which strain PAP020
330 branches 1) at the base of the Parabasalia clade, 2) at the base of the clade of parabasalids and
331 fornicates, 3) with *Paratrimastix pyriformis*, and 4) at the base of the Metamonada clade. Site
332 likelihood data were calculated over each of the five trees examined (ML plus four alternative
333 trees) using IQ-TREE and then analyzed in CONSEL ver.0.20 (Shimodaira and Hasegawa
334 2001) with the default settings.

335 We evaluated the contribution of fast-evolving sites in the 148-gene alignment to the
336 position of *Barthelona* sp. strain PAP020. Individual rates for sites were calculated over the
337 ML tree topology using DIST_EST (Susko et al. 2003) with the LG + Γ + F model. Fast-
338 evolving sites were progressively removed from the original 148-gene alignment in 4,000-
339 position increments, and each of the resulting alignments was subjected to 100 replicate rapid
340 ML bootstrap analysis with RAxML 8.1.20 with the LG + Γ + F model.

341 **Prediction of proteins localized in the mitochondrion-related organelle in *Barthelona* sp.**

342 **PAP020**

343 We searched for mRNA sequences encoding proteins predicted to be localized to the
344 mitochondrion-related organelle (MRO) in *Barthelona* sp. strain PAP020, as well as those
345 involved in anaerobic ATP generation. For this we searched among the contigs generated
346 from the second RNA-seq experiment by TBLASTN, using the hydrogenosomal/MRO
347 proteins in *Trichomonas vaginalis* and *Giardia intestinalis* as the queries (Leger et al. 2017).
348 The amino acid sequences deduced from the contigs retrieved by the first BLAST searches
349 were then subjected to BLASTP analyses against NCBI nr database to exclude false positives.
350 The domain structures of the putative MRO proteins were examined using hmmscan 3.1
351 (<http://hmmer.org>). We inspected each of the putative MRO proteins for potential
352 mitochondrial targeting sequences using MitoFates (Fukasawa et al. 2015) with default
353 parameters for the fungal sequences, and NommPred (Kume et al. 2018) with parameters for
354 canonical mitochondria and MRO.

355

356 **Acknowledgements**

357 This work was supported in part by a fund from the grants from the Japan Society for the
358 Promotion of Science (18KK0203 and 19H03280 awarded to YI; 15H05231 and 19KK0185
359 to TH) and by the "Tree of Life" research project of University of Tsukuba, as well as Natural
360 Sciences and Engineering Research Council (Canada) Discovery (Grant 298366-2014 to
361 AGBS). We thank Dr. Noèlia Carrasco for providing access to the Delta de l'Ebre sampling
362 location for strain LRM2. The SSU rDNA sequences of *Barthelona* spp. were deposited in
363 GenBank/EMBL/DDBJ database under the accession nos. LC506386–LC506390. The

364 transcriptome data of strain PAP020 were deposited in DDBJ Sequence Archive under the
365 accession nos. SRA### and SRA\$\$\$\$.

366 **References**

367 Bernard C, Simpson AGB, Patterson DJ. 2000. Some free-living flagellates (protista) from
368 anoxic habitats. *Ophelia* 52:113–142.

369 Bleidorn C. 2016. Third generation sequencing: Technology and its potential impact on
370 evolutionary biodiversity research. *Syst. Biodivers.* 14:1–8.

371 Brown MW, Heiss AA, Kamikawa R, Inagaki Y, Yabuki A, Tice AK, Shiratori T, Ishida KI,
372 Hashimoto T, Simpson AGB, et al. 2018. Phylogenomics places orphan protistan
373 lineages in a novel eukaryotic super-group. *Genome Biol. Evol.* 10:427–433.

374 Burki F. 2014. The eukaryotic tree of life from a global phylogenomic perspective. *Cold
375 Spring Harb. Perspect. Biol.* 6.

376 Burki F, Inagaki Y, Bråte J, Archibald JM, Keeling PJ, Cavalier-Smith T, Sakaguchi M,
377 Hashimoto T, Horak A, Kumar S, et al. 2009. Large-scale phylogenomic analyses reveal
378 that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to
379 photosynthetic chromalveolates. *Genome Biol. Evol.* 1:231–238.

380 Burki F, Kaplan M, Tikhonenkov D V., Zlatogursky V, Minh BQ, Radaykina L V., Smirnov
381 A, Mylnikov AP, Keeling PJ. 2016. Untangling the early diversification of eukaryotes: A
382 phylogenomic study of the evolutionary origins of centrohelida, haptophyta and
383 cryptista. *Proc. R. Soc. B Biol. Sci.* 283:20152802.

384 Burki F, Roger A, Brown MW, Simpson AGB. 2019. The new tree of eukaryotes. *Trends
385 Ecol. Evol.* In press.

386 Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E,
387 Chabi M, Djemiel C, et al. 2018. Nuclear genome sequence of the plastid-lacking
388 cryptomonad *Goniomonas avonlea* provides insights into the evolution of secondary
389 plastids. *BMC Biol.* 16:137.

390 Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. 2015. MitoFates: Improved
391 prediction of mitochondrial targeting sequences and their cleavage sites. *Mol. Cell.
392 Proteomics* 14:1113–1126.

393 Gawryluk RMR, Tikhonenkov D V., Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ.
394 2019. Non-photosynthetic predators are sister to red algae. *Nature* 572:240–243.

395 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
396 Raychowdhury R, Zeng Q, et al. 2011. Full-length transcriptome assembly from RNA-
397 Seq data without a reference genome. *Nat. Biotechnol.* 29:644–652.

398 Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles
399 D, Li B, Lieber M, et al. 2013. De novo transcript sequence reconstruction from RNA-
400 seq using the Trinity platform for reference generation and analysis. *Nat. Protoc.*
401 8:1494–1512.

402 Janouškovec J, Tikhonenkov D V., Burki F, Howe AT, Rohwer FL, Mylnikov AP, Keeling
403 PJ. 2017. A new lineage of eukaryotes illuminates early mitochondrial genome
404 reduction. *Curr. Biol.* 27:3717-3724.e5.

405 Kamikawa R, Kolisko M, Nishimura Y, Yabuki A, Brown MW, Ishikawa S a, Ishida K,
406 Roger AJ, Hashimoto T, Inagaki Y. 2014. Gene content evolution in Discobid
407 mitochondria deduced from the phylogenetic position and complete mitochondrial
408 genome of *Tsukubamonas globosa*. *Genome Biol. Evol.* 6:306–315.

409 Katoh K. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast
410 Fourier transform. *Nucleic Acids Res.* 30:3059–3066.

411 Katoh K, Standley DM. 2014. MAFFT: Iterative refinement and additional methods. *Methods*
412 *Mol. Biol.* 1079:131–146.

413 Keeling PJ, Burki F. 2019. Progress towards the tree of eukaryotes. *Curr. Biol.* 29:R808–
414 R817.

415 Kolisko M, Boscaro V, Burki F, Lynn DH, Keeling PJ. 2014. Single-cell transcriptomics for
416 microbial eukaryotes. *Curr. Biol.* 24:R1081–R1082.

417 Kulda J, Nohýnková E, Cepicka I. 2017. Retortamonadida (with Notes on A *Carpediemonas*-
418 like organisms and Caviomonadidae). In: *Handbook of the Protists: Second Edition*.
419 Springer International Publishing. p. 1247–1278.

420 Kume K, Amagasa T, Hashimoto T, Kitagawa H. 2018. NommPred: Prediction of
421 mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms.
422 *Evol. Bioinformat.* 14:1-12.

423 Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts
424 in the animal phylogeny using a site-heterogeneous model. *BMC Evol. Biol.* 7:S4.

425 Lartillot N, Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the
426 amino-acid replacement process. *Mol. Biol. Evol.* 21:1095–1109.

427 Lartillot N, Philippe H. 2006. Computing Bayes factors using thermodynamic integration.
428 *Syst. Biol.* 55:195–207.

429 Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB. 2018. Hemimastigophora is
430 a novel supra-kingdom-level lineage of eukaryotes. *Nature* 564:410–414.

431 Lee WJ. 2002. Some free-living heterotrophic flagellates from marine sediments of Inchon
432 and Ganghwa Island, Korea. *Korean J. Biol. Sci.* 6:125–143.

433 Lee WJ. 2006. Some free-living heterotrophic flagellates from marine sediments of tropical
434 Australia. *Ocean Sci. J.* 41:75–95.

435 Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Čepička I, Silberman JD,
436 Andersson JO, Xu F, Yabuki A, et al. 2017. Organelles that illuminate the origins of
437 *Trichomonas* hydrogenosomes and *Giardia* mitosomes. *Nat. Ecol. Evol.* 1:0092.

438 Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or
439 without a reference genome. *BMC Bioinformatics* 12:323.

440 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective
441 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.*
442 32:268–274.

443 Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
444 Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient bayesian phylogenetic
445 inference and model choice across a large model space. *Syst. Biol.* 61:539–542.

446 Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. *Syst.*
447 *Biol.* 51:492–508.

448 Shimodaira H, Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic
449 tree selection. *Bioinformatics* 17:1246–1247.

450 Simpson AGB. 2003. Cytoskeletal organization, phylogenetic affinities and systematics in the
451 contentious taxon Excavata (Eukaryota). *Int. J. Syst. Evol. Microbiol.* 53:1759–1777.

452 Simpson AGB, Patterson DJ. 1999. The ultrastructure of *Carpediemonas membranifera*
453 (Eukaryota) with reference to the “excavate hypothesis.” *Eur. J. Protistol.* 35:353–370.

454 Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of
455 large phylogenies. *Bioinformatics* 30:1312–1313.

456 Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov D V., Burki F. 2019. New phylogenomic
457 analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life.
458 *Mol. Biol. Evol.* 36:757–765.

459 Susko E, Field C, Blouin C, Roger AJ. 2003. Estimation of rates-across-sites distributions in
460 phylogenetic substitution models. *Syst. Biol.* 52:594–603.

461 Tanifuji G, Takabayashi S, Kume K, Takagi M, Nakayama T, Kamikawa R, Inagaki Y,
462 Hashimoto T. 2018. The draft genome of *Kipferlia bialata* reveals reductive genome
463 evolution in fornicate parasites. PLoS One 13: e0194487.

464 Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, Van Der Giezen M, Hernández M,
465 Müller M, Lucocq JM. 2003. Mitochondrial remnant organelles of *Giardia* function in
466 iron-sulphur protein maturation. Nature 426:172–176.

467 Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ. 2017. Next-generation sequencing
468 (NGS) in the microbiological world: How to make the most of your money. J. Microbiol.
469 Methods 138:60–71.

470 Wang HC, Minh BQ, Susko E, Roger AJ. 2018. Modeling site heterogeneity with posterior
471 mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol.
472 67:216–235.

473 Yabuki A, Gyaltsen Y, Heiss AA, Fujikura K, Kim E. 2018. *Ophirina amphinema* n. gen., n.
474 sp., a new deeply branching discobid with phylogenetic affinity to jakobids. Sci. Rep. 8.

475 Yabuki A, Kamikawa R, Ishikawa S a, Kolisko M, Kim E, Tanabe AS, Kume K, Ishida K-I,
476 Inagaki Y. 2014. *Palpitomonas bilix* represents a basal cryptist lineage: insight into the
477 character evolution in Cryptista. Sci. Rep. 4:4641.

478 Yabuki N, Inagaki Y, Nakayama T, Inouye I. 2007. Ultrastructure and ribosomal RNA
479 phylogeny of the free-living heterotrophic flagellate *Dysnectes brevis* n. gen., n. sp., a
480 new member of the Fornicata. J. Eukaryot. Microbiol. 54:191–200.

481 Yabuki N, Simpson AGB, Leander BS. 2013. Comprehensive ultrastructure of *Kipferlia*
482 *bialata* provides evidence for character evolution within the Fornicata (Excavata). Protist
483 164:423–439.

484 Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. 2012. *Collodictyon*—
485 an ancient lineage in the tree of eukaryotes. Mol. Biol. Evol. 29:1557–1568.

486

487 **Figure legends**

488 **Figure 1. Light micrographs of *Barthelona* spp. studied in this study.** Strains PAP020,
489 FB11, LRM2, EYP1702 and PCE are shown in (A), (B), (C), (D), and (E), respectively.
490 Flagella are marked by arrowheads. Scale bars = 10 μ m.

491

492 **Figure 2. Global eukaryotic phylogeny inferred from small subunit ribosomal DNA**
493 **sequences.** The tree topology was inferred using the maximum-likelihood (ML) method and
494 ML bootstrap values (MLBPs) and Bayesian posterior probabilities (BPPs) were mapped on
495 the ML tree. The nodes marked by dots were supported by MLBPs of 100% and BPPs of 1.0.
496 MLBPs less than 70% are not shown. BPPs of 0.95 or more are marked by diamonds.

497

498 **Figure 3. Global eukaryotic phylogeny inferred from a 148-gene alignment.** The tree
499 topology was inferred using the maximum-likelihood (ML) method; ML bootstrap values
500 (MLBPs) and Bayesian posterior probabilities (BPPs) were mapped on the ML tree. The
501 Bayesian analysis recovered an identical overall topology. The nodes marked by dots were
502 supported by MLBPs of 98% or more, and BPPs of 0.95 or more. MLBPs less than 60% or
503 BPPs below 0.80 are not shown. The bar graph for each taxon indicates the percent coverage
504 of the amino acid positions in the 148-gene analyses.

505

506 **Figure 4. Function and evolution of the mitochondrion-related organelles (MRO) of**
507 ***Barthelona* sp. strain PAP020.** A. Reconstructed metabolic pathways in the MRO of strain
508 PAP020. Dark purple ellipses indicate that the transcripts encoding hydrogenosomal/MRO
509 proteins were detected in the *Barthelona* RNA-seq data, and their N-termini were predicted as
510 transit peptides for mitochondria/MRO by MitoFates (Fukasawa et al. 2015) and/or
511 NommPred (Kume et al. 2018). Pale purple ellipses indicate putative hydrogenosomal/MRO
512 proteins lacking N-terminal sequence information or those with N-terminal extensions that
513 were not predicted as mitochondria/MRO localizing by MitoFates and NommPred.
514 Hydrogenosomal/MRO proteins shown in grey ellipses represent the absence of the
515 corresponding transcripts in the *Barthelona* RNA-seq data. Strain PAP020 possesses two
516 acetatyl CoA synthases (ACS), one corresponds to the cytosolic ACS of multiple fornicates

517 (ACS2) and the other showed no clear phylogenetic affinity to any known ACS (ACS3; see
518 Fig. S3). We regard ACS2 as a cytosolic protein in strain PAP020 (blue ellipse). As there is
519 no hint for the subcellular localization of ACS3, this version is omitted from the figure. 1, H₂-
520 synthesis; 2, pyruvate metabolism; 3, substrate-level phosphorylation; 4, amino acid
521 metabolism; 5, Fe-S cluster assembly; 6, anti-oxidant system; 7, protein modification.
522 Abbreviations: Ala, alanine; Asp, aspartic acid; Cys, cysteine; Glu, glutamic acid; Gly,
523 glycine; α-KG, α-ketoglutaric acid; Trp, tryptophan; OAA, oxaloacetic acid; NAD⁺/NADH,
524 nicotinamide adenine dinucleotide; NADP⁺/NADPH, nicotinamide adenine dinucleotide
525 phosphate; HydE/F/G, hydrogenase maturases E/F/G; HydA/[Fe]-Hyd, hydrogenase; Fdx,
526 ferredoxin; NuoE/F, 24/51 kDa of mitochondrial NADH:ubiquinone oxidoreductase; ME,
527 malic enzyme; PFO, pyruvate:ferredoxin oxidoreductase; ASCT, acetate:succinyl-CoA
528 transferase; H/L/P/T, glycine cleavage system protein H/L/P/T; AlaAT, alanine
529 aminotransferase; AspAT, aspartate aminotransferase; TNase, tryptophanase; GDH, glutamate
530 dehydrogenase; HCP, hybrid-cluster protein; SHMT, serine hydroxymethyltransferase; CS,
531 cysteine synthase; MGL, monoacylglycerol lipase; Fxn, frataxin; OsmC, osmotically inducible protein;
532 iron-sulfur cluster assembly protein; Fxn, frataxin; OsmC, osmotically inducible protein;
533 SOD, superoxide dismutase; Trx, thioredoxin; TrxR, thioredoxin reductases; TrxP,
534 thioredoxin peroxidase; Rbr, rubrerythrin; Cpn60/10, chaperonin 60/10; Hsp70, heat shock
535 protein 70; HscB, heat shock cognate B; GrpE, nucleotide exchange factor for DnaK; DnaJ,
536 heat shock protein 40; MPPα/β, mitochondrial processing peptidase α/β. B. Evolution of ATP
537 generation in barthelonids, parabasalids and selected fornicates. In the clade of fornicates and
538 barthelonids (Fornicata+ clade), substrate-level phosphorylation (blue) was lost on two
539 separate branches. The cytosolic ACS2 (yellow), which was established at the base of the
540 Fornicata+ clade, was replaced by an evolutionarily distinct type of ACS (ACS1; red) during
541 the evolution of fornicates.

542

543 **Table S1: Amino acid positions and coverages of the 148 single-gene alignments used in**
544 **this study.**

545

546 **Table S2: Putative MRO proteins of *Barthelona* sp. strain PAP020 and their predicted**
547 **subcellular localizations.**

548

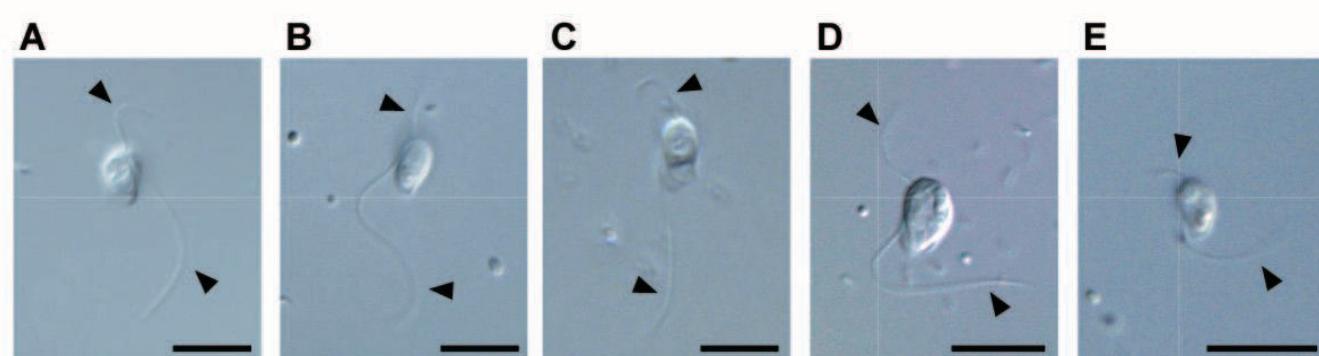
549 **Figure S1: The impact of removal of fast-evolving alignment positions on the**
550 **phylogenetic relationship among fornicates, parabasalids and *Barthelona* sp. strain**
551 **PAP020.**

552 Fast-evolving positions in the 148-gene alignments were progressively removed in 4,000
553 position increments. The filtered alignments were individually subjected to rapid ML
554 bootstrap analyses using RAxML. For each data point, we plotted the support values for (i)
555 the sister relationship between strain PAP020 and fornicates (blue), (ii) the monophyly of
556 fornicates (orange), (iii) the sister relationship between strain PAP020 and parabasalids (gray)
557 and (iv) the monophyly of parabasalids (green).

558

559 **Figure S2: Transmission electron micrograph image of MRO of *Barthelona* sp. PAP020**
560 Scale bar = 500 nm. A specimen for transmission electron microscopy (TEM) observation
561 was prepared as follows; cultivated cells were centrifuged and fixed with pre-fixation for 1 h
562 at room temperature with a mixture of 2% (v/v) glutaraldehyde, 0.1 M sucrose, and 0.1 M
563 sodium cacodylate buffer (pH 7.2, SCB). Fixed cells were washed with 0.2 M SCB three
564 times. Cells were post-fixed with 1% (v/v) OsO₄ with 0.1 M SCB for 1 h at 4 °C. Cells were
565 washed with 0.2 M SCB two times. Dehydration was performed using a graded series of 30–
566 100% ethanol (v/v). After dehydration, cells were placed in a 1:1 mixture of 100% ethanol

567 and acetone for 10 min and acetone for 10 min for two cycles. Resin replacement was
568 performed by a 1:1 mixture of acetone and Agar Low Viscosity Resin R1078 (Agar Scientific
569 Ltd, Stansted, England) for 30 min and resin for 2 h. Resin was polymerized by heating at
570 60 °C for 8 h. Ultrathin sections were prepared on a Reichert Ultracut S ultramicrotome
571 (Leica, Vienna, Austria), double stained with 2% (w/v) uranyl acetate and lead citrate
572 (Hanaichi et al., 1986, Sato, 1968), and observed using a Hitachi H-7650 electron microscope
573 (Hitachi High-Technologies Corp., Tokyo, Japan) equipped with a Vela TEM CCD camera
574 (Olympus Soft Imaging System, Münster, Germany).


575

576 **Figure S3: Phylogenetic tree of acetyl-CoA synthase (ACS) sequences.**

577 The ACS phylogeny was inferred using the maximum-likelihood (ML) method and ML
578 bootstrap values (MLBPs) were mapped on the ML tree. MLBPs below 50% are not shown.
579 Two ACS sequences of *Barthelona* sp. strain PAP020 are highlighted in red. The pink- and
580 green-colored sequences are of eukaryotes and archaea, respectively. The clades of ACS1 and
581 ACS2 were defined by referring to the phylogenetic analysis presented in Leger et al. (2017).

582

bioRxiv preprint doi: <https://doi.org/10.1101/805762>; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure. 1

Figure 2

Figure 3

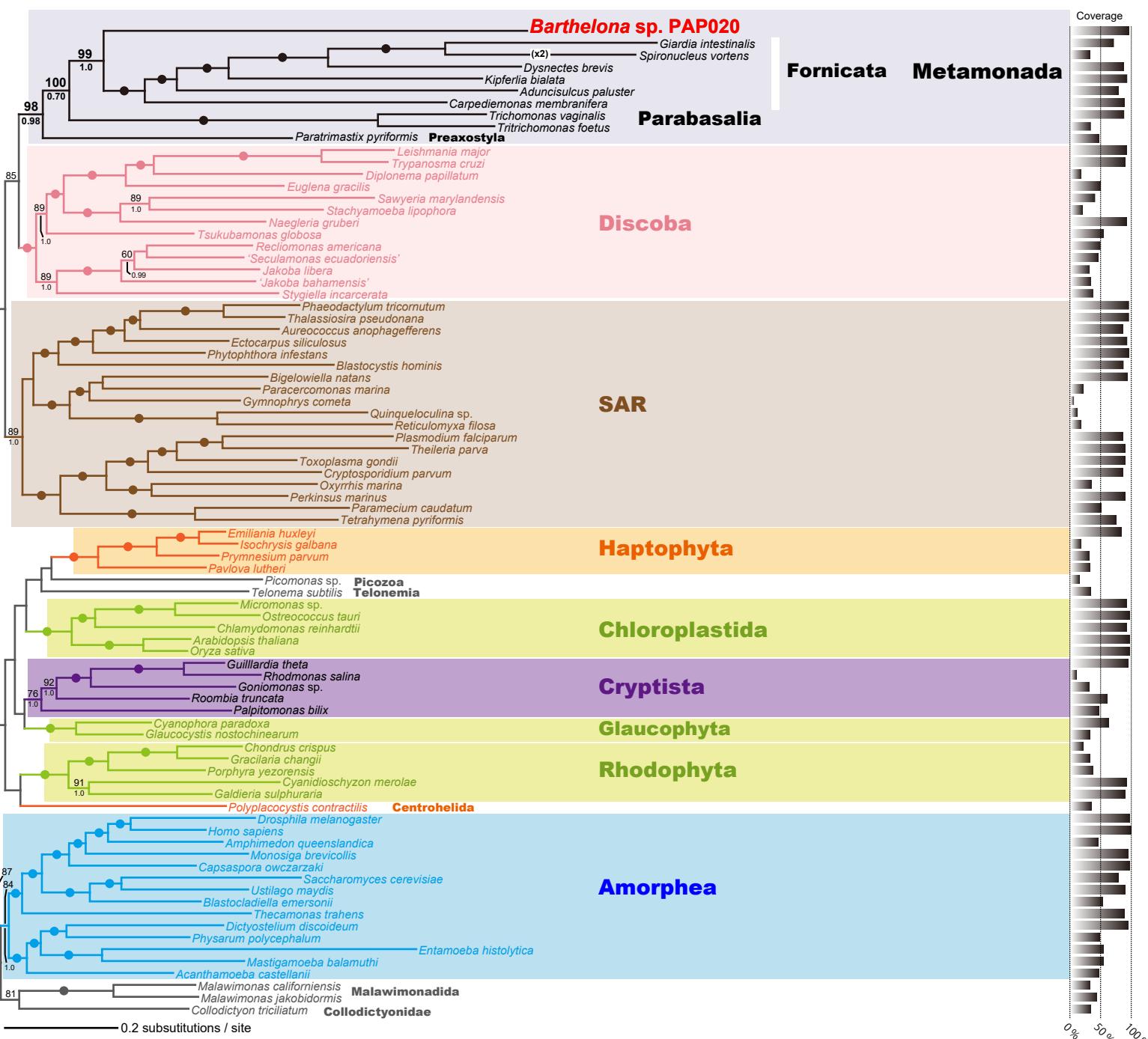
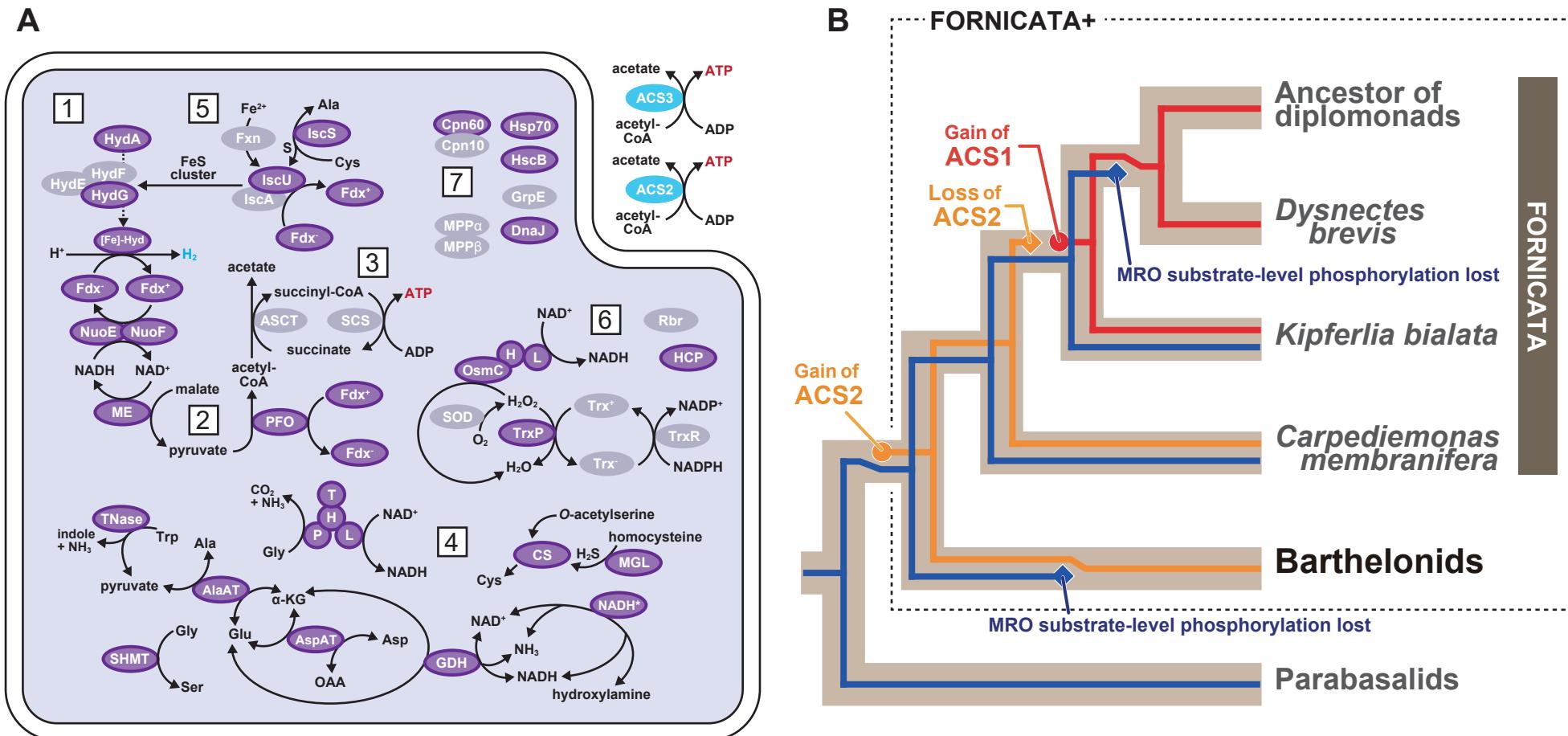
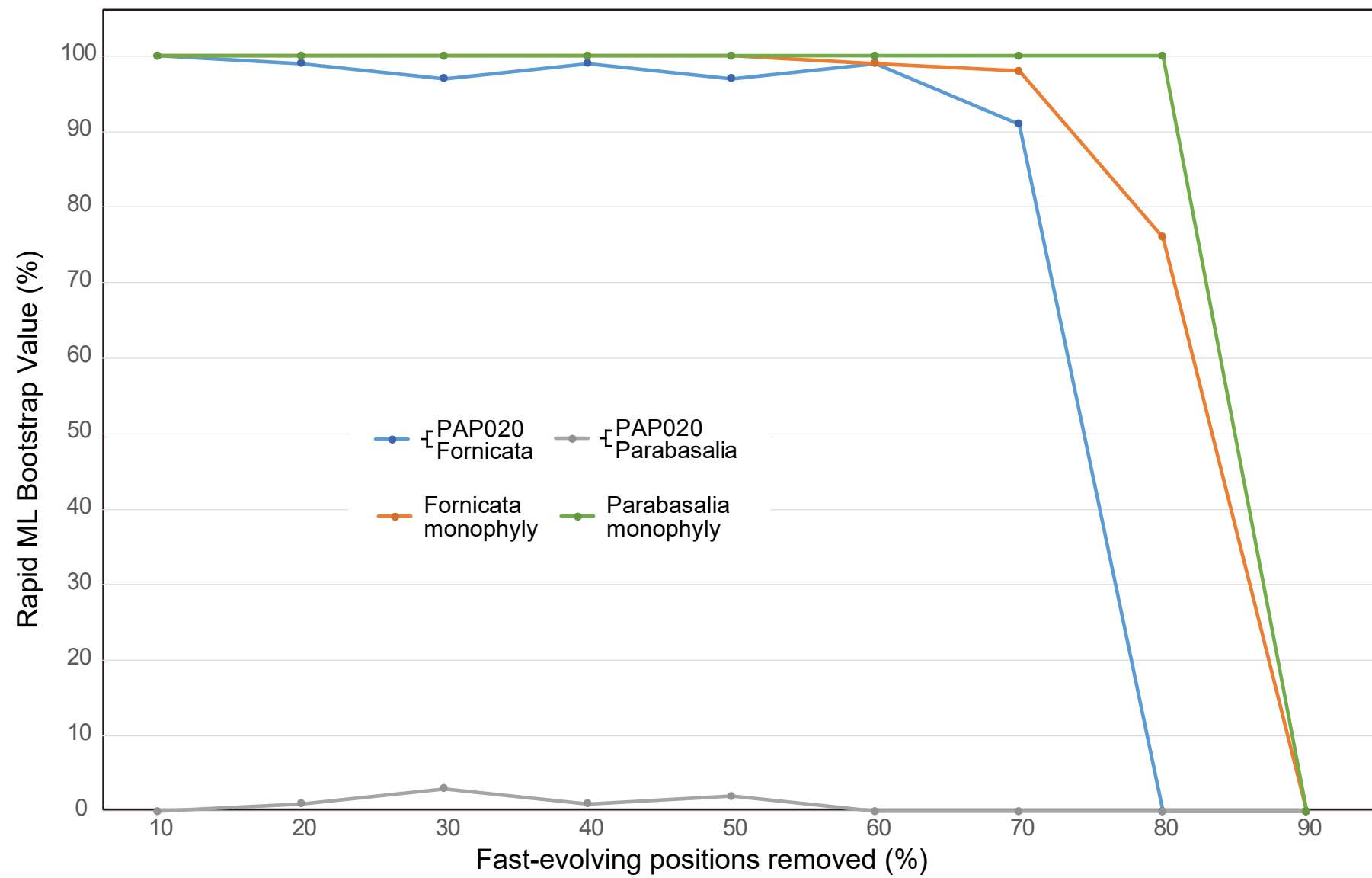
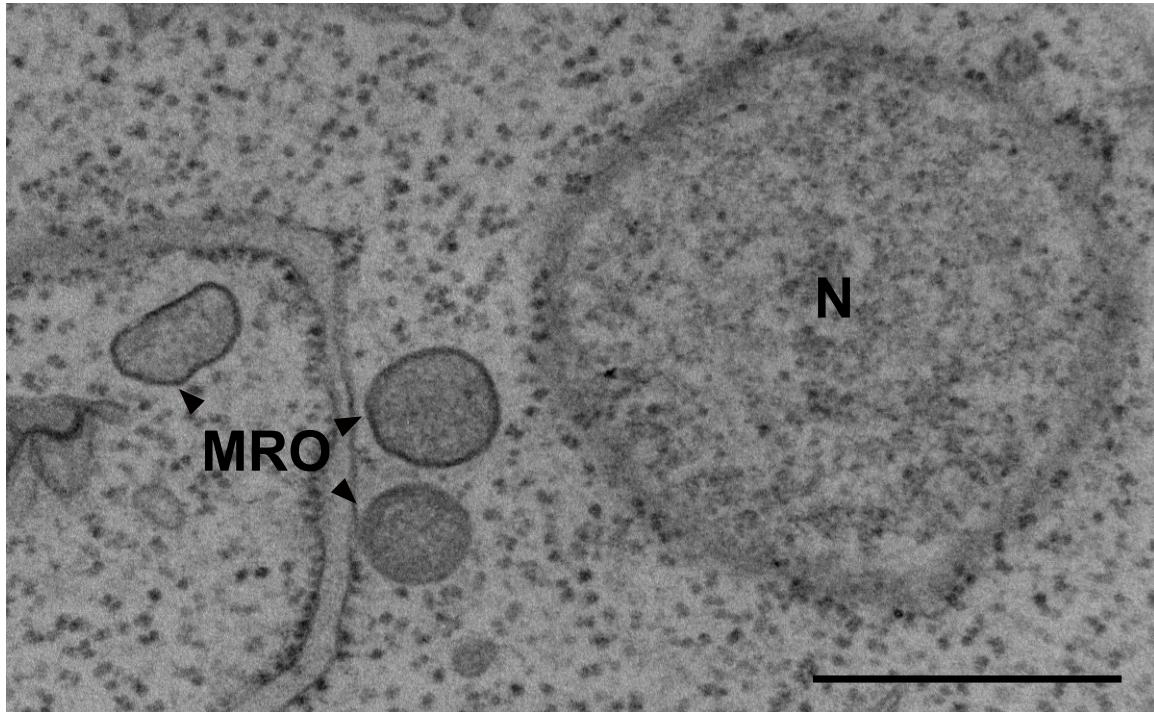
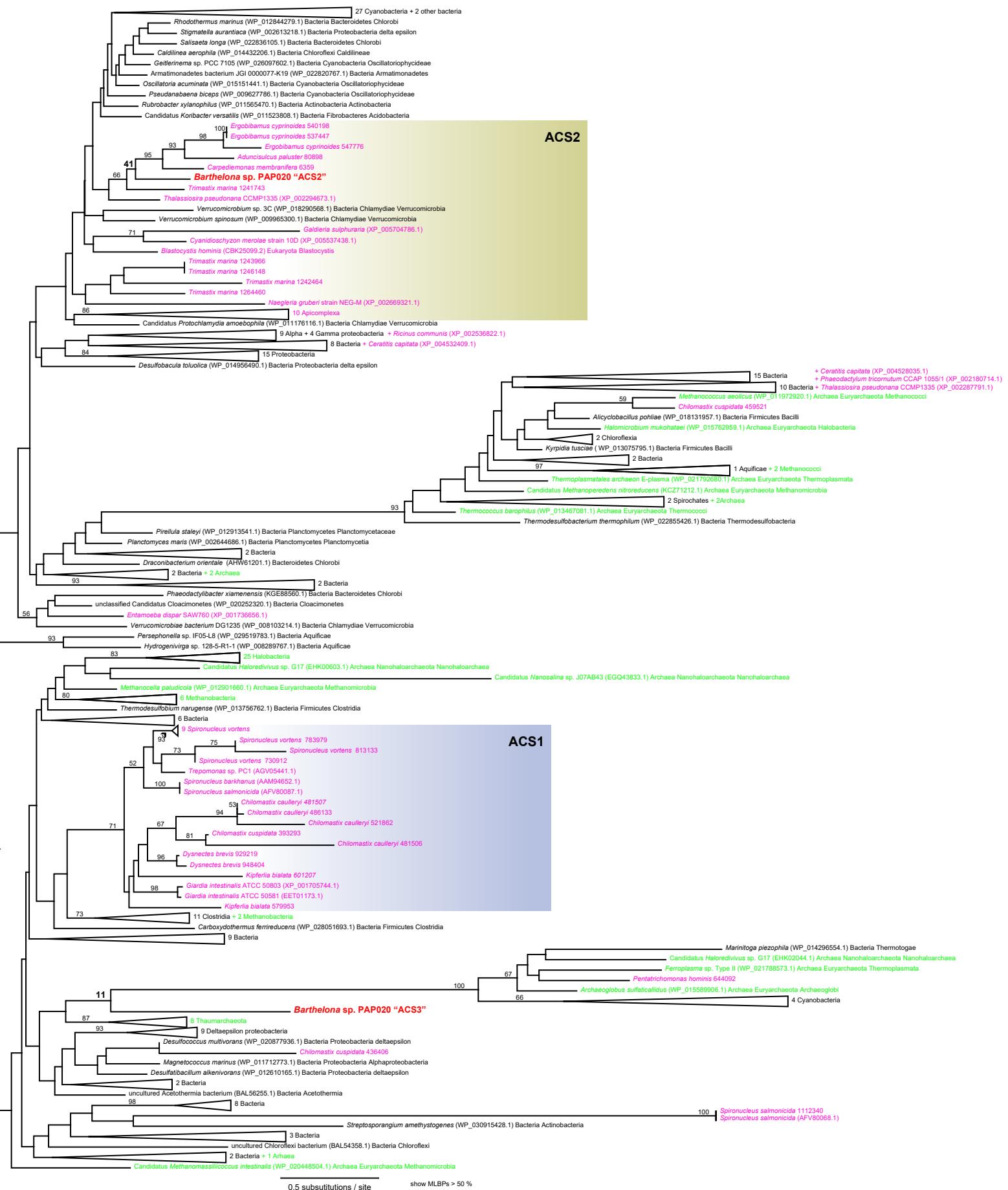





Figure 4


Supplemental figure 1

Supplemental figure 2

Supplemental Figure 3

