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Abstract 28 

We here report the phylogenetic position of barthelonids, small anaerobic flagellates 29 

previously examined using light microscopy alone. Barthelona spp. were isolated from 30 

geographically distinct regions and we established five laboratory strains. Transcriptomic data 31 

generated from one Barthelona strain (PAP020) was used for large-scale, multi-gene 32 

phylogenetic (phylogenomic) analyses. Our analyses robustly placed strain PAP020 at the 33 

base of the Fornicata clade, indicating that barthelonids represent a deep-branching 34 

Metamonad clade. Considering the anaerobic/microaerophilic nature of barthelonids and 35 

preliminary electron microscopy observations on strain PAP020, we suspected that 36 

barthelonids possess functionally and structurally reduced mitochondria (i.e. mitochondrion-37 

related organelles or MROs). The metabolic pathways localized in the MRO of strain PAP020 38 

were predicted based on its transcriptomic data and compared with those in the MROs of 39 

fornicates. Strain PAP020 is most likely incapable of generating ATP in the MRO, as no 40 

mitochondrial/MRO enzymes involved in substrate-level phosphorylation were detected. 41 

Instead, we detected the putative cytosolic ATP-generating enzyme (acetyl-CoA synthetase), 42 

suggesting that strain PAP020 depends on ATP generated in the cytosol. We propose two 43 

separate losses of substrate-level phosphorylation from the MRO in the clade containing 44 

barthelonids and (other) fornicates. 45 

 46 
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Introduction 49 

 Elucidating the evolutionary relationships among the major groups of eukaryotes is 50 

one of the most fundamental but unsettled questions in biology. It is widely accepted that 51 

large-scale molecular data for phylogenetic analyses (so-called phylogenomic data) are 52 

indispensable to infer ancient splits in the tree of eukaryotes (Burki 2014; Burki et al. 2019; 53 

Keeling and Burki 2019). Preparing phylogenomic data has been greatly advanced by the 54 

recent technological improvements in sequencing that generate a large amount of molecular 55 

data at an affordable cost and in a reasonable time-frame (Bleidorn 2016; Vincent et al. 56 

2017). Further, some recent phylogenomic analyses have included uncultured microbial 57 

eukaryotes (e.g., Lax et al. 2018), since the libraries for sequencing of the whole-58 

genome/transcriptome can be prepared from a small number of cells (or even a single cell) 59 

isolated from an environment sample (Kolisko et al. 2014; Strassert et al. 2019).  60 

 Despite these advances in experimental techniques, it is realistic to assume that no 61 

current phylogenomic analysis has covered the true diversity of eukaryotes. A large number 62 

of extant microbial eukaryotes have never been examined using transcriptomic or genomic 63 

techniques, and some of them may hold the keys to resolving important unanswered questions 64 

in eukaryotic phylogeny and evolution. Thus, to reconstruct the evolutionary relationships 65 

among the major eukaryotic assemblages to a resolution that is both accurate and informative, 66 

the taxon sampling in phylogenomic analyses has been improved by targeting two classes of 67 

organisms: (i) Novel microbial eukaryotes that represent lineages that were previously 68 

unknown to science, and (ii) “orphan eukaryotes” that had been reported before, but whose 69 

evolutionary affiliations were unresolved by morphological examinations and/or single-gene 70 

phylogenies (Zhao et al. 2012; Kamikawa et al. 2014; Yabuki et al. 2014; Burki et al. 2016; 71 

Janouškovec et al. 2017; Brown et al. 2018; Lax et al. 2018; Gawryluk et al. 2019; Strassert et 72 

al. 2019). 73 
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Many of “orphan eukaryotes” were described based solely on morphological 74 

information prior to the regular use of gene sequences in phylogenetic/taxonomic studies. 75 

One such organism is the small free-living heterotrophic biflagellate Barthelona vulgaris 76 

(Bernard et al. 2000). The initial description of B. vulgaris was based on light microscopy 77 

observations of cells isolated from marine sediment from Quibray Bay, Australia, and 78 

maintained temporarily in nominally anoxic crude culture (Bernard et al. 2000). The 79 

morphospecies was later identified at different geographical locations (Lee 2002; Lee 2006) 80 

but never examined with methods incorporating molecular data. These past studies identified 81 

no special morphological similarity between B. vulgaris and any eukaryotes described to date 82 

at the morphological level (Bernard et al. 2000; Lee 2002; Lee 2006). Thus, to clarify the 83 

phylogenetic placement of B. vulgaris in the tree of eukaryotes, molecular phylogenetic 84 

analyses are required, preferably at the “phylogenomic” scale. 85 

We here report five laboratory strains of Barthelona (EYP1702, FB11, LRM2, 86 

PAP020 and PCE; Figs. 1A-E) isolated from separate geographical regions, and infer their 87 

phylogenetic positions assessed by analyzing both SSU rDNA and phylogenomic data. A 88 

SSU rDNA phylogeny robustly united all of the Barthelona strains together, but the precise 89 

placement of Barthelona spp. among other eukaryotes remained inconclusive. To infer the 90 

precise phylogenetic position of barthelonids, we obtained a transcriptome data from strain 91 

PAP020, and analyzed its phylogenetic position from a eukaryote-wide dataset containing 92 

148 genes. The transcriptome data of strain PAP020 was also used for reconstructing the 93 

metabolic pathways in a functionally and structurally reduced mitochondrion that is the result 94 

of adaptation to anaerobiosis.  95 

  96 
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Results and Discussion 97 

 98 

Phylogenetic position of barthelonids  99 

Overall, the maximum-likelihood (ML) and Bayesian phylogenetic analyses of small 100 

subunit ribosomal RNA gene (SSU rDNA) sequences resolved known major eukaryote 101 

groups with moderate to high statistical support values, but the backbone of the tree remained 102 

unresolved (Fig. 2). In the SSU rDNA tree, all of Barthelona sp. strains PAP020, EYP1702, 103 

FB11, PCE, and LRM2 grouped together with a ML bootstrap value (MLBP) of 83% and a 104 

Bayesian posterior probability (BPP) of 0.98. In this Barthelona clade, strains EYP1702 and 105 

PCE were the earliest and second earliest diverging taxa, respectively, and strains PAP020, 106 

LRM2 and FB11 formed a tight subclade. The Barthelona clade was sister to a Fornicata 107 

clade comprising Carpediemonas membranifera, Kipferlia bialata, Dysnectes brevis, 108 

Retortamonas sp. and Giardia intestinalis (Fig. 2), but statistical support was equivocal 109 

(MLBP 56%; BPP 0.86). This possible affinity between Barthelona and fornicates in the SSU 110 

rDNA phylogeny is provocative, as both lineages thrive in oxygen-poor environments and 111 

possess double-membrane bound MROs instead of typical mitochondria (Simpson and 112 

Patterson 1999; Tovar et al. 2003; Yubuki et al. 2007; Yubuki et al. 2013; Kulda et al. 2017; 113 

see Fig. S2 for the putative MRO in strain PAP020). Thus, we took a phylogenomic approach 114 

to more robustly resolve the position of barthelonids in the tree of eukaryotes. 115 

As anticipated, both ML and Bayesian phylogenetic analyses of a multi-gene 116 

alignment comprising 148 genes (148-gene alignment) provided us deeper insights into the 117 

backbone of the tree of eukaryotes (Fig. 3) than the SSU rDNA analyses (Fig. 2). The 118 

backbone tree topology and statistical support values (Fig. 3) agreed largely with those 119 

reported in Kamikawa et al. (2014), Yabuki et al. (2014) and Yabuki et al. (2018), which 120 

analyzed multi-gene alignments generated from the same core set of 157 single-gene 121 
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alignments with mostly similar taxon sampling. The topology includes well established clades 122 

including SAR, Amorphea, Cryptophyceae and Discoba, but, as is common, did not infer a 123 

monophyletic Archaeplastida (Cenci et al. 2018; Strassert et al. 2019). Likewise, the 148-gene 124 

phylogeny recovered neither the clade of Telonema subtilis and SAR (“T-SAR”; Strassert et 125 

al. 2019) nor that of centrohelids and haptophytes (Haptista; Burki et al. 2016). We suspect 126 

that large proportions of missing data in the sequence of T. subtilis and the single included 127 

centrohelid (34 and 35%, respectively), which derived from the transcriptomic data generated 128 

by 454 pyrosequencing (Burki et al. 2009), hindered the recoveries of T-SAR and Haptista in 129 

the 148-gene phylogeny. 130 

 The 148-gene phylogeny grouped Barthelona sp. strain PAP020 and 6 fornicates 131 

together with a MLBP of 99% and a BPP of 1.0 (Fig. 3). In this clade, strain PAP020 132 

occupied the basal position, which was supported fully by both ML and Bayesian analyses. 133 

The clade of strain PAP020 and fornicates was connected sequentially with parabasalids 134 

(MLBP 100%; BPP 0.70), then with Paratrimastix pyriformis (representing Preaxostyla), to 135 

form the Metamonada clade with a MLBP of 98% and a BPP of 0.98 (Fig. 3). Support for 136 

these relationships was hardly affected by exclusion of rapidly evolving alignment positions, 137 

until >60% of site were excluded (Fig. S1). We applied the ML tree and three alternative 138 

trees, wherein strain PAP020 branched at the base of the Parabasalia clade, the clade of 139 

Fornicata + Parabasalia and the Metamonada clade, to an approximately unbiased (AU) test, 140 

and all of the alternative trees were rejected (p < 0.001). The results from the phylogenetic 141 

analyses of 148-gene alignment consistently and robustly indicated that barthelonids are a 142 

previously overlooked Metamonada lineage, which has a specific affinity with the Fornicata 143 

clade. 144 

There are two uncertain issues related to the taxonomic treatment of barthelonids for 145 

future studies. Firstly, molecular phylogenetic analyses alone cannot determine whether 146 
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barthelonids are (a) a sister taxon to Fornicata, or (b) the deepest known branch within the 147 

taxon of Fornicata. Fornicata is defined by a key ultrastructural characteristic in the flagellar 148 

apparatus, namely the so-called “B fiber” forms a conspicuous arching bridge between the 149 

two flagellar roots supporting the ventral feeding groove (Simpson 2003). Therefore, we need 150 

to investigate the ultrastructure of barthelonid cells in detail for their higher-level taxonomic 151 

treatment. The second issue for future studies is whether it is appropriate to classify all of the 152 

five strains examined in this study into a single genus Barthelona. In the Barthelona clade 153 

recovered in the SSU rDNA phylogeny (Fig. 2), strains PAP020, LRM2 and FB11 appeared 154 

to be closely related to one another but are distant from strains PCE and EYP1702. We need 155 

to assess their morphological characteristics to settle this issue. 156 

Lack of substrate-level phosphorylation in the mitochondrion-related organelle of 157 

Barthelona sp. PAP020. 158 

All of the Barthelona strains assessed in this study (strains PAP020, EYP1702, PCE, LRM2 159 

and FB11) are grown under oxygen-poor conditions in the laboratory. Our preliminary 160 

ultrastructural observation of strain PAP020 did not reveal a typical mitochondrion. Instead 161 

we observed a densely stained, double membrane-bounded organelle (Fig. S2). As all 162 

metamonads studied so far lack typical mitochondria, we suspect that the double membrane-163 

bounded organelle identified in strain PAP020 is the MRO. According to the phylogenetic 164 

position of barthelonids deduced from the SSU rDNA and 148-gene phylogeny (Figs. 2 & 3), 165 

the metabolic pathways retained in the barthelonid MROs are significant to infer the 166 

evolutionary history of the MROs in the Fornicata clade. 167 

Leger et al. (2017) proposed that the ancestral fornicate species possessed an MRO 168 

with a metabolic capacity similar to that of the hydrogenosomes in parabasalids like 169 

Trichomonas vaginalis. Thus, we surveyed the transcriptomic data from strain PAP020 for 170 

transcripts encoding hydrogenosomal/MRO proteins that are homologous to Trichomonas 171 
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proteins localized in the hydrogenosome. Strain PAP020 was predicted to possess the MRO 172 

proteins involved in hydrogen production, pyruvate metabolism, amino acid metabolism, Fe-173 

S cluster assembly, anti-oxidant system and protein modification (chaperones and proteases) 174 

(Figure 4A; purple and grey ellipses represent the proteins found and not found, respectively; 175 

see also Table S2). This suggests that the overall function of the MRO of strain PAP020 is 176 

similar to that of the Trichomonas hydrogenosome, except in ATP generation capacity. We 177 

did not identify any transcripts encoding two enzymes for anaerobic ATP generation through 178 

substrate-level phosphorylation, namely (i) acetate:succinate CoA transferase (ASCT) that 179 

transfers coenzyme A (CoA) from acetyl-CoA to succinate and (ii) succinyl-CoA synthase 180 

(SCS) that phosphorylates ADP to produce ATP coupled with converting succinyl-CoA back 181 

to succinate. We propose that strain PAP020 genuinely lacks ASCT and SCS and that its 182 

MRO is incapable of generating ATP. 183 

We additionally surveyed the PAP020 data for transcripts encoding cytosol-localizing 184 

acetyl-CoA synthase (ACS), which is an alternative mechanism to generate ATP in fornicate 185 

cells. Intriguingly, two distinct ACS sequences were retrieved, designated here as ACS2 and 186 

ACS3. Although the transcripts encoding both ACS versions most likely cover their N-187 

termini, neither of them was predicted to bear the typical signal to be localized in 188 

mitochondria or MROs (i.e. an inferred N-terminal transit peptide). The abundances of the 189 

ACS2 and ACS3 transcripts in strain PAP020 were 2249 and 2208 Transcripts Per kilobase 190 

Million (TPM; Li and Dewey 2011), respectively, implying that the two Barthelona ACS 191 

genes are indistinguishable at the transcription level. We subjected the two ACS sequences to 192 

a phylogenetic analysis along with the homologues sampled from diverse bacteria, archaea 193 

and eukaryotes (Fig S3). The PAP020 ACS2 sequence formed a clade with fornicate “ACS2” 194 

sequences, which Leger et al. (2017) proposed to be cytosolic enzymes. Thus, we suggest that 195 

ACS2 is most likely a cytosolic enzyme in strain PAP020 as well. The ACS phylogeny 196 
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recovered no strong affinity between PAP020 ACS3 sequence and other homologues (Fig. 197 

S3). Neither of our analyses on the ACS3 sequence provided any positive support for MRO 198 

localization, and we tentatively consider ACS3 as a cytosolic enzyme in strain PAP020. 199 

Altogether, we conclude that strain PAP020 depends entirely on ATP generated by the two 200 

cytosol-localizing ACS, as its MRO lacks substrate-level phosphorylation. For a better 201 

understanding of ATP synthesis in this organism, the precise subcellular localizations of 202 

ACS2 and ACS3 in strain PAP020 need to be confirmed experimentally in the future.  203 

Leger et al. (2017) proposed a complex evolution of ATP-generating mechanisms in 204 

the Fornicata clade, as follows: (i) The ancestral fornicate species possessed both substrate-205 

level phosphorylation in the MRO as well as ACS2 in the cytosol. (ii) Substrate-level 206 

phosphorylation has been inherited vertically to the extant fornicate species, except D. brevis 207 

and diplomonads (see below). (iii) During the evolution of Fornicata, the ancestral cytosol-208 

localizing ACS (i.e. ACS2) was replaced by an evolutionarily distinct ACS (ACS1). (iv) The 209 

redundancy in the ATP-generating system allowed the secondary loss of substrate-level 210 

phosphorylation in the MRO prior to the separation of the D. brevis plus diplomonad clade. 211 

We here extend the scenario proposed by Leger et al. (2017) by incorporating the data from 212 

Barthelona sp. strain PAP020 (See Fig. 4B). Acquisition of ACS2 was hypothesized at the 213 

base of the Fornicata clade in the previous work (Leger et al. 2017), but after assessing the 214 

data from stain PAP020, this particular event needs to be pushed back at least to the common 215 

ancestor of fornicates and barthelonids, as strain PAP020 and multiple early-branching CLOs 216 

(e.g., C. membranifera) share ACS2. It is worthy to note that acquisition of ACS2 may extend 217 

back to the last common metamonad ancestor, since a possibly directly related ACS2 is also 218 

present in Trimastix (Fig. S3). Secondly, as barthelonids are distantly related to D. brevis and 219 

diplomonads, loss of substrate-level phosphorylation in barthelonid MROs can be assumed to 220 

have occurred independently from the loss in the common ancestor of D. brevis and 221 
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diplomonads (highlighted by blue diamonds in Fig. 3B). Further, barthelonids and the common 222 

ancestor of D. brevis and diplomonads seem to have accommodated the loss of MRO-localized 223 

substrate-level phosphorylation via possessing evolutionarily distinct ACS homologs (ACS2 and 224 

ACS1, represented by yellow and red lines, respectively in Fig. 4B). 225 

In the current study, we reconstructed the metabolic pathways in the MRO of only one 226 

of the five strains of Barthelona sp. We anticipate that stains PAP020, LRM2 and FB11, 227 

which formed a tight clade in the SSU rDNA phylogeny (Fig. 2), may have MROs with the 228 

same or a very similar set of metabolic pathways. In future studies, it is important to 229 

reconstruct the metabolic pathways in the MROs of strains PCE and/or EYP1702 to further 230 

resolve the evolution of MROs and anaerobic metabolism in the Metamonada clade. 231 

Considering the large evolutionary distance between PCE/EYP1702 and 232 

PAP020/LRM2/FB11 in the SSU rDNA phylogeny (Fig. 2), we may find that the MRO 233 

functions of strains PCE and EYP1702 are substantially different from that of strain PAP020 234 

deduced in the current study.  235 

 236 

Materials & Methods 237 

Isolation and Cultivation 238 

We established five laboratory strains of Barthelona sp. in this study (Fig. 1A-E). 239 

Strains PAP020 and EYP1702 (Figs. 1A & 1D) were isolated from anaerobic mangrove 240 

sediments collected at a seawater lake in the Republic of Palau in November 2011 and 241 

October 2017, respectively. The laboratory cultures have been maintained in mTYGM-9 242 

medium (http://mcc.nies.go.jp/medium/ja/mtygm9.pdf) with prey bacteria at 18-20 ℃. An 243 

anaerobic environment within the laboratory cultures was created by the respiration of prey 244 

bacteria. LRM2 (Fig 1B) was isolated from mud of a defunct saltern (now normal salinity) on 245 
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the Ebre Delta near San Carles de la Ràpita, Catalonia, Spain in February 2015. FB11 (Fig1C) 246 

was isolated from False Bay, an intertidal mud flat on San Juan Island, WA, US in June 2015. 247 

PCE (Fig 1E) was isolated from intertidal sediment near Cavendish, PEI, Canada in July, 248 

2016. The established cultures were maintained with co-cultured bacteria on 3% LB in sterile 249 

natural seawater at 18-21°C. 250 

SSU rDNA phylogenetic analysis  251 

Total DNA samples of Barthelona sp. strains PAP020, EYP1702, FB11, PCE and 252 

LRM2 were extracted from the cultured cells using a DNeasy Plant mini kit (Qiagen) or 253 

NucleoSpin® Tissue kit (Macherey-Nagel). Near-complete SSU rDNA fragments were 254 

amplified from each DNA sample by PCR, using either primers SR1 and SR12 (Nakayama et 255 

al. 1998) or 18F and 18R (Yabuki et al. 2010). The amplification program consisted of 30 256 

cycles of denaturation at 94 ℃ for 30 s, annealing at 55 ℃ for 30 s and extension at 72 ℃ for 257 

90 s. The amplified product was gel-purified, cloned and sequenced by the Sanger method. 258 

We aligned the SSU rDNA sequences of the five Barthelona strains with those of 91 259 

phylogenetically diverse eukaryotes by using MAFFT 7.205 (Katoh 2002; Katoh and 260 

Standley 2014). After manual exclusion of ambiguously aligned positions, 1,573 nucleotide 261 

positions were subjected to ML phylogenetic analyses by using IQTREE v 1. 5. 4 (Nguyen et 262 

al. 2015) with the GTR + R6 model, with MLBPs derived from 500 non-parametric bootstrap 263 

replicates. The SSU rDNA alignment was also subjected to Bayesian phylogenetic analysis 264 

using MrBayes 3.2.3 (Ronquist et al. 2012) with GTR + Γ model. The Markov Chain Monte 265 

Carlo (MCMC) run was performed with one cold and three heated chains with default chain 266 

temperatures. We ran 3,000,000 generations, and sampled log-likelihood scores and trees 267 

with branch lengths every 1,000 generations (the stationarity was confirmed by plotting the 268 

log-likelihoods sampled during the MCMC). The first 25% generations were discarded as 269 
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burn-in. The consensus tree with branch lengths and BPPs were calculated from the 270 

remaining trees. 271 

RNA-seq analyses 272 

We conducted two RNA-seq runs of Barthelona sp. strain PAP020. The sequence 273 

reads from the first analysis was used for a phylogenomic analysis assessing the position of 274 

Barthelona spp. in the tree of eukaryotes, while those from the second sequencing run were 275 

for surveying the proteins localized in the mitochondrial-related organelle (MRO) in strain 276 

PAP020 (see below). 277 

For the first RNA-seq run, PAP020 cells, together with bacterial cells in the culture 278 

medium, were harvested and subjected to RNA extraction using TRIzol (Life Technologies) 279 

by following the manufacturer’s protocol. We shipped the RNA sample to a biotech company 280 

(Hokkaido System Science) for cDNA library construction and subsequent sequencing using 281 

the Illumina HiSeq 2500 platform, which generated 2.9 x 107 paired-end 100-bp reads (2.9 282 

Gb in total). The initial reads were then assembled into 29,251 unique contigs by TRINITY 283 

(Grabherr et al. 2011; Haas et al. 2013). 284 

For the second RNA-seq run, we separated PAP020 cells from the bacterial cells in 285 

the culture medium by a gradient centrifugation using Optiprep (Axis Shield), as reported 286 

previously (Tanifuji et al. 2018), with slight modifications (the Optiprep solution containing 287 

the eukaryotic cells and bacteria was centrifuged at 2,000 g for 20 min, instead of 800 g for 288 

20 min). Total RNA was extracted from the harvested eukaryote-enriched fraction, using 289 

TRIzol by following the manufacturer’s protocol. Poly-A tailed RNAs in the RNA sample 290 

described above were purified with a Dynabeads™ mRNA Purification Kit (Thermo Fisher 291 

Scientific), and then used to construct the cDNA library using the SMART-Seq v4 Ultra Low 292 

Input RNA Kit (Takara Bio USA) for Sequencing and Nextera XT DNA Library Preparation 293 

Kit (Illumina). The resultant cDNA library was sequenced with the Illumina Miseq platform, 294 
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yielding 3.7 x 107 paired-end 300-bp sequence reads (8.6 Gb in total). These were assembled 295 

into 21,286 unique contigs using TRINITY.  296 

Phylogenomic analyses 297 

  To elucidate the phylogenetic position of Barthelona sp. strain PAP020, we prepared a 298 

phylogenomic alignment by updating an existing dataset comprising 157 genes (Kamikawa et 299 

al. 2014; Yabuki et al. 2014; Yabuki et al. 2018, see Table S1). For each of these 157 genes, 300 

we added the homologous sequences retrieved from the transcriptomic data of strain PAP020 301 

(this study) and four fornicates (Carpediemonas membranifera, Aduncisulcus paluster, 302 

Kipferlia bialata and Dysnectes brevis; Leger et al. 2017). Each single-gene alignment was 303 

aligned individually by MAFFT 7.205 with the L-INS-i algorithm followed by manual 304 

correction and exclusion of ambiguously aligned positions. For each of the single-gene 305 

alignments, the ML phylogenetic tree was inferred by RAxML 8.1.20 (Stamatakis 2014) 306 

under the LG + Γ + F model with robustness assessed with a 100 replicate bootstrap analysis. 307 

Individual single-gene trees were inspected to identify the alignments bearing aberrant 308 

phylogenetic signal that disagreed strongly with any of a set of well-established monophyletic 309 

assemblages in the tree of eukaryotes, namely Opisthokonta, Amoebozoa, Alveolata, 310 

Stramenopiles, Rhizaria, Rhodophyta, Viridiplantae, Glaucophyta, Haptophyta, Cryptophyta, 311 

Jakobida, Euglenozoa, Heterolobosea, Diplomonadida, Parabasalia and Malawimonadidae. 312 

Nine out of the 157 single-gene alignments were found to bear idiosyncratic phylogenetic 313 

signal and were excluded from the phylogenomic analyses described below. After inspection 314 

of single-gene alignments/trees, the remaining 148 single-gene alignments (Table S1) were 315 

concatenated into a single phylogenomic alignment containing 83 taxa with 38,816 316 

unambiguously aligned amino acid positions (148-gene alignment). The coverage for each 317 

single-gene alignment is summarized in Table S1. 318 
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  ML analyses of 148-gene alignment were conducted by using IQ-TREE v. 1.5.4 with 319 

the LG + Γ + F + C60 + PMSF (posterior mean site frequencies) model (Wang et al. 2018) 320 

and robustness evaluated with a ML bootstrap analysis on 100 replicates. We also conducted 321 

a Bayesian phylogenetic analysis with the CAT + GTR model using PHYLOBAYES 1.5a 322 

(Lartillot and Philippe 2004; Lartillot and Philippe 2006; Lartillot et al. 2007). In each 323 

analysis, two MCMC runs were run for 5,000 cycles with “burn-in” of 1,250 (‘maxdiff’ value 324 

was 0.96743). The consensus tree with branch lengths and Bayesian posterior probabilities 325 

(BPPs) were calculated from the remaining trees. 326 

The phylogenetic position of Barthelona sp. strain PAP020 inferred from the 148-327 

gene alignment was assessed by an approximately unbiased test (Shimodaira 2002). We 328 

modified the ML tree to prepare four alternative tree topologies, in which strain PAP020 329 

branches 1) at the base of the Parabasalia clade, 2) at the base of the clade of parabasalids and 330 

fornicates, 3) with Paratrimastix pyriformis, and 4) at the base of the Metamonada clade. Site 331 

likelihood data were calculated over each of the five trees examined (ML plus four alternative 332 

trees) using IQ-TREE and then analyzed in CONSEL ver.0.20 (Shimodaira and Hasegawa 333 

2001) with the default settings. 334 

We evaluated the contribution of fast-evolving sites in the 148-gene alignment to the 335 

position of Barthelona sp. strain PAP020. Individual rates for sites were calculated over the 336 

ML tree topology using DIST_EST (Susko et al. 2003) with the LG + Γ + F model. Fast-337 

evolving sites were progressively removed from the original 148-gene alignment in 4,000-338 

position increments, and each of the resulting alignments was subjected to 100 replicate rapid 339 

ML bootstrap analysis with RAxML 8.1.20 with the LG + Γ + F model. 340 
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Prediction of proteins localized in the mitochondrion-related organelle in Barthelona sp. 341 

PAP020 342 

We searched for mRNA sequences encoding proteins predicted to be localized to the 343 

mitochondrion-related organelle (MRO) in Barthelona sp. strain PAP020, as well as those 344 

involved in anaerobic ATP generation.  For this we searched among the contigs generated 345 

from the second RNA-seq experiment by TBLASTN, using the hydrogenosomal/MRO 346 

proteins in Trichomonas vaginalis and Giardia intestinalis as the queries (Leger et al. 2017). 347 

The amino acid sequences deduced from the contigs retrieved by the first BLAST searches 348 

were then subjected to BLASTP analyses against NCBI nr database to exclude false positives. 349 

The domain structures of the putative MRO proteins were examined using hmmscan 3.1 350 

(http://hmmer.org). We inspected each of the putative MRO proteins for potential 351 

mitochondrial targeting sequences using MitoFates (Fukasawa et al. 2015) with default 352 

parameters for the fungal sequences, and NommPred (Kume et al. 2018) with parameters for 353 

canonical mitochondria and MRO.  354 
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 486 

Figure legends 487 

Figure 1. Light micrographs of Barthelona spp. studied in this study. Strains PAP020, 488 

FB11, LRM2, EYP1702 and PCE are shown in (A), (B), (C), (D), and (E), respectively. 489 

Flagella are marked by arrowheads. Scale bars = 10 μm.   490 

 491 
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Figure 2. Global eukaryotic phylogeny inferred from small subunit ribosomal DNA 492 

sequences. The tree topology was inferred using the maximum-likelihood (ML) method and 493 

ML bootstrap values (MLBPs) and Bayesian posterior probabilities (BPPs) were mapped on 494 

the ML tree. The nodes marked by dots were supported by MLBPs of 100% and BPPs of 1.0. 495 

MLBPs less than 70% are not shown. BPPs of 0.95 or more are marked by diamonds. 496 

 497 

Figure 3. Global eukaryotic phylogeny inferred from a 148-gene alignment. The tree 498 

topology was inferred using the maximum-likelihood (ML) method; ML bootstrap values 499 

(MLBPs) and Bayesian posterior probabilities (BPPs) were mapped on the ML tree. The 500 

Bayesian analysis recovered and identical overall topology. The nodes marked by dots were 501 

supported by MLBPs of 98% or more, and BPPs of 0.95 or more. MLBPs less than 60% or 502 

BPPs below 0.80 are not shown. The bar graph for each taxon indicates the percent coverage 503 

of the amino acid positions in the 148-gene analyses.  504 

 505 

Figure 4. Function and evolution of the mitochondrion-related organelles (MRO) of 506 

Barthelona sp. strain PAP020. A. Reconstructed metabolic pathways in the MRO of strain 507 

PAP020. Dark purple ellipses indicate that the transcripts encoding hydrogenosomal/MRO 508 

proteins were detected in the Barthelona RNA-seq data, and their N-termini were predicted as 509 

transit peptides for mitochondria/MRO by MitoFates (Fukasawa et al. 2015) and/or 510 

NommPred (Kume et al. 2018). Pale purple ellipses indicate putative hydrogenosomal/MRO 511 

proteins lacking N-terminal sequence information or those with N-terminal extensions that 512 

were not predicted as mitochondria/MRO localizing by MitoFates and NommPred. 513 

Hydrogenosomal/MRO proteins shown in grey ellipses represent the absence of the 514 

corresponding transcripts in the Barthelona RNA-seq data. Strain PAP020 possesses two 515 

acetatyl CoA synthases (ACS), one corresponds to the cytosolic ACS of multiple fornicates 516 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2019. ; https://doi.org/10.1101/805762doi: bioRxiv preprint 

https://doi.org/10.1101/805762
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

(ACS2) and the other showed no clear phylogenetic affinity to any known ACS (ACS3; see 517 

Fig. S3). We regard ACS2 as a cytosolic protein in strain PAP020 (blue ellipse). As there is 518 

no hint for the subcellular localization of ACS3, this version is omitted from the figure. 1, H2-519 

synthesis; 2, pyruvate metabolism; 3, substrate-level phosphorylation; 4, amino acid 520 

metabolism; 5, Fe-S cluster assembly; 6, anti-oxidant system; 7, protein modification. 521 

Abbreviations: Ala, alanine; Asp, aspartic acid; Cys, cysteine; Glu, glutamic acid; Gly, 522 

glycine; α-KG, α-ketoglutaric acid; Trp, tryptophan; OAA, oxaloacetic acid; NAD+/NADH, 523 

nicotinamide adenine dinucleotide; NADP+/NADPH, nicotinamide adenine dinucleotide 524 

phosphate; HydE/F/G, hydrogenase maturases E/F/G; HydA/[Fe]-Hyd, hydrogenase; Fdx, 525 

ferredoxin; NuoE/F, 24/51 kDa of mitochondrial NADH:ubiquinone oxidoreductase; ME, 526 

malic enzyme; PFO, pyruvate:ferredoxin oxidoreductase; ASCT, acetate:succinyl-CoA 527 

transferase; H/L/P/T, glycine cleavage system protein H/L/P/T; AlaAT, alanine 528 

aminotransferase; AspAT, aspartate aminotransferase; TNase, tryptophanse; GDH, glutamate 529 

dehydrogenase;  HCP, hybrid-cluster protein; SHMT, serine hydroxymethyltransferase; CS, 530 

cysteine synthase; MGL, monoacylglycerol lipase; Fxn,; IscS, cysteine desulfurase; IscU/A, 531 

iron-sulfur cluster assembly protein; Fxn, frataxin; OsmC, osmotically inducible protein; 532 

SOD, superoxide dismutase; Trx, thioredoxin; TrxR, thioredoxin reductases; TrxP, 533 

thioredoxin peroxidase; Rbr, rubrerythrin; Cpn60/10, chaperonin 60/10; Hsp70, heat shock 534 

protein 70; HscB, heat shock cognate B; GrpE, nucleotide exchange factor for DnaK; DnaJ, 535 

heat shock protein 40; MPPα/β, mitochondrial processing peptidase α/β. B. Evolution of ATP 536 

generation in barthelonids, parabasalids and selected fornicates. In the clade of fornicates and 537 

barthelonids (Fornicata+ clade), substrate-level phosphorylation (blue) was lost on two 538 

separate branches. The cytosolic ACS2 (yellow), which was established at the base of the 539 

Fornicata+ clade, was replaced by an evolutionarily distinct type of ACS (ACS1; red) during 540 

the evolution of fornicates. 541 
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 542 

Table S1: Amino acid positions and coverages of the 148 single-gene alignments used in 543 

this study. 544 

 545 

Table S2: Putative MRO proteins of Barthelona sp. strain PAP020 and their predicted 546 

subcellular localizations. 547 

  548 

Figure S1: The impact of removal of fast-evolving alignment positions on the 549 

phylogenetic relationship among fornicates, parabasalids and Barthelona sp. strain 550 

PAP020.  551 

Fast-evolving positions in the 148-gene alignments were progressively removed in 4,000 552 

position increments. The filtered alignments were individually subjected to rapid ML 553 

bootstrap analyses using RAxML. For each data point, we plotted the support values for (i) 554 

the sister relationship between strain PAP020 and fornicates (blue), (ii) the monophyly of 555 

fornicates (orange), (iii) the sister relationship between strain PAP020 and parabasalids (gray) 556 

and (iv) the monophyly of parabasalids (green). 557 

  558 

Figure S2: Transmission electron micrograph image of MRO of Barthelona sp. PAP020 559 

Scale bar = 500 nm. A specimen for transmission electron microscopy (TEM) observation 560 

was prepared as follows; cultivated cells were centrifuged and fixed with pre-fixation for 1 h 561 

at room temperature with a mixture of 2% (v/v) glutaraldehyde, 0.1 M sucrose, and 0.1 M 562 

sodium cacodylate buffer (pH 7.2, SCB). Fixed cells were washed with 0.2 M SCB three 563 

times. Cells were post-fixed with 1% (v/v) OsO4 with 0.1 M SCB for 1 h at 4 °C. Cells were 564 

washed with 0.2 M SCB two times. Dehydration was performed using a graded series of 30–565 

100% ethanol (v/v). After dehydration, cells were placed in a 1:1 mixture of 100% ethanol 566 
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and acetone for 10 min and acetone for 10 min for two cycles. Resin replacement was 567 

performed by a 1:1 mixture of acetone and Agar Low Viscosity Resin R1078 (Agar Scientific 568 

Ltd, Stansted, England) for 30 min and resin for 2 h. Resin was polymerized by heating at 569 

60 °C for 8 h. Ultrathin sections were prepared on a Reichert Ultracut S ultramicrotome 570 

(Leica, Vienna, Austria), double stained with 2% (w/v) uranyl acetate and lead citrate 571 

(Hanaichi et al., 1986, Sato, 1968), and observed using a Hitachi H-7650 electron microscope 572 

(Hitachi High-Technologies Corp., Tokyo, Japan) equipped with a Veleta TEM CCD camera 573 

(Olympus Soft Imaging System, Münster, Germany). 574 

 575 

Figure S3: Phylogenetic tree of acetyl-CoA synthase (ACS) sequences. 576 

The ACS phylogeny was inferred using the maximum-likelihood (ML) method and ML 577 

bootstrap values (MLBPs) were mapped on the ML tree. MLBPs below 50% are not shown. 578 

Two ACS sequences of Barthelona sp. strain PAP020 are highlighted in red. The pink- and 579 

green-colored sequences are of eukaryotes and archaea, respectively. The clades of ACS1 and 580 

ACS2 were defined by referring to the phylogenetic analysis presented in Leger et al. (2017). 581 

 582 
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