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Abstract 24 

Predicting how species, particularly rare and endangered ones, will react to climate change is a 25 

major current challenge in ecology. Rare species are expected to have a narrower niche width than 26 

common species. However, we know little whether they are also less able to cope with new climatic 27 

conditions. To simulate climate change, we transplanted 35 plant species varying in rarity to five 28 

botanical gardens in Switzerland, differing in altitude. For each species we calculated the difference 29 

in climate between their natural habitats and the novel climate of the respective botanical garden. 30 

We found that rare species had generally lower survival and biomass production than common 31 

species. Moreover, rare plant species survived less when the amount of precipitation differed more 32 

from the one in their natural range, indicating a higher susceptibility to climate change. Common 33 

species, in contrast, survived equally well under all climates and even increased their biomass under 34 

wetter or drier conditions. Our study shows that rarer species are less able to cope with changes in 35 

climate compared to more widespread ones, which might even benefit from these changes. This 36 

indicates that already rare and endangered plant species might suffer strongly from future climate 37 

change.  38 
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INTRODUCTION 44 

Understanding how species respond to a changing climate is one of the most important current 45 

challenges for ecologists (Chevin et al. 2010, Chessman 2013, Pacifici et al. 2015). Rare, already 46 

endangered species might be particularly vulnerable to climate change (Schwartz et al. 2006), and 47 

information in how they respond to changes in climate is crucial to target conservation and 48 

management efforts. For plants, the predicted changes in temperature and precipitation can have 49 

profound implications for their growth and survival. An increase of 1 to 2°C in the global mean 50 

surface temperature (IPCC 2014) along with a reduction in the average amount of precipitation, 51 

and the occurrence of more extreme events such as droughts, directly impact plants and change 52 

abiotic and biotic parameters. To survive climate change, plant populations may migrate to keep 53 

track of favorable environmental conditions, or they can also tolerate the new climatic conditions 54 

and adapt (Franks et al. 2014). Accordingly, many models predict that species will shift their ranges 55 

in response to climatic modifications (e.g. Bakkenes et al. 2002, Thomas et al. 2004). However, 56 

migration may be limited, e.g. by topographic boundaries such as mountains, the increasing 57 

fragmentation of our landscapes (Jump and Peñuelas 2005), or for species with a long generation 58 

time and low dispersal abilities (Aitken et al. 2008), and hence models hypothesize that a higher 59 

number of plant species will be threatened in a close future by the loss of climatically suitable areas 60 

(Thuiller et al. 2005). Therefore, tolerance to climate change might be of particular importance for 61 

plant populations.  62 

One of the main hypothesis aiming to explain why some plant species are rare while others range 63 

widely is the niche-breadth hypothesis, which suggests that rare species are rare because they have 64 

a smaller niche breadth, i.e. they are less able to maintain viable populations across a range of 65 

environments, than more common species with a greater range size (Brown 1984, Slatyer et al. 66 

2013). This hypothesis has achieved consistent support when quantifying the niche breadth based 67 
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on the current distribution of species, suggesting that a positive relationship between range size 68 

and climatic niche breadth is a general pattern (Kambach et al. 2018). A species can have a large 69 

climatic niche because it consist of many locally adapted populations that each are adapted to 70 

different climatic conditions (Ackerly 2003) or because it consist of general-purpose genotypes 71 

that thrive in a wide range of environmental conditions through phenotypic plasticity (Baker 1965). 72 

Only the latter would enable plant populations to tolerate new climates when migration is hindered. 73 

However, we lack empirical knowledge on whether individuals of more common species are more 74 

tolerant to climatic variation, i.e. whether they have a larger fundamental niche due to general-75 

purpose genotypes, than more rare and endangered species do. This information is crucial if we 76 

want to forecast the future composition of plant communities and to detect species that are 77 

particularly sensitive to climate change. Answering this question requires experimental approaches 78 

with many plant species (van Kleunen et al. 2014), however, empirical assessments of the 79 

fundamental climatic niches are scarce. 80 

In this study, we tested the response of 35 plant species differing in rarity from rare and endangered 81 

to widespread species, to different climatic conditions. We used an altitudinal gradient in 82 

Switzerland, with a dryer and warmer climate at low altitudes and a wetter and colder climate at 83 

higher altitudes, to simulate climate change (Körner 2007). By transplanting the 35 plant species 84 

to five different botanical gardens along an altitudinal gradient, we were able to follow their 85 

survival and performance under various climatic conditions, which differed from the climatic 86 

conditions of their natural range. Using this experimental multi-species multi-site approach, we 87 

addressed the following specific questions: (i) Across different climatic conditions, do rare and 88 

common plant species generally differ in their survival and performance? (ii) Do rare and common 89 

plant species respond differently to changes in climatic conditions? We hypothesize that all species 90 

should perform best when the climatic conditions match the ones of their natural range. However, 91 
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given that species with a small range size might also have a narrower fundamental niche width than 92 

more widespread species (Brown 1984), we expect individuals of rare species to be less tolerant to 93 

changes in climatic conditions, putting them at an even higher risk of extinction with climate 94 

warming. 95 

 96 

METHODS 97 

Plant species and experimental design. We used 35 plant species from 16 plant families (see 98 

Table S1 in Supporting Information). Twenty-four of those were rare species with a conservation 99 

priority in Switzerland (Moser et al. 2002), and 11 of them were common species which are 100 

widespread in Switzerland. Seeds of rare plant species were collected in the wild (one population 101 

per species) in Switzerland. Seeds of common species were collected in the wild or obtained from 102 

commercial seed suppliers (Rieger-Hofmann GmbH, Germany and UFA Samen, Switzerland). 103 

In March 2012, we germinated the seeds and planted 50 seedlings per species individually into 2-104 

L pots filled with potting soil. Plants were then placed in a common garden (Muri near Bern, 105 

Switzerland) where they grew for another two months. In May 2012, we measured plant height to 106 

account for initial size differences. In June 2012 we transported the plants to five Botanical Gardens 107 

differing in altitude and climatic conditions (Table 1). In each garden, we placed 10 pots per species 108 

(occasionally less, Table S2) and distributed them randomly into garden beds. In early summer 109 

2013 we recorded the survival of the plants and collected aboveground biomass. Since watering 110 

happened only in case of severe drought, we can assume that the observed differences in plant 111 

growth between the gardens is due to differences in precipitation and temperature and is not biased 112 

by the care taken by the botanical gardens. 113 

Rarity and climatic variables. To obtain a continuous measure of plant rarity we used the range 114 

size of each species in Switzerland. Range size was expressed as the number of 10 x 10 km grid 115 
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cells occupied by a given species in Switzerland (data provided by Info Flora). We used range size 116 

in Switzerland because a continuous measure of European range sizes for our species is not 117 

available yet. Nevertheless, for a subset of 21 species for which European range size is available, 118 

Swiss and European range size were positively correlated (r = 0.508, p < 0.001, Text S1). 119 

For each species we calculated climatic values, which characterize the climatic conditions in the 120 

natural range of a species in Switzerland. We calculated the mean annual temperature and mean 121 

annual level of precipitation per species (Table S1) by extracting climatic information at all known 122 

locations of the species in Switzerland using precise coordinates (for complete details on the 123 

climate data, see (Zimmermann and Kienast 1999). For each botanical garden, we also extracted 124 

the mean annual temperature and mean annual level of precipitation (Table 1). 125 

To define the difference in climate between a botanical garden and a species´ natural range, we 126 

calculated the temperature and precipitation differences by subtracting the climatic value of a 127 

species range from the climatic value of a botanical garden. A negative value of a precipitation or 128 

temperature difference indicates that the climate is dryer or colder, respectively, in a botanical 129 

garden than in the species natural range. The range size of our species was not related to the mean 130 

altitude (r = 0.01, p = 0.95) and the mean temperature (r = -0.08, p = 0.64) of their natural range. 131 

Range size was positively related to the mean annual level of precipitation (r = 0.40, p = 0.02). 132 

Statistical analysis. To test whether species with a larger range size also occurred in a wider range 133 

of climates (i.e. whether they also have a larger climatic niche) we correlated range size with the 134 

difference between the maximum and the minimum value of temperature and precipitation of the 135 

species natural ranges. To test whether rare and common species generally differ in their survival 136 

and aboveground biomass production, we used generalized linear mixed effects models (glmer) 137 

with a binomial error distribution and linear mixed effects models (lmer) using the lme4 package 138 

(Bates et al. 2014) in R (R Core Team 2014), with the range size of the species as fixed term, the 139 
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species identity nested into plant family (to account for taxonomy), and the botanical garden where 140 

the plants grew, as random factors. We also included the initial height of the plants as covariate, to 141 

control for initial size differences. 142 

To test whether rare and common species respond differently in terms of their survival and 143 

aboveground biomass production to climatic differences, we used range size, temperature 144 

difference, precipitation difference, and the interaction between range size and climatic differences 145 

as explanatory variables. We also included the quadratic terms for the climatic differences as we 146 

expected a hump-shaped relationship with an optimum at a climatic difference of 0 (i.e. where the 147 

climatic conditions in a garden match the ones of a species natural range). Further, we included the 148 

interaction between the quadratic terms for the climatic differences and the range size of the 149 

species. Although the climatic variables ‘temperature difference’ and ‘precipitation difference’ 150 

were correlated with each other (r = -0.64, p < 0.001), both explained a significant part of the 151 

variation and were both kept in the model. We simplified the full models by removing non-152 

significant terms and we determined significances using likelihood-ratio tests comparing models 153 

with and without the factor of interest. Non-significant linear terms were kept when the 154 

corresponding interaction and quadratic terms were significant. We log-transformed the biomass 155 

data and scaled all continuous variables to means of zeros and standard deviations of one for an 156 

easier interpretation of the model estimates. 157 

 158 

RESULTS 159 

Range size strongly correlated with the species temperature and precipitation niche width, i.e. with 160 

the difference between the maximum and the minimum temperature (r = 0.83, p < 0.001), 161 

respectively precipitation (r = 0.78, p < 0.001) in the natural range. This confirms that more 162 

widespread species occur in a wider range of climatic conditions than rarer species. Overall, species 163 
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with a larger range size survived better (Chi2 = 3.88, p = 0.049) and produced more aboveground 164 

biomass (Chi2 = 17.5, p < 0.001, Fig. 1) than rarer species.  165 

Survival was highest at low precipitation differences, i.e. when the climatic conditions of a garden 166 

were most similar to the ones of a species natural range. This effect was only driven by rare plant 167 

species, whose survival decreased when the amount of precipitation in a garden differed from the 168 

one of their natural range. In contrast, more common species were hardly affected by differences 169 

in precipitation, maintaining a high average survival in all botanical gardens (significant range size 170 

x squared precipitation difference interaction, Table 2, Fig. 2a). 171 

Aboveground biomass of rarer species was hardly affected by differences in precipitation between 172 

a botanical garden and the species natural range. Common species, however, produced more 173 

biomass when the conditions were drier - and thus sunnier - and when the conditions were wetter 174 

than in their natural range (Table 2, Fig 2b). This indicates that more common plant species are 175 

able to plastically increase their biomass in these conditions whereas rarer plant species are less 176 

plastic and show a relatively stable biomass production. 177 

Overall, survival and biomass production was lowest when the temperature in a botanical garden 178 

deviated most from the mean temperature of a species natural range (significant squared 179 

temperature difference effect, Table 2, Fig. 3), and this did not differ for rare and common species. 180 

 181 

DISCUSSION 182 

Rare plant species are less tolerant to changes in climate than common plant species. Among 183 

the most important hypotheses explaining species rarity and commonness is the niche breadth 184 

hypothesis, which predicts that species that are able to maintain populations across a larger set of 185 

environmental conditions can achieve larger geographic ranges than species with narrow ecological 186 

niches (Brown 1984). Studies relating the range size of species to their realized niches supported 187 
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the predicted pattern (Kambach et al. 2018). However, whether this means that more common 188 

species also consists of individuals, which generally have larger fundamental niches (general-189 

purpose genotypes) than have rare species, and therefore which have a higher ability to cope with 190 

changing climatic conditions, remains unknown. In our experiment, plant species generally 191 

survived better and had a greater biomass when the mean annual temperature of the botanical 192 

gardens was similar to the one they experience in their natural range (Fig. 3), reflecting the 193 

existence of a climatic niche due to physiological limitations, which is a key assumption for 194 

predicting the impact of climate change on species distributions (Pearman et al. 2008, Petitpierre 195 

et al. 2012). Similarly, plants survived better when the mean annual precipitation mirrored the one 196 

from their natural range, however, this was only driven by rare plant species, which suffered from 197 

differences in precipitation (when conditions where either dryer or wetter than the ones at their 198 

origin). In contrast, more common species were not affected by precipitation differences, and 199 

showed a similarly high survival at all precipitation levels, independent of the ones of their origin 200 

(Table 2, Fig. 2a). Our results demonstrate that rarer species do indeed have a smaller fundamental 201 

niche in terms of precipitation, i.e. a lower climatic tolerance due to physiological limitations, than 202 

more common species. Since climate change is expected to increase wet and dry extreme events 203 

(Knapp et al. 2008) this suggests that species, which are already threatened under the current 204 

climate will suffer most from the effects of climate change.  205 

Widespread species are likely to experience a larger range of ecological and climatic conditions 206 

within their range (Gaston 2003). Indeed, a larger niche width – based on the current distribution 207 

of a species – seems to be a general pattern in widespread species (Slatyer et al. 2013, Kambach et 208 

al. 2018), and was also supported by our data (positive correlation between range size and the 209 

climatic width). A species can accrue a larger niche breadth because it consists of many locally 210 

adapted populations (Olsson et al. 2009) which partition the broad climatic tolerance exhibited by 211 
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the species as a whole. Moreover, species can be composed of phenotypically plastic genotypes, 212 

general-purpose genotypes or individual generalists that perform well under a large range of 213 

environmental conditions (Baker 1965, Ackerly 2003). Although in our experiment we cannot 214 

entirely disentangle the factors leading to a higher climatic tolerance in common species, the fact 215 

that we found this pattern by placing only a few individuals into the different botanical gardens 216 

indicates that widespread species are more likely to be comprised of individual ’generalists’. 217 

However, to fully understand the influence of broad tolerance and microevolution on niche width, 218 

experiments simultaneously comparing climatic tolerance of many species, populations per 219 

species, and genotypes per population are needed. 220 

In contrast to results on survival, aboveground biomass production of rarer species hardly changed 221 

in response to differences in precipitation. More common species, however, increased their 222 

biomass particularly when the amount of precipitation was lower than in their natural range (Table 223 

2, Fig. 2b). Possibly, a dryer climate implies a higher number of sunny days and therefore more 224 

favorable conditions for plant growth. More common species therefore seem to be more able to 225 

plastically increase their biomass under favorable growing conditions, whereas rarer species seem 226 

to be less able to change their phenotypes in response to environmental variation. When 227 

precipitation was higher than in their natural range, more common species were also able to 228 

increase their biomass. This plastic response in more widespread species indicates that, in addition 229 

to maintaining generally high survival under different climatic conditions, widespread species were 230 

able to take advantage of both drier and wetter conditions. Widespread species have also been 231 

shown to be better able to take advantage of an increase in nutrient availability than rare species 232 

(Dawson et al. 2012) and, compared with species confined to river corridors, to better take 233 

advantage of benign conditions of non-river corridor conditions (Fischer et al. 2010). Our study 234 

therefore adds additional evidence that widespread species might be widespread as they are able to 235 
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take advantage of favorable climatic and environmental conditions than species of small range size, 236 

and that this is a general pattern. Under future climate change, with a predicted increase in extreme 237 

precipitation events (Easterling et al. 2000), our results indicate that more common species might 238 

better take advantage of the changing climatic conditions and potentially outcompete rarer species. 239 

This calls for developing measures to support rare species. 240 

In most cases, widespread species experience a wider range of climatic conditions in their natural 241 

ranges than species with a more restricted range size. Therefore, the mean altitude, mean annual 242 

precipitation and mean temperature of the 11 species common in Switzerland was intermediate 243 

among those of the 25 rare species, some of which only occur in alpine or lowland regions (Figure 244 

S1). This reduced the range of data points in climatic differences for common species and might 245 

have affected extrapolations of our models at the extreme ends of climatic differences. To control 246 

for such potential bias, we analyzed a subset of our data by keeping only those rare species that 247 

occur within the same climatic range than our common species (Table S3). This analysis confirmed 248 

the effects of climatic differences and their interaction with range size found for the whole dataset, 249 

which suggests that our finding that more widespread species have a wider climatic tolerance than 250 

rarer ones is robust.  251 

Experimental tests of environmental tolerance of multiple plant species as the one we present here, 252 

and particularly of rare and common native species, are extremely rare (Slatyer et al. 2013). A few 253 

studies assessed the tolerance to different germination conditions (fundamental germination niche 254 

widths) of rare and common plant species and found either a positive (Brändle et al. 2003; Luna et 255 

al. 2012), negative (Luna and Moreno 2010) or no relationship with range size (Thompson and 256 

Ceriani 2003, Gaston and Blackburn 2007). Our results therefore highlight that plant rarity is 257 

related to the fundamental climatic niche of species, and calls for a more differentiated view when 258 

predicting the future distribution of different species to climate change.  259 
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Rare plant species have lower survival and lower biomass than common plant species. Why 260 

some species are rare while others are common has fascinated ecologists for decades (Brown et al. 261 

1996, Webb and Gaston 2003). Differences in species characteristics have repeatedly been 262 

suggested to explain the distribution and abundance of plant species in nature (Murray et al. 2002, 263 

Kempel et al. 2018). In our study, overall, rare plant species showed lower survival and lower 264 

biomass production than common plant species. This variation in the intrinsic general performance 265 

of plants could be a major driver of rarity and commonness at large spatial scales. Lower biomass 266 

of rare species has also been found in other studies (Murray et al. 2002, Lavergne et al. 2003, 267 

Cornwell and Ackerly 2010, Dawson et al. 2012, Kempel et al. 2018) and indicates that rare species 268 

have slower growth rates (Cornelissen et al. 2003), a trait that is often attributed to slower nutrient 269 

uptake and hence lower competitive ability in productive habitats (Grime 1977). By using a 270 

continuous gradient of rarity and commonness with many species originating from different 271 

habitats, our approach suggests that a positive relationship between plant performance and plant 272 

range size is a general pattern. Future studies that take various aspects of rarity into account, 273 

including small and large populations of plant species differing in range size, are needed to 274 

ultimately test whether a lower general performance of species of small distribution range is a result 275 

of small population sizes and hence reduced genetic diversity (Leimu et al. 2006), or whether 276 

generally lower general fitness of such species is responsible for their small distributional ranges. 277 

Conclusion. Using a large number of plant species differing in their range size in Switzerland, we 278 

provide experimental evidence that more widespread species indeed have larger climatic niches 279 

than rarer species. We showed that rare species not only have generally lower survival and biomass 280 

production than more common species but that they are also more susceptible to a changing 281 

climate. On the contrary, more widespread species survived equally well under all climates and 282 

could even take advantage of favorable growing conditions by plastically increasing their biomass. 283 
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Our multi-species experiment suggests that this is a general pattern. We conclude that already rare 284 

and endangered plant species have a lower climatic tolerance than more widespread species and 285 

might suffer strongly from the forecasted climatic changes. 286 
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TABLES 399 

Table 1. Location, altitude and climatic conditions of the five botanical gardens. 400 

 401 

 402 

  403 

Botanical garden Coordinates 

(CH1903)

Altitude (m) Average annual 

precipitations (mm)

Average annual 

temperature (°C)

Basel 610797 - 267566 269.4 787.3 9.48

Geneva 500516 - 120219 372.2 909.5 9.53

Pont-de-Nant 500516 - 120219 1262.9 1451.1 5.98

Champex 574742 - 97996 1532.6 1376.9 4.19

Schynige Platte 636229 - 166947 1963.7 1630.6 1.61
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Table 2. Results of a linear mixed effects model and a generalized linear mixed effects model 404 

testing for an effect of range size, temperature difference between natural sites and botanical garden 405 

(Δ Temperature), precipitation difference (Δ Precipitation), the quadratic terms of Δ Temperature 406 

and Δ Precipitation, and their interactions on biomass production and plant survival of plants of 35 407 

species planted to five botanical gardens. We removed all non-significant terms, unless the 408 

respective quadratic or interaction term was significant. All explanatory variables are scaled. The 409 

parameters of the main factors that were present in significant interactions were derived from 410 

models where all higher order interactions were removed. 411 

 412 

 413 

 414 

  415 

estimate Chi2 p-value estimate Chi2 p-value

0.24 11.2 <0.001*** 0.14 1.91 0.17

-0.05 1.59 0.206 -0.01 2.95 0.086

-0.23 11.6 0.03
* -0.16 0.05 0.831

-0.13 67.8 <0.001
*** -0.55 32.2 <0.001

***

0.04 0.58 0.446 -0.27 8.85 0.003
**

- - - - - -

0.01 15 <0.001*** - - -

- - - - - -

0.09 26.2 <0.001*** 0.2 4.54 0.033*

Variance Variance

0.265 1.88

Random  terms

Biomass Survival

Δ Temperature

Δ Precipitations

Δ Temperature
2

Δ Precipitations
2

Range

Fixed terms

Range x Δ Temperature

Range x Δ Precipitations

Range x Δ Temperature2

Range x Δ Precipitations2

Species

Family <0.001 <0.001

Botanical Garden 0.016 0.924
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FIGURES LEGENDS 416 

 417 

Figure 1. Effect of range size on a) mean survival, and b) mean aboveground biomass (expressed 418 

in g on a log-scale) for 35 species planted to five botanical gardens. Each point represents the mean 419 

biomass or survival per species, the line is obtained from the predicted values of the models. Range 420 

size is calculated as the number of 10x10km grid cell occupied by a given species in Switzerland. 421 

The curved line describing the relationship between range size and survival is obtained from the 422 

transformation of the binomial survival data into a continuous distribution of the probability of 423 

survival. 424 

 425 

Figure 2. a) Survival and b) biomass production of 35 species in relation to precipitation difference 426 

between natural range size and botanical garden. The surfaces represent the predicted survival, 427 

respectively biomass, from the model. Biomass is expressed in g on a log-scale. A negative 428 

precipitation difference (mm year-1) indicates that the conditions in a garden are dryer than the ones 429 

in a species natural range. 430 

 431 

Figure 3. Effect of the temperature differences (°C) on a) mean survival and b) mean aboveground 432 

biomass of 35 species planted in five botanical gardens. Each point represents the average 433 

aboveground biomass (in g on a log-scale) or survival per species per garden in 2013. The line is 434 

obtained from the predicted values of the models. To represent the effect of temperature difference, 435 

we fixed the value of precipitation difference to its mean when calculating the predicted values of 436 

the models. 437 

 438 

 439 

 440 
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Figure 1 441 

 442 

  443 
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Figure 2 444 

 445 
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Figure 4 447 

 448 

  449 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2019. ; https://doi.org/10.1101/805416doi: bioRxiv preprint 

https://doi.org/10.1101/805416
http://creativecommons.org/licenses/by-nd/4.0/


24 
 

Table S1. List of the 24 rare and 11 common species (indicated by *) studied in this experiment, 450 

including their plant family, range size in Switzerland (number of 10x10 kilometers grid cells 451 

occupied by a species in Switzerland, see Methods), mean altitude, mean annual amount of 452 

precipitation and temperature of the species natural range, and the IUCN category of threat in 453 

Switzerland (LC: Least Concern; NT: Near Threatened; VU: Vulnerable; EN: Endangered; CR: 454 

Critically Endangered). 455 

 456 

Species Family Range size Mean 
altitude   
(m a.s.l.) 

Mean annual 
precipitation 
(mm) 

Mean annual 
temperature 
(°C) 

IUCN 
status 

       
Carex bohemica Cyperaceae 2 429.9 1036.8 9 CR 

Bidens radiata Asteraceae 3 495 1091.6 8.7 CR 

Inula spiraeifolia Asteraceae 4 661.1 1774.9 9.9 VU 

Rumex maritimus Polygonaceae 5 431.1 1038.2 9 CR 

Ephedra helvetica Ephedraceae 6 612.6 726.9 9.3 VU 

Potentilla multifida Rosaceae 7 2659.4 1307.5 -1 VU 

Artemisia glacialis Asteraceae 9 2599.8 1291.4 -0.7 NT 

Cleistogenes serotina Poaceae 11 457.8 1294.1 10.2 VU 

Senecio halleri Asteraceae 12 2463.5 1356.2 0 NT 

Peucedanum venetum Apiaceae 14 635.4 1563.7 9.8 VU 

Artemisia vallesiaca Asteraceae 14 717.5 820.4 8.7 NT 

Oenanthe lachenalii Apiaceae 20 422.3 1177.8 9 CR 

Ludwigia palustris Onagraceae 21 384.1 1171.7 9.8 CR 

Rumex hydrolapathum Polygonaceae 30 448.4 1013.2 8.8 EN 

Astragalus leontinus Fabaceae 32 2155.1 1063.8 1.4 NT 

Juncus arcticus Juncaceae 35 2251.7 1237.5 0.8 VU 

Nigella arvensis Ranunculaceae 37 667.8 874.1 8.4 EN 

Seseli annuum Apiaceae 47 768.4 1005.8 8 VU 

Polycnemum majus Amaranthaceae 69 608 707 9.2 EN 

Bidens cernua Asteraceae 76 632.7 1249.9 8 EN 

Sedum villosum Crassulaceae 92 2175.3 1327.2 1.1 VU 

Stachys annua Fabaceae 102 489.5 1037.9 8.9 VU 

Bidens tripartita* Asteraceae 118 478.1 1069.9 8.9 NT 

Artemisia absinthium* Asteraceae 140 1132.6 907 6.4 LC 

Cyperus fuscus Cyperaceae 151 433.1 1064.3 9.3 VU 

Cyperus flavescens Cyperaceae 155 374 1356.5 10.1 VU 

Artemisia umbelliformis* Asteraceae 173 2406.5 1568.6 0 LC 

Sedum alpestre* Crassulaceae 186 2534.1 1530.8 -1 LC 

Rumex crispus* Polygonaceae 274 867.1 1361.9 7 LC 

Linaria vulgaris* Plantaginaceae 285 735.1 1270.9 7.5 LC 

Centaurea scabiosa* Asteraceae 320 746.8 1259.5 7.5 LC 

Juncus articulatus* Juncaceae 344 961.9 1495.5 6.6 LC 

Bromus erectus* Poaceae 345 889.8 1189.7 6.9 LC 

Trifolium repens* Fabaceae 386 1178.7 1523.9 5.4 LC 

Trifolium pratense* Fabaceae 390 1193.2 1600.8 5.3 LC 
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Table S2. Number of plants per species grown in each botanical garden. 457 

  
Botanical gardens 

Species Geneva Basel Pont-de-Nant Champex Schynige Platte 

Artemisia absinthium 8 7 6 7 9 

Artemisia glacialis 9 8 9 7 9 

Artemisia umbelliformis 9 8 4 8 8 

Artemisia vallesiaca 10 10 10 10 11 

Astragalus leontinus 9 7 7 9 9 

Bidens cernua 10 10 10 10 10 

Bidens radiata 10 10 11 10 10 

Bidens tripartita 9 7 8 8 9 

Bromus erectus 7 6 9 7 7 

Carex bohemica 20 20 20 20 20 

Centaurea scabiosa 9 8 8 8 9 

Cleistogenes serotina 8 8 8 8 8 

Cyperus flavescens 9 9 10 9 9 

Cyperus fuscus 20 20 20 20 20 

Ephedra helvetica 10 9 10 10 10 

Inula spiraeifolia 10 9 10 10 10 

Juncus arcticus 20 20 20 20 20 

Juncus articulatus 8 9 5 9 8 

Linaria vulgaris 9 8 7 9 9 

Ludwigia palustris 9 10 10 9 10 

Nigella arvensis 9 11 10 9 10 

Oenanthe lachenalii 10 10 9 10 10 

Peucedanum venetum 10 10 9 10 10 

Polycnemum majus 10 10 9 10 10 

Potentilla multifida 10 10 10 10 10 

Rumex crispus 8 9 9 9 9 

Rumex hydrolapathum 10 10 10 10 10 

Rumex maritimus 10 10 10 10 10 

Sedum alpestre 9 9 9 9 9 

Sedum villosum 4 7 6 7 6 

Senecio halleri 6 7 5 6 8 

Seseli annuum 10 10 10 10 10 

Stachys annua 10 9 10 10 10 

Trifolium pratense 7 9 8 9 8 

Trifolium repens 9 9 9 9 9 

  458 
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Table S3. Effect of climatic differences on the biomass production and the survival of a subset of 460 

31 species. The rare species used in this experiment naturally occur in a wider range of climatic 461 

conditions than the common species used in this experiment (Fig. S4). We re-analyzed our data 462 

with a dataset including all the common species and a subset of 20 rare species, keeping only those 463 

which occur inside a precipitation range of 900 to 1600 mm.yr-1. We considered the precipitation 464 

values to define this climatic range because it was the climatic variable which interacted with range 465 

size. The results did not differ qualitatively from the analysis of the entire dataset. 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

Text S1. To test whether range size in Switzerland is correlated with the European range size of 477 

our study species, we used map-derived area estimates from the Atlas Europeae (Meusel et al. 478 

estimate Chi2 p-value estimate Chi2 p-value

0.19 7.37 0.006** 0.63 0.75 0.391

-0.09 0.71 0.4 1.17 1.86 0.173

-0.28 5.73 0.017* - - -

-0.15 82.8 <0.001*** -0.58 30.8 <0.001***

0.01 1.75 0.186 -0.18 0.08 0.778

- - - - - -

0.05 11.4 <0.001*** - - -

- - - - - -

0.11 30.1 <0.001*** 0.2 5.22 0.022*

Variance Variance

Botanical Garden 0.018 1.818

<0.001

17.63Species 0.284

Family <0.001

Range x Δ Temperature

Range x Δ Precipitations

Range x Δ Temperature2

Range x Δ Precipitations2

Random  terms

Range

Δ Temperature

Δ Precipitations

Δ Temperature
2

Δ Precipitations
2

Fixed terms
Biomass Survival
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1978) for the 21 species for which these maps were available. We assessed the number of pixels of 479 

a species European distribution and cross-referenced these using islands, for which the exact 480 

surface values are known. Range size in Europe was correlated with range size in Switzerland (r = 481 

0.508, p < 0.001). 482 

 483 

Meusel, H., Jäger, E. J., Rauschert, S. & Weinert, E. (1978). Vergleichende Chorologie der 484 

zentraleuropäischen Flora. Bd. 2, Text u. Karten. Gustav Fischer Verlag, Jena. 485 
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Figure S1. Correlations between a) mean temperature (°C) and b) mean annual level of 487 

precipitation (mm.year-1) in the natural range of our 35 species, and their range size. Common 488 

species showed more intermediate values than rarer species, although there was no correlation 489 

between range size and mean temperature (r = -0.08, p = 0.64), and the correlation between range 490 

size and mean annual precipitation (r = 0.40, p = 0.02) was not strong. 491 

 492 
 493 
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