

Comparative genomics confirms a rare melioidosis human-to-human transmission event and reveals incorrect phylogenomic reconstruction due to polyclonality

Ammar Aziz¹, Bart J. Currie^{1,2}, Mark Mayo¹, Derek S. Sarovich^{1,3,4*} and Erin P. Price^{1,3,4*}

Affiliations:

¹Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia

²Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia

³GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia

10 ⁴Sunshine Coast Health Institute, Birtinya, QLD, Australia

11 ^Authors contributed equally

***Correspondence:**

14 Dr Derek S. Sarovich; dsarovich@usc.edu.au

15 Dr Erin P. Price; eprice@usc.edu.au

16

17 **Keywords:** human-to-human transmission, *Burkholderia pseudomallei*, Melioidosis, phylogenomics,
18 comparative genomics, strain mixtures, bioinformatics

19 **Repositories:** All sequencing data generated as part of this study can be found under the NCBI BioProject
20 PRJNA559002 with accession numbers listed in Table 1.

21 **Abstract**

22 Human-to-human transmission of the melioidosis bacterium, *Burkholderia pseudomallei*, is exceedingly
23 rare, with only a handful of suspected cases documented to date. Here, we used whole-genome sequencing
24 (WGS) to characterise one such unusual *B. pseudomallei* transmission event, which occurred between a
25 breastfeeding mother with mastitis and her child. Two strains corresponding to multilocus sequence types
26 (STs) 259 and 261 were identified in the mother's sputum from both the primary culture sweep and in
27 purified colonies, confirming an unusual polyclonal infection in this patient. In contrast, primary culture
28 sweeps of the mother's breast milk and the child's cerebrospinal fluid and blood samples contained only
29 ST-259, indicating monoclonal transmission to the child. Analysis of purified ST-259 isolates showed no
30 genetic variation between mother and baby isolates, providing the strongest possible evidence of *B.*
31 *pseudomallei* transmission, probably via breastfeeding. Next, phylogenomic analysis of all isolates,
32 including the mother's mixed ST-259/261 sputum sample was performed to investigate the effects of
33 mixtures on phylogenetic inference. Inclusion of this mixture caused a dramatic reduction in the number
34 of informative SNPs, resulting in branch collapse of ST-259 and ST-261 isolates, and several instances of
35 incorrect topology in a global *B. pseudomallei* phylogeny, resulting in phylogenetic incongruence. Although
36 phylogenomics can provide clues about the presence of mixtures within WGS datasets, our results
37 demonstrate that this methodology can lead to phylogenetic misinterpretation if mixed genomes are not
38 correctly identified and omitted. Using current bioinformatic tools, we demonstrate a robust method for
39 bacterial mixture identification and strain parsing that avoids these pitfalls.

40 **Impact Statement**

41 *Burkholderia pseudomallei* is the causative agent of melioidosis, a tropical disease of high mortality. *B.*
42 *pseudomallei* infections occur almost exclusively through contact with contaminated soil and water. Using
43 whole-genome sequencing (WGS), we investigated a rare case of suspected *B. pseudomallei* transmission
44 from mother to child. The mother's sputum, breast milk and the baby's blood and cerebrospinal fluid (CSF)
45 specimens were collected, and DNA was extracted from both pure colonies and primary culture sweeps to
46 capture potential strain mixtures. In-depth analysis of genetic variants identified two strains in the mother's
47 sputum belonging to multilocus sequence types ST-259 and ST-261, whereas the child was infected with
48 only ST-259. Comparative genomics revealed no genetic differences between mother and child ST-259
49 isolates, providing the strongest possible evidence of transmission to the child via breast milk. The sputum
50 strain mixture was subsequently used to develop a bioinformatic method for identification and
51 quantification of mixtures from WGS data. Using this method, we found ST-259 and ST-261 at an 87%:13%
52 ratio, respectively. Finally, we demonstrate the negative impact that even a single strain mixture event can
53 have on both within-ST and global phylogenomic inferences. Our findings highlight the need for
54 bioinformatic quality control to avoid unintended consequences of phylogenomic incongruence and branch
55 collapse.

56 **Data Summary**

57 1. Whole-genome sequencing data have been deposited in the NCBI Sequence Read Archive (SRA)
58 and GenBank under BioProject accession number [PRJNA559002](#).

59 2. The GenBank accession number for MSHR0643 assembly is VXLH00000000.1.

60 3. The SRA accession numbers for all raw sequence data are listed in Table 1.

62 **Introduction**

63 *Burkholderia pseudomallei*, a Gram-negative environmental bacterium found in soil and water in mostly
64 tropical regions, is the causative agent of melioidosis [1]. This underreported and historically neglected
65 disease is being increasingly recognised to be endemic in diverse tropical regions globally, and
66 hyperendemic in northern Australia and Southeast Asia [2]. *B. pseudomallei* is an opportunistic bacterium
67 that most commonly affects people who are in regular contact with soil and water, with percutaneous
68 inoculation and inhalation the main routes of infection, with infection by ingestion uncommon [1, 3]. The
69 high mortality rate of melioidosis (10-40%) even with antibiotic treatment [4], combined with the intrinsic
70 resistance of *B. pseudomallei* against a wide range of antibiotics [5], highlight the significant public health
71 importance of this bacterium [1]. Increasing awareness and detection of melioidosis in new locales and the
72 lack of a vaccine towards *B. pseudomallei* have further increased the global public health significance of
73 this pathogen [6]. Due to these factors, *B. pseudomallei* is considered a Tier 1 Select Agent pathogen due
74 to its potential for misuse as a biological warfare agent [7].

75 Multilocus sequence typing (MLST) is a commonly used genotyping method for determining the population
76 structure, geography, source attribution and transmission patterns of many bacterial pathogens, including
77 *B. pseudomallei* [8]. With the advent of whole-genome sequencing (WGS), simultaneous genomic
78 characterisation, phylogeography, multilocus sequence type (ST) determination, antibiotic resistance
79 profiling and fine-scale resolution of *B. pseudomallei* population structure, evolution and transmission
80 profiles have become possible [9]. WGS has also assisted with the identification of polyclonal *B.*
81 *pseudomallei* infections, including one reported instance of a polyclonal infection with the same ST [10].

82 Although rare, a handful of suspected cases of human-to-human *B. pseudomallei* transmission have been
83 documented, including between siblings with cystic fibrosis [11], between siblings with diabetes [12],
84 between an American Vietnam veteran diagnosed with *B. pseudomallei*-associated prostatitis and his
85 spouse, but supported only by serology [13], and three cases between mother and child [3, 14]. In one of
86 the mother-to-child transmission cases, a mother with *B. pseudomallei*-associated mastitis in her left breast

87 was suspected to have transmitted this pathogen to her breastfed infant [3]. Mother-to-child *B.*
88 *pseudomallei* transmission via transplacental, breast, or perinatal routes has been suspected in a handful
89 of other human cases [3, 14, 15], and in animals [16]. However, no human-to-human transmissions
90 reported to date have been confirmed using WGS, which is essential for ruling out concomitant
91 environmental sources of infection. In the current study, WGS was used to understand the dynamics of this
92 unusual human-to-human transmission event, which was also characterised by a polyclonal infection
93 detected in the mother's sputum. Using comparative genomics, we provide the strongest possible evidence
94 for human-to-human *B. pseudomallei* transmission between mother and child. We next examined the
95 impact of the strain mixture identified in the mother's sputum sample on phylogenetic interpretations of
96 maternal to child transmission. We observed confounding phylogenomic results when the single mixed
97 genome was included in the analysis, a finding that has implications for fine-scale phylogenomic
98 investigation of outbreak, source attribution, or host transmission studies.

99 **Methods**

100 **Case history and bacterial culture.** The clinical history of the mother-to-child transmission case has been
101 described elsewhere [3]. Briefly, a seven-month old breast-feeding child from a remote region in northern
102 Australia was hospitalised in 2003 with acute cough, fever and tachypnoea. During this admission, the
103 mother was observed to have a fever and pleuritic chest pain and was subsequently diagnosed with mastitis
104 in the left breast. Upon *B. pseudomallei* culture confirmation in the child's cerebrospinal fluid (CSF), blood,
105 and nasal and throat swabs, the mother was also tested for *B. pseudomallei* infection in blood, sputum,
106 and multiple breast milk specimens, and from nasal, throat, and rectal swabs. Of these, *B. pseudomallei*
107 was isolated from the mother's breast milk and sputum (Table 1). All clinical specimens were cultured onto
108 Ashdown's media as described elsewhere [17]. DNA extractions were performed [18] on a sweep of the
109 primary culture streak (herein referred to as primary culture sweeps) of each *B. pseudomallei*-positive
110 clinical specimen in an effort to capture potential strain mixtures in these original specimens, and
111 subsequently from individually purified colonies derived from these specimens.

112 **Whole-genome sequencing and *in silico* MLST.** As part of the ongoing Darwin Prospective Melioidosis
113 Study (DPMS), which commenced in 1989 [19], all mother and child primary culture sweeps and purified
114 colonies (i.e. isolates) were subjected to WGS using the Illumina HiSeq2500 platform (Australian Genome
115 Research Facility, Melbourne, Australia). WGS was performed on primary culture sweeps and isolates from
116 the mother's ($n=6$) and child's ($n=4$) specimens. Reference-assisted draft genome assemblies were
117 performed using MGAP v1.0 (default settings) [20], with the closed Australian MSHR1153 genome
118 (CP009271.1 and CP009272.1 for chromosomes 1 and 2, respectively) [21] as reference. *In silico* MLST was
119 performed using the PubMLST *B. pseudomallei* database available at <http://pubmlst.org/bpseudomallei/>
120 [22]. For the mixed-strain sample (MSHR1631_Mixed) manual allele assignment was performed by
121 inspecting alignment files using Tablet [23] and parsing single-nucleotide polymorphisms (SNPs)
122 corresponding to the two strains based on allele abundance.

123 **Comparative genomics and mixture analysis.** Comparative genomic analysis was performed with the
124 default settings of SPANDx v3.2 (<https://github.com/dsarov/SPANDx>) [24], which wraps Burrows-Wheeler
125 Aligner [25], SAMtools [26], the Genome Analysis Toolkit (GATK v3.2.2) [27], BEDTools [28], and SNPEff [29]
126 into a single pipeline. Mapping was carried out using the closed Australian genome MSHR1153 [21] as the
127 reference, with the SPANDx *-i* flag enabled to provide insertion-deletion (indel) variant identification.
128 Heterozygous SNPs in each isolate were enumerated from GATK UnifiedGenotyper VCF output. One sweep
129 culture, MSHR1631_Mixed, exhibited a substantial number of heterozygous SNPs when compared with all
130 other isolates and sweep cultures, so was further investigated as a possible mixture. Variant identification
131 in MSHR1631_Mixed was determined using GATK v4.1 HaplotypeCaller [30] due to its ability to natively
132 handle polyploid samples. Variant filtering was performed using the parameters described in SPANDx v3.2
133 [24]. For each heterozygous SNP identified in MSHR1631_Mixed, the depth (number of reads) supporting
134 each allele was extracted from the VCF file and normalised by the total read depth at that SNP position.
135 Additionally, to ensure robust variant calling and to assess mixture composition, we tested multiple ploidy
136 settings ($n = 2, 3, 4$, and 5).

137 **Phylogenomic analysis.** A maximum parsimony (MP) phylogenetic tree representing a global snapshot of
138 *B. pseudomallei* isolates was constructed using orthologous, biallelic, core-genome SNPs identified across
139 145 publicly available genomes [31], which included the ten new isolates/sweep cultures sequenced as part
140 of this study. To investigate *B. pseudomallei* transmission from mother to child, a combined SNP-indel [32]
141 MP tree was constructed using all ST-259 isolates, with the ST-259 genome MSHR0643 as reference.
142 MSHR0643 was chosen as the reference genome as it had the fewest contigs of any ST-259 strain ($n=93$).
143 Also included were seven additional temporally distinct ST-259 isolates (Table 1). MP phylogenetic tree
144 construction and bootstrapping (300 replicates) were performed using PAUP* v4.0a165 and visualised with
145 iTOL v4 [33].

146 **Pulsed-field gel electrophoresis (PFGE).** *SpeI* DNA-digested PFGE was performed on mother and child
147 isolates as previously described [34].

148 **Results and Discussion**

149 *B. pseudomallei* causes melioidosis, a life-threatening disease with a predicted global incidence of ~165,000
150 cases annually [2]. Almost all *B. pseudomallei* infections occur via contact with contaminated water or soil,
151 while human-to-human transmission events are exceedingly rare [35]. Here, we used genomics to examine,
152 in high resolution, one such human-to-human transmission event where a nursing mother with culture-
153 confirmed melioidosis mastitis was suspected to have transmitted *B. pseudomallei* to her child through
154 contaminated breast milk [3]. PFGE analysis on isolates retrieved from the mother and her child shortly
155 after diagnosis identified two pulsotypes in the mother's sputum isolates (Figure 1), suggesting a potential
156 polyclonal infection. To further understand this unusual case, WGS was performed on all available
157 specimens from these cases to elucidate transmission dynamics from mother to child, to investigate the
158 potential presence of within-host strain mixtures in the mother, and finally, to examine the effects of strain
159 mixtures on downstream phylogenomic interpretations.

160 Prior studies have relied upon epidemiological and clinical observations [3, 11, 13, 14], often alongside gel
161 electrophoresis-based genotyping methods [3, 11, 12], to examine cases of suspected *B. pseudomallei*
162 transmission between human hosts. However, these genotyping methods lack the necessary resolution for
163 definitive confirmation of such transmission events as they only assess a small fraction of the genome. As
164 such, infections arising from independent environmental sources, or even from a single environmental
165 point source as observed in outbreak scenarios [32, 36], cannot be ruled out using such lower-resolution
166 methods. Consistent with the PFGE findings (Figure 1) [3], *in silico* MLST data showed strains from the
167 mother's sputum and breast milk matched the CSF- and blood-derived isolates retrieved from the child,
168 with all isolates being ST-259 (Table 1). To obtain the most epidemiologically robust information from our
169 WGS data, phylogenomic analysis of all mother-child ST-259 isolates was performed using a combined SNP-
170 indel approach, which we have previously shown provides both higher resolution and a better fit with
171 outbreak chronology compared with phylogenomic reconstruction using just SNPs [32]. This approach
172 identified no SNP or indel differences between the mother and child ST-259 isolates (Figure 2A). Further

173 comparative genomic analyses examining copy-number variants or larger deletions also failed to find any
174 other genetic variation among the mother-child ST-259 isolates. Although there will always remain the
175 possibility that the mother and child were infected from a single environmental point source, our collective
176 clinical, epidemiological and genomic findings point strongly to ST-259 *B. pseudomallei* transmission from
177 mother to child, with breastfeeding being the most likely route of infection. Our findings provide the
178 strongest evidence presented to date that *B. pseudomallei* can transmit between human hosts. This finding
179 raises clinical and biowarfare concerns, particularly in cases where a *B. pseudomallei* strain has developed
180 acquired antimicrobial resistance (AMR) in one human host who subsequently transmits to another.
181 Although acquired AMR in *B. pseudomallei* is relatively uncommon, there are myriad chromosomal
182 mutations that can lead to clinically-relevant AMR in *B. pseudomallei* [37], leading to more challenging
183 pathogen eradication [38]. While this phenomenon has not yet been documented, our study demonstrates
184 that human-to-human transfer of an AMR *B. pseudomallei* strain is possible.

185 To further understand ST-259 diversity on a broader scale, the ST-259 mother-child isolates were compared
186 with seven temporally and geographically distinct clinical ST-259 isolates obtained between 1992 and 2009
187 from patients living in the Top End region of the Northern Territory. The mother-child clade was most
188 closely related to MSHR0120, differing by seven variants (Figure 2). MSHR0120 was retrieved from a patient
189 diagnosed with melioidosis 11 years prior who lived at the same remote locale as the mother and child.
190 Additionally, minimal differences (between 36 and 45 variants) were observed between the mother-child
191 clade and other ST-259 isolates, suggesting close relatedness of strains within this ST, but a clear difference
192 between the mother-child cases and all other documented ST-259 cases in the Top End region. Taken
193 together, these results provide further evidence for person-to-person *B. pseudomallei* transmission
194 between mother and child.

195 Simultaneous infections with multiple *B. pseudomallei* strains have previously been reported [10, 39, 40];
196 however, the true rate of polyclonal *B. pseudomallei* infections is unknown. Polyclonality may increase the
197 risk of neurological disease when one or more strains encode a *Burkholderia mallei bimA* (*bimA_{Bm}*) genetic

198 variant [41], and may cause issues with accurate point-source attribution in epidemiological investigations
199 if polyclonality is not taken into account. Most clinical microbiological laboratories typically only select a
200 single bacterial pathogen colony for further genotypic and phenotypic characterisation, which results in a
201 considerable genetic bottleneck and the loss of strain mixtures from polyclonal clinical specimens. This
202 shortcoming can be overcome using more time-intensive methods, such as the selection of multiple
203 colonies for genetic analysis, sequencing of a 'sweep' of primary culture growth for further genetic
204 characterisation, or by total metagenomic sequencing of the clinical specimen. Due to inherent ethical and
205 technical issues with metagenomic sequencing of clinical specimens, we chose to genome-sequence
206 culture sweeps and the individual colonies purified from them to identify putative *B. pseudomallei* strain
207 mixtures in the mother and child clinical specimens. Consistent with the PFGE findings, *in silico* MLST and
208 GATK HaplotypeCaller analysis of mother-child sweeps revealed that two distinct strains (ST-259 and ST-
209 261) were found in one of the two sputa retrieved from the mother (MSHR1631_Mixed; Figure 3) but not
210 in other primary sweep specimens from this patient (1 x sputum [MSHR1581_Sweep]; 1 x breast milk
211 [MSHR1583_Sweep]), nor in the samples obtained from the child (1x CSF [MSHR1574_Sweep]; 1x blood
212 [MSHR1580_Sweep]). WGS of single purified colonies from MSHR1631_Mixed and MSHR1581_Sweep
213 confirmed that both ST-259 and ST-261 were present in this patient's sputum specimens. Collectively, these
214 results confirm that the mother had a simultaneous infection with two strains, adding to the documented
215 polyclonal *B. pseudomallei* cases.

216
217 To better understand this polyclonal infection from a bioinformatic standpoint, we first quantified the
218 number of high-quality heterozygous SNPs in MSHR1631_Mixed. Haploid genomes such as bacterial
219 genomes do not encode heterozygous SNPs; therefore, heterozygous SNPs are typically ignored by
220 bacterial genome variant-calling software. The inclusion of heterozygous SNPs in an analysis of the mother-
221 child isolates amongst a global dataset of *B. pseudomallei* genomes showed that MSHR1631_Mixed
222 contained 12x the average number of heterozygous SNPs compared with all other mother-child samples
223 (Figure 4). In total, 34,567 SNPs were identified in this sample, 47.8% of which were 'heterozygous'. In

224 contrast, an average of 29,914 SNPs were identified in the other nine mother-baby samples, of which only
225 5.15% were 'heterozygous'. Next, homozygous SNPs identified in representative pure isolates (MSHR1574
226 for ST-259; MSHR1581 for ST-261) were used to identify the strain origin of each heterozygous allele from
227 MSHR1631_Mixed SNPs. Using this simple method, 96% of heterozygous SNPs were matched to the correct
228 strain. From these parsed data, we observed that 70% of heterozygous SNP read depths were within one
229 standard deviation, with ST-259 dominant (87.1% of SNP read depths) and ST-261 present as a minor allelic
230 component (12.9% of SNP read depths). No evidence of a tertiary strain was observed in the
231 MSHR1631_Mixed when different ploidy settings were tested, indicating that no other strains were
232 present.

233 The utility of SNP data derived from WGS to identify and study mixtures has been demonstrated in different
234 diploid and polyploid organisms [42-44]. Current approaches in bacterial organisms include a database of
235 known STs and proportion estimates of the bacterial population [45], which requires prior knowledge of
236 the specific bacterial population or long-read sequencing [46], the latter of which is costly and error-prone
237 when used in isolation. Bioinformatic solutions are available for ploidy inference of eukaryotic organisms
238 [42-44, 47], which rely on the depth ratio of the two most abundant alleles sequenced for all heterozygous
239 SNP positions across the genome (also referred to as 'allele balance'). Such approaches assume SNP allele
240 balances remain relative to each other; for example in a diploid sample, 50% of reads would support one
241 allele while the other 50% support the other allele [42]. However, the allele balance assumption does not
242 hold in bacterial mixtures, which may contain mixed ratios of any proportion. Despite this shortcoming, we
243 demonstrated the feasibility of using SNP and read depth data to parse apart bacterial mixtures without
244 any prior knowledge of the mixture composition. This approach relies on sequencing at a depth of $\geq 50x$ to
245 ensure adequate sampling of a minor allelic component present at a $\sim 5\text{-}10\%$ proportion. Such an approach
246 is only suited for parsing apart mixtures of two strains. While the major strain is potentially identifiable in
247 ≥ 3 -strain mixtures, parsing apart minor components is a complex problem that remains unresolved using
248 short-read data.

249 Finally, we investigated the effects of strain mixtures on phylogenomic reconstruction to determine
250 whether the inclusion of even one mixture had unwanted effects on tree topology and phylogenetic
251 inference. Phylogenomic analyses were performed with the ST-259 (Figure 2) and global (Figure 5) datasets,
252 both with (Figures 2B and 5B) and without (Figures 2A and 5A) MSHR1631_Mixed inclusion. Tree
253 comparisons identified two confounding issues in the trees containing MSHR1631_Mixed: branch collapse,
254 and phylogenetic incongruence [48] that resulted in multiple instances of incorrect clade placement. In the
255 ST-259 tree, the number of SNP-indel characters separating ST-259 isolates decreased from 35 to 21
256 variants (Figure 2B). In turn, the inferred relatedness between the mother-child ST-259 isolates and other
257 ST-259 isolates was exaggerated due to the branch collapse (Figure 2B; red arrow). In the global dataset,
258 branch collapse was also evident (Figure 5B). The cause of this branch shortening was the removal of all
259 heterozygous SNPs from the dataset containing MSHR1631_Mixed, which reduced the total number of
260 informative characters available for tree reconstruction by 18,051 SNPs when compared with the non-
261 mixed phylogeny. Branch collapse was also evident in the global tree, whereby ST-261 isolates
262 (MSHR1581_Sweep and MSHR1581; green text) incorrectly resided in the same clade as ST-259 (Figure 5B;
263 asterisk). In contrast, the non-mixed dataset separated these two STs by approximately 20,000 SNPs, with
264 clear separation of these clades (Figure 5A). Bootstrap values were of very high confidence across both
265 trees at the ST-261 and ST-259 clades despite branch collapse and phylogenetic incongruence in the mixed
266 dataset. Of further concern, the phylogeny containing MSHR163_Mixed caused incorrect geographic
267 assignment of the Papua New Guinean clade, unexpectedly shifting its known grouping with Australian
268 strains [9, 49] to the Asian clade; this incorrect placement received very high bootstrap support (Figure 5B).
269 Reconstructing the global phylogeny sans MSHR1631_Mixed resolved both issues (Figure 5A).
270 The negative effects of strain mixtures on phylogenomic inference highlights the importance of strict
271 quality controls throughout each stage of the experiment, especially during computational analysis.
272 Bioinformatically, bacterial mixtures can be readily detected, as demonstrated in this study. However,
273 standard practice in microbial variant calling pipelines is to report only homozygous variants for
274 downstream analysis, with heterozygous SNPs typically ignored. Additionally, most phylogenetic

275 reconstruction software treat heterozygous SNPs as missing or non-informative characters, even when
276 encoded with IUPAC-ambiguous characters [50]. Our results provide unequivocal evidence that caution is
277 needed in phylogenomic interpretation when dealing with potential strain mixtures. As these mixtures are
278 not easily identifiable from phylogenetic analysis, it is prudent that microbial genomics studies include a
279 mixture screening assessment of all genomes prior to variant calling and phylogenomic reconstruction to
280 avoid removing phylogenetic informative characters, which can result in branch collapse or phylogenetic
281 incongruence.

282 In conclusion, we demonstrate the utility of comparative genomics to both confirm human-to-human *B.*
283 *pseudomallei* transmission and to identify simultaneous infection with multiple *B. pseudomallei* strains.
284 Using a naturally-occurring mixed genome comprising two strains at an 87%:13% ratio, we describe an
285 effective method to accurately identify and quantify such mixtures from WGS data, and highlight the
286 confounding effects that even a single mixed genome can place on accurate phylogenomic interpretations
287 for both closely related (e.g. single ST) and species-wide phylogenies. Our findings demonstrate the
288 essentiality of assessing all microbial genome datasets for the presence of strain mixtures as a routine part
289 of sequence data quality control. We strongly recommend that such mixtures be removed prior to
290 phylogenomic analysis to avoid erroneous misinterpretations of strain relatedness.

291 **Author statements**

292 BJC identified the transmission event, MM conducted specimen sample processing, PFGE, and
293 DNA extractions. AA performed bioinformatic analysis with assistance and supervision from DSS
294 and EPP. AA wrote the initial manuscript draft. DSS and EPP critically reviewed and edited the
295 manuscript. BJC, MM, DSS, and EPP conceived of the study and obtained funding. All authors
296 reviewed and approved the final manuscript.

297 **Conflicts of interest**

298 The author(s) declare that there are no conflicts of interest.

299 **Data statement**

300 All supporting data and protocols have been provided within the article.

301 **Data Bibliography**

302 Accession numbers and references retrieved from Sarovich *et. al.* 2016 [31] for the 145 global *B.*
303 *pseudomallei* isolate dataset is available on Figshare: <https://doi.org/10.6084/m9.figshare.9840212>

304 **Funding information**

305 This study was funded by the National Health and Medical Research Council (NHMRC) through Project
306 Grants 1046812, 1098337 and 1131932 (the HOT NORTH initiative). AA is supported by a Research Training
307 Program Scholarship from the Australian Government and an NHMRC Centres for Research Excellence top-
308 up scholarship (1078557). EPP and DSS are supported by an Advance Queensland Fellowships
309 (AQIRF0362018 and AQRF13016-17RD2, respectively).

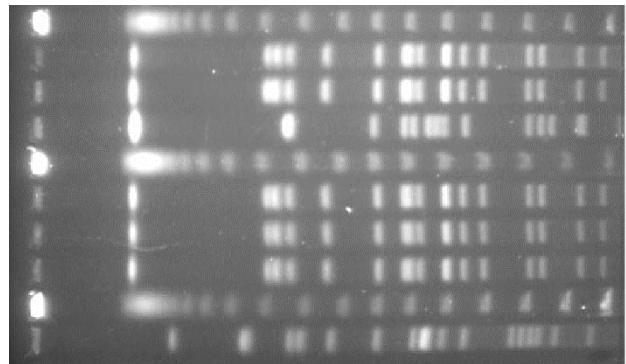
310 **Ethical approval**

311 Ethics approval for this study was obtained from the Human Research Ethics Committee of the Northern
312 Territory Department of Health and Families and the Menzies School of Health Research (HREC 02/38).

313 **Acknowledgements**

314 We thank Vanessa Rigas (Menzies School of Health Research) for laboratory assistance.

315 **Tables**

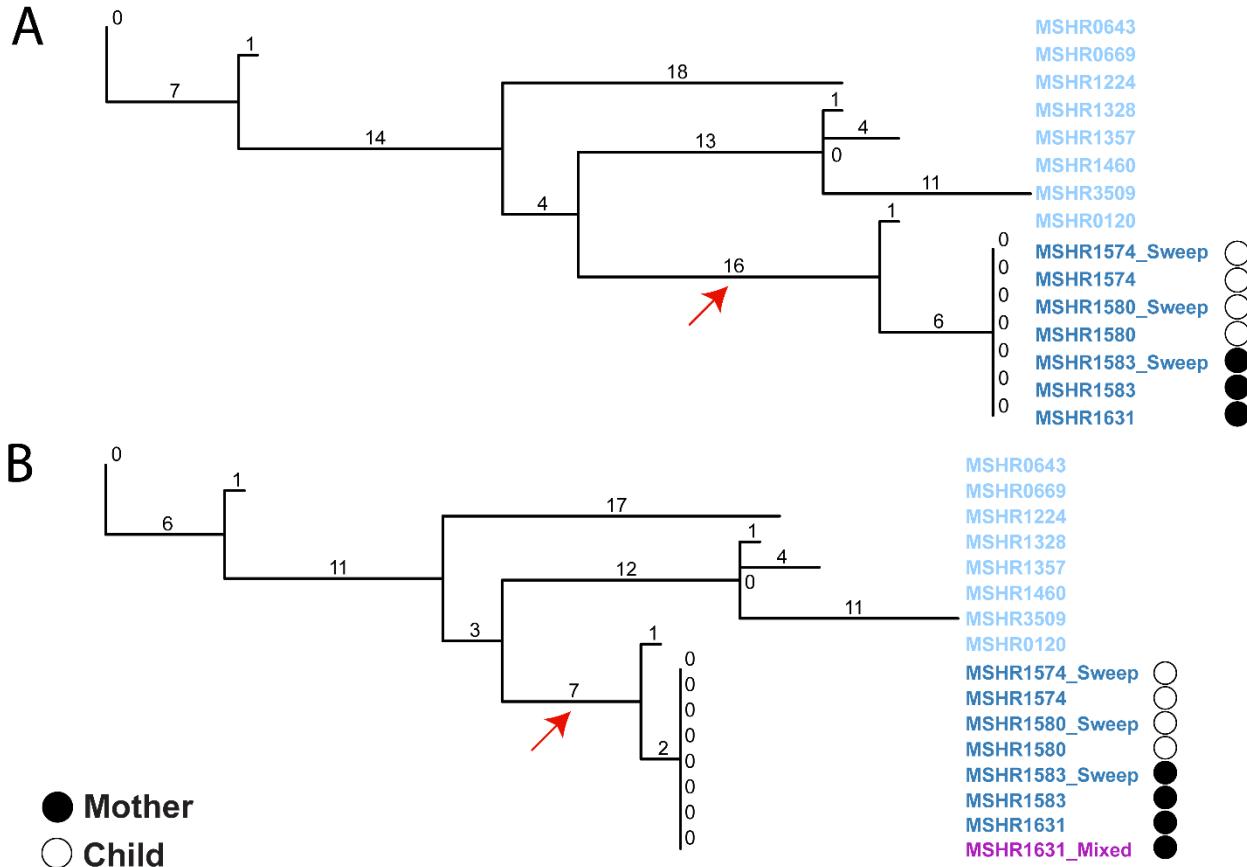

316 **Table 1. Summary of ST-259 and ST-261 *Burkholderia pseudomallei* isolates.**

Isolate ID*	Sample Type	Patient	Multilocus sequence type	NCBI Accession Numbers
MSHR1574	CSF	Child	ST-259	SRR9959037
MSHR1574_Sweep	CSF	Child	ST-259	SRR9959038
MSHR1580	Blood	Child	ST-259	SRR9959039
MSHR1580_Sweep	Blood	Child	ST-259	SRR9959040
MSHR1583	Breast milk	Mother	ST-259	SRR9959042
MSHR1583_Sweep	Breast milk	Mother	ST-259	SRR9959036
MSHR1631	Sputum	Mother	ST-259	SRR9959045
MSHR1631_Mixed	Sputum	Mother	ST-259 and ST-261	SRR9959043
MSHR1581	Sputum	Mother	ST-261	SRR9959044
MSHR1581_Sweep	Sputum	Mother	ST-261	SRR9959041
MSHR0120	Blood	Other [#]	ST-259	SRX1465234
MSHR0669	Blood	Other [#]	ST-259	SRR9959034
MSHR1224	Blood	Other [#]	ST-259	SRR9959035
MSHR1328	Sputum	Other [#]	ST-259	SRR10134765
MSHR1357	Abscess	Other [#]	ST-259	SRR10134764
MSHR3509	Blood	Other [#]	ST-259	SRR10134763
MSHR0643	Urine	Other [#]	ST-259	SRR9959033

317 *Isolates with the “_Sweep” suffix were obtained from primary culture sweeps to capture *B. pseudomallei*
318 population diversity. Of these, MSHR1631_Mixed was the only sample found to contain a mixture of two
319 genotypes. Isolates without the “_Sweep” suffix were obtained from purified single colonies derived from
320 the “_Sweep” culture. [#]Temporally and geographically distinct clinical ST-259 isolates obtained between
321 1992 and 2009 from other patients living in the Top End region of the Northern Territory.

322

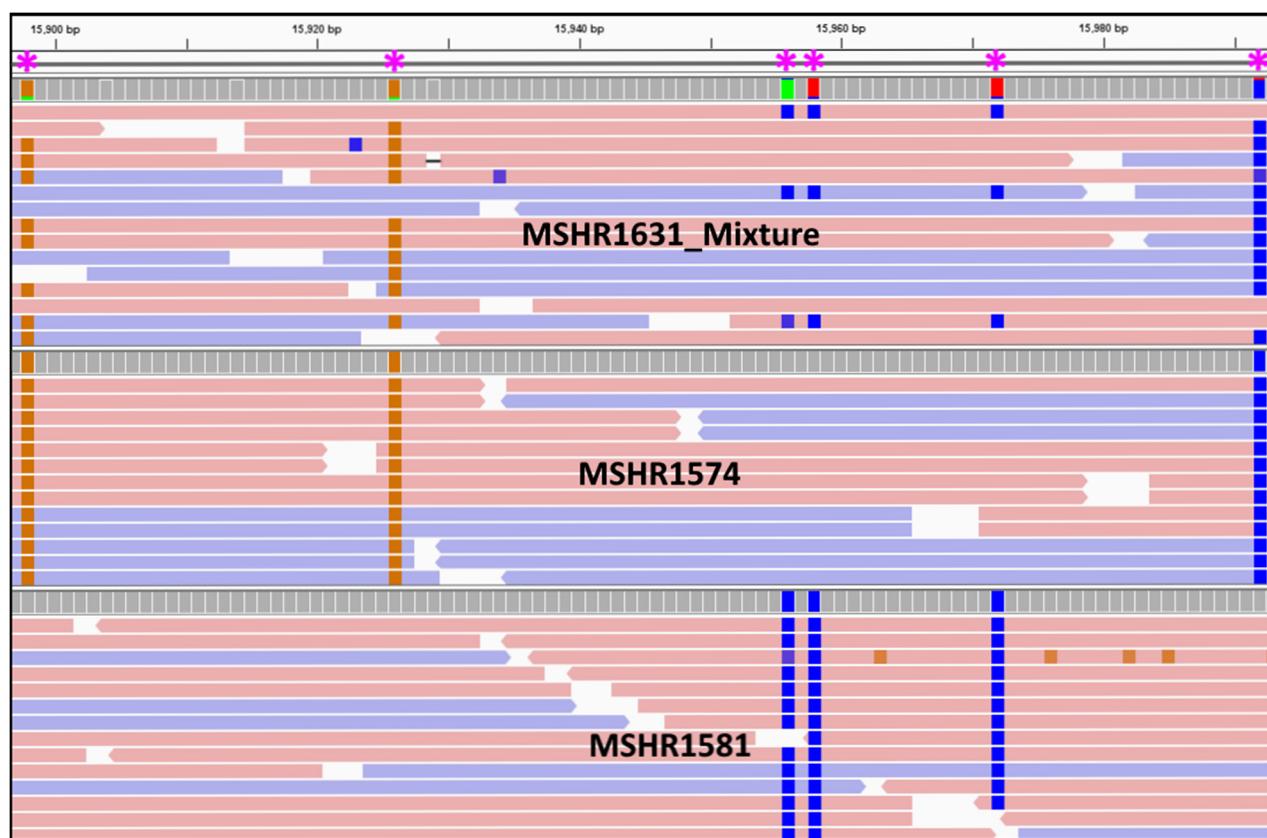
323 **Figures**


Marker
Unrelated patient, 1998, MSHR0677 (ST-259)
Mother, breast milk, 2003, MSHR1583 (ST-259)
Mother, sputum, 2003, MSHR1581 (ST-261)
Marker
Child, blood, 2003, MSHR1575 (ST-259*)
Child, blood, 2003, MSHR1580 (ST-259)
Child, CSF, 2003, MSHR1574 (ST-259)
Marker
Unrelated isolate

324

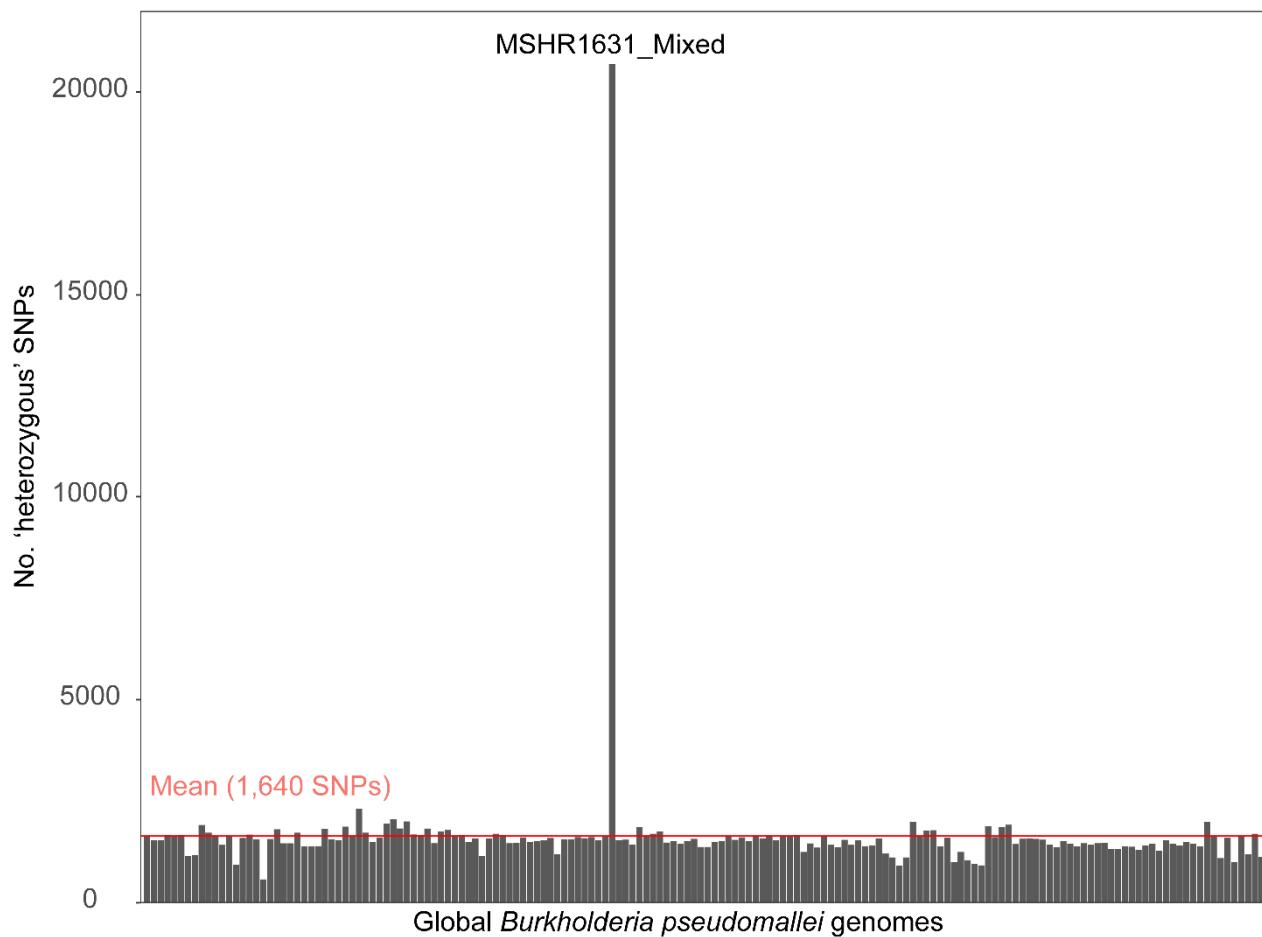
325 **Figure 1. Pulsed-field gel electrophoresis analysis of mother and child isolates.** *Isolate not subjected to
326 whole-genome sequencing in this study due to subsequent culture destruction.

327

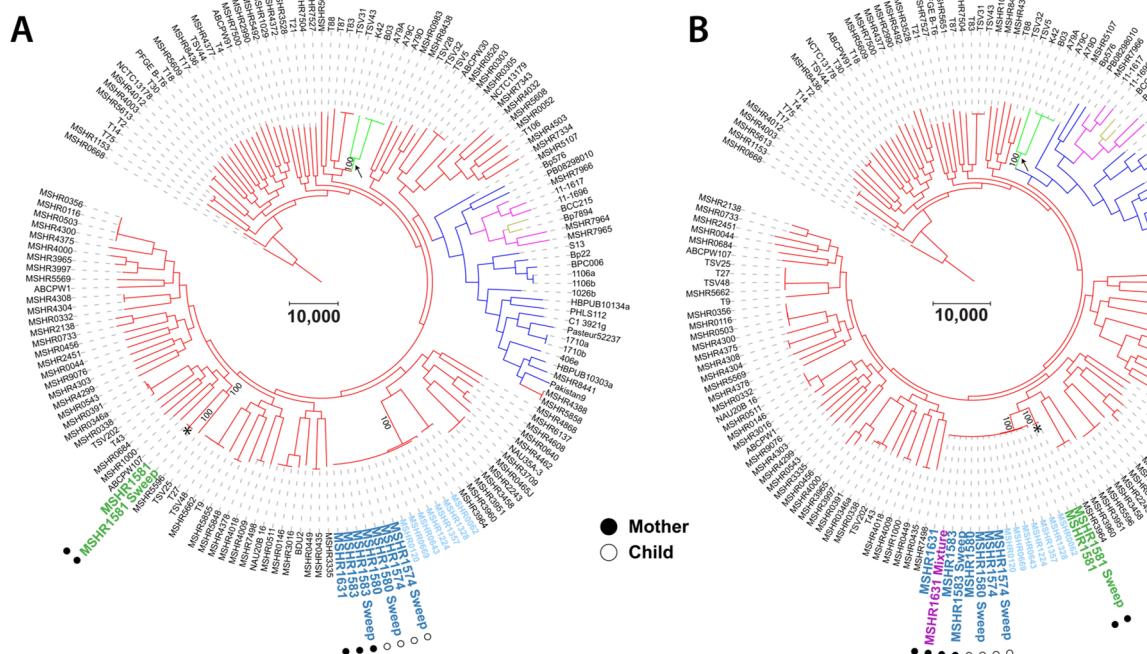

328

329

330 **Figure 2. Maximum parsimony phylogenetic analyses of combined SNP-indel characters identified among**
331 ***Burkholderia pseudomallei* ST-259 isolates, including mother and child isolates (dark blue).** The
332 MSHR1631_Mixed sample (purple) is a mixture of ST-259 and ST-261 at an 87%:13% ratio. (A) All ST-259
333 mother and child isolates were identical, with no observed SNP or indel differences. Mother-child isolates
334 were most closely related to MSHR0120, a clinical ST-259 isolate from the same remote island that was
335 collected in 1992. (B) The inclusion of a strain mixture (MSHR1631_Mixed; purple) from the mother results
336 in the reduction of informative characters and branch collapse (red arrows).


337

338


339 **Figure 3. Example of 'heterozygous' (i.e. strain mixture) single-nucleotide polymorphism (SNP) calls at**
340 **the sequence read level according to GATK HaplotypeCaller.** Heterozygous SNP calls in MSHR1631_Mixed
341 (ST-259 and ST-261) were parsed apart by comparing against homozygous SNP calls from MSHR1574 (ST-
342 259) and MSHR1581 (ST-261). Horizontal bars represent forward (red) and reverse (blue) reads aligned
343 against the MSHR1153 reference genome. Coloured boxes represent 'heterozygous' SNPs (asterisks).

344

346 **Figure 4. Quantification of 'heterozygous' (i.e. strain mixture) single-nucleotide polymorphism calls**
347 **across all mother-child isolates and a global *Burkholderia pseudomallei* genome set.** MSHR1631_Mixed
348 contained 12x the mean number of 'heterozygous' calls according to the GATK UnifiedGenotyper,
349 indicating the presence of a *B. pseudomallei* strain mixture in this sample. No other analysed genomes
350 contained detectable mixtures.

351

352

353 **Figure 5. Global maximum parsimony phylogenetic analyses demonstrating the effects of strain mixtures**
 354 **on tree topology.** Branch colours denote geographic origin of *Burkholderia pseudomallei* strains: red,
 355 Australian isolates, blue, Asian isolates; pink, African isolates; lime green, Papua New Guinean isolates;
 356 gold, South American isolates. (A) Exclusion of the mixed genome, MSHR1631_Mixed, results in correct
 357 topology and separation of STs 259 and 261 according to previous global *B. pseudomallei* phylogenies [9,
 358 17, 31]; these two STs differ by >20,000 single-nucleotide polymorphisms (SNPs). (B) Inclusion of
 359 MSHR1631_Mixed greatly alters topology, leading to incorrect isolate and clade clustering, and collapsed
 360 branches in the clade containing MSHR1631_Mixed. Specifically, ST-261 isolates cluster incorrectly
 361 (asterisk) with ST-259, with branch collapse observed in this clade. The Papua New Guinean isolates are
 362 also incorrectly placed in this phylogeny (black arrows). The number of characters used to construct each
 363 tree differs by 14,503 SNPs (A: 207,209 SNPs; B: 192,706 SNPs). Dark blue text, ST-259 mother-child
 364 isolates; light blue text, geographically disparate ST-259 isolates; green text, ST-261 mother isolates.

365 **References**

- 366 1. **Limmathurotsakul D, Peacock SJ.** Melioidosis: a clinical overview. *British Medical Bulletin*
367 2011;99(1):125-139. doi:10.1093/bmb/ldr007
- 368 2. **Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM et al.** Predicted global
369 distribution of *Burkholderia pseudomallei* and burden of melioidosis. *Nature Microbiology*
370 2016;1(1). doi:10.1038/nmicrobiol.2015.8
- 371 3. **Ralph A, McBride J, Currie BJ.** Transmission of *Burkholderia pseudomallei* via breast milk in
372 northern Australia. *The Pediatric Infectious Disease Journal* 2004;23(12):1169-1171.
- 373 4. **Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant
374 S et al.** Increasing Incidence of Human Melioidosis in Northeast Thailand. *The American Journal of
375 Tropical Medicine and Hygiene* 2010;82(6):1113-1117. doi:10.4269/ajtmh.2010.10-0038
- 376 5. **Schweizer HP.** Mechanisms of antibiotic resistance in *Burkholderia pseudomallei*: implications for
377 treatment of melioidosis. *Future microbiology* 2012;7(12):1389-1399. doi:10.2217/fmb.12.116
- 378 6. **Wiersinga WJ, Currie BJ, Peacock SJ.** Melioidosis. *New England Journal of Medicine*
379 2012;367(11):1035-1044. doi:10.1056/NEJMra1204699
- 380 7. **Butler D.** Viral research faces clampdown. *Nature* 2012;490(7421):456. doi:10.1038/490456a
- 381 8. **Aziz A, Sarovich DS, Harris TM, Kaestli M, McRobb E et al.** Suspected cases of intracontinental
382 *Burkholderia pseudomallei* sequence type homoplasy resolved using whole-genome sequencing.
383 *Microbial Genomics* 2017;3(11). doi:10.1099/mgen.0.000139
- 384 9. **Price EP, Currie BJ, Sarovich DS.** Genomic insights into the melioidosis pathogen, *Burkholderia
385 pseudomallei*. *Curr Trop Med Rep* 2017;4(3):95-102.
- 386 10. **Price EP, Sarovich DS, Viberg L, Mayo M, Kaestli M et al.** Whole-genome sequencing of
387 *Burkholderia pseudomallei* isolates from an unusual melioidosis case identifies a polyclonal
388 infection with the same multilocus sequence type. *Journal of clinical microbiology*
389 2015;53(1):282-286. doi:10.1128/JCM.02560-14
- 390 11. **Holland DJ, Wesley A, Drinkovic D, Currie BJ.** Cystic fibrosis and *Burkholderia pseudomallei*
391 infection: an emerging problem? *Clinical Infectious Diseases* 2002;35(12):e138-140.
392 doi:10.1086/344447
- 393 12. **Kunakorn M, Jayanetra P, Tanphaichitra D.** Man-to-man transmission of melioidosis. *Lancet*
394 1991;337(8752):1290-1291.
- 395 13. **McCormick JB.** Human-to-human transmission of *Pseudomonas pseudomallei*. *Annals of Internal
396 Medicine* 1975;83(4):512. doi:10.7326/0003-4819-83-4-512
- 397 14. **Abbink FC, Orendi JM, de Beaufort AJ.** Mother-to-child transmission of *Burkholderia
398 pseudomallei*. *N Engl J Med* 2001;344(15):1171-1172. doi:10.1056/NEJM200104123441516
- 399 15. **Lumbiganon P, Pengsaa K, Puapermpoonsiri S, Puapairoj A.** Neonatal melioidosis: a report of 5
400 cases. *Pediatr Infect Dis J* 1988;7(9):634-636. doi:10.1097/00006454-198809000-00007
- 401 16. **Choy JL, Mayo M, Janmaat A, Currie BJ.** Animal melioidosis in Australia. *Acta tropica* 2000;74(2-
402 3):153-158.
- 403 17. **Price EP, Sarovich DS, Smith EJ, MacHunter B, Harrington G et al.** Unprecedented Melioidosis
404 Cases in Northern Australia Caused by an Asian *Burkholderia pseudomallei* Strain Identified by
405 Using Large-Scale Comparative Genomics. *Applied and Environmental Microbiology*
406 2016;82(3):954-963. doi:10.1128/AEM.03013-15
- 407 18. **Currie BJ, Gal D, Mayo M, Ward L, Godoy D et al.** Using BOX-PCR to exclude a clonal outbreak of
408 melioidosis. *BMC Infectious Diseases* 2007;7:68. doi:10.1186/1471-2334-7-68
- 409 19. **Currie BJ, Ward L, Cheng AC.** The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases
410 from the 20 Year Darwin Prospective Study. *PLoS Neglected Tropical Diseases* 2010;4(11).
411 doi:10.1371/journal.pntd.0000900
- 412 20. **Sarovich D.** MGAP---Microbial-Genome-Assembler-Pipeline. *Zenodo* 2017.
413 doi:10.5281/zenodo.825368

414 21. **Johnson SL, Baker AL, Chain PS, Currie BJ, Daligault HE et al.** Whole-Genome Sequences of 80
415 Environmental and Clinical Isolates of *Burkholderia pseudomallei*. *Genome Announcements*
416 2015;3(1). doi:10.1128/genomeA.01282-14

417 22. **Jolley KA, Bray JE, Maiden MCJ.** Open-access bacterial population genomics: BIGSdb software,
418 the PubMLST.org website and their applications. *Wellcome Open Research* 2018;3:124.
419 doi:10.12688/wellcomeopenres.14826.1

420 23. **Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L et al.** Using Tablet for visual exploration of
421 second-generation sequencing data. *Briefings in Bioinformatics* 2013;14(2):193-202.
422 doi:10.1093/bib/bbs012

423 24. **Sarovich DS, Price EP.** SPANDx: a genomics pipeline for comparative analysis of large haploid
424 whole genome re-sequencing datasets. *BMC Research Notes* 2014;7(1):618. doi:10.1186/1756-
425 0500-7-618

426 25. **Li H.** Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *ArXiv*
427 2013;1303.3997v1.

428 26. **Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al.** The Sequence Alignment/Map format and
429 SAMtools. *Bioinformatics* 2009;25(16):2078-2079. doi:10.1093/bioinformatics/btp352

430 27. **McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al.** The Genome Analysis Toolkit: a
431 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*
432 2010;20(9):1297-1303. doi:10.1101/gr.107524.110

433 28. **Quinlan AR, Hall IM.** BEDTools: a flexible suite of utilities for comparing genomic features.
434 *Bioinformatics* 2010;26(6):841-842. doi:10.1093/bioinformatics/btq033

435 29. **Cingolani P, Platts A, Wang le L, Coon M, Nguyen T et al.** A program for annotating and
436 predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
437 *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly (Austin)* 2012;6(2):80-92.
438 doi:10.4161/fly.19695

439 30. **Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G et al.** From FastQ data to high
440 confidence variant calls: the Genome Analysis Toolkit best practices pipeline. *Current protocols in*
441 *bioinformatics* 2013;11(1110):11.10.11-11.10.33. doi:10.1002/0471250953.bi1110s43

442 31. **Sarovich DS, Garin B, De Smet B, Kaestli M, Mayo M et al.** Phylogenomic analysis reveals an
443 Asian origin for African *Burkholderia pseudomallei* and further supports melioidosis endemicity in
444 Africa. *mSphere* 2016;1(2). doi:10.1128/mSphere.00089-15

445 32. **McRobb E, Sarovich DS, Price EP, Kaestli M, Mayo M et al.** Tracing melioidosis back to the
446 source: using whole-genome sequencing to investigate an outbreak originating from a
447 contaminated domestic water supply. *J Clin Microbiol* 2015;53(4):1144-1148.
448 doi:10.1128/JCM.03453-14

449 33. **Letunic I, Bork P.** Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
450 *Nucleic Acids Res* 2019;47(W1):W256-W259. doi:10.1093/nar/gkz239

451 34. **Gal D, Mayo M, Smith-Vaughan H, Dasari P, McKinnon M et al.** Contamination of hand wash
452 detergent linked to occupationally acquired melioidosis. *Am J Trop Med Hyg* 2004;71(3):360-362.

453 35. **Wiersinga WJ, Virk HS, Torres AG, Currie BJ, Peacock SJ et al.** Melioidosis. *Nat Rev Dis Primers*
454 2018;4:17107. doi:10.1038/nrdp.2017.107

455 36. **Inglis TJ, Garrow SC, Adams C, Henderson M, Mayo M et al.** Acute melioidosis outbreak in
456 Western Australia. *Epidemiol Infect* 1999;123(3):437-443. doi:10.1017/s0950268899002964

457 37. **Madden DE, Webb JR, Steinig E, Mayo M, Currie BJ et al.** Taking the next-gen step:
458 comprehensive antibiotic resistance detection from *Burkholderia pseudomallei* genomes. *BioRxiv*
459 2019. doi:<https://doi.org/10.1101/720607>

460 38. **Sarovich DS, Webb JR, Pitman MC, Viberg LT, Mayo M et al.** Raising the stakes: loss of efflux
461 pump regulation decreases meropenem susceptibility in *Burkholderia pseudomallei*. *Clinical*
462 *infectious diseases : an official publication of the Infectious Diseases Society of America*
463 2018;67(2):243-250. doi:10.1093/cid/ciy069

464 39. **Pitt TL, Trakulsomboon S, Dance DA.** Recurrent melioidosis: possible role of infection with
465 multiple strains of *Burkholderia pseudomallei*. *Journal of clinical microbiology* 2007;45(2):680-
466 681. doi:10.1128/JCM.01974-06

467 40. **Limmathurotsakul D, Wuthiekanun V, Chantratita N, Wongsuvan G, Thanwisai A et al.**
468 Simultaneous infection with more than one strain of *Burkholderia pseudomallei* is uncommon in
469 human melioidosis. *J Clin Microbiol* 2007;45(11):3830-3832. doi:10.1128/JCM.01297-07

470 41. **Sarovich DS, Price EP, Webb JR, Ward LM, Voutsinos MY et al.** Variable virulence factors in
471 *Burkholderia pseudomallei* (melioidosis) associated with human disease. *PLoS ONE*
472 2014;9(3):e91682. doi:10.1371/journal.pone.0091682

473 42. **Augusto Correa Dos Santos R, Goldman GH, Riano-Pachon DM.** ploidyNGS: visually exploring
474 ploidy with Next Generation Sequencing data. *Bioinformatics* 2017;33(16):2575-2576.
475 doi:10.1093/bioinformatics/btx204

476 43. **Churchill JD, Stoljarova M, King JL, Budowle B.** Massively parallel sequencing-enabled mixture
477 analysis of mitochondrial DNA samples. *Int J Legal Med* 2018;132(5):1263-1272.
478 doi:10.1007/s00414-018-1799-3

479 44. **Weiss CL, Pais M, Cano LM, Kamoun S, Burbano HA.** nQuire: a statistical framework for ploidy
480 estimation using next generation sequencing. *BMC Bioinformatics* 2018;19(1):122.
481 doi:10.1186/s12859-018-2128-z

482 45. **Eyre DW, Cule ML, Griffiths D, Crook DW, Peto TE et al.** Detection of mixed infection from
483 bacterial whole genome sequence data allows assessment of its role in *Clostridium difficile*
484 transmission. *PLoS Comput Biol* 2013;9(5):e1003059. doi:10.1371/journal.pcbi.1003059

485 46. **Driscoll CB, Otten TG, Brown NM, Dreher TW.** Towards long-read metagenomics: complete
486 assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in
487 a freshwater lake co-culture. *Stand Genomic Sci* 2017;12:9. doi:10.1186/s40793-017-0224-8

488 47. **Knaus BJ, Grunwald NJ.** vcfr: a package to manipulate and visualize variant call format data in R.
489 *Mol Ecol Resour* 2017;17(1):44-53. doi:10.1111/1755-0998.12549

490 48. **Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M et al.** Resolving difficult
491 phylogenetic questions: why more sequences are not enough. *PLoS Biol* 2011;9(3):e1000602.
492 doi:10.1371/journal.pbio.1000602

493 49. **Baker AL, Pearson T, Sahl JW, Hepp C, Price EP et al.** *Burkholderia pseudomallei* distribution in
494 Australasia is linked to paleogeographic and anthropogenic history. *PLoS One*
495 2018;13(11):e0206845. doi:10.1371/journal.pone.0206845

496 50. **Kates HR, Johnson MG, Gardner EM, Zerega NJC, Wickett NJ.** Allele phasing has minimal impact
497 on phylogenetic reconstruction from targeted nuclear gene sequences in a case study of
498 *Artocarpus*. *American Journal of Botany* 2018;105(3):404-416. doi:10.1002/ajb2.1068

499