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Abstract

Multiple mRNA isoforms can be generated from a single gene locus through alternative splicing.
Abnormality in alternative splicing has been linked to many human disorders. Here using
RNA-seq data from 48 tissues from GTEXx v7 release and summary statistics from GWAS of
complex diseases and traits, we present a study to identify genomic variants regulating
junction-skipping with the goal to understand their contribution to complex diseases and traits.
For each tissue, we found 48 - 575 junction-skipping events regulated by genomic variants. We

performed fine-mapping on both the junction-skipping association and 23 complex disease and
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trait associations and mapped them to 95% credible sets. We found 13 - 279 junction-skipping
regulations were mapped to a credible set with <5 variants. On the genome-wide scale, we
noted a clear disease-tissue specificity. Results from this approach provided critical insights into
the functional mechanism of the genetic disease associations and contributed to our

understanding of the genetic architecture of human complex disorders.

Introduction

A single genetic locus can be transcribed to multiple RNA transcript isoforms due to alternative
splicing’. Different isoforms transcribed from the same genetic locus can be translated to
peptides with various structures and functions®. Many alternative splicing events are regulated in
a cell-type or tissue-specific manner, at different developmental stages and disease processes.
Alternative splicing mechanisms exist widely: the number of known mRNA transcripts are more
than ten times the number of unique genes in the genome?. Therefore, alternative splicing
increases the complexity of gene expression and plays an important role in diverse cellular

processes and organism development.

Genome-wide association studies (GWAS) have identified a large number of variants
associated with diseases. Most of these disease-associated variants are in the noncoding
genome such as intronic and intergenic regions*. Understanding the molecular function of these
disease-associated non-coding variants is a major challenge in the post-GWAS era®. Previous
studies have shown that the vast majority of these variants might affect protein expression
through regulating the transcription, splicing, or mRNA stability>®. Intriguingly,
disease-associated variants appear to be enriched in regulatory elements active in

disease-associated cell types®.
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Studies have shown that alternative splicing can be regulated by genomic variants’, and these
splicing regulatory variants are major contributors to complex diseases®, potentially through the
production of aberrant proteins®. Understanding the connection between the splicing regulatory
variants and disease-associated variants will help to interpret the GWAS findings and provide

insights into the disease pathogenesis.

Previously, alternative splicing has been characterized using the transcripted-focused or the
exon/intron-focused methods using RNA sequencing (RNA-seq) data. The transcript-focused
methods model the splicing through transcript isoform levels'®, which requires the inference of
full-length mRNA isoforms from short reads. These methods are therefore sensitive to isoform
annotations' and can be less accurate if the read depth is limited. The exon/intron-focused
methods model the splicing through the inclusion/exclusion of a single or multiple
exons/introns'®"®, These methods do not require the prior knowledge of the isoforms, and have

been shown to have better power due to its reduced complexity™.

Here we proposed a novel approach to characterize the alternative splicing with further reduced

complexity and increased power by focusing on the intron-exon junctions. We note that many

pathogenic transcript isoforms were generated by disruptions in the intron-exon junctions ¢,

By inferring the junction-skipping level directly using RNA-seq reads covering the junctions, we
achieve a better accuracy and more power to capture such pathogenic alternative splicing

events'5,
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We further identified variants regulating the junction-skipping rates (jsQTL) and investigated
their connections with human complex disorders. We made two major improvements upon
existing studies: 1) we improved the power to identify a jsQTL by applying a homogeneity test
on the splicing pattern across individuals. By only focusing on splicing events that are
heterogeneous across individuals, we reduced the multiple testing burden and increased the
statistical power; 2) we performed fine-mapping to precisely map both the jsQTL and the
disease-associated variants, which improves the signal-to-noise ratio and leads to better
sensitivity. We applied this method to 48 tissues and cell lines in GTEx v7 release
(Supplementary Table S1) and to 23 human complex traits/disorders (Supplementary Table S2),
providing insights into the contribution of jsSQTL to human complex traits/disorders in a

tissue-specific manner.
Results

We designed a method to identify junction-skipping events from the RNA-seq data from GTEXx
and their regulatory variants (Figure 1). To do this, we pooled the uniquely mapped junction
reads in samples from the same tissue to identify junction-skipping events. This was done for all
intron-exon junctions in the canonical transcripts. 48 tissues from GTEx were included in this
study, with 80 - 491 samples per tissue (Supplementary Table S1). For a tissue and a junction
of interest, we counted the number of reads supported this junction in the canonical transcript in

individual i as n,, and the number of reads that skipped this junction ass; . We retained the
junction if both Y n, and }'s; are greater than zero. The number of junctions included in the

analysis ranged from 60,450 (substantia nigra) to 103,147 (lung).
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To improve the statistical power, we only kept an individual i if n, +s; > 5. After this, we only kept
junctions that have at least 3 individuals remaining. We note that in order to test for variants
regulating junction-skipping, we need to observe variations in the junction-skipping pattern in
our dataset: if a junction has a homogeneous rate of being skipped across all individuals, it is
not possible to test whether the skipping of this junction is regulated by a genomic variant.
Therefore, we only included junctions that have heterogeneous skipping rate across samples to
find their regulatory variants (Methods), which further reduced the number of tested junctions to

831 - 8,493 per tissue or cell type (Supplementary Table S1).

We tested the association between variants and junction-skipping rate to identify variants
regulating junction-skipping (Methods). We did this for common variants with minor allele
frequency (MAF) > 0.05 within 500 kilo base-pairs (kb) up and downstream of the junction of
interest. We performed 100 permutations to establish the P-value threshold corresponding to
0.05 false-positives per genome-wide analysis (Methods). Using this threshold, we found 47 -
574 junction-skipping events significantly regulated by variants, which were fine-mapped to 789
- 12,593 variants in the 95% credible sets (Methods and Supplementary Table S2). 5-130
junction-skipping events were mapped to a single regulatory variant (Supplementary Table S3),
and 6 - 154 junction-skipping events were mapped to 2 - 5 candidate variants (Figure 2A).
These regulatory variants are shared extensively across tissues: over 50% jsQTLs present in 2+
tissues (Figure 2B). A customizable browser (http://broad.io/jsqtl) is available to review the

detailed jsQTL result.

We found that jsQTLs are located close to the skipped junction (Figure 3). To evaluate this

quantitatively, for each variant, we took its best probability for being a jsQTL across all tissues
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and summed up the probabilities across all junctions tested. We found variants within 5,000bp
up- and down- stream of the skipped junction account for 46.34% jsQTL probability while only
cover 1% (10,000bp / 1,000,000bp) of the tested genomic region. Additionally, we found that
70%-100% of jsQTLs that were mapped to a single variant were within 500bp up- or down-

stream of the skipped junction (Supplementary Figure S1).

A few jsQTLs mapped to single variants have been validated in previous studies. For example,
we found rs1800693 regulating the skipping of exon 6 in TNFRSF1A across 35 tissues
(Supplementary Figure S2A and B). Previous studies using in vitro minigene splicing assays
showed that the G allele of rs1800693 led to the skipping of exon 6%°. We also found rs74390, 6
nucleotides downstream of the splice acceptor site, regulating the skipping of the 4th exon of
EMID1 across 8 tissues (Supplementary Figure S2C and D). This observation was validated by
gRT-PCR in lymphoblastoid cell lines?'. Lastly, we found rs3795859, located in intron 35 of
LRPPRC, regulating the skipping of exon 35 across 14 tissues (Supplementary Figure S2E and
F). In a minigene assay, the T allele of rs3795859 was shown to increase the exclusion of exon

35 in Hela and HEK293T cell lines?.

To investigate the contribution of jsQTLs to human complex traits and disorders, we
fine-mapped genome-wide significant loci associated with 23 human complex traits and
disorders (Methods and Supplementary Table S4 and S5). We found a handful of jsQTL
variants with high posterior probability that also have high posterior probability for being a
disease causal variant, suggesting a link between jsQTL and human complex traits and
disorders (Supplementary Table S6). More specifically, we found 15 variants across 48 tissues

that have posterior probability greater than 10% for both jsQTL and human complex traits/
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disorders (Supplementary Table S7). One variant, rs11589479, was found to regulate the
skipping of the 19th exon in ADAM15 in all tested tissues (Supplementary Figure S3A and B).
ADAM15 works as a mediator of mechanisms underlying inflammation and is associated with
Crohn's Disease®. In addition, we found rheumatoid arthritis (RA) associated variants
(rs2304256 and rs34725611) regulating junction-skipping in TYK2, glycated haemoglobin A1c
(HbA1c) associated variant (rs267738) regulating junction-skipping in CERS2 and many
height-associated variants regulating junction-skipping in CDC16, LTBP2, ADAMTSLS3,
SEC16A, C120rf23, NUCB2, GFPT2, and SPAGS across various tissues (Supplementary

Figure S3C and D).

Variants may have small posterior probability in fine-mapping due to the limited statistical power
or complex linkage disequilibrium (LD) structure. jsQTL analysis may provide additional
information to resolve the disease associations. For example, a genetic association with IBD
near SP140, which is predominantly expressed in immune cells, was mapped to 31 variants®*.
Our jsQTL analysis found rs28445040, one of the 31 credible variants, regulating the skipping of
the 7th exon in SP140. rs28445040 is the most probable jsQTL variant with 39% posterior
probability in lymphocytes (similar results in whole blood and spleen), suggesting that
rs28445040 could be an IBD causal variant (Supplementary Figure S3E and F) through

regulating the splicing of SP740.

On the genome-wide scale (Methods), we noted that jsQTL variants implicate human complex
traits and disorders in a tissue specific manner. We found that jsQTLs in whole blood, spleen,
lymphocytes, and colon implicate genetic loci associated with inflammatory bowel diseases

(IBD), jsQTLs in pancreas implicate genetic loci associated with type 2 diabetes (T2D), and
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jsQTLs in whole blood and brain tissues (frontal cortex, cerebellum, etc.) implicate
schizophrenia genetic loci. Interestingly, genetic associations with height were implicated by
jsQTLs in almost all tested tissues and cell lines. We also note that if no connection was
observed between jsQTL and disease genetic associations, this could either indicate that the
disease/trait is not affected by jsQTL or that the disease association study does not have
sufficient power. To reflect this observation, we measured the power of the trait/disease
association studies using the variance explained by the fine-mapped variants (Methods), which
varies trait by trait from 0.14% to 20.25% (Figure 4A). As the power of the genetic studies

increases, the disease-tissue specificity for jsQTL variants becomes more apparent (Figure 4B).

Discussion

In this study, we developed an approach to identify junction-skipping regulatory variants using
data from GTEx and investigated their connections with human complex disorders. Alternative
splicing is a complex event which had been characterized using transcript- or exon/intron-
focused methods. We proposed a new junction-focused method with reduced complexity,
providing a fresh look into alternative splicing in human transcriptome. This method is able to
detect alternative splicing regardless of the number of exons skipped, although it is unable to

provide details regarding individual exons.

We performed fine-mapping to estimate the causal probability for variants regulating the
junction-skipping. We found that splicing regulatory variants clearly contribute to human
complex disorders and traits in a tissue specific manner, providing a valuable resource for

functionally characterizing the role of the noncoding genome in complex diseases and traits.
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Similarly, we fine-mapped disease genetic associations to a smaller and precise subset of
variants. By only focusing on associations that can be mapped to a small set of variants, we
achieved better specificity and reduced spurious colocalizations. There is clear evidence that
the majority of variants identified in GWAS contribute to the disease risk through their impact on
gene regulatory functions in specific tissues?*. Findings in this study agree with previous findings
that splicing QTL are major contributors to complex diseases/traits®'. For example, researchers
found splicing QTLs in LCLs enriched in variants associated with autoimmune-disease and
splicing QTLs in human brains enriched with variants associated with schizophrenia®'*?. In this
study, we also found T2D-associated variants enriched in jsQTLs from the pancreas, the organ
producing insulin; and variants associated with IBD and Rheumatoid arthritis (RA) enriched in
jsQTLs from the immune-related cell lines and tissues including whole blood, spleen, and
fibroblasts. These findings are supported by previous reports that genetic associations with CD
co-localize with immune-cell chromatin peaks*, and that the CD is an autoimmune disorder
resulting from an impaired innate immunity or an overactive Th1 and Th17 cytokine

response®®?’.

One limitation of this study is the sample size. Sample size plays an important role in
association and fine-mapping studies*®. As the sample size increases, more jsQTL can be
discovered (Supplementary Figure S4), showing that we have not yet saturated the power and
more samples are needed to complete the allelic spectrum of splicing regulatory variants.
Future studies such as GTEXx release v8 will deliver additional samples to further our

understanding of the connection between jsQTL and complex diseases.
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This study only investigated common variants with MAF > 5% in the genome as the power for
testing less frequent variants is low. The frequencies for variants at the 5’ or 3’ essential splicing
sites tend to be low because they are often under purifying selection. Therefore, most of the
regulatory variants we identified in this study were not at the 5" or 3’ splice sites and do not have
full penetrance. Rather, they have a moderate effect on the exon splicing and affect the splicing
efficiency. This is consistent with the view that mutations in other positions of the consensus
sequence that decrease splice site strength can partially or completely inhibit usage of the

splice site®.

Methods

Dataset

The RNA-seq and genotype data are from GTEXx release v7 (Supplementary Table S1). The
GWAS summary statistics used for fine-mapping were downloaded from published studies

(Supplementary Table S4).

Identification of Junction-Skipping events
To identify the junction-skipping events, uniquely mapped junction reads were extracted from
the GTEx alignment bam file using samtools®* and regtools

(https://regtools.readthedocs.io/en/latest/). The uniquely mapped junction reads in samples from

the same tissue were pooled to identify junction-skipping event from the canonical transcripts
annotation (APPRIS) *'. For each tested exon-exon junction, we counted the number of
non-skipping junction reads as n, and the number of skipping junction reads as s, with i denoting
the individual i. As shown in Figure 1, non-skipping junction reads are the reads covering exons

1 and 2 in the canonical transcript; and skipping junction reads are the reads covering exon 1
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and another exon downstream of exon 2 (including 3, 4, ...) in the canonical transcript. As
discussed in the Result, for each junction-skipping event, samples with no more than 5 junction
reads (n, +s,<5) were removed. In addition, each junction-skipping event with less than 3

samples was not tested due to low statistical power.

Heterogeneity test for outliers

To reduce the multiple testing burden, we selected a subset of junction-skipping events that are
heterogeneous across individuals. This is because the events that are homogeneous across all
individuals have no power for association tests. We used the leave-one-out method to test the
heterogeneity. For a tissue and a junction-skipping event, assume there are m samples and j is

the sample being tested for heterogeneity. We first calculated the number of skipped junction

m
read counts across all samples except for sample jas S_;={ ~ si) —s; . Similarly, the sum of
=1 ’

the non-skipped junction read counts without sample jis N_; = { ¥ ni) —n; . We then applied
i=1

S . .
Fisher's exact test on sample j using the 2-by-2 matrix: -7
We denote the P-value from the Fisher’'s exact test as P/ and the Bonferroni corrected P-value

can be calculated as Pj'. =1-(1 —Pj)'” . We defined “the number of outliers” as

=y I(P;. <0.05) , in which () is Indicator function with a value of 1 if P]'. <0.05 and value of
=

0 otherwise. We only test the junction-skipping events that have [ > 5.

Association analysis between junction-skipping and variants
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For each variant, junction-skipping event and tissue, we divide samples into two groups (G7 and
G2) based on their genotypes:

G, = {homozygous major}

G, = {heterozygous } U{homozygous minor}

We then calculate the skipping rate for each individual and group them by:

o b
stn;

Ry= {2, i € G,

S
We test the difference of the skipping rates between the two groups (R1 v.s. R2) using the
Mann-Whitney-Wilcoxon test, and denote the result as P,, . Variants with minor allele frequency
= 5% and within £500 kb of the skipped intro-exon junction were tested for their associations

with the junction-skipping event.

Establish the genome-wide significance threshold

Variants are correlated because of LD so the number of independent tests can be smaller than
the number of exon-variant pairs tested. We used a permutation test to estimate the test burden
and the P-value threshold after multiple testing corrections. We performed the test on skeletal
muscle because it has the largest sample size and therefore, more exon junction tested due to
the power (a conservative choice). For skeletal muscle samples, we randomly shuffled the
sample ID 100 times, for each shuffle, we used the shuffled ID to connect the skipping rate and
the genotypes, and performed association tests for all exon-variant pairs. We noted a
well-calibrated P-value distribution from the permutation test (Supplementary Figure S5). The
minimum P-value across all tested exon-variant pairs in each shuffle was recorded for a list of

100 “minimum” P-values. The 5th smallest P-value in the list, which was 5x107°, was used as
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the genome-wide significant P-value threshold (corresponding to 5% genome-wide

false-positive rate).

Fine-mapping of jsQTL signals

We fine-mapped all junction-skipping events that have at least one variant with MAF = 5%
significantly associated (P-value < 5x107'°). We used a published fine-mapping method* with
default parameters (R2< 0.4), and LD calculated from individual-level genotypes from GTEx. We
calculated the causal posterior probability for each variant in the region, and constructed the
smallest set of variants that contain the causal variant with 95% confidence (95% credible set).

The extended MHC region (chr6 22.5M - 33.5M) was not included because of its long-range LD.

Fine-mapping of complex disease loci

We took the fine-mapping results from a published fine-mapping study* for the inflammatory
bowel diseases. For other diseases and traits, we used the same fine-mapping approach we
used for jsQTL*. We downloaded the summary statistics from 23 GWAS (Supplementary Table
S4). For each disease or traits, we fine-mapped genetic associations that reached genome-wide
significance (P-value < 5x107%) and have MAF = 5%. Variants with R?< 0.4 and are within 250
kb up- and down- stream of the most significant variant from GWAS were used in fine-mapping.
We used PLINK®*? to compute the pairwise R? between the most significant GWAS variant and
other variants in each locus using the 1000 Genomes Reference Panel Phase 3 European
(EUR) population®. We only fine-mapped the primary association in each locus. The outcome
from the fine-mapping analysis was a set of variants that contain the causal variant with 95%
confidence (95% credible set) with their causal posterior probability. The extended MHC region

(chr6 22.5M - 33.5M) was not included because of its long-range LD.
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Overlap between jsQTL variants and variants associated with complex diseases and traits

To characterize the contribution of jsQTLs to human complex diseases and traits, we first
counted how many disease associations overlap the jsSQTL associations in each tissue. An
overlap is defined as the 95% credible sets for both associations share at least one variant. This
number was then normalized by the total number of genetic associations fine-mapped for the
disease, representing the proportion of the disease associations regulating junction-skipping.
We then used permutations to establish the distribution of this proportion under the null, and use
the distribution to evaluate the statistical significance of the observed proportion. The
permutation was performed 10,000 times for each tissue-disease pair by shifting variants within
95% credible sets for each disease at a random direction for a random distance between 0 and
500 kb. This permutation was performed circularly meaning that variants at the end of the locus
will be moved to the start of the locus. P-value was calculated as the number of times the
proportion from the permuted data is greater than the original proportion in the unpermuted
data, divided by the number of permutations performed (10,000). The P-value significance
threshold was corrected for the number of disease-tissue pairs with at least one overlap in the
unpermuted data: 0.05 / 60=0.0008. To improve the signal-to-noise ratio, we only included
jsQTLs that showed reasonable tissue specificity (detected in < 35 out of 48 tissues, Figure 2)

and only disease and tissues credible sets that were mapped to <50 variants.

Variance explained by fine-mapped disease associations and the disease heritability
We calculated the variance explained by the fine-mapped disease associations using the variant

with the largest posterior probability in each credible set as the proxy. The variance explained

—_ 0 2 0 .
for each variant was then calculated as w for categorical traits and 2p(1 - p)(beta)2
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for quantitative traits 3, where p is minor allele frequency in the 1000 Genomes Reference
Panel Phase 3 European (EUR) population, OR is odds ratio, and beta is the per allele effect on
the quantitative trait. The variance explained by all credible sets for a disorder is then the sum of
variance explained by each proxy variant. The heritability for a trait/disease was taken from

SNPedia®*® and LD Hub (if not available in SNPedia)®.
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Figures
1. Figure 1. Overview of the jsQTL method.
2. Figure 2. Summary of jsSQTL 95% credible set across tissues.
3. Figure 3. Sum of jsQTL probability for variants close to the skipped exon.

4. Figure 4. Tissue-specific overlap between jsQTL and disease-associated variants.

Supplement Tables

1. Supplementary Table S1. Sample information for jsQTL analysis and summary results

2. Supplementary Table S2. jsQTL variants mapped to 95% credible sets

3. Supplementary Table S3. jsQTLs mapped to single variant

4. Supplementary Table S4. Sample information for traits/diseases fine-mapping analysis
and summary results

5. Supplementary Table S5. Human traits/disease associated variants fine-mapped to 95%
credible sets

6. Supplementary Table S6. Variants fine-mapped to 95% credible sets for both jsQTL and
human complex traits/disorders

7. Supplementary Table S7. Variants with posterior probability > 10% for both jsQTL and
human complex traits/ disorders

Supplement Figures

1. Supplementary Figure S1. Distribution of distance between the skipped exon and its
jsQTLs.
2. Supplementary Figure S2. Examples of jsQTLs mapped to a single variant (labeled)

3. Supplementary Figure S3. Examples of jsQTLs for disease-associated genes.
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4. Supplementary Figure S4. The number of identified jsQTLs increases with the sample
size.
5. Supplementary Figure S5. Quantile-quantile (QQ) plot of P-value from the permuted data

in skeletal muscle.
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Figure 1. Overview of the jsQTL method. 5’ junction of exon2 is the tested junction. J is

junction read count.
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Figure 2. Summary of jsQTL 95% credible set across tissues. a) Number of variants in 95%

credible set of each jsQTL, by tissue. b) Number of jsQTLs shared across tissues.
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Figure 3. Sum of jsQTL probability for variants close to the skipped junction. Variants
within 5,000bp up and down stream of the skipped intron-exon junction were plotted. The
position of skipped junction is 0 on the x-axis. The solid line is the moving average of the
summed probability calculated with a window size of 10bp. The dashed line is the baseline
probability of the full test region (x 500kb), calculated as the average probability across all the
variants (Baseline probability is defined as the average posterior probability per base-pair

across the tested region).
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Figure 4. Tissue-specific overlap between jsQTL and disease-associated variants. (A)
Common variant-based heritability (white) and the variance explained by fine-mapped variants
for each disease/traits(grey). (B) Tissue-specific overlap between jsQTL and disease-associated
variants. Color in the heatmap was based on the proportion of disease-associated variants
overlapping jsQTLs (Method). * indicates significance beyond the Bonferroni corrected P-value
threshold (P-value < 0.05). TG: Triglycerides, TC: Total cholesterol, T2D: Type 2 diabetes, SCZ:
Schizophrenia, RA: Rheumatoid arthritis, MDD: Major Depressive Disorder, LDL-C: low-density
lipoprotein cholesterol, IS: Ischemic stroke, IBD-UC: ulcerative colitis, IBD-CD: Crohn's Disease,
IBD: Inflammatory Bowel Disease, Height: height, HDL-C: high-density lipoprotein cholesterol,
HbA1c: Glycated hemoglobin, CAD: Coronary artery disease, BMI: Body Mass Index, BIP:
Bipolar disorder, Asthma: Asthma, ASD: Autism, AN: Anorexia nervosa, AD: Alzheimer's

disease, ALS: amyotrophic lateral sclerosis, ADHD: Attention-deficit/hyperactivity disorder
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