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Abstract

Our understanding of the biological changes in the brain associated with Alzheimer’'s disease
(AD) pathology and cognitive impairment remains incomplete. To increase our understanding of
these changes, we analyzed dorsolateral prefrontal cortex of control, asymptomatic AD, and AD
brains from four different centers by label-free quantitative mass spectrometry and weighted
protein co-expression analysis to obtain a consensus protein co-expression network of AD brain.
This network consisted of 13 protein co-expression modules. Six of these modules correlated
with amyloid-f plague burden, tau neurofibrillary tangle burden, cognitive function, and clinical
functional status, and were altered in asymptomatic AD, AD, or in both disease states. These
modules reflected synaptic, mitochondrial, sugar metabolism, extracellular matrix, cytoskeletal,
and RNA binding/splicing biological functions. The identified protein network modules were
preserved in a community-based cohort analyzed by a different quantitative mass spectrometry
approach. They were also preserved in temporal lobe and precuneus brain regions. Some of the
modules were influenced by aging, and showed changes in other neurodegenerative diseases
such as frontotemporal dementia and corticobasal degeneration. The module most strongly
associated with AD pathology and cognitive impairment was the sugar metabolism module, which
was enriched in AD genetic risk factors and correlated with APOE genetic risk. This module was
also highly enriched in microglia and astrocyte protein markers associated with an anti-
inflammatory state, suggesting that the biological functions it represents serve a protective role in
AD. Proteins from this module were increased in cerebrospinal fluid from asymptomatic AD and
AD cases, highlighting their potential as biomarkers of the altered brain network. In this study of
>2000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify
proteins and biological processes in AD brain that may serve as therapeutic targets and fluid

biomarkers for the disease.


https://doi.org/10.1101/802959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/802959; this version posted October 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Alzheimer’s disease (AD) is a leading cause of death worldwide, with increasing prevalence as
global life expectancy increases?. Although AD is currently defined on the basis of amyloid-$
plaque and tau neurofibrillary tangle deposition within the neocortex?, the biochemical and cellular
changes in the brain that characterize the disease beyond amyloid-3 and tau deposition remain
incompletely understood. The genetic architecture of late-onset AD has been extensively studied,
and the results of these studies implicate multiple biological pathways that contribute to
development of the disease, including immune function, endocytic vesicle trafficking, and lipid
homeostasis, among others®®. In addition to genetic studies, transcriptomic studies on
postmortem AD brain tissue have identified changes in mRNA co-expression that correlate with
disease traits and cognitive decline®’. However, given that mRNA levels correlate only modestly
to protein levels®®, and proteins are the effectors of most biological functions, it is important to
understand the proteomic changes that occur in AD brain to help advance drug development and

biomarker efforts for this diseasel®.

Protein co-expression analysis is a powerful tool to understand biological network, pathway, and
cell type changes in human tissue''*?, Communities of co-expressed proteins can be linked to
disease processes, and the most strongly correlated proteins, or “hubs,” within these co-
expression modules are enriched in key drivers of disease pathogenesis®*8. Therefore, targeting
hubs within protein co-expression modules most related to disease biology is a promising
approach for drug and biomarker development!®?2, We recently analyzed control, asymptomatic
AD, and AD brain tissue, using both protein differential and co-expression approaches, in a cohort
of 47 individuals from the Baltimore Longitudinal Study of Aging to better understand the
proteomic changes that occur in AD brain?324, We observed protein co-expression changes that
correlated with AD phenotypes, and found that glial and inflammatory protein network alterations

are important features of AD pathophysiology. Importantly, many of the observed AD network
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findings were unique to the proteome, and not observed in the transcriptome, consistent with
recent findings in other diseases such as cancer!. Here, we describe a multi-center collaborative
project to extend these initial findings by analyzing more than 2000 human brain tissues by
guantitative mass spectrometry-based proteomics. We generate a consensus AD brain protein
co-expression network, controlling for batch and other co-variates, from 453 brains obtained from
multiple research centers. We validate this protein network in a separate community-based
cohort using a different mass spectrometry-based technology for protein quantitation, and show
that the network is preserved in different brain regions affected in AD. By analyzing a separate
cohort of normal aging brains, we are able to estimate the effect aging has on the observed AD
brain protein co-expression network. We also analyze the disease specificity of the AD protein
network changes by interrogating these changes in six other neurodegenerative diseases that
encompass diverse brain pathologies, and validate the observed changes by targeted protein
measurements. One of the most strongly altered AD protein co-expression modules, which we
term the “astrocyte/microglial metabolism” module, is enriched in proteins linked to microglia,
astrocytes, and sugar metabolism; is enriched in protein products linked to AD genetic risk; and
is modified by APOE genotype. Microglial protein markers within this module are biased toward
an anti-inflammatory disease-associated state, suggesting that it reflects a protective or
compensatory function in response to AD pathology. Remarkably, proteins from this module are
increased in cerebrospinal fluid in individuals with AD, including in the asymptomatic stage of the
disease. Our results highlight the importance of inflammation, sugar metabolism, mitochondrial
function, synaptic function, RNA-associated proteins, and glia in the pathogenesis of AD, and
provide a robust framework for future proteomic and multi-omic studies on AD brain and biofluid

biomarkers.

Results
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Construction of a Consensus AD Protein Co-Expression Network

Our initial investigation into protein co-expression changes in AD was centered on analysis of 47
cases encompassing control, asymptomatic AD (AsymAD), and AD brains?3. Proteomic analyses,
like genomic and transcriptomic analyses, can be influenced by multiple technical and
experimental variables that are difficult to completely control in any one experiment, as well as by
the inherent variability in disease pathology among selected AD cases, and variability in
pathological assessment among different investigators. Because these factors may influence the
resulting AD protein co-expression network, we set out to build a network that was robust to such
variability. To do so, we analyzed control, AsymAD, and AD brains from multiple research centers
in multiple batches over different time periods. In addition to the original 47 cases from the
Baltimore Longitudinal Study of Aging (BLSA), we analyzed dorsolateral prefrontal cortex
(DLPFC) tissue in 178 cases from the Banner Sun Health Research Institute (Banner), 166 cases
from the Mount Sinai School of Medicine Brain Bank (MSSB), and 65 cases from the Adult
Changes in Thought Study (ACT), for a total of 453 control, AsymAD, and AD brains (Figure 1A).
All cases had comprehensive clinical evaluations during life, and were classified according to a
common diagnostic scheme as described in Methods. AsymAD was defined as postmortem
pathology consistent with an AD diagnosis but without dementia, based on the NIA research
framework for AD2. Tissues were analyzed by mass spectrometry-based proteomics using label-
free quantitation (LFQ), and the resulting mass spectrometry data were processed using a
common pipeline to arrive at 3334 proteins that were quantified with fewer than 50% missing
values across the 453 cases. These proteins were used to generate a protein co-expression
network using the weighted correlation network analysis (WGCNA) algorithm. The resulting
network consisted of 13 protein co-expression “modules,” or communities of proteins with similar
expression patterns across the cases analyzed (Figure 1B, Extended Data Figures 1 and 2,

Supplementary Table 3). These modules could also be identified independently of the WGCNA
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algorithm using t-distributed stochastic neighbor embedding (t-SNE) analysis (Supplementary
Figure 1), demonstrating that the protein communities identified by the WGCNA algorithm were
robust. Gene ontology (GO) analysis of the protein module members revealed a clear ontology
for eleven out of the thirteen modules, encompassing a diverse mix of biological functions,
processes, and components (Figure 1B, Extended Data Figure 3). To assess whether a given
co-expression module was related to AD, we correlated the module eigenprotein—or first principle
component of the module protein expression level—to the neuropathological hallmarks of AD:
amyloid-B plagues and neurofibrillary tangles. We also correlated the module eigenproteins to
cognitive function as assessed by the Mini-Mental Status Examination (MMSE), and functional
status as assessed by the Clinical Dementia Rating Scale (CDR), at the last research evaluations
prior to death to capture module-disease relationships that may be independent of amyloid-3
plague or tau tangle pathology (Figure 1B, Extended Data Figure 1). We observed six modules
that were significantly correlated with all pathological, cognitive, and functional measures, and
whose ontologies could be best characterized by a structural component or a biologic process:
modules M1 synapse, M3 mitochondrial, M4 glucose and carbohydrate metabolism
(subsequently referred to as sugar metabolism), M5 extracellular matrix, M6 cytoskeleton, and
M10 RNA binding/splicing. The M4 sugar metabolism module showed the strongest AD trait
correlations (amyloid-p plaque r=0.46, p=1.3e2%; neurofibrillary tangle r=0.49, p=4.7e?’; cognition
r=-0.67, p=8.5e2%; functional status r=0.52, p=2.6e?). Two modules—M11 chaperone/protein
folding and M12 of unknown function—correlated with AD pathology and cognitive function, but
not with functional status as assessed by CDR. The M8 module, which contained many circulating
blood components such as hemoglobins and fibrinogen, and the M2 module, which predominantly
reflected myelin components, correlated only with cognitive status but not AD pathology or
functional status, suggesting that these modules may influence dementia separately from
amyloid-B plagues and tau tangles. Because AD neuropathology is not homogenous even within
the same brain region, and because neuropathological measurements of AD pathology are semi-
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guantitative and subject to a certain degree of individual variability in assessment?®, we also
correlated module eigenproteins to mass spectrometry measurements of amyloid-f and the tau
microtubule binding region, which comprises neurofibrillary tangles, within the DLPFC tissue used
for proteomic analysis (Supplementary Figure 2). We observed strong concordance between
neuropathological and molecular measurements of AD pathology. We were also able to quantify
alpha-synuclein and TAR DNA-binding protein 43 (TDP-43) proteins and assess their module
correlations (Supplementary Figure 2A). Alpha-synuclein correlated most strongly with the M6
cytoskeleton module, as well as the M1 synaptic module. TDP-43 correlated most strongly with
the RNA-binding module. These observations lend additional validity to the co-expression results
given their known functions at the synapse and in RNA-binding, respectively. Alpha-synuclein
also positively correlated with the M1 synaptic module, suggesting that we measured mostly
soluble and physiological forms of this protein, rather than alpha-synuclein present in Lewy body

aggregates.

Because many protein co-expression changes in the brain can be driven by cell type changes?32¢,
we also assessed the cell type nature of each co-expression module by asking whether the
module was enriched in particular cell type marker proteins (Figure 1B). We observed significant
enrichment of neuronal proteins in the M1 synapse module and enrichment of oligodendrocyte
markers in the M2 myelin module, as expected. We also observed enrichment of astrocyte and
microglial proteins in the M4 sugar metabolism module, microglial and endothelial proteins in the
M5 extracellular matrix module, and endothelial markers in the M7 translation/ribosome module.
These findings suggest that the biological processes reflected by GO analysis for each module
may be altered in AD within a particular cell type. To incorporate the cell type nature of each
module into its description, we will subsequently refer to those modules with strong cell type

enrichment as the “M1 synapse/neuron” module, the “M2 myelin/oligodendrocyte” module, the
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“M4 astrocyte/microglial metabolism” module, and the “M5 endo/micro extracellular matrix”

module.

To assess the relationship of the network modules to diagnostic classification, we measured the
module eigenprotein values by case status (Figure 1C and Extended Data Figure 1). In general,
most modules that were increased or decreased in AD compared to control also showed a trend,
or were significantly changed, in the same direction in the AsymAD group, indicating that these
modules reflect pathophysiologic processes that begin early—in the preclinical phase—of AD.
The M1 synapse/neuron, M3 mitochondrial, and M4 astrocyte/microglial metabolism modules
showed the strongest differences by case status. Interestingly, when module eigenproteins were
assessed by APOE genotype (Figure 1C and Extended Data Figure 1), the M3 mitochondrial
and M4 astrocyte/microglial metabolism modules showed the strongest correlations to APOE
disease risk, suggesting that ApoE may, at least in part, exert its effects through alteration of glial
and mitochondrial pathways. In summary, we were able to construct a robust AD protein co-
expression network from mass spectrometry-based proteomic analysis of greater than 450 human
DLPFC brain tissues from multiple centers. We found that many of these modules correlated with
AD neuropathology and cognitive function, reflected a number of different biological processes

and cell types, were altered in AsymAD, and were influenced by APOE genotype.

The AD Network Is Preserved in a Community-Based Observational Aging Cohort

Analyzed by a Different Mass Spectrometry-Based Quantification Approach

The brains analyzed for the consensus AD network were obtained from studies or brain bank
programs where brain donation is an optional aspect of the study, potentially introducing case
selection bias. Furthermore, all of the cases analyzed for the consensus AD network were

processed in a mass spectrometry-based pipeline with label-free quantitation (LFQ). Other forms
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of mass spectrometry-based protein quantification approaches exist, such as quantification using
isobaric multiplex tandem mass tags (TMT)?"?°, To assess whether a different mass
spectrometry-based quantitation approach applied to a community-based aging cohort in which
brain donation is a mandatory aspect of the study would yield a similar co-expression network,
we analyzed 219 DLPFC brain tissues from the Religious Orders Study and Memory and Aging
Project (ROS/MAP)30-32 ysing tandem mass tag mass spectrometry-based quantitation (TMT-MS)
(Figure 2A). Cases in ROS/MAP were selected and classified for analysis using the same criteria
as used for the LFQ-based cohorts. A protein co-expression network was constructed from the
ROS/MAP cases, and network module preservation statistics were used to assess conservation
of the consensus AD LFQ-based network in the ROS/MAP TMT-based network (Figure 2B). We
found that all consensus LFQ modules were preserved in the ROS/MAP TMT-based network. To
further investigate preservation of consensus AD network modules in ROS/MAP, we created
“synthetic” eigenproteins for each consensus AD network module using the top 20% of module
proteins by module eigenprotein correlation value (KME), and then tested if and how these
synthetic eigenproteins were altered by case status in the ROS/MAP cohort. We found that the
synthetic module eigenproteins showed similar changes by case status as observed in the
consensus AD network, and showed consistent correlations with amyloid-B pathology, tau
pathology, and cognitive function as assessed in ROS/MAP (Figure 2C and Extended Data
Figure 4). Furthermore, targeted protein measurements in a cohort of 1016 ROS/MAP control,
AsymAD, and AD brains by another mass spectrometry protein quantification approach—selected
reaction monitoring (SRM)—showed that individual module proteins had the same direction of
change as the AD LFQ-based network co-expression module of which they were a member
(Extended Data Figures 5 and 6). These findings confirm that the consensus AD network is
robust to different mass spectrometry-based protein quantification approaches, and reflects brain

proteomic changes that occur in community-dwelling older individuals.
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The AD Network Is Preserved in Other Brain Regions

The consensus AD network was generated from analysis of DLPFC tissue. To assess whether
the network was similar in other brain regions commonly affected in AD, we analyzed control and
AD brain tissue from temporal cortex in a separate set of 111 brains from the Mayo Clinic, and
control, AsymAD, and AD brain tissue from precuneus in the same set of brains from the BLSA
(Figure 3A) using LFQ-MS. Co-expression networks were built for each brain region, and
network preservation statistics were used to assess module preservation from DLPFC in temporal
cortex (Figure 3B) and precuneus (Figure 3C). We found that all consensus AD network
modules derived from DLPFC were preserved in temporal cortex, and twelve out of the thirteen
modules were preserved in precuneus. While the larger modules by protein membership were
all very highly preserved in both temporal cortex and precuneus, the M3 mitochondrial, M4
astrocyte/microglial metabolism, and M10 RNA binding/splicing modules were more highly
preserved in temporal cortex, whereas the M2 myelin/oligodendrocyte and M5
endothelial/microglial extracellular matrix modules were more highly preserved in precuneus.
Analysis of synthetic module eigenprotein values by case status showed similar differences
between and among case groups in temporal cortex (Figure 3D, Extended Data Figure 7) and
precuneus (Figure 3E, Extended Data Figure 8) brain regions. These findings suggest that the

consensus AD network is generalized across brain regions that are commonly affected in AD.

Effects of Aging on AD Network Modules

Aging is the strongest risk factor for AD, but the mechanistic relationship between aging and AD
is unclear and is a topic of debate®3*-%8, To better understand the influence aging may have on the

consensus AD network, we analyzed DLPFC tissues from Johns Hopkins in 84 cases ages 30 to
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69 (Figure 4A) by LFQ-MS. All cases had a final primary neuropathological diagnosis of control.
We created synthetic eigenproteins in the aging cohort from the consensus AD network modules
and asked whether the synthetic module eigenproteins changed with age (Figure 4B and
Extended Data Figure 9). We found that the M1 synapse/neuron and M4 astrocyte/microglial
metabolism modules decreased and increased with aging, respectively, while the M3
mitochondrial and M10 RNA binding/splicing modules were not affected by aging. Other modules
that appeared to be affected by aging included the M6 cytoskeleton, M7 translation/ribosome, and
M9 translation/ribosome modules (Extended Data Figure 9). These findings indicate that the
relationship between aging and AD at the proteomic level is complex, and that some, but not all,

AD trait-associated modules are influenced by the aging process.

AD Network Changes in Other Neurodegenerative Diseases

The extent to which AD network protein co-expression modules are altered in other
neurodegenerative diseases is not fully understood. To explore the specificity of these network
changes for AD, we analyzed 331 DLPFC tissues by LFQ-MS from control, AD, amyotrophic
lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP),
progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson’s disease
and Parkinson’s disease dementia (PD/PDD), and multiple systems atrophy (MSA) cases (Figure
5A). We created synthetic eigenproteins for consensus AD network modules and assessed
whether they changed in these different neurodegenerative diseases compared to AD (Figure
5B, Extended Data Figure 10, Supplementary Table 4). We found that the M1 synapse/neuron
and M4 astrocyte/microglial metabolism modules showed significant changes in FTLD-TDP and
CBD cases, similar to AD, whereas the M3 mitochondrial and M10 RNA binding/splicing modules
showed more mixed changes across other diseases. To further validate these findings, we used
a targeted mass spectrometry method called parallel reaction monitoring (PRM)2° to measure 323
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individual proteins from approximately one-third of the cases analyzed in the untargeted
experiments (Extended Data Figure 11, Supplementary Table 4). Protein levels across all
cases were highly correlated between LFQ and PRM measurements (Supplementary Figure
3B). We created synthetic eigenproteins from these targeted PRM protein measurements by AD
consensus module, and assessed eigenprotein changes by disease category (Supplementary
Figure 3C, Extended Data Figure 12, Supplementary Table 4). We observed very similar AD
network module changes across diseases compared to the untargeted measurements, validating
the findings from the untargeted LFQ measurements. These results indicate that certain AD
network modules are affected to a greater extent in AD compared to other neurodegenerative
diseases, and that FTLD and CBD show many similar changes to AD, with the caveat that not all

neurodegenerative diseases affect the DLPFC region equally at end-stages of disease.

The M4 Astrocyte/Microglial Metabolism Module is Enriched in AD Genetic Risk Factors

and Markers of Anti-Inflammatory Disease-Associated Microglia

One difficulty in analyzing proteomic changes in AD brain, and indeed in any human disease post-
mortem tissue, is ascribing the observed changes to causes or consequence of disease—in this
case, neurodegeneration. A useful approach to this problem is to assess for enrichment of genetic
risk factors that are associated with the disease in question across the disease network, on the
assumption that network modules that are enriched in these risk factor gene products may
contribute to or reflect upstream, rather than downstream, pathophysiology. To this end, we
applied an algorithm to calculate a weighted disease risk score for proteins according to their
linkage disequilibrium with AD-associated single nucleotide polymorphisms (SNPs) discovered
through AD genome wide association studies (GWAS)#°. We then calculated whether a given AD
network module was enriched in these risk factor proteins. We found that the M2
myelin/oligodendrocyte and M4 astrocyte/microglial metabolism modules were significantly
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enriched in AD risk factor proteins (Figure 6A), suggesting that the biological functions or

processes reflected by these protein co-expression modules may serve causative roles in AD.

Given the strong AD trait associations of the M4 astrocyte/microglial metabolism module and its
enrichment in AD genetic risk factors, we decided to more deeply investigate the cell type nature
of this co-expression module. Astrocyte and microglia phenotypes are known to be heterogenous
and dynamic, and dependent upon environmental context and stimuli4*#2,  One common
categorization of astrocyte phenotypes is into deleterious pro-inflammatory “Al” astrocytes, such
as the phenotype adopted in response to challenge with the pro-inflammatory molecule
lipopolysaccharide (LPS), and protective “A2” astrocytes, such as the phenotype adopted after
ischemic injury by middle cerebral artery occlusion*®. Similarly, microglia are known to adopt a
number of different phenotypes, both deleterious and protective*24447,  Although expression of
the M4 astrocyte/microglia metabolism module is increased with progression from a normal to an
AD disease state, and a majority of the most significantly increased proteins in AD are members
of this module (Supplementary Figure 4), it is unclear whether these glial responses are
deleterious or protective. To better understand the role of these glial cell type responses in AD,
we first examined differential expression of astrocyte and microglia protein markers in AD brain
by the types of cellular phenotypes with which they are associated in AD animal models. We
found that for both astrocytic markers (Supplementary Figure 5) and microglial markers
(Supplementary Figure 6), there appeared to be a bias towards expression of markers that are
generally considered to be protective. We formally tested this observation with marker over-
representation analysis in the AD network (Figure 6B, Supplementary Table 5). Microglial
protein markers that are increased in response to amyloid- plaques but decreased in response
to LPS—or markers of anti-inflammatory disease-associated microglia**—were significantly
enriched in the M4 module. Astrocyte markers were more mixed in module M4, with a majority

of markers being shared between Al and A2 phenotypes. Interestingly, a related module to M4
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that also had some enrichment in astrocyte cell-type markers and was increased in AD—the M5
endothelial/microglial extracellular matrix module—was significantly enriched in A2 markers.
Astrocyte and microglia phenotype markers that overlap with the top 100 proteins by module
eigenprotein correlation value in the M4 module are shown in Figure 6C. The majority of these
markers were from microglia (Supplementary Table 5). To further validate these findings, we
analyzed whether these markers were increased at both the transcript and protein levels in
acutely isolated microglia from AD mouse models*®4°, The top 30 most differentially abundant
microglial transcripts corresponding to proteins in the M4 module were found to be heavily biased
toward an anti-inflammatory phenotype (Figure 6D, Supplementary Table 5). Furthermore,
many of the disease-associated M4 microglial protein markers were found to be increased in
microglia undergoing active amyloid plaque phagocytosis (Supplementary Figure 7,
Supplementary Table 5)#°. In summary, we found that the M4 astrocyte/microglial metabolism
module was enriched in AD genetic risk factors, and that microglia cell type markers within M4
appeared to be biased towards a protective anti-inflammatory, rather than a deleterious pro-

inflammatory, microglial phenotype.

M4 Astrocyte/Microglial Metabolism Module Proteins Can Be Measured in Cerebrospinal

Fluid and May Serve as Potential AD Biomarkers

The ability to assess and monitor pathological brain changes in the preclinical and clinical stages
of AD is limited, especially in the asymptomatic phase of the disease. A current focus of AD
biomarker research is on measurement of brain amyloid-f3 and tau protein dynamics as assessed
by radiolabeled tracers to aggregated forms of these proteins, in addition to established
measurements of amyloid-B and tau protein levels in cerebrospinal fluid (CSF)%%5, Fluid
biomarkers of neurodegeneration are also in development®2. However, there are currently no fluid
biomarkers that are clinically available to assess AD brain pathophysiology beyond amyloid-8 and
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tau. To explore whether proteins from the M4 astrocyte/microglial metabolism module might also
be able to serve as AD fluid biomarkers, we analyzed CSF from two separate cohorts: one cohort
of 297 subjects consisting of controls and AD patients (Cohort 1), and a second cohort of 96
subjects classified into control, AsymAD, and AD (Cohort 2). Subjects in both cohorts were
classified by the “A/T/N” AD biomarker classification framework (Figure 7A)%3. We measured 532
CSF protein levels in discovery Cohort 1 using a TMT-MS approach without prior pre-fractionation
and without depletion of highly abundant proteins in order to avoid potential depletion
measurement artifacts®*®°. Of these 532 proteins, we observed 22 that mapped to the M4
astrocyte/microglial metabolism module in brain (Extended Data Figure 13). All of them showed
either an increase in AD or no change, with 10 reaching statistical significance at p < 0.05. Only
one, cathepsin D (CTSD), showed a trend in the opposite direction. Of note, CTSD had the lowest
module eigenprotein correlation value to M4 of all M4 proteins measured in CSF (KME 0.3). The
most significantly increased M4 module proteins observed in Cohort 1 are shown in Figure 7B,
and include the M4 hub proteins CD44, peroxiredoxin-1 (PRDX1), and dimethylarginine
dimethylaminohydrolase-2 (DDAH2), in addition to the metabolic proteins lactate dehydrogenase
B-chain (LDHB) and pyruvate kinase (PKM) involved in glycolysis. To validate these findings,
and to assess whether the observed changes in CSF levels of M4 proteins occur prior to the
development of cognitive impairment, we analyzed subjects in Cohort 2, approximately one-third
of which had AsymAD. AsymAD was defined as CSF levels of amyloid-B, total tau, and phospho-
tau consistent with an AD diagnosis, but without cognitive impairment. We were able to measure
792 proteins in Cohort 2; 27 mapped to the M4 astrocyte/microglial metabolism module in brain
(Extended Data Figure 14). Of these 27 proteins, 17 overlapped with M4 proteins measured in
discovery Cohort 1, and showed the same direction of change in AD CSF. In addition, many also
showed significant or trend elevations in AsymAD, including CD44, LDHB, and PKM, and
correlated with cognitive function (Figure 7C). In summary, we were able to measure multiple
M4 astrocyte/microglial metabolism module protein members in human CSF by mass
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spectrometry without fractionation or prior depletion of highly abundant proteins. A number of
these proteins were elevated in AsymAD and AD, including M4 hub proteins CD44, PRDX1, and

DDAHZ2.

Discussion

In this study, we analyzed more than 2000 brains by mass spectrometry-based proteomics to
arrive at a consensus view of the proteomic changes that occur in brain during progression from
normal to asymptomatic and symptomatic AD states. We find that the protein co-expression
families most strongly correlated to disease reflect synaptic, mitochondrial, RNA binding/splicing,
and astrocyte/microglial metabolism biological functions, with astrocyte/microglial metabolism
most significantly associated with AD compared to other biological processes and functions.
Increases in expression level of the M4 astrocyte/microglial metabolism module are observed with
aging, but are stronger in AD, reflecting shared biology between “normal” aging and AD. The M4
module strongly correlates with APOE4 genotype and is enriched in AD genetic risk factors,
indicating a potential causative role for this protein co-expression module in disease
pathogenesis, and appears to serve a protective anti-inflammatory function in model systems,
suggesting that genetic risk factor polymorphisms that cluster in this module may induce a loss-
of-function phenotype. M4 astrocyte/microglial module proteins are increased in AsymAD and
AD CSF, suggesting that proteins within the M4 module may serve as useful biomarkers for

staging AD progression and for development of novel therapeutic approaches to the disease.

The robustness of the AD brain protein co-expression network described in this study is derived
from both the multi-center cohort study design and the proteomics analysis pipeline.
Neuropathological examination and tissue dissection were performed at each center by different

individuals prior to tissue transfer to one center for proteomic analysis. Tissue from each cohort
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was prepared and analyzed by mass spectrometry-based proteomics separately from other
cohorts, oftentimes in multiple batches per cohort. All cohorts were searched together to enforce
parsimony of protein identifications across cohorts. The AD protein co-expression network was
generated from proteins that could be quantified in at least 50% of cases after batch and cohort
normalization and regression of co-variates, and therefore reflects the core co-expression
patterns in AD brain. The protein co-expression modules are not sensitive to differences in mass
spectrometry instrumentation or protein quantitation approaches, and are not significantly
influenced by potential case selection bias given that all modules were significantly preserved in
the ROS/MAP cohort, and were generated by including other well-established epidemiological
cohorts from across the U.S. such as ACT and BLSA. Furthermore, the protein co-expression
modules are not significantly influenced by regional tissue variation among temporal cortex,
precuneus, and DLPFC brain regions. Indeed, we observed that all of the larger modules were
highly preserved in both temporal cortex and precuneus, with preservation p values approaching
zero in both regions. This suggests that the biological processes and cell types driving the co-
expression patterns in AD brain are highly shared among these brain regions. Future proteomic
analyses that include other brain regions less affected in late-onset AD (e.g, visual cortex) would
be informative to further explore potential protective processes that may be important for regional
vulnerability in AD. Finally, the co-expression modules are robust to the algorithm used to identify
them, as an orthogonal data dimension reduction technique was able to separately identify the

protein communities represented by the modules in the co-expression network.

Six co-expression modules showed significant and robust correlations with amyloid- plaque load,
tau tangle burden, and cognitive function: the M1 synapse/neuron, M3 mitochondrial, M4
astrocyte/microglial metabolism, M5 endothelial/microglial extracellular matrix, M6 cytoskeleton,
and M10 RNA binding/splicing modules. We chose to highlight four of these six modules in the

subsequent analyses, but the M5 endothelial/microglial extracellular matrix and M6 cytoskeleton
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modules also deserve attention as protein co-expression families relevant to AD. Similarly, the
M11 chaperone/protein folding module and M12 module of unknown function also were
significantly correlated with all measures except for CDR, and deserve further study. This is
especially the case for M12, which in addition to its association with AD traits, was also
significantly correlated with APOE risk. Of the four modules with the strongest AD trait
relationships, the M3 mitochondrial and M4 astrocyte/microglial metabolism modules were most
strongly associated with APOE risk. This finding is consistent with prior studies suggesting that
ApoE4 can cause mitochondrial toxicity®®>” and altered brain energy metabolism®8-%°, and that

ApoE variants can have important effects on brain inflammation®-63,

The M1 synapse/neuron and M4 astrocyte/microglial metabolism modules were significantly
associated with aging, a finding consistent with mRNA co-expression studies!'#¢. In fact, the M1
module was the most strongly correlated module with aging among all network modules,
consistent with the known generalized cortical volume loss observed in most aged individuals®4.
However, it is interesting to note that while the M1 module declined in aging, the M3 mitochondrial
module did not, even though mitochondria are highly populated at the synapse®. This may
suggest that “normal” aging is associated with maintenance of mitochondrial humber and/or
function, whereas AD is associated with loss of mitochondrial number/function. This finding
stands in contrast to mMRNA co-expression results in normal aging, where decreases in
synapse/neuron modules are accompanied by decreases in mitochondrial metabolism'!, and
highlights a potential divergence between mitochondrial RNA and protein co-expression. Similar
to M3, the M10 RNA binding/splicing module was also not changed in normal aging, but was
altered in AD. RNA binding protein aggregation and dysfunctional protein splicing is a known
feature of AD?4%667 but has not been well-studied in the normal aging brain. A previous study
found both common and unique changes in alternatively spliced transcripts between normal aging

and AD®8. We found that the M10 RNA binding/splicing module was only modestly elevated in
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AsymAD, and like the M3 mitochondrial module, M10 may more strongly reflect a late AD
pathophysiologic process. However, we and others have also observed that certain RNA-binding
proteins, such as the U1 spliceosome proteins, aggregate early in the disease®70. Interestingly,
M10 correlated with cognitive function in the ROS/MAP cohorts more strongly than the M1
synapse/neuron module, even though its relationship to amyloid-B and tau aggregates was
weaker. Further study of brain RNA binding protein and splicing biology in aging and AD is clearly

required.

We assessed the disease specificity of the AD protein co-expression network by analyzing how
the protein network modules changed in six other neurodegenerative diseases encompassing
diverse brain pathologies. One caveat to this analysis is that we analyzed only DLPFC, which is
not equally affected in all the neurodegenerative diseases we assessed. With this caveat in mind,
we observed that FTLD-TDP and CBD had the most similar network changes to AD, suggesting
that these clinicopathologic entities are fundamentally related to AD at the brain proteomic level.
It is interesting that TDP-43 pathology and a four-repeat tauopathy (CBD) led to similar network
changes as AD, whereas synuclein pathology and a different four-repeat tauopathy (PSP) did not,
at least at end-stage disease. A proteomic relationship between AD and FTD is supported by the
fact that mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) protein cause
microglial dysfunction and lead to AD"*72, whereas mutations in the progranulin (PGRN) protein
also cause microglial dysfunction and lead to FTD’3>". Further studies comparing frontal
predominant AD, FTLD-TDP, and FTLD-tau cases would be informative to assess the degree to
which the underlying neuropathology observed at autopsy is related to differences in proteomic

network changes in the DLPFC region.

We found that two AD protein network modules—the M2 myelin/oligodendrocyte module and the
M4 astrocyte/microglial metabolism module—were significantly enriched for AD genetic risk

factors, suggesting that the biological processes reflected by these protein co-expression families
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are involved in disease etiology. Interestingly, while the M4 module showed the strongest trait
relationships to AD, the M2 module was only slightly increased in AD and did not correlate as
strongly with neuropathology or cognitive function as other AD network modules. This finding is
consistent with our prior proteomic studies in DLPFC?32461 A previous study investigating the
relationship of a similar myelin/oligodendrocyte mRNA brain co-expression module to AD found
that expression of this module decreased in both AD and PSP in temporal cortex, with stronger
changes in PSP’6. Another mRNA network study observed downregulation of oligodendrocyte
module hubs in AD””. We observed an increase in this module in AD, with no changes in PSP.
The discrepancy in our findings may relate to possible differences between DLPFC and temporal
cortex in this co-expression module, differences in module membership that may be important for
disease relationship, or a divergence between mRNA and protein expression in M2 module
members. In fact, the basis for disease causality regarding the M2 myelin/oligodendrocyte
module may relate more to dysregulation of module member co-expression, rather than to the

actual change in direction of expression’”.

A key finding from our proteomic study is that glial biology—and microglial biology in particular—
is a likely causal driver of AD pathogenesis. The AD protein network module most strongly
associated with AD is enriched in astrocyte and microglial proteins, and is also enriched in
proteins associated with genetic risk for AD. The M4 astrocyte/microglial metabolism module
increases in AsymAD and correlates most strongly with cognitive impairment, suggesting that the
biological changes reflected by this module occur early in the disease and have significant
functional consequence on progression to dementia. A natural assumption would be that
increases in M4 module expression levels are deleterious to brain health, and that potential
therapies targeting reduction of M4 would likely be beneficial in AD. However, several lines of
evidence support a possible protective role of this co-expression module. An important

observation is that AD genetic risk alleles, which are more likely to cause loss-of-function changes
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rather than gain-of-function changes, are enriched in the M4 module. The M4 module is also
enriched in microglial markers that are upregulated in response to amyloid-B deposition and
downregulated in response to LPS, indicating that the microglial response as reflected in M4
module expression is likely biased towards an anti-inflammatory disease-associated phenotype*-.
Many M4 proteins are elevated in microglia that are undergoing plaque phagocytosis, which is
consistent with the strong association of M4 expression with CERAD score and ApoE4, the
presence of which leads to earlier and more aggressive accumulation of amyloid-B plaques?.
Notably, when we compare our findings to a prior proteomic study that quantified levels of plaque-
associated proteins in normal versus rapidly-progressive AD", 7 out of the top 10 plaque-
associated proteins most significantly decreased in rapidly-progressive AD are found in the M4
module, including M4 hubs MSN and PLEC. This is consistent with the finding that early microglial
activation in response to amyloid plaques, as assessed by in vivo microglial imaging studies, is
correlated with increased grey matter volume and reduced rate of cognitive decline8%8l,
Interestingly, the degree of astrogliosis surrounding plaques seems to be positively correlated
with improved cognitive function not only in AD, but also in normal aging individuals®. Taken
together, these findings suggest that lack of an M4 astrocyte/microglial response to plagues in
preclinical or clinical AD may lead to more rapid cognitive decline. In this context, it is worth noting
that AD risk factor mutations in the microglial TREM2 receptor, which regulates the microglial
response to amyloid-B plaques, lead to a reduced microglial response to plaque pathology®3-.
Importantly, recent studies have suggested that TREMZ is also necessary for enabling microglia
to increase their metabolic rate in response to various stimuli®’, which include not only plaques,
but also myelin debris and the abnormal lipid environment of apoptotic neurons’288. The M4
module is highly enriched for metabolic proteins that are likely upregulated to meet the metabolic
response demand to such stimuli. The ability to fully recapitulate the M4 module in AD animal
models would help to advance our mechanistic understanding of M4 module relationships with
AD neuropathology and cognitive function, and whether it should be targeted for therapeutic
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reduction or enhancement. Collaborative efforts to generate new AD animal models that better
reflect AD pathophysiology are currently underway®®; however, recent work on microglial and
astrocyte function in current mouse AD models generally supports the findings in this study, and

a hypothesis that M4 is associated with a largely protective response?28491.92,

As many co-expression relationships in tissue are driven by cell type?32693 we infer that the
biological processes reflected in the M4 module are related to sugar metabolism primarily in
astrocytes and microglia, and reflect increased metabolic activity in these cell types in AsymAD
and AD states. This is a hypothesis that requires further testing, likely through single cell studies,
but is consistent with the astrogliosis response in AD and the fact that glycolysis is performed
predominantly within glia in the brain®*. In the context of M4 glycolytic metabolism, it is interesting
to speculate on the origin of the reduced fluoro-2-deoxy-D-glucose positron emission tomography
(FDG-PET) signal observed in AD brain. Recent animal model work has suggested that loss of
a proper microglial response through mutations in either TREM2 or PGRN leads to reduced
cerebral glucose metabolism®, and that normal astrocyte function is also important for brain
glucose uptake®97. Therefore, it is possible that the failure of a proper astroglial compensatory
or protective response in AD may lead to general neuronal metabolic failure in susceptible brain
regions, as assessed by the FDG-PET signal, and cognitive deterioration. The precise
mechanism by which such metabolic failure occurs in AD is not known, but could involve
breakdown of the astrocyte-neuron lactate shuttle, upon which neurons are highly dependent for
normal synaptic activity®*. Evidence also exists that primary metabolic failure could occur in
neurons prior to involvement of astroglia, especially in ApoE4 carriers®.%8%,  Notably, we
observed larger relative changes in AsymAD in both the M4 astrocyte/microglial metabolism and
M3 mitochondrial modules in precuneus compared to DLPFC, consistent with early metabolic
dysfunction in this brain region in AD!®. The primary cause of abnormal cerebral glucose

metabolism in AD as measured by FDG-PET remains an area for continued study.
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Given the pressing need for new biomarkers that reflect AD pathophysiology beyond amyloid and
tau, we assessed whether M4 module proteins could be detected in CSF, and whether their levels
changed in AD and AsymAD. We observed multiple M4 members in CSF that validated in two
separate cohorts; nearly all of these proteins increased in AD, consistent with the direction of
change of the M4 module in AD brain. Many of the proteins also were elevated in AsymAD,
suggesting that measurement of M4 elevation in biofluids in early stages of the disease—when
diagnostic information and therapeutic intervention are likely to be of highest utility—is feasible.
Many of the most significantly elevated M4 protein in CSF are involved in glycolysis, including
LDHB, PKM, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Elevations in PRDX1,
DDAH, and protein/nucleic acid deglycase DJ-1 (PARK7) were also observed, all of which are
important anti-oxidant effector proteins!®-19 and are likely elevated in concert with increased
glycolytic flux. LDHB, PKM, and DDAH1 have recently been reported as promising AD CSF
biomarkers1?419%5,  Separate from the metabolic pathway, we observed increased levels of M4
proteins osteopontin (SPP1), dickkopf-related protein 3 (DKK3), and CD44. SPP1 has been
nominated as an AD CSF biomarker in previous studies!®-19°, SPP1 is known to be involved in
tissue repairt'®, and promotes phagocytosis of amyloid-f and an anti-inflammatory microglial
phenotype!!t112 |t is closely associated with the CD44 receptor!?, which is highly expressed on
the surface of activated astrocytes!'4. While M4 markers may not be entirely specific for AD given
elevation of the M4 module in FTD and CBD, they may allow for assessment of an injury response
in AD in conjunction with amyloid and tau biomarkers, and serve as useful biomarkers for other
neurodegenerative dementias in addition to AD. Measurement of additional M4 markers in
biofluids is undoubtedly possible, as our mass spectrometry measurements were performed on
unfractionated CSF not depleted of highly abundant proteins. Monitoring multiple M4 protein

levels in biofluid may provide a robust measure of target engagement for AD therapies.
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In summary, our comprehensive study on more than 2000 brains and nearly 400 CSF samples
provides a consensus view of the proteomic network landscape of AD and the biological changes
associated with asymptomatic and symptomatic stages of the disease, and highlights the central
role of glial biology in the pathogenesis of the disease. Programs that target this biology hold
promise for AD drug therapy and biomarker development, especially those that target pro- and

anti-inflammatory astrocytes and microglia.
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Methods

Brain Tissue Samples and Case Classification

Brain tissue used in this study was obtained from the autopsy collections of the Baltimore
Longitudinal Study of Aging!!®, Banner Sun Health Research Institute!!6, Mount Sinai School of
Medicine Brain Bank, Adult Changes in Thought Study, Mayo Clinic Brain Bank, Religious Orders
Study and Rush Memory and Aging Project!'’, University of Pennsylvania School of Medicine
Brain Bank, and the Baltimore Coroner’'s Office. Tissue was from the dorsolateral prefrontal
cortex (Brodmann Area 9 where available), or temporal cortex and precuneus regions where
indicated. Human postmortem tissues were acquired under proper Institutional Review Board
(IRB) protocols at each respective institution. Postmortem neuropathological evaluation of
neuritic plaque distribution was performed according to the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) criteria?®, while extent of spread of neurofibrillary tangle pathology
was assessed with the Braak staging system!*®. Other neuropathologic diagnoses were made in
accordance with established criteria and guidelines!'®120, All case metadata, including age, sex,
post-mortem interval, cognitive function, APOE genotype, neuropathological criteria, and disease
status, are provided in Supplementary Table 1. Case classification harmonization across
cohorts was performed using the following rubric: cases with CERAD 0-1 and Braak 0-3 without
dementia at last evaluation were defined as control (if Braak equals 3, then CERAD must equal
0); cases with CERAD 1-3 and Braak 3-6 without dementia at last evaluation were defined as
AsymAD; cases with CERAD 2-3 and Braak 3-6 with dementia at last evaluation were defined as
AD. Dementia was defined as MMSE <24, CASI score <81, or CDR 21, based on prior
comparative study'?’. Mayo and UPenn cases were not included in the case harmonization
scheme, and therefore preservation of consensus network modules in these cohorts provides an

additional degree of robustness.
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Brain Tissue Homogenization and Protein Digestion

Procedures for tissue homogenization for all tissues were performed essentially as described?®?7.
Approximately 100 mg (wet tissue weight) of brain tissue was homogenize in 8 M urea lysis buffer
(8 M urea, 10 mM Tris, 100 mM NaHPO4, pH 8.5) with HALT protease and phosphatase inhibitor
cocktail (ThermoFisher) using a Bullet Blender (NextAdvance). Each Rino sample tube
(NextAdvance) was supplemented with ~100 pL of stainless steel beads (0.9 to 2.0 mm blend,
NextAdvance) and 500 uL of lysis buffer. Tissues were added immediately after excision and
samples were then placed into the bullet blender at 4 °C. The samples were homogenized for 2
full 5 min cycles, and the lysates transferred to new Eppendorf Lobind tubes. Each sample was
then sonicated for 3 cycles consisting of 5 s of active sonication at 30% amplitude, followed by
15s on ice. Samples were then centrifuged for 5min at 15,000x g and the supernatant
transferred to a new tube. Protein concentration was determined by bicinchoninic acid (BCA)
assay (Pierce). For protein digestion, 100 ug of each sample was aliquoted and volumes
normalized with additional lysis buffer. For the ROS/MAP cohort, an equal amount of protein from
each sample was aliquoted and digested in parallel to serve as the global pooled internal standard
(GIS) in each TMT batch, as described below. Similarly, GIS pooled standards were generated
from the Banner, MSSB, Mayo, Aging, and UPenn cohorts. Samples were reduced with 1 mM
dithiothreitol (DTT) at room temperature for 30 min, followed by 5 mM iodoacetamide (IAA)
alkylation in the dark for another 30 min. Lysyl endopeptidase (Wako) at 1:100 (w/w) was added
and digestion allowed to proceed overnight. Samples were then 7-fold diluted with 50 mM
ammonium bicarbonate. Trypsin (Promega) was then added at 1:50 (w/w) and digestion was
carried out for another 16 h. The peptide solutions were acidified to a final concentration of 1%
(vol/vol) formic acid (FA) and 0.1% (vol/vol) trifluoroacetic acid (TFA), and desalted with a 30 mg
HLB column (Oasis). Each HLB column was first rinsed with 1 mL of methanol, washed with 1

mL 50% (vol/vol) acetonitrile (ACN), and equilibrated with 2x1 mL 0.1% (vol/vol) TFA. The
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samples were then loaded onto the column and washed with 2x1 mL 0.1% (vol/vol) TFA. Elution

was performed with 2 volumes of 0.5 mL 50% (vol/vol) ACN.

Mass Spectrometry Analysis for Label-free Proteomics

Mass spectrometry analyses of MSSB, ACT, BLSA, Banner, Mayo, and UPenn cohorts were
performed on a Q-Exactive Plus mass spectrometer essentially as described?®. Brain-derived
tryptic peptides (2 pg) were resuspended in peptide loading buffer (0.1% FA, 0.03% TFA, 1%
ACN) containing 0.2 pmol of isotopically labeled peptide calibrants (ThermoFisher 88321).
Peptide mixtures were separated on a self-packed C18 (1.9 ym, Dr. Maisch, Germany) fused
silica column (25 cm x 75 pM internal diameter; New Objective, Woburn, MA) by a NanoAcquity
UHPLC (Waters, Milford, MA) and monitored on a Q-Exactive Plus mass spectrometer
(ThermoFisher Scientific, San Jose, CA). Elution was performed over a 120 minute gradient at a
rate of 400 nL/min with buffer B ranging from 3% to 80% (buffer A: 0.1% FA and 5% DMSO in
water, buffer B: 0.1 % FA and 5% DMSO in ACN). The mass spectrometer cycle was
programmed to collect one full MS scan followed by 10 data dependent MS/MS scans. The MS
scans (300-1800 m/z range, 1,000,000 automatic gain control (AGC), 150 ms maximum ion time)
were collected at a resolution of 70,000 at m/z 200 in profile mode, and the MS/MS spectra (2
m/z isolation width, 25% collision energy, 100,000 AGC target, 50 ms maximum ion time) were
acquired at a resolution of 17,500 at m/z 200. Dynamic exclusion was set to exclude previous
sequenced precursor ions for 30 seconds within a 10 ppm window. Precursor ions with +1 and

+6 or higher charge states were excluded from sequencing.

Label-free Quantification

For the consensus LFQ search, 645 RAW files, including individual cases and pooled GIS
samples from the MSSB, ACT, Banner and BLSA cohorts, were uploaded onto the Amazon Web

Services (AWS) Cloud and analyzed using MaxQuant v1.6.3.4 with Thermo Foundation 2.0 for
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RAW file reading capability. The Mayo, BLSA precuneus, Aging, and UPenn cohorts were each
searched separately using MaxQuant. The search engine Andromeda was used to build and
search a concatenated target-decoy UniProt Knowledgebase (UniProtKB) containing both Swiss-
Prot and TrEMBL human reference protein sequences (90,411 target sequences downloaded
April 21, 2015), plus 245 contaminant proteins included as a parameter for the Andromeda search
within MaxQuant!?2. Methionine oxidation (+15.9949 Da), asparagine and glutamine deamidation
(+0.9840 Da), and protein N-terminal acetylation (+42.0106 Da) were variable modifications (up
to 5 allowed per peptide); cysteine was assigned a fixed carbamidomethyl modification (+57.0215
Da). Only fully tryptic peptides with up to 2 miscleavages were considered in the database search.
A precursor mass tolerance of £20 ppm was applied prior to mass accuracy calibration, and +4.5
ppm after internal MaxQuant calibration. Other search settings included a maximum peptide mass
of 6,000 Da, a minimum peptide length of 6 residues, and 0.05 Da tolerance for high resolution
MS/MS scans. The false discovery rate (FDR) for peptide spectral matches, proteins, and site
decoy fraction were each set to 1 percent. Quantification settings were as follows: re-quantify
with a second peak-finding attempt after protein identification is complete; match full MS1 peaks
between runs; use a 0.7 min retention time match window after an alignment function was found
with a 20 minute retention time search space. The label free quantitation (LFQ) algorithm in
MaxQuant!?3124 was used for protein quantitation. The quantitation method considered only razor
and unique peptides for protein level quantitation. The total summed protein intensity was also
used to assess overall signal drift across samples prior to LFQ normalization. Raw data for each
cohort is available through the Synapse Web Portal (MSSB, DOI: 10.7303/syn3159438; ACT,
DOI: 10.7303/syn5759376; BLSA, DOl: 10.7303/syn3606086; Banner, DOl:
10.7303/syn7170616; Mayo, DOI: 10.7303/syn5550404; UPenn, DOI: 10.7303/syn20929033;
Aging, DOI: 10.7303/syn20929096). Searched data used in this study for the consensus LFQ
cohort (BLSA, Banner, MSSB, and ACT DLPFC) is available at DOI: 10.7303/syn20933797; for
the Mayo cohort at DOI: 10.7303syn20934018; for the BLSA precuneus at DOI:
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10.7303/syn20934037; for the Aging cohort at DOI: 10.7303/syn20934088; and for the UPenn

cohort at DOI: 10.7303/syn20935147.

Isobaric Tandem Mass Tag (TMT) Peptide Labeling of ROS/MAP Brain Tissues

Prior to TMT labeling, cases were randomized by co-variates (age, sex, PMI, diagnosis, etc.), into
50 total batches (8 cases per batch). Peptides from each individual case (n=400) and the GIS
pooled standard (n=100) were labeled using the TMT 10-plex kit (ThermoFisher 90406). In each
batch, TMT channels 126 and 131 were used to label GIS standards, while the 8 middle TMT
channels were reserved for individual samples following randomization. Labeling was performed
as previously described?#??. Briefly, each sample (containing 100 ug of peptides) was re-
suspended in 100 MM TEAB buffer (100 uL). The TMT labeling reagents were equilibrated to
room temperature, and anhydrous ACN (256 uL) was added to each reagent channel. Each
channel was gently vortexed for 5 min, and then 41 L from each TMT channel was transferred
to the peptide solutions and allowed to incubate for 1 h at room temperature. The reaction was
guenched with 5% (vol/vol) hydroxylamine (8 ul) (Pierce). All 10 channels were then combined
and dried by SpeedVac (LabConco) to approximately 150 yL and diluted with 1 mL of 0.1%
(vol/vol) TFA, then acidified to a final concentration of 1% (vol/vol) FA and 0.1% (vol/vol) TFA.
Peptides were desalted with a 200 mg C18 Sep-Pak column (Waters). Each Sep-Pak column
was activated with 3 mL of methanol, washed with 3 mL of 50% (vol/vol) ACN, and equilibrated
with 2x3 mL of 0.1% TFA. The samples were then loaded and each column was washed with
2x3 mL 0.1% (vol/vol) TFA, followed by 2 mL of 1% (vol/vol) FA. Elution was performed with 2
volumes of 1.5 mL 50% (vol/vol) ACN. The eluates were then dried to completeness using a
SpeedVac. Only the first 32 batches (256 cases) of the ROS/MAP cohort were used in this

analysis.

High-pH Off-line Fractionation of ROS/MAP Brain Tissues
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High pH fractionation was performed essentially as described!?® with slight modification. Dried
samples were re-suspended in high pH loading buffer (0.07% vol/vol NH4OH, 0.045% vol/vol
FA, 2% vol/vol ACN) and loaded onto an Agilent ZORBAX 300 Extend-C18 column (2.1mm X
150 mm with 3.5 um beads). An Agilent 1100 HPLC system was used to carry out the
fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4sOH, 0.01125% (vol/vol) FA, and
2% (vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA,
and 90% (vol/vol) ACN. The sample elution was performed over a 58.6 min gradient with a
flow rate of 0.4 mL/min. The gradient consisted of 100% solvent A for 2 min, then 0% to 12%
solvent B over 6 min, then 12% to 40 % over 28 min, then 40% to 44% over 4 min, then 44%
to 60% over 5 min, and then held constant at 60% solvent B for 13.6 min. A total of 96 individual
equal volume fractions were collected across the gradient and subsequently pooled by

concatenation!?® into 24 fractions and dried to completeness using a SpeedVac.

TMT Mass Spectrometry of ROS/MAP Brain Tissues

All fractions were resuspended in an equal volume of loading buffer (0.1% FA, 0.03% TFA, 1%
ACN) and analyzed by liquid chromatography coupled to tandem mass spectrometry essentially
as described®?s, with slight modifications. Peptide eluents were separated on a self-packed C18
(2.9 pm, Dr. Maisch, Germany) fused silica column (25 cm x 75 uM internal diameter (ID); New
Objective, Woburn, MA) by an Dionex UltiMate 3000 RSLCnano liquid chromatography system
(ThermoFisher Scientific) and monitored on an Orbitrap Fusion mass spectrometer
(ThermoFisher Scientific). Sample elution was performed over a 180 min gradient with flow rate
at 225 nL/min. The gradient was from 3% to 7% buffer B over 5 min, then 7% to 30% over 140
min, then 30% to 60% over 5 min, then 60% to 99% over 2 min, then held constant at 99% solvent
B for 8 min, and then back to 1% B for an additional 20 min to equilibrate the column. Buffer A
was water with 0.1% (vol/vol) formic acid, and buffer B was 80% (vol/vol) acetonitrile in water with
0.1% (vol/vol) formic acid. The mass spectrometer was set to acquire in data dependent mode
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using the top speed workflow with a cycle time of 3 seconds. Each cycle consisted of 1 full scan
followed by as many MS/MS (MS2) scans that could fit within the time window. The full scan
(MS1) was performed with an m/z range of 350-1500 at 120,000 resolution (at 200 m/z) with AGC
set at 4x10° and maximum injection time 50 ms. The most intense ions were selected for higher
energy collision-induced dissociation (HCD) at 38% collision energy with an isolation of 0.7 m/z,
a resolution of 30,000, an AGC setting of 5x104, and a maximum injection time of 100 ms. Five
of the 32 TMT batches were run on the Orbitrap Fusion mass spectrometer using the SPS-MS3

method as previously described?’. Further details can be found at [DOL:].

TMT ROS/MAP Database Searches and Protein Quantification

All RAW files (320 RAW files generated from 32 TMT 10-plexes) were analyzed using the
Proteome Discoverer suite (version 2.3, ThermoFisher Scientific). MS2 spectra were searched
against the UniProtKB human proteome database containing both Swiss-Prot and TrEMBL
human reference protein sequences (90,411 target sequences downloaded April 21, 2015), plus
245 contaminant proteins. The Sequest HT search engine was used and parameters were
specified as follows: fully tryptic specificity, maximum of two missed cleavages, minimum peptide
length of 6, fixed modifications for TMT tags on lysine residues and peptide N-termini
(+229.162932 Da) and carbamidomethylation of cysteine residues (+57.02146 Da), variable
modifications for oxidation of methionine residues (+15.99492 Da) and deamidation of asparagine
and glutamine (+0.984 Da), precursor mass tolerance of 20 ppm, and a fragment mass tolerance
of 0.05 Da for MS2 spectra collected in the Orbitrap (0.5 Da for the MS2 from the SPS-MS3
batches). Percolator was used to filter peptide spectral matches (PSMs) and peptides to a false
discovery rate (FDR) of less than 1%. Following spectral assignment, peptides were assembled
into proteins and were further filtered based on the combined probabilities of their constituent
peptides to a final FDR of 1%. In cases of redundancy, shared peptides were assigned to the
protein sequence in adherence with the principles of parsimony. Reporter ions were gquantified
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from MS2 or MS3 scans using an integration tolerance of 20 ppm with the most confident centroid
setting. Raw data for the full ROS/MAP cohort is available through the Synapse Web Portal
(DOI:). Searched data on the 256 cases used for analysis in this study can be found at DOI:

10.7303/syn20933795.

Parallel Reaction Monitoring (PRM) Analysis

Peptides from brain digests used for the first 3 batches of the untargeted UPenn cohort analysis
(equal to 1 ug protein digestion) were used for targeted analysis on an Orbitrap Lumos™ Tribrid™
Mass Spectrometer (ThermoFisher Scientific) fitted with a Nanospray Flex ion source and coupled
to a NanoAcuity liquid chromatography system (Waters). The tryptic peptides were resuspended
in loading buffer (0.1% TFA, 500 ng/ul), and an external reference peptide mix (Promega) was
spiked into the sample at the concentration of 0.5 pmol/ul. The solution (2 ul) was loaded onto a
self-packed 1.9 um ReproSil-Pur C18 (Dr. Maisch) analytical column (New Objective, 50 cm x 75
pm inner diameter; 360 um outer diameter) heated to 60 °C. The capillary temperature and spray
voltage was set at 300 °C and 2.0 kV, respectively. Elution was performed over a 100 min
gradient at a rate of 350 nL/min with buffer B ranging from 1% to 32% (buffer A: 0.1% FA in water,
buffer B: 0.1% FA in ACN). The column was then washed with 99% buffer B for 10 minutes and
equilibrated with 1% B for 15 minutes. The mass spectrometer was set to collect in PRM mode
using an inclusion peptide list (Supplementary Table 4). An additional full survey scan was
collected to assess for possible interference. Full scans were collected at a resolution of 120,000
at 200 m/z with an AGC setting of 2x10° ion and a maximum ion transfer (IT) time of 50 ms. For
PRM scans, the settings were: resolution at 30,000 at 200 m/z, AGC target of 1x10° ions,
maximum IT time of 50 ms, microscans count of 1, isolation width of 1.6 m/z, and isolation offset
of 0 m/z. A pre-optimized normalized collision energy of 32% was used to obtain the maximal
recovery of target product ions. The top 5-10 product ions from this collision energy optimization
were used for downstream peptide quantification. Raw peptide intensities are provided in

37


https://doi.org/10.1101/802959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/802959; this version posted October 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Table 4, and are also deposited electronically at the Synapse Web Portal

(https://www.synapse.org/#!Synapse:syn20817510/files/).

Peptide Quantification

A spectral library was built using Skyline?” (version 4.2) based on tandem mass spectra gathered
from previous data dependent acquisition methods. A Skyline template was then created to
guantify the endogenous peptides. The template parameters were: centroided precursor mass
analyzer, MS1 mass accuracy of 20 ppm; centroided product mass analyzer, MS/MS mass
accuracy of 20 ppm; include all matching scans. All rawfiles were then imported and processed
accordingly. The resulting extracted ion chromatograms (XICs) of selected fragments were
manually inspected and peak picking adjustments were made accordingly. The sum of all product
ion peak areas was calculated in Skyline and extracted for further statistical analyses. The peak

areas were normalized using the peak areas of external reference peptides.

Selected Reaction Monitoring (SRM) of ROS/MAP Brain Tissues

Samples were prepared for LC-SRM analysis using a standard protocol described
elsewhere!?129. Briefly, on average ~20 mg of DLPFC brain tissue from each subject was
homogenized in denaturation buffer. After denaturation with DTT, 400 pg protein aliquots were
taken for further alkylation with iodoacetamide followed by digestion with trypsin as described.
The digests were cleaned using Cis solid phase extraction, and 30 pL aliquots at 1 pg/pL
concentrations were mixed with 30 pL synthetic peptide mix. LC-SRM experiments were
performed on a nanocACQUITY UPLC (Waters) coupled to a TSQ Vantage mass spectrometer
(ThermoScientific), with 2 L of peptide injection for each brain sample. Buffer A was 0.1% FA in
water and buffer B was 0.1% FA in 90% ACN. Peptide separations were performed on an Acquity
UPLC BEH 1.7 pm Cig column (75 pm i.d. x 25 cm) at a flow rate 350 nL/min using a gradient of

0.5% buffer B over 0 to 14.5 min, then 0.5% to 15% over 14.5 to 15.0 min, then 15% to 40% over
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15 to 30 min, and then 45% to 90% B over 30 to 32 min. The heated capillary temperature and
spray voltage was set at 350 °C and 2.4 kV, respectively. Both the Q1 and Q3 were set as 0.7
FWHM. A scan width of 0.002 m/z and a dwell time of 10 ms were used. All SRM data were
analyzed using the Skyline software package'?’. All data were manually inspected to ensure
correct peak assignment and peak boundaries. The peak area ratios of endogenous light
peptides and their heavy isotope-labeled internal standards (i.e., L/H peak area ratios) were then
automatically calculated by the Skyline software, and the best transition without matrix
interference was used for accurate quantification. Following homogenization of all tissues, small
aliquots of protein from each of the samples was pooled, which were then digested and served
as a global external pooled reference standard. Peptides generated from this pooled standard
were scattered throughout the study (8 samples per 96-well plate) and were used to capture the
technical variance that is due to sample preparation steps (except homogenization) and
instrument measurements. The signal-to-noise ratio in quantification of each peptide was
calculated as the ratio of variances across the human subject samples versus the technical
controls. Peptides with a signal-to-noise ratio less than 2 were excluded from further analysis.
The peptide relative abundances were log, transformed and centered at the median. The
abundance of endogenous peptides was quantified as a ratio to spiked-in synthetic peptides
containing stable heavy isotopes. The "light/heavy" ratios were log. transformed and shifted such
that median log,-ratio was zero. Normalization adjusted for differences in protein amounts among
the samples. During normalization, the log-ratios were shifted for each sample to make sure the
median was set at zero. Peptide redundancy and protein level calculations are described in more

detail on the AMP-AD knowledge portal (https://www.synapse.org/#!Synapse:syn10468856).

CSF Samples

All participants from whom CSF samples were collected provided informed consent under
protocols approved by the Institutional Review Board (IRB) at Emory University. All patients
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received standardized cognitive assessments (including MoCA) in the Emory Cognitive
Neurology clinic, the Emory Goizueta Alzheimer's Disease Research Center (ADRC), and
affiliated research studies (Emory Healthy Brain Study [EHBS] and Emory M2OVE-AD study). All
diagnostic data were supplied by the ADRC and the Emory Cognitive Neurology Program. CSF
was collected by lumbar puncture and banked according to 2014 ADC/NIA best practices
guidelines. For patients recruited from the Emory Cognitive Neurology Clinic, CSF samples were
sent to Athena Diagnostics and assayed for AB42, total-Tau, and phospho-Tau (CSF ADmark®)
using the INNOTEST® assay platform. CSF samples collected from research participants in the
ADRC, EHBS, and M?0OVE-AD were assayed using the INNO-BIA AlzBio3 Luminex assay. In
total, there were two cohorts of CSF samples that were used in the proteomics studies. Cohort 1
contained CSF samples from 150 healthy controls and 150 MCI/AD patients. Cohort 2 included
CSF obtained from three groups: 32 cognitively normal, 31 AsymAD, and 33 MCI/AD. Cases
and normal individuals with AsymAD were defined using established biomarker cutoff criteria for

AD for each assay platform!3%131, Cohort information is provided in Supplementary Table 2.

CSF Protein Digestion

To generate peptides, all crude CSF samples were digested with LysC and trypsin. Briefly, 20
pL CSF from each sample was reduced and alkylated with 0.4 uL 0.5 M tris-2(-carboxyethyl)-
phosphine (TCEP) and 2 pL 0.4 M chloroacetamide (CAA) with heating at 90°C for 10 min,
followed by a 15 min water bath sonication. The samples were then further denatured by the
addition of 67.2 pL of 8 M urea buffer (8 M urea, 100 mM NaHPOQO,, pH 8.5) and digested overnight
with 1.9 pug LysC (Wako) (1:10 enzyme to protein ratio according to the highest amount of sample).
Following LysC digestion, the samples were diluted to 1 M urea using 50 mM ammonium
bicarbonate. The same amount of trypsin (Promega) was then added (1:10 enzyme to protein
ratio) and digestion was carried out for another 12 h. After trypsin digestion, the peptide solutions
were acidified with a 1% TFA and 10% FA solution to a final concentration of 0.1% TFA and 1%
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FA. Peptides were desalted with a 30 mg C18 HLB column (Waters) and eluted in 1 mL of 50%
ACN. Aliquots (120 pL) from cohort 1 (n=297) or cohort 2 (n=96) samples were pooled together
and split into equal volume aliquots (880 uL) for use as the global internal standard (GIS) for TMT

labeling. All samples and GIS were dried using a SpeedVac.

TMT Boost Channel

Signals of low abundant proteins in the TMT 11-plex were amplified using a boost channel, as
previously described'32133, A pooled CSF sample was created separately for each cohort by
combining 50 pL from each sample in cohort 1 or cohort 2 into a pool for each cohort. Abundant
proteins were removed using the High Select Top14 Abundant Proteins Depletion Resin (Thermo
Scientific A36372BR) according to the manufacturer’s protocol, using a CSF-to-resin volume ratio
of 1:1 and an incubation time of 15 min. After immunodepletion, protein concentrations were
determined by BCA. Proteins were then reduced and alkylated (10 mM TCEP, 40 mM CAA) for
10 minutes at 90 °C. The samples were then subjected to bath sonication for 15 min and dried
under vacuum in a SpeedVac. The immunodepleted pooled samples were re-suspended in 6 M
urea buffer (6 M urea, 75 mM NaHPO,, pH 8.5) at half the volume of the pooled sample prior to
evaporation. Samples were digested overnight with LysC at an enzyme to protein ratio of 1:10.
The following day, samples were diluted with 50 mM ammonium bicarbonate to reduce the urea
concentration to 1M, and trypsin (Promega) was added (1:10 enzyme to protein ratio). Digestion
was allowed to proceed for 12 hr. Peptides were then desalted using a 200 mg C18 Sep-Pak
column, and the eluate was dried using a SpeedVac. Aliquots (600 ug) of the immunodepleted
pooled CSF samples were separately dissolved in 100 mM TEAB buffer (625 uL) and labeled
with 5 mg of TMT 126 channel reagent (cohort 1 lot# TF266326, cohort 2 lot# SG253447,
ThermoFisher Scientific) in anhydrous ACN (256 pL). The reactions were allowed to proceed for
1 hr, and were subsequently quenched by adding 5% hydroxylamine (50 pL) and incubating for

15 min. The 126 channel was then added to the other channels, as described below.
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TMT Labeling of Individual and GIS CSF Samples

All samples, including the GIS, were labeled with the 10-plex TMT kit plus an additional channel,
for a total of 11 TMT channels (cohort 1 lot# TG273545 for 10-plex, TG273555 for channel 131C,;
cohort 2 lot# SI258088 for 10-plex, SJ258847 for channel 131C, ThermoFisher Scientific).
Samples were grouped into batches as shown in Supplementary Table 2. The TMT labeling kit
was equilibrated to room temperature and dissolved in anhydrous ACN (256 uL). The samples
were reconstituted in 100 mM TEAB buffer (50 yL) and mixed with 0.4 mg (20.5 uL) of the
corresponding labeling reagent. The labeling reactions were allowed to proceed for 1 hr, and
were subsequently quenched with 5% hydroxylamine (4 yL). Per each TMT batch, labeled
peptides from 9 channels (127N, 128N, 128C, 129N, 129C, 130N, 130C, 131, 131C) were mixed,
desalted using a 100 mg C18 Sep-Pak column, and dried using a SpeedVac. The
immunodepleted pooled sample labeled with the 126 channel (boost channel) was then added to
each 9-channel TMT mixture at a ratio of 50:1 pooled to individual CSF sample by original
volume:volume prior to evaporation. The sample mixtures were desalted using a 200 mg C18

Sep-Pak column, and dried using a SpeedVac.

Mass Spectrometry Analysis of CSF

All samples were resuspended in equal volume of loading buffer (0.1% FA, 0.03% TFA, 1% ACN).
Peptide eluents were separated on a self-packed C18 (1.9 um, Dr. Maisch, Germany) fused silica
column (25 cm x 75 uM internal diameter (ID): New Objective, Woburn, MA) by an Easy-nLC
system (ThermoFisher Scientific) and monitored on an Orbitrap Fusion Lumos mass spectrometer
(ThermoFisher Scientific) interfaced with a high-field asymmetric waveform ion mobility
spectrometry (FAIMS) Pro. Sample elution was performed over a 180 min gradient (buffer A:
0.1% FA in water, buffer B: 0.1% FA in 80% ACN) with flow rate at 225 nL/min. The gradient was

from 1% to 8% buffer B over 3 min, then from 8% to 40% over 160 min, then from 40% to 99%
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over 10 min, and then held at 99% B for 10 min. The mass spectrometer was set to acquire data
in positive ion mode using data dependent acquisition and three (-50, -65 and -85 V) different
compensation voltages (CV)'**. Data were acquired at each CV for 1 s during each cycle. Each
cycle consisted of 1 full scan followed by as many MS2 and MS3 scans as possible withina 1 s
timeframe. The full scan was performed with an m/z range of 450-1500 at 120,000 resolution (at
200 m/z) with an AGC setting of 4x10° and maximum injection time 50 ms. The collision induced
dissociation (CID) MS/MS scans were collected in the ion trap with an isolation window of 0.7 m/z,
a collision energy of 35%, AGC setting of 1x10%, and a maximum injection time of 50 ms. The top
10 product ions were subjected to HCD synchronous precursor selection-based MS3 (SPS-MS3)
as previously described?’. For SPS-MS3 scans the isolation window was set to 2 m/z, the
resolution to 50,000, the AGC to 1x10°, and the maximum injection time to 105 ms. For both
cohorts, a single preliminary run of TMT batch 1 using the above parameters was used to create
a target inclusion list of peptides that specifically excluded those from the top 15 most abundant
proteins. This inclusion list was used for all TMT batches in cohort 1 (n=38) and in cohort 2

(n=12).

Database Searches and Protein Quantification of CSF

All RAW files were analyzed using the Proteome Discoverer Suite (version 2.3, ThermoFisher
Scientific). MS/MS spectra were searched against the UniProtKB human proteome database
(downloaded April 2015 with 90,411 total sequences). The Sequest HT search engine was used
to search the RAW files, with search parameters specified as follows: fully tryptic specificity,
maximum of two missed cleavages, minimum peptide length of 6, fixed modifications for TMT
tags on lysine residues and peptide N-termini (+229.162932 Da) and carbamidomethylation of
cysteine residues (+57.02146 Da), variable modifications for oxidation of methionine residues
(+15.99492 Da), serine, threonine and tyrosine phosphorylation (+79.966 Da) and deamidation of
asparagine and glutamine (+0.984 Da), precursor mass tolerance of 20 ppm, and a fragment
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mass tolerance of 0.6 Da. Percolator was used to filter PSMs and peptides to an FDR of less
than 1%. Following spectral assignment, peptides were assembled into proteins and were further
filtered based on the combined probabilities of their constituent peptides to a final FDR of 1%. In
cases of redundancy, shared peptides were assigned to the protein sequence in adherence with
the principles of parsimony. Reporter ions were quantified from MS3 scans using an integration
tolerance of 20 ppm with the most confident centroid setting, as previously described?’. Cohort 1
search and quantification results are available at DOI: 10.7303/syn20944902, and Cohort 2

search and quantification results are available at DOI: 10.7303/syn20944903.

Controlling for Batch-specific Variance

We implemented a median polish algorithm for removing technical variance (e.g., due to tissue
collection, cohort, or batch effects) from a two-way abundance-sample data table as originally
described by Tukey*®. The algorithm is fully documented and available as an R function, which

can be downloaded from https://github.com/edammer/TAMPOR. The algorithm implements

iterations of the below equation, where batch and cohort are interchangeable.

E 1 abundance % grand median
[ q . ] : . abundance
median(ALL SAMPLEs)batch medlan({ median(ALL SAMPLES)bater | @ll samples from batch})

Briefly, Equation 1 is applied to each protein measurement (LFQ or TMT reporter abundance)
across all samples individually where the first term represents batch-wise median-centered
abundance, and the second term is a batch-specific normalization factor comprised of the grand
median of all batch-specific medians, divided by the appropriate batch-specific median of median-
centered abundances. The data matrix is then log.-transformed, and each log(ratio) is adjusted
by subtraction of sample (column)-wise median logx(ratio) for all proteins. Then, ratios are anti-
logged and multiplied by the protein (row)-wise median of all samples used for the Eq. 1, term 1,

denominator, extracted before Eq. 1 was executed. This process is iterated until convergence.
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The use of median polish ensures that the reduction of variance is robust to outliers while the
overall algorithm preserves biological variance, given that batches have been randomized to
avoid confounding batch with diagnosis or other biological traits. Prior to matrix assembly for the
consensus analysis, intra-cohort batch effects were first removed in the MSSB (batch correction
with 166 case samples across 7 batches) and Banner (batch correction with 178 case samples
across 4 batches) cohorts. All remaining batch corrections restricted the first term denominator
to global pooled (within cohort) standard sample abundances, and the second term used all
individual case samples. Following removal of intra-cohort batch effects in MSSB and Banner,
all samples were processed jointly with the algorithm in the same sample-protein matrix to capture
biological variance across all samples in all four cohorts (ACT, Banner, BLSA, and MSSB) for the
consensus analysis. The above algorithm was applied to a matrix in which proteins that had =
50% missing values were removed. For the consensus LFQ network, 450 case samples (3 ACT
outliers were removed prior to inclusion, as described below) classified as control, AsymAD, or
AD by our unified criteria (see case classification methods above) were considered as “all
samples” for denominators in Eg. 1. All remaining batch corrections listed as follows restricted
the first term denominator to global pooled (within cohort) standard sample abundances, and the

second term used all individual case samples.

For ROSMAP 32-batch TMT protein abundances, there were two pooled global internal standard
channels in each TMT batch (n=64), and 256 individual case samples (non-internal standard
samples). For the Hopkins aging cohort (84 case samples), global pool mixture samples (3 each
per 3 batches) were used for the first term denominator, with the second term using all non-global
pool mixture samples. For the UPenn PRM analysis (3 batches, 114 case samples, and 9 pooled
controls), data were likewise batch corrected using 3 global pool mixture samples per batch for
the first term denominator and all within-batch non-pooled samples for the second term. UPenn

LFQ data (10 batches, 330 case samples, and 29 control pools) were similarly batch corrected
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as described. CSF 96-case and 300-case TMT normalized abundances were also batch
corrected using the above algorithm, with equation 1 first term denominator restricted to global
pooled (within cohort) standard sample abundances, while the second term used all individual

non-internal standard case samples.

Regression for Covariates and Outlier Removal

No imputation of missing values was performed in any cohort. Nonparametric bootstrap
regression was performed separately in each cohort by subtracting the trait of interest (age at
death, gender, or postmortem interval (PMI)) times the median estimated coefficient from 1000
iterations of fitting for each protein in the cohort-specific logz(abundance) matrix. Case
status/diagnosis was also explicitly modeled (i.e., protected) in each regression. Following
regression of each individual cohort, we assessed whether any cohort-specific tissue dissection
bias was present by performing a Spearman rank correlation of traits including age, sex, PMI, and
white matter markers to the top five principle components (PC) of logz(abundance). Network
outlier case samples were not considered in the PCs, and were identified prior to PC analysis
using Oldham’s ‘SampleNetworks’ v1.06 R script'? as previously published!3¢ using a 3 fold-SD
cutoff of Z-transformed sample connectivity. The Spearman rank correlation was performed prior
to correction of cohort-specific batch effects as described above, and after intra-cohort batch
correction of the MSSB and Banner cohorts. All four of the cohorts were confirmed to have no
significant PC correlation to age, sex, or PMI; however, ACT was observed to have a first PC
significantly correlated (average rho=0.94) to protein abundance of white matter markers
identified previously as oligodendrocyte coexpression network hubs?®. These markers were
BCAS1, SIRT2, MBP, and MAG. This white matter PC represented 27 percent of variance in the
ACT cohort, whereas the white matter marker-correlated PC represented 7 to 12 percent variance
in the other three cohorts. To adjust for this white matter variance in ACT, we applied a second
round of bootstrap regression to the 62 non-outlier ACT case sample logz(abundances), using the
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white matter PC as a regression covariate, and subtracted 28 percent of the white matter marker
correlated variance to achieve a final variance of 12 percent after recalculation of the top 5 PCs.
Abundance data for the 450 case samples were then assembled into a matrix of 3334 proteins,
and cross-cohort batch correction by median polish was performed as described above. Finally,
network outlier detection was performed as described above, which removed 31/450 cases from
consideration in the four-cohort consensus network and differential abundance analyses. All
outliers are listed in Supplementary Table 3. In all other cohorts that were not combined for the
consensus network analysis, batch correction was performed first, followed by outlier removal,
followed by removal of proteins with = 50% missing values, and then regression of age, gender,
and PMI prior to coexpression network and differential abundance analyses. In the Hopkins aging
cohort, age was not considered as a trait for regression. In the CSF cohorts, only age at time of

collection and sex were considered for regression.

Differential Abundance Analysis

Differentially expressed proteins were found using one-way ANOVA followed by Tukey’s
comparison post-hoc test across control, AsymAD and AD cases. Significantly altered proteins
with corresponding p value are provided in Supplementary Tables 3 and 5 for consensus AD
network proteins and astrocyte/microglial phenotype proteins, respectively. Differential
expression is presented as volcano plots, which were generated with the ggplot2 package in R

v3.5.2.

Weighted Correlation Network Analysis (WGCNA)

We used the WeiGhted Correlation Network Analysis (WGCNA) algorithm for our network
analysis pipeline, as previously described’’. A weighted protein co-expression network for the

four-cohort consensus data was generated using the 3,334 log, protein abundance x 419 case-
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sample matrix that had undergone covariate and batch correction as described above. The
WGCNA::blockwiseModules() function was used with the following settings: soft threshold power
beta=5.5, deepSplit=4, minimum module size of 14, merge cut height of 0.07, mean TOM
denominator, a signed network with partitioning about medioids (PAM) respecting the
dendrogram, a minimum KME to remain in a module of 0.30, and a reassignment threshold of
p<0.05. Specifically, we calculated pair-wise biweight mid-correlations (bicor, a robust correlation
metric) between each protein pair, and transformed this correlation matrix into a signed adjacency
matrix'3’. The connection strength of components within this matrix was used to calculate a
topological overlap matrix, which represents measurements of protein expression pattern
similarity across cohort samples constructed on the pairwise correlations for all proteins within the
network'®. Hierarchical protein correlation clustering analysis by this approach was conducted
using 1-TOM, and initial module identifications were established using dynamic tree cutting as
implemented in the WGCNA::blockwiseModules() function!®®. Module eigenproteins were
defined, which represent the most representative abundance value for a module and which
explain co-variance of all proteins within a module?®. Pearson correlations between each protein
and each module eigenprotein were performed; this module membership measure is defined as
kve. After the initial network construction, 18 modules consisting of 14 or more proteins were
detected. Given high kwe similarity between some modules, we used the
WGCNA::moduleMergeUsingKME() function to reduce the number of modules to 13, with the
following parameters: percentage of module members checked for kye overlap of 50 percent
(threshPercent=50), threshold for merging modules with high common Kwe.intramodule Of 25 percent
(mergePercent=25), and all other parameters default for the function. After module merging, MEs
and signed kMEs were recalculated with the WGCNA::moduleEigengenes() and
WGCNA::signedKME() functions, respectively. Finally, we ‘cleaned’ the network of assignments
with aberrant kye (since WGCNA clustering into modules and merging of those modules use
hybrid approaches not solely dependent on KME) by applying the following algorithm: remove
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module members with Kue.inramodule <0.28, then check all grey (unclustered) proteins for any kue
>0.35 and assign to the module with the highest Kye.inramodule. FOr networks of BLSA precuneus,
Mayo temporal cortex, and ROS/MAP constructed for network preservation analysis, the pipeline
described above including batch correction, outlier removal, age/sex/PMI regression, and network
building was employed as appropriate without module merging. The blockwiseModules function
for ROS/MAP used power=10, minimum module size=30 (11,225 proteins in 205 non-excluded
and non-outlier case samples); for BLSA precuneus used power=8, minimum module size=14
(3,348 proteins in 46 case samples); and for Mayo used power=5, minimum module size=14

(3,951 proteins in 107 case samples).

Network Preservation

We used the WGCNA::modulePreservation() function to assess network module preservation
across cohorts. Z-summary composite preservation scores were obtained using the consensus
network as the template versus each other cohort tested, with 500 permutations. Random seed
was set to 1 for reproducibility, and the quickCor option was set to 0. We also assessed network
module preservation using synthetic eigenproteins. Briefly, protein module members in the
consensus network template with a Kve.inramodule @mong the top 20th percentile were assembled
into a synthetic module in each target cohort, and synthetic modules with at least 4 members
were used to calculate synthetic weighted eigengenes representing the variance of all members
in the target network across case samples via the WGCNA::moduleEigengenes() function.
Statistics and correlation scatterplots involving target cohort traits were then calculated and

visualized.

Gene Ontology and Cell Type Marker Enrichment Analyses

To characterize differentially expressed proteins and co-expressed proteins based on gene

ontology annotation, we used GO Elite v1.2.5 as previously published’’, with pruned output
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visualized using an in-house R script. Cell type enrichment was also investigated as previously
published”. Astrocyte subtype markers were obtained from Zamanian et al.*3. Microglia subtype

markers were obtained from Rangaraju et al.*4.

GWAS Module Association

To determine if any protein products of GWAS targets were enriched in a particular module, we
used the single nucleotide polymorphism (SNP) summary statistics from the International
Genomics of Alzheimer's Project (http://www.pasteur-
lille.fr/en/recherche/u744/igap/igap_download.php)® to calculate the gene level association value
using MAGMA#, as previously described??. APOE was added to the gene list and assigned a -
log p value of 50, given its known strong association with AD%°. ApoE did not fall within a network
module, and therefore did not influence the reported module enrichment results. Similar analyses
were performed with GWAS candidates for Schizophrenia (SCZ) and Autism Spectrum Disorders
(ASD)'. These GWAS datasets were provided and downloaded from the Psychiatric Genomics

Consortium (http://www.med.unc.edu/pgc/downloads).

Curation of AD Mouse Model Purified Glial Transcriptomic and Proteomic Data

Orre et al.*® microarray data files (n=11; files last updated on July 20, 2015) were downloaded
from the NCBI gene expression omnibus (GEO) datasets website (GEO identifier: GSE74615).
The data, consisting of 22 samples, was normalized and centered based on limma R package
user guidelines with backgroundCorrect method="normexp” and normalizeBetweenArrays
method="quantile”. Transcripts with signal at least 110% of the 95™ percentile of all normalized
red negative control spots on the arrays in at least 4/22 samples were considered as expressed
above noise in at least one cell type (n=28,157 gene transcripts across N=14 purified microglial
measurements and N=8 purified astrocyte measurements). WGCNA collapseRows function was

used to handle multiple probe mappings to any gene, with probe selection
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method="maxRowVariance”. Grubman et al.*® peptide-level total peak area data for XO4*
(amyloid-B plaque phagocytosing) and XO4- (amyloid-B plaque non-phagocytosing) acutely
purified microglia from AD and WT mice, respectively, were summed and log.-transformed to
achieve protein-level data for 94 gene product proteins. Grubman et al. mRNA-level

measurements were obtained directly and used without further processing.

Other Statistics

All statistical analyses were performed in R (v. 3.5.2). Boxplots represent the median, 25™", and
75" percentiles, and whiskers with staples represent measurements to the 5" and 95 percentiles
of non-outlier samples; outlier samples are plotted beyond these whiskers as open circles.
Correlations were performed using the biweight midcorrelation function as implemented in the
WGCNA R package. Comparisons between two groups were performed by t test. Comparisons
among three or more groups were performed with Kruskal-Wallis nonparametric ANOVA or
standard ANOVA with Tukey or Dunnett post hoc pairwise comparison of significance. P values
were adjusted for multiple comparisons by false discovery rate (FDR) correction where indicated.
T-distributed Stochastic Neighbor Embedding (t-SNE) analysis was implemented with R package
Rtsne, as previously published*. Module membership graphs were generated using the igraph

R package as previously described?3142,
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Figure Legends

Figure 1. Protein Network Analysis of Asymptomatic and Symptomatic Alzheimer’s
Disease Brain. (A-C) Protein levels in brain tissue from control, asymptomatic Alzheimer’s
disease (AsymAD), and Alzheimer’s disease (AD) patients (N=453) were measured by label-free
mass spectrometry and analyzed by weighted correlation network analysis (WGCNA) and
differential abundance (A). Brain tissue was analyzed from postmortem dorsolateral prefrontal
cortex (DLPFC, highlighted in yellow) in the Baltimore Longitudinal Study of Aging (BLSA, n=11
control, n=13 AsymAD, n=20 AD, n=44 total), Banner Sun Health Research Institute Brain Bank
(Banner, n=26 control, n=58 AsymAD, n=94 AD, n=178 total), Mount Sinai School of Medicine
Brain Bank (MSSB, n=46 control, n=17 AsymAD, n=103 AD, n=166 total), and the Adult Changes
in Thought Study (ACT, n=11 control, n=14 AsymAD, n=40 AD, n=65). (B) A protein correlation
network consisting of 13 protein modules was generated from 3334 proteins measured across
four separate cohorts. (Top) Module eigenproteins, which represent the first principle component
of the protein expression within each module, were correlated with neuropathological hallmarks
of Alzheimer's disease (CERAD, Consortium to Establish a Registry for Alzheimer’'s disease
amyloid-B plaque score, higher scores represent greater plaque burden; Braak, tau neurofibrillary
tangle staging score, higher scores represent greater extent of tangle burden), cognitive function
(MMSE, mini-mental status examination score, higher scores represent better cognitive function),
and overall functional status (CDR, clinical dementia rating score, higher scores represent worse
functional status). CERAD and Braak measures were from all cohorts, while MMSE was from
Banner and CDR was from MSSB. Strength of positive (red) or negative (blue) correlation is
shown by two-color heatmap, with p values provided for all correlations with p < 0.05. Modules
that showed a significant correlation with all four traits are highlighted in bold. (Middle) The cell

type nature of each protein module was assessed by module protein overlap with known neuron,
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astrocyte, microglia, oligodendrocyte (oligoden), and endothelia cell markers. Significance of
overlap is shown by one-color heatmap, with p values provided for overlaps with p < 0.05.
(Bottom) Gene ontology (GO) analysis of the proteins within each module clearly identified, for
most modules, the biological processes associated with the module. (C) Module eigenprotein
level by case status (left) and apolipoprotein E (APOE) genotype (right) for each protein module
that had significant correlation to all four traits in (B). Case status is from all cohorts (control,
n=94; AsymAD, n=102; AD, n=257). APOE genotype information is from the BLSA and Banner
cohorts (APOE 2/2, n=1; APOE 2/3, n=32; APOE 3/3, n=140; APOE 3/4, n=80; APOE 4/4, n=12).
Two out of the 222 cases were APOE 2/4; these two cases were included in the APOE 3/3 risk
group for simplification. APOE and other trait correlations for all modules are provided in
Extended Data Figure 1. Module eigenprotein correlations were performed using biweight
midcorrelation and corrected by the Benjamini-Hochberg method. Protein module cell type
overlap was performed using Fisher’s exact test with Benjamini-Hochberg correction. Differences
in eigenprotein values were assessed by Kruskal-Wallis one-way ANOVA. Cntl, control; AsymAD,

asymptomatic Alzheimer’s disease; AD, Alzheimer’s disease.

Figure 2. AD Protein Network Validation in a Longitudinal Cohort of Aging. (A-C)
Preservation of AD protein network modules and trait correlations in the Religious Orders Study
and Memory and Aging Project (ROS/MAP) cohorts. (A) Protein levels from dorsolateral
prefrontal cortex (DLPFC) in a total of 219 control, AsymAD, and AD cases from the ROS/MAP
cohorts were measured using a different mass spectrometry platform and quantification approach

compared to the cases used to generate the AD network as shown in Figure 1. The resulting
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data were used to assess conservation of the AD brain protein network in the ROS/MAP cohorts.
(B) AD brain protein network module preservation in the ROS/MAP cohorts. The dashed blue
line indicates a zsummary SCore of 1.96, or FDR q value <0.05, above which module preservation
was considered statistically significant. The dashed red line indicates a Zsummary Score of 10, or
FDR g value ~ 1e?3, above which module preservation was considered highly statistically
significant. (C) Case status and trait preservation in the ROS/MAP cohorts. The top 20% of
proteins by kME value in each AD brain protein network module was used to create a synthetic
eigenprotein, which was then measured by case status in ROS/MAP and correlated with amyloid
plague load (CERAD score), tau neurofibrillary tangle burden (Braak stage), and cognitive
function (global cognitive function composite z-score). Synthetic eigenprotein analyses for
modules M1, M3, M4, and M10 are shown. Analyses for all modules, with additional trait
correlations, are provided in Extended Data Figure 4. Differences in module synthetic
eigenproteins by case status were assessed by Kruskal-Wallis one-way ANOVA. Module
synthetic eigenprotein correlations were performed using biweight midcorrelation with Benjamini-
Hochberg correction. Cntl, control; AsymAD, asymptomatic Alzheimer’s disease; AD, Alzheimer's

disease.

Figure 3. AD Protein Network Is Preserved in Different Brain Regions. (A-E) Preservation
of AD protein network modules derived from analysis of DLPFC in other brain regions affected by
AD. (A) Protein levels in temporal cortex from a total of 111 control and AD cases from the Mayo
Brain Bank, and in precuneus from a total of 46 cases from the BLSA, were measured by label-
free mass spectrometry and used to assess conservation of the AD brain protein network derived
from DLPFC. (B, C) AD brain protein network preservation in temporal cortex (B) and precuneus
(C). The dashed blue line indicates a zsummary SCOre of 1.96, or FDR q value <0.05, above which

module preservation was considered statistically significant. The dashed red line indicates a
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Zsummary SCOre of 10, or FDR g value ~ 1e23, above which module preservation was considered
highly statistically significant. (D, E) Case status preservation in temporal cortex and precuneus.
A synthetic eigenprotein was created for each AD network module as described in Figure 2 and
measured by case status in temporal cortex (D) and precuneus (E). Asymptomatic AD was not
assessed in the Mayo cohort, and is therefore not included in the temporal cortex analyses.
Synthetic eigenprotein analyses for modules M1, M3, M4, and M10 are shown. Analyses for all
modules, with additional trait correlations, are provided in Extended Data Figures 7 and 8.
Differences in module synthetic eigenproteins by case status were assessed by Welch's t test (D)
or Kruskal-Wallis one-way ANOVA (E). Cntl, control; AsymAD, asymptomatic Alzheimer’'s

disease; AD, Alzheimer’s disease.

Figure 4. Effects of Aging on AD Protein Network Modules. (A, B) Protein levels were
measured in DLPFC from cognitively normal people who died at different ages (age 30-39, n=20;
age 40-49, n=34; age 50-59, n=17; age 60-69, n=13), and used to analyze AD protein network
module changes with age. Brains were obtained from Johns Hopkins University. (B) A synthetic
eigenprotein was created for each AD network module as described in Figure 2 and measured
by age group (left boxplot) as well as correlated with age (right scatterplot) in the aging brain
cohort. Synthetic eigenprotein analyses for modules M1, M3, M4, and M10 are shown. Analyses
for all modules are provided in Extended Data Figure 9. Differences in module synthetic
eigenproteins by age grouping were assessed by Kruskal-Wallis one-way ANOVA. Synthetic

eigenprotein correlations were performed using biweight midcorrelation.

Figure 5. AD Protein Network Module Changes in Other Neurodegenerative Diseases. (A,

B) Protein levels were measured in DLPFC from control (n=46), AD (n=49), amyotrophic lateral
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sclerosis (ALS, n=59), frontotemporal lobar degeneration with TAR DNA-binding protein 43
inclusions (FTLD-TDP, n=29), progressive supranuclear palsy (PSP, n=27), corticobasal
degeneration (CBD, n=17), Parkinson’s disease and Parkinsons’s disease dementia (PD/PDD,
n=81), and multiple system atrophy (MSA, n=23) cases from the University of Pennsylvania Brain
Bank, and used to analyze AD protein network module changes in different neurodegenerative
diseases. (B) A synthetic eigenprotein was created for each AD network module as described in
Figure 2 and measured by disease group in the UPenn cohort. Synthetic eigenprotein analyses
for modules M1, M3, M4, and M10 are shown. Analyses for all modules are provided in Extended
Data Figure 10. Differences in module synthetic eigenproteins were assessed by Kruskal-Wallis
one-way ANOVA. Differences between AD and other case groups were assessed by Dunnett’s

test, the results of which are provided in Supplementary Table 4.

Figure 6. The M4 Astrocyte/Microglial Metabolism Module is Enriched in AD Genetic Risk
Factors and Markers of Anti-Inflammatory Disease-Associated Microglia. (A-D) Enrichment
of proteins contained within genomic regions identified by genome wide association studies
(GWAS) as risk factors for AD, autism spectrum disorder, and schizophrenia was calculated for
each module in the AD protein network (A). Modules highlighted in dark red were significantly
enriched for AD risk factors, and not for risk factors associated with autism spectrum disorders or
schizophrenia. The horizontal dotted line indicates a z score level of enrichment of 1.96, or false
discovery rate (FDR) q value <0.05, above which enrichment was considered statistically
significant. (B) Enrichment of astrocyte (top) and microglia (bottom) phenotypic markers in AD
protein network modules. (Top) Astrocyte phenotype markers indicating upregulation in response
to acute injury with lipopolysaccharide (LPS) (Al Inflammatory), middle cerebral artery occlusion
(A2 Tissue repair), or both types of acute injury (A1/A2 Shared) in a mouse model*® were

assessed for enrichment in AD network modules. (Bottom) Microglia markers from an mRNA co-
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expression analysis that are altered after challenge with LPS and/or amyloid-f plaque deposition
in mouse models* were assessed for enrichment in AD network modules (Anti-inflammatory,
decrease with LPS administration and increase with plaque deposition; Pro-inflammatory,
increase with LPS administration and increase with plaque deposition; Homeostatic, decrease
with LPS administration and decrease with plaque deposition). Module enrichment was
determined by Fisher’s exact test with Benjamini-Hochberg correction. *P < 0.05, **P < 0.01, ***P
<0.01, *** P <0.0001. (C) The top 100 proteins by module eigenprotein correlation value (KME)
in module M4. The size of each circle indicates the relative KME. Those proteins with the largest
kKME are considered “hub” proteins within the module. Proteins highlighted in blue are
upregulated in A2 tissue repair astrocyte and anti-inflammatory microglia; proteins highlighted in
red are upregulated in Al inflammatory astrocyte and pro-inflammatory microglia. Additional such
proteins are provided in Supplementary Table 5. (D) The top 30 most differentially abundant
microglial transcripts in an AD mouse model*® that overlap with proteins in the M4 module, colored
as shown in (C). M4 proteins that overlap with transcripts elevated in microglia undergoing active
amyloid-B plague phagocytosis*® are provided in Supplementary Figure 7. (Inset) Transcript
elevations validated at the protein level in microglia undergoing active amyloid-B plaque

phagocytosis*°.

Figure 7. M4 Astrocyte/Microglial Metabolism Module Protein Levels Are Elevated in
AsymAD and AD CSF. (A-C) Approach to analysis of M4 proteins in CSF from two different
cohorts (A). CSF in Cohort 1 (n=297) was obtained from subjects with normal CSF amyloid-p
and tau levels (controls) and patients with low amyloid-$, elevated tau levels, and cognitive
impairment (AD). CSF in Cohort 2 (n=96) was obtained from control subjects and AD patients as
defined in Cohort 1, as well as subjects with CSF amyloid- and tau levels that met criteria for AD

but who were cognitively normal at the time of collection. CSF was analyzed without prior pre-
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fractionation or depletion of highly abundant proteins; relative protein levels were measured by
TMT-MS. (B) Relative CSF protein levels of selected M4 module members in Cohort 1. Protein
names are colored according to pro-inflammatory (red) or anti-inflammatory (blue) classification.
Additional M4 protein measurements, as well as trait correlations for the measured proteins, are
provided in Extended Data Figure 13. (C) Relative CSF protein levels of selected M4 module
members in Cohort 2. Protein names are colored as in (B). Additional measurements and trait
correlations are provided in Extended Data Figure 14. Differences in protein levels were
assessed by Welch's t test (B) or Kruskal-Wallis one-way ANOVA (C). Correlations were
performed using biweight midcorrelation. Cntl, control; AsymAD, asymptomatic Alzheimer’s
disease; AD, Alzheimer's disease; TMT, tandem mass tag; MoCA, Montreal Cognitive

Assessment (higher scores represent better cognitive function).

Supplementary Figure 1. Relationship of AD Network Proteins by t-SNE Analysis.
Dimensionality reduction and visualization by t-distributed stochastic neighbor embedding (t-SNE)
was applied to proteins that were in the top 25% by KME value within each AD network module.
Proteins are color coded as shown in Figure 1B according to the network module in which they
reside. Network module ontologies and cell type enrichments are provided as shown in Figure
1B. Ontologies are highlighted based on the most robust AD trait correlations as shown in Figure

1B.

Supplementary Figure 2. AD Protein Network Module Trait and Pathology Correlations.

(A-C) The eigenprotein of each protein network module was correlated with neuropathological,
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molecular, and cognitive/functional traits (A). Protein modules are bolded as in Figure 1B using
CERAD, Braak, MMSE, and CDR correlations. Strength of positive (red) or negative (blue)
correlation is shown by two-color heatmap, with p values provided for all correlations with p <
0.05. Neuropathological, molecular, and cognitive/functional correlations were corrected using
the Benjamini-Hochberg method. (B) Correlation between CERAD plaque score and AP levels
measured by label free quantification (LFQ) mass spectrometry. (C) Correlation between Braak
score (NFT, neurofibrillary tangle) and tau levels measured by LFQ of the microtubule binding
region (MTBR). CERAD, Consortium to Establish a Registry for Alzheimer’s disease AB plaque
score (higher scores represent greater plague burden); Braak, tau neurofibrillary tangle staging
score (higher scores represent greater extent of tangle burden); AB, amyloid-B; a-Syn, alpha
synuclein; TDP-43, TAR DNA-binding protein 43; MMSE, mini-mental status examination score
(higher scores represent better cognitive function); CDR, clinical dementia rating score (higher
scores representing worse functional status); CASI, Cognitive Abilities Screening Instrument
(higher scores represent better cognitive function). MMSE is from Banner, CDR is from MSSB,

and CASI is from ACT.

Supplementary Figure 3. AD Protein Network Module Changes in Other
Neurodegenerative Diseases by PRM Analysis. (A-C) Protein levels for 323 proteins across
108 brains from the UPenn cohort were measured by parallel reaction monitoring targeted mass
spectrometry (PRM-MS) (A). Targeted peptides and individual protein measurements by disease
group are provided in Supplementary Table 4 and Extended Data Figure 11, respectively. (B)
Protein levels across all cases were highly correlated between LFQ and PRM measurements.
(C) A synthetic eigenprotein was created from proteins that mapped to an AD network module
and measured across the different disease groups. Analyses for all modules are provided in

Extended Data Figure 12. Differences in module synthetic eigenproteins were assessed by
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Kruskal-Wallis one-way ANOVA. Differences between AD and other case groups were assessed

by Dunnett’s test, the results of which are provided in Supplementary Table 4.

Supplementary Figure 4. Protein Differential Abundance in AD Brain. (A-C) Differential
protein abundance for AD versus control (A), AD versus AsymAD (B), and AsymAD versus control
(C) brain, represented by fold-change versus t statistic for the given comparison. Proteins are
colored by the module in which they reside according to the scheme shown in Figure 1B. The
bold horizontal dashed line represents p < 0.05. P values are corrected by the Benjamini-

Hochberg method. AsymAD, asymptomatic Alzheimer’s disease; AD, Alzheimer’s disease.

Supplementary Figure 5. Differential Abundance of Reactive Astrocyte Protein Markers in
AD Brain. (A-C) Proteins expressed in different astrocytic response states to acute injury*® were
analyzed for changes in AD. Astrocyte mRNAs that were upregulated greater than four-fold after
acute injury by LPS administration (“A1” Inflammatory) (A), middle cerebral artery occlusion (“A2”
Tissue Repair) (B), or both (“A1/A2 Mixed”) (C) were analyzed for changes in abundance between
AD and control. Results are shown as protein fold-change versus t statistic for the given
comparison. The bold horizontal dashed line represents p < 0.05. P values are corrected by the
Benjamini-Hochberg method. Proteins are colored by the module in which they reside according

to the scheme shown in Figure 1B. AD, Alzheimer’s disease.

Supplementary Figure 6. Differential Abundance of Microglial Phenotypic Protein Markers
in AD Brain. (A-C) Proteins corresponding to microglial mMRNAs that were found to be associated
with different microglial phenotypic states** were analyzed for changes in AD. Proteins from

microglial co-expression modules corresponding to a disease-associated anti-inflammatory (A),
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disease-associated pro-inflammatory (B), and homeostatic (C) response phenotype were
analyzed for changes in abundance between AD and control. Results are shown as protein fold-
change versus t statistic for the given comparison. The bold horizontal dashed line represents p
< 0.05. P values are corrected by the Benjamini-Hochberg method. Proteins are colored by the
module in which they reside according to the scheme shown in Figure 1B. AD, Alzheimer's

disease.

Supplementary Figure 7. M4 Astrocyte/Microglial Metabolism Module Members Increased
at the Transcript Level in Microglia Undergoing Active Amyloid-B Plaque Phagocytosis.
MRNA transcripts increased in microglia undergoing active amyloid-B plaque phagocytosis
(X04%)*° were overlapped with cognate proteins in the M4 module. There were 23 transcripts that
overlapped with M4 module members. Proteins that also overlapped with the top 30 disease-
associated microglia (DAM) markers in the M4 module (Figure 6D) are shown in blue. Proteins
that did not overlap with the top 30 DAM markers are shown in cyan. Proteins in cyan are
therefore M4 members that may be more specifically elevated in microglia undergoing active

amyloid-B plaque phagocytosis.

Extended Data Figure 1. AD Network Module Phenotype Correlations. Each module
eigenprotein was assessed for group differences by case status and APOE genotype, and
correlated to genetic, neuropathological, cognitive/functional, and molecular traits. APOE risk
score: -2 (E2/2), -1 (E2/3), 0 (E3/3 or E2/4), 1 (E3/4), 2 (E4/4). Eigenprotein differences by case

status or APOE risk were assessed by Kruskal-Wallis (K-W) one-way ANOVA. Correlations were
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performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more

robust to outliers.

Extended Data Figure 2. AD Network Module Protein Memberships. The top 100 proteins
by module eigenprotein correlation value (KME) in each AD protein network module. The size of
each circle indicates the relative KME. Those proteins with the largest KME are considered “hub”

proteins within the module, and explain the largest variance in module expression.

Extended Data Figure 3. GO Analysis on AD Network Modules. Gene ontology (GO) analysis
was performed to gain insight into the biological meaning of each AD protein network module.

Enrichment for a given ontology is shown by z score.

Extended Data Figure 4. AD Network Validation in ROS/MAP. The top 20% of proteins by
kME value in each AD brain protein network module was used to create a synthetic eigenprotein,
which was then measured by case status in ROS/MAP and correlated with different traits as
assessed in the ROS/MAP cohorts. The first boxplot for each module is the AD network
eigenprotein by case status, given as reference for the second boxplot, which is the synthetic
eigenprotein in the ROS/MAP cohorts. Synthetic eigenprotein differences by case status in
ROS/MAP were assessed by Kruskal-Wallis (K-W) one-way ANOVA. Correlations were
performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more

robust to outliers. Statistical significance at p <0.05 is highlighted in red.
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Extended Data Figure 5. Round 1 Targeted Measurements of AD Network Proteins in
ROS/MAP. Levels of 67 proteins were measured by selected reaction monitoring (SRM) mass
spectrometry across 1016 ROS/MAP cases. One peptide per protein was selected for
measurement. Peptide sequences can be found at

https://www.synapse.org/#!Synapse:syn10468856. Protein levels were correlated to AB levels as

measured by SRM, CERAD score, Braak stage, and MMSE. Protein level differences by case
status were assessed by Kruskal-Wallis (K-W) one-way ANOVA with Tukey test. Correlations
were performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is
more robust to outliers. Data for each protein is colored by the AD network module in which it

resides. Statistical significance at p <0.05 is highlighted in red.

Extended Data Figure 6. Round 2 Targeted Measurements in ROS/MAP. Levels of 37
proteins were measured by selected reaction monitoring (SRM) mass spectrometry across 1016
ROS/MAP cases. Most proteins were measured with at least two peptides per protein, and
therefore protein level measurements for these proteins are calculated as the average of the
individual peptide measurements. Individual peptide measurements are shown after the protein
level measurements. Peptide sequences can be found at

https://www.synapse.org/#!Synapse:syn10468856. Protein and peptide levels were correlated to

tau levels as measured by SRM, CERAD score, Braak stage, and MMSE. Differences in levels
by case status were assessed by Kruskal-Wallis (K-W) one-way ANOVA with Tukey test.
Correlations were performed using both Pearson correlation (cor) and biweight midcorrelation
(bicor), which is more robust to outliers. Data for each protein and peptide is colored by the AD

network module in which it resides. Statistical significance at p <0.05 is highlighted in red.
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Extended Data Figure 7. AD Network Preservation in Temporal Cortex. The top 20% of
proteins by KME value in each AD brain protein network module was used to create a synthetic
eigenprotein, which was then measured by case status in the Mayo cohort (temporal cortex) and
correlated with APOE risk and Braak score. APOE risk score is described in Extended Data
Figure 1. The first boxplot for each module is the AD network eigenprotein by case status, given
as reference for the second boxplot, which is the synthetic eigenprotein in the Mayo cohort.
Synthetic eigenprotein differences by case status in the Mayo cohort were assessed by Kruskal-
Walllis (K-W) one-way ANOVA. Correlations were performed using both Pearson correlation (cor)
and biweight midcorrelation (bicor), which is more robust to outliers. Statistical significance at p

<0.05 is highlighted in red.

Extended Data Figure 8. AD Network Preservation in Precuneus. The top 20% of proteins
by kME value in each AD brain protein network module was used to create a synthetic
eigenprotein, which was then measured by case status in the Mayo cohort (temporal cortex) and
correlated with APOE risk and CERAD and Braak scores. APOE risk score is described in
Extended Data Figure 1. The first boxplot for each module is the AD network eigenprotein by
case status, given as reference for the second boxplot, which is the synthetic eigenprotein in the
BLSA precuneus cohort. Synthetic eigenprotein differences by case status in the BLSA
precuneus cohort were assessed by Kruskal-Wallis (K-W) one-way ANOVA. Correlations were
performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more

robust to outliers. Statistical significance at p <0.05 is highlighted in red.

Extended Data Figure 9. Effect of Aging on AD Network Modules. The top 20% of proteins

by KME value in each AD brain protein network module was used to create a synthetic
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eigenprotein, which was then measured by age grouping and correlated with age in the aging
cohort from the Baltimore coroner’s office. The first boxplot for each module is the AD network
eigenprotein by case status, given as reference for the second and third boxplots, which is the
synthetic eigenprotein in the BLSA precuneus cohort measured in two different age groupings.
Synthetic eigenproteins were also correlated directly with age, using both Pearson correlation
(cor) and biweight midcorrelation (bicor), which is more robust to outliers. Synthetic eigenprotein
differences by case status were assessed by Kruskal-Wallis (K-W) one-way ANOVA. Statistical

significance at p <0.05 is highlighted in red.

Extended Data Figure 10. AD Protein Network Module Changes in Other
Neurodegenerative Diseases. The top 20% of proteins by KME value in each AD brain protein
network module was used to create a synthetic eigenprotein, which was then measured in
different neurodegenerative diseases in the UPenn cohort. The first boxplot for each module is
the AD network eigenprotein by case status, given as reference for the second and third boxplots.
Other neurodegenerative diseases (otherND) included amyotrophic lateral sclerosis (ALS),
frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP),
progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson’s disease
and Parkinsons’s disease dementia (PD/PDD), and multiple system atrophy (MSA). Synthetic
eigenproteins were also correlated with CERAD and Braak scores, using both Pearson correlation
(cor) and biweight midcorrelation (bicor), which is more robust to outliers. Synthetic eigenprotein
differences by case status were assessed by Kruskal-Wallis (K-W) one-way ANOVA. Differences
between AD and other case groups were assessed by Dunnett's test and are provided in

Supplementary Table 4. Statistical significance at p <0.05 is highlighted in red.
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Extended Data Figure 11. Targeted Individual Protein Measurements in Other
Neurodegenerative Diseases. Peptides from proteins across all modules in the AD network
were targeted for measurement by parallel reaction monitoring mass spectrometry (PRM) in a
subset of cases in the UPenn cohort encompassing all disease groups. Other neurodegenerative
diseases (otherND) included amyotrophic lateral sclerosis (ALS), frontotemporal lobar
degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP), progressive supranuclear
palsy (PSP), corticobasal degeneration (CBD), Parkinson’s disease and Parkinsons’s disease
dementia (PD/PDD), and multiple system atrophy (MSA). Protein levels were correlated with
CERAD and Braak scores, using both Pearson correlation (cor) and biweight midcorrelation
(bicor), which is more robust to outliers. Protein level differences by case status were assessed
by Kruskal-Wallis (K-W) one-way ANOVA. Differences between AD and other case groups were
assessed by Dunnett’s test and are provided in Supplementary Table 4. Data for each protein
is colored by the AD network module in which it resides. Statistical significance at p <0.05 is

highlighted in red.

Extended Data Figure 12. AD Network Module Changes in Other Neurodegenerative
Diseases by Targeted Mass Spectrometry Measurements. A synthetic eigenprotein for each
AD network module was created from proteins measured by parallel reaction monitoring mass
spectrometry (PRM) that mapped to an AD network module. Individual protein measurements by
disease group are provided in Extended Data Figure 11. Other neurodegenerative diseases
(otherND) included amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with
TAR DNA-binding protein 43 inclusions (FTLD-TDP), progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD), Parkinson’'s disease and Parkinsons's disease dementia
(PD/PDD), and multiple system atrophy (MSA). Synthetic eigenproteins were correlated with

CERAD and Braak scores, using both Pearson correlation (cor) and biweight midcorrelation
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(bicor), which is more robust to outliers. Synthetic eigenprotein differences by case status were
assessed by Kruskal-Wallis (K-W) one-way ANOVA. Differences between AD and other case
groups were assessed by Dunnett’s test and are provided in Supplementary Table 4. Statistical

significance at p <0.05 is highlighted in red.

Extended Data Figure 13. Relative Levels and Trait Correlations of Module M4 Proteins in
AD CSF Cohort 1. Relative levels of each protein were measured in control and AD CSF by
tandem mass tag mass spectrometry (TMT-MS), and correlated with ELISA measurements of
AB42, Tau, and phosphorylated tau, as well as Ap42/Tau ratio and MoCA score. ELISA
measurements are given in pg/mL. Differences in protein levels were assessed by Welch's t test.
Correlations were performed using both Pearson correlation (cor) and biweight midcorrelation
(bicor), which is more robust to outliers. Statistical significance at p <0.05 is highlighted in red.

MoCA, Montreal Cognitive Assessment (higher scores represent better cognitive function).

Extended Data Figure 14. Relative Levels and Trait Correlations of Module M4 Proteins in
AsymAD and AD CSF Cohort 2. Relative levels of each protein were measured in control,
AsymAD, and AD CSF by tandem mass tag mass spectrometry (TMT-MS), and correlated with
ELISA measurements of AB42, Tau, and phosphorylated tau, as well as AB42/Tau ratio and
MoCA score. ELISA measurements are given in pg/mL. Differences in protein levels were
assessed by Kruskal-Wallis (K-W) one-way ANOVA with Tukey test. Correlations were performed
using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more robust to
outliers. Statistical significance at p <0.05 is highlighted in red. MoCA, Montreal Cognitive

Assessment (higher scores represent better cognitive function).
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