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Abstract 

Our understanding of the biological changes in the brain associated with Alzheimer’s disease 

(AD) pathology and cognitive impairment remains incomplete.  To increase our understanding of 

these changes, we analyzed dorsolateral prefrontal cortex of control, asymptomatic AD, and AD 

brains from four different centers by label-free quantitative mass spectrometry and weighted 

protein co-expression analysis to obtain a consensus protein co-expression network of AD brain.  

This network consisted of 13 protein co-expression modules.  Six of these modules correlated 

with amyloid-β plaque burden, tau neurofibrillary tangle burden, cognitive function, and clinical 

functional status, and were altered in asymptomatic AD, AD, or in both disease states.  These 

modules reflected synaptic, mitochondrial, sugar metabolism, extracellular matrix, cytoskeletal, 

and RNA binding/splicing biological functions.  The identified protein network modules were 

preserved in a community-based cohort analyzed by a different quantitative mass spectrometry 

approach.  They were also preserved in temporal lobe and precuneus brain regions.  Some of the 

modules were influenced by aging, and showed changes in other neurodegenerative diseases 

such as frontotemporal dementia and corticobasal degeneration.  The module most strongly 

associated with AD pathology and cognitive impairment was the sugar metabolism module, which 

was enriched in AD genetic risk factors and correlated with APOE genetic risk.  This module was 

also highly enriched in microglia and astrocyte protein markers associated with an anti-

inflammatory state, suggesting that the biological functions it represents serve a protective role in 

AD.  Proteins from this module were increased in cerebrospinal fluid from asymptomatic AD and 

AD cases, highlighting their potential as biomarkers of the altered brain network.  In this study of 

>2000 brains and nearly 400 cerebrospinal fluid samples by quantitative proteomics, we identify 

proteins and biological processes in AD brain that may serve as therapeutic targets and fluid 

biomarkers for the disease. 
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Introduction 

Alzheimer’s disease (AD) is a leading cause of death worldwide, with increasing prevalence as 

global life expectancy increases1.  Although AD is currently defined on the basis of amyloid-β 

plaque and tau neurofibrillary tangle deposition within the neocortex2, the biochemical and cellular 

changes in the brain that characterize the disease beyond amyloid-β and tau deposition remain 

incompletely understood.  The genetic architecture of late-onset AD has been extensively studied, 

and the results of these studies implicate multiple biological pathways that contribute to 

development of the disease, including immune function, endocytic vesicle trafficking, and lipid 

homeostasis, among others3-5.  In addition to genetic studies, transcriptomic studies on 

postmortem AD brain tissue have identified changes in mRNA co-expression that correlate with 

disease traits and cognitive decline6,7.  However, given that mRNA levels correlate only modestly 

to protein levels8,9, and proteins are the effectors of most biological functions, it is important to 

understand the proteomic changes that occur in AD brain to help advance drug development and 

biomarker efforts for this disease10. 

Protein co-expression analysis is a powerful tool to understand biological network, pathway, and 

cell type changes in human tissue11,12.  Communities of co-expressed proteins can be linked to 

disease processes, and the most strongly correlated proteins, or “hubs,” within these co-

expression modules are enriched in key drivers of disease pathogenesis13-18.  Therefore, targeting 

hubs within protein co-expression modules most related to disease biology is a promising 

approach for drug and biomarker development19-22.  We recently analyzed control, asymptomatic 

AD, and AD brain tissue, using both protein differential and co-expression approaches, in a cohort 

of 47 individuals from the Baltimore Longitudinal Study of Aging to better understand the 

proteomic changes that occur in AD brain23,24.  We observed protein co-expression changes that 

correlated with AD phenotypes, and found that glial and inflammatory protein network alterations 

are important features of AD pathophysiology.  Importantly, many of the observed AD network 
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findings were unique to the proteome, and not observed in the transcriptome, consistent with 

recent findings in other diseases such as cancer10.  Here, we describe a multi-center collaborative 

project to extend these initial findings by analyzing more than 2000 human brain tissues by 

quantitative mass spectrometry-based proteomics.  We generate a consensus AD brain protein 

co-expression network, controlling for batch and other co-variates, from 453 brains obtained from 

multiple research centers.  We validate this protein network in a separate community-based 

cohort using a different mass spectrometry-based technology for protein quantitation, and show 

that the network is preserved in different brain regions affected in AD.  By analyzing a separate 

cohort of normal aging brains, we are able to estimate the effect aging has on the observed AD 

brain protein co-expression network.  We also analyze the disease specificity of the AD protein 

network changes by interrogating these changes in six other neurodegenerative diseases that 

encompass diverse brain pathologies, and validate the observed changes by targeted protein 

measurements.  One of the most strongly altered AD protein co-expression modules, which we 

term the “astrocyte/microglial metabolism” module, is enriched in proteins linked to microglia, 

astrocytes, and sugar metabolism; is enriched in protein products linked to AD genetic risk; and 

is modified by APOE genotype.  Microglial protein markers within this module are biased toward 

an anti-inflammatory disease-associated state, suggesting that it reflects a protective or 

compensatory function in response to AD pathology.  Remarkably, proteins from this module are 

increased in cerebrospinal fluid in individuals with AD, including in the asymptomatic stage of the 

disease.  Our results highlight the importance of inflammation, sugar metabolism, mitochondrial 

function, synaptic function, RNA-associated proteins, and glia in the pathogenesis of AD, and 

provide a robust framework for future proteomic and multi-omic studies on AD brain and biofluid 

biomarkers. 

 

Results 
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Construction of a Consensus AD Protein Co-Expression Network 

Our initial investigation into protein co-expression changes in AD was centered on analysis of 47 

cases encompassing control, asymptomatic AD (AsymAD), and AD brains23.  Proteomic analyses, 

like genomic and transcriptomic analyses, can be influenced by multiple technical and 

experimental variables that are difficult to completely control in any one experiment, as well as by 

the inherent variability in disease pathology among selected AD cases, and variability in 

pathological assessment among different investigators.  Because these factors may influence the 

resulting AD protein co-expression network, we set out to build a network that was robust to such 

variability.  To do so, we analyzed control, AsymAD, and AD brains from multiple research centers 

in multiple batches over different time periods.  In addition to the original 47 cases from the 

Baltimore Longitudinal Study of Aging (BLSA), we analyzed dorsolateral prefrontal cortex 

(DLPFC) tissue in 178 cases from the Banner Sun Health Research Institute (Banner), 166 cases 

from the Mount Sinai School of Medicine Brain Bank (MSSB), and 65 cases from the Adult 

Changes in Thought Study (ACT), for a total of 453 control, AsymAD, and AD brains (Figure 1A).  

All cases had comprehensive clinical evaluations during life, and were classified according to a 

common diagnostic scheme as described in Methods.  AsymAD was defined as postmortem 

pathology consistent with an AD diagnosis but without dementia, based on the NIA research 

framework for AD2.  Tissues were analyzed by mass spectrometry-based proteomics using label-

free quantitation (LFQ), and the resulting mass spectrometry data were processed using a 

common pipeline to arrive at 3334 proteins that were quantified with fewer than 50% missing 

values across the 453 cases.  These proteins were used to generate a protein co-expression 

network using the weighted correlation network analysis (WGCNA) algorithm.  The resulting 

network consisted of 13 protein co-expression “modules,” or communities of proteins with similar 

expression patterns across the cases analyzed (Figure 1B, Extended Data Figures 1 and 2, 

Supplementary Table 3).  These modules could also be identified independently of the WGCNA 
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algorithm using t-distributed stochastic neighbor embedding (t-SNE) analysis (Supplementary 

Figure 1), demonstrating that the protein communities identified by the WGCNA algorithm were 

robust.  Gene ontology (GO) analysis of the protein module members revealed a clear ontology 

for eleven out of the thirteen modules, encompassing a diverse mix of biological functions, 

processes, and components (Figure 1B, Extended Data Figure 3).  To assess whether a given 

co-expression module was related to AD, we correlated the module eigenprotein—or first principle 

component of the module protein expression level—to the neuropathological hallmarks of AD: 

amyloid-β plaques and neurofibrillary tangles.  We also correlated the module eigenproteins to 

cognitive function as assessed by the Mini-Mental Status Examination (MMSE), and functional 

status as assessed by the Clinical Dementia Rating Scale (CDR), at the last research evaluations 

prior to death to capture module-disease relationships that may be independent of amyloid-β 

plaque or tau tangle pathology (Figure 1B, Extended Data Figure 1).  We observed six modules 

that were significantly correlated with all pathological, cognitive, and functional measures, and 

whose ontologies could be best characterized by a structural component or a biologic process: 

modules M1 synapse, M3 mitochondrial, M4 glucose and carbohydrate metabolism 

(subsequently referred to as sugar metabolism), M5 extracellular matrix, M6 cytoskeleton, and 

M10 RNA binding/splicing.  The M4 sugar metabolism module showed the strongest AD trait 

correlations (amyloid-β plaque r=0.46, p=1.3e-23; neurofibrillary tangle r=0.49, p=4.7e-27; cognition 

r=-0.67, p=8.5e-23; functional status r=0.52, p=2.6e-12).  Two modules—M11 chaperone/protein 

folding and M12 of unknown function—correlated with AD pathology and cognitive function, but 

not with functional status as assessed by CDR.  The M8 module, which contained many circulating 

blood components such as hemoglobins and fibrinogen, and the M2 module, which predominantly 

reflected myelin components, correlated only with cognitive status but not AD pathology or 

functional status, suggesting that these modules may influence dementia separately from 

amyloid-β plaques and tau tangles.  Because AD neuropathology is not homogenous even within 

the same brain region, and because neuropathological measurements of AD pathology are semi-
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quantitative and subject to a certain degree of individual variability in assessment25, we also 

correlated module eigenproteins to mass spectrometry measurements of amyloid-β and the tau 

microtubule binding region, which comprises neurofibrillary tangles, within the DLPFC tissue used 

for proteomic analysis (Supplementary Figure 2).  We observed strong concordance between 

neuropathological and molecular measurements of AD pathology.  We were also able to quantify 

alpha-synuclein and TAR DNA-binding protein 43 (TDP-43) proteins and assess their module 

correlations (Supplementary Figure 2A).  Alpha-synuclein correlated most strongly with the M6 

cytoskeleton module, as well as the M1 synaptic module.  TDP-43 correlated most strongly with 

the RNA-binding module.  These observations lend additional validity to the co-expression results 

given their known functions at the synapse and in RNA-binding, respectively.  Alpha-synuclein 

also positively correlated with the M1 synaptic module, suggesting that we measured mostly 

soluble and physiological forms of this protein, rather than alpha-synuclein present in Lewy body 

aggregates. 

Because many protein co-expression changes in the brain can be driven by cell type changes23,26, 

we also assessed the cell type nature of each co-expression module by asking whether the 

module was enriched in particular cell type marker proteins (Figure 1B).  We observed significant 

enrichment of neuronal proteins in the M1 synapse module and enrichment of oligodendrocyte 

markers in the M2 myelin module, as expected.  We also observed enrichment of astrocyte and 

microglial proteins in the M4 sugar metabolism module, microglial and endothelial proteins in the 

M5 extracellular matrix module, and endothelial markers in the M7 translation/ribosome module.  

These findings suggest that the biological processes reflected by GO analysis for each module 

may be altered in AD within a particular cell type.  To incorporate the cell type nature of each 

module into its description, we will subsequently refer to those modules with strong cell type 

enrichment as the “M1 synapse/neuron” module, the “M2 myelin/oligodendrocyte” module, the 
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“M4 astrocyte/microglial metabolism” module, and the “M5 endo/micro extracellular matrix” 

module. 

To assess the relationship of the network modules to diagnostic classification, we measured the 

module eigenprotein values by case status (Figure 1C and Extended Data Figure 1).  In general, 

most modules that were increased or decreased in AD compared to control also showed a trend, 

or were significantly changed, in the same direction in the AsymAD group, indicating that these 

modules reflect pathophysiologic processes that begin early—in the preclinical phase—of AD.  

The M1 synapse/neuron, M3 mitochondrial, and M4 astrocyte/microglial metabolism modules 

showed the strongest differences by case status.  Interestingly, when module eigenproteins were 

assessed by APOE genotype (Figure 1C and Extended Data Figure 1), the M3 mitochondrial 

and M4 astrocyte/microglial metabolism modules showed the strongest correlations to APOE 

disease risk, suggesting that ApoE may, at least in part, exert its effects through alteration of glial 

and mitochondrial pathways.  In summary, we were able to construct a robust AD protein co-

expression network from mass spectrometry-based proteomic analysis of greater than 450 human 

DLPFC brain tissues from multiple centers.  We found that many of these modules correlated with 

AD neuropathology and cognitive function, reflected a number of different biological processes 

and cell types, were altered in AsymAD, and were influenced by APOE genotype. 

 

The AD Network Is Preserved in a Community-Based Observational Aging Cohort 

Analyzed by a Different Mass Spectrometry-Based Quantification Approach 

The brains analyzed for the consensus AD network were obtained from studies or brain bank 

programs where brain donation is an optional aspect of the study, potentially introducing case 

selection bias.  Furthermore, all of the cases analyzed for the consensus AD network were 

processed in a mass spectrometry-based pipeline with label-free quantitation (LFQ).  Other forms 
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of mass spectrometry-based protein quantification approaches exist, such as quantification using 

isobaric multiplex tandem mass tags (TMT)27-29.  To assess whether a different mass 

spectrometry-based quantitation approach applied to a community-based aging cohort in which 

brain donation is a mandatory aspect of the study would yield a similar co-expression network, 

we analyzed 219 DLPFC brain tissues from the Religious Orders Study and Memory and Aging 

Project (ROS/MAP)30-32 using tandem mass tag mass spectrometry-based quantitation (TMT-MS) 

(Figure 2A).  Cases in ROS/MAP were selected and classified for analysis using the same criteria 

as used for the LFQ-based cohorts.  A protein co-expression network was constructed from the 

ROS/MAP cases, and network module preservation statistics were used to assess conservation 

of the consensus AD LFQ-based network in the ROS/MAP TMT-based network (Figure 2B).  We 

found that all consensus LFQ modules were preserved in the ROS/MAP TMT-based network.  To 

further investigate preservation of consensus AD network modules in ROS/MAP, we created 

“synthetic” eigenproteins for each consensus AD network module using the top 20% of module 

proteins by module eigenprotein correlation value (kME), and then tested if and how these 

synthetic eigenproteins were altered by case status in the ROS/MAP cohort.  We found that the 

synthetic module eigenproteins showed similar changes by case status as observed in the 

consensus AD network, and showed consistent correlations with amyloid-β pathology, tau 

pathology, and cognitive function as assessed in ROS/MAP (Figure 2C and Extended Data 

Figure 4).  Furthermore, targeted protein measurements in a cohort of 1016 ROS/MAP control, 

AsymAD, and AD brains by another mass spectrometry protein quantification approach—selected 

reaction monitoring (SRM)—showed that individual module proteins had the same direction of 

change as the AD LFQ-based network co-expression module of which they were a member 

(Extended Data Figures 5 and 6).  These findings confirm that the consensus AD network is 

robust to different mass spectrometry-based protein quantification approaches, and reflects brain 

proteomic changes that occur in community-dwelling older individuals. 
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The AD Network Is Preserved in Other Brain Regions 

The consensus AD network was generated from analysis of DLPFC tissue.  To assess whether 

the network was similar in other brain regions commonly affected in AD, we analyzed control and 

AD brain tissue from temporal cortex in a separate set of 111 brains from the Mayo Clinic, and 

control, AsymAD, and AD brain tissue from precuneus in the same set of brains from the BLSA 

(Figure 3A) using LFQ-MS.  Co-expression networks were built for each brain region, and 

network preservation statistics were used to assess module preservation from DLPFC in temporal 

cortex (Figure 3B) and precuneus (Figure 3C).  We found that all consensus AD network 

modules derived from DLPFC were preserved in temporal cortex, and twelve out of the thirteen 

modules were preserved in precuneus.  While the larger modules by protein membership were 

all very highly preserved in both temporal cortex and precuneus, the M3 mitochondrial, M4 

astrocyte/microglial metabolism, and M10 RNA binding/splicing modules were more highly 

preserved in temporal cortex, whereas the M2 myelin/oligodendrocyte and M5 

endothelial/microglial extracellular matrix modules were more highly preserved in precuneus.  

Analysis of synthetic module eigenprotein values by case status showed similar differences 

between and among case groups in temporal cortex (Figure 3D, Extended Data Figure 7) and 

precuneus (Figure 3E, Extended Data Figure 8) brain regions.  These findings suggest that the 

consensus AD network is generalized across brain regions that are commonly affected in AD. 

 

Effects of Aging on AD Network Modules 

Aging is the strongest risk factor for AD, but the mechanistic relationship between aging and AD 

is unclear and is a topic of debate33-38.  To better understand the influence aging may have on the 

consensus AD network, we analyzed DLPFC tissues from Johns Hopkins in 84 cases ages 30 to 
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69 (Figure 4A) by LFQ-MS.  All cases had a final primary neuropathological diagnosis of control.  

We created synthetic eigenproteins in the aging cohort from the consensus AD network modules 

and asked whether the synthetic module eigenproteins changed with age (Figure 4B and 

Extended Data Figure 9).  We found that the M1 synapse/neuron and M4 astrocyte/microglial 

metabolism modules decreased and increased with aging, respectively, while the M3 

mitochondrial and M10 RNA binding/splicing modules were not affected by aging.  Other modules 

that appeared to be affected by aging included the M6 cytoskeleton, M7 translation/ribosome, and 

M9 translation/ribosome modules (Extended Data Figure 9).  These findings indicate that the 

relationship between aging and AD at the proteomic level is complex, and that some, but not all, 

AD trait-associated modules are influenced by the aging process. 

 

AD Network Changes in Other Neurodegenerative Diseases 

The extent to which AD network protein co-expression modules are altered in other 

neurodegenerative diseases is not fully understood.  To explore the specificity of these network 

changes for AD, we analyzed 331 DLPFC tissues by LFQ-MS from control, AD, amyotrophic 

lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), 

progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson’s disease 

and Parkinson’s disease dementia (PD/PDD), and multiple systems atrophy (MSA) cases (Figure 

5A).  We created synthetic eigenproteins for consensus AD network modules and assessed 

whether they changed in these different neurodegenerative diseases compared to AD (Figure 

5B, Extended Data Figure 10, Supplementary Table 4).  We found that the M1 synapse/neuron 

and M4 astrocyte/microglial metabolism modules showed significant changes in FTLD-TDP and 

CBD cases, similar to AD, whereas the M3 mitochondrial and M10 RNA binding/splicing modules 

showed more mixed changes across other diseases.  To further validate these findings, we used 

a targeted mass spectrometry method called parallel reaction monitoring (PRM)39 to measure 323 
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individual proteins from approximately one-third of the cases analyzed in the untargeted 

experiments (Extended Data Figure 11, Supplementary Table 4).  Protein levels across all 

cases were highly correlated between LFQ and PRM measurements (Supplementary Figure 

3B).  We created synthetic eigenproteins from these targeted PRM protein measurements by AD 

consensus module, and assessed eigenprotein changes by disease category (Supplementary 

Figure 3C, Extended Data Figure 12, Supplementary Table 4).  We observed very similar AD 

network module changes across diseases compared to the untargeted measurements, validating 

the findings from the untargeted LFQ measurements.  These results indicate that certain AD 

network modules are affected to a greater extent in AD compared to other neurodegenerative 

diseases, and that FTLD and CBD show many similar changes to AD, with the caveat that not all 

neurodegenerative diseases affect the DLPFC region equally at end-stages of disease. 

 

The M4 Astrocyte/Microglial Metabolism Module is Enriched in AD Genetic Risk Factors 

and Markers of Anti-Inflammatory Disease-Associated Microglia 

One difficulty in analyzing proteomic changes in AD brain, and indeed in any human disease post-

mortem tissue, is ascribing the observed changes to causes or consequence of disease—in this 

case, neurodegeneration.  A useful approach to this problem is to assess for enrichment of genetic 

risk factors that are associated with the disease in question across the disease network, on the 

assumption that network modules that are enriched in these risk factor gene products may 

contribute to or reflect upstream, rather than downstream, pathophysiology.  To this end, we 

applied an algorithm to calculate a weighted disease risk score for proteins according to their 

linkage disequilibrium with AD-associated single nucleotide polymorphisms (SNPs) discovered 

through AD genome wide association studies (GWAS)40.  We then calculated whether a given AD 

network module was enriched in these risk factor proteins.  We found that the M2 

myelin/oligodendrocyte and M4 astrocyte/microglial metabolism modules were significantly 
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enriched in AD risk factor proteins (Figure 6A), suggesting that the biological functions or 

processes reflected by these protein co-expression modules may serve causative roles in AD. 

Given the strong AD trait associations of the M4 astrocyte/microglial metabolism module and its 

enrichment in AD genetic risk factors, we decided to more deeply investigate the cell type nature 

of this co-expression module.  Astrocyte and microglia phenotypes are known to be heterogenous 

and dynamic, and dependent upon environmental context and stimuli41,42.  One common 

categorization of astrocyte phenotypes is into deleterious pro-inflammatory “A1” astrocytes, such 

as the phenotype adopted in response to challenge with the pro-inflammatory molecule 

lipopolysaccharide (LPS), and protective “A2” astrocytes, such as the phenotype adopted after 

ischemic injury by middle cerebral artery occlusion43.  Similarly, microglia are known to adopt a 

number of different phenotypes, both deleterious and protective42,44-47.  Although expression of 

the M4 astrocyte/microglia metabolism module is increased with progression from a normal to an 

AD disease state, and a majority of the most significantly increased proteins in AD are members 

of this module (Supplementary Figure 4), it is unclear whether these glial responses are 

deleterious or protective.  To better understand the role of these glial cell type responses in AD, 

we first examined differential expression of astrocyte and microglia protein markers in AD brain 

by the types of cellular phenotypes with which they are associated in AD animal models.  We 

found that for both astrocytic markers (Supplementary Figure 5) and microglial markers 

(Supplementary Figure 6), there appeared to be a bias towards expression of markers that are 

generally considered to be protective.  We formally tested this observation with marker over-

representation analysis in the AD network (Figure 6B, Supplementary Table 5).  Microglial 

protein markers that are increased in response to amyloid-β plaques but decreased in response 

to LPS—or markers of anti-inflammatory disease-associated microglia44—were significantly 

enriched in the M4 module.  Astrocyte markers were more mixed in module M4, with a majority 

of markers being shared between A1 and A2 phenotypes.  Interestingly, a related module to M4 
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that also had some enrichment in astrocyte cell-type markers and was increased in AD—the M5 

endothelial/microglial extracellular matrix module—was significantly enriched in A2 markers.  

Astrocyte and microglia phenotype markers that overlap with the top 100 proteins by module 

eigenprotein correlation value in the M4 module are shown in Figure 6C.  The majority of these 

markers were from microglia (Supplementary Table 5). To further validate these findings, we 

analyzed whether these markers were increased at both the transcript and protein levels in 

acutely isolated microglia from AD mouse models48,49.  The top 30 most differentially abundant 

microglial transcripts corresponding to proteins in the M4 module were found to be heavily biased 

toward an anti-inflammatory phenotype (Figure 6D, Supplementary Table 5).  Furthermore, 

many of the disease-associated M4 microglial protein markers were found to be increased in 

microglia undergoing active amyloid plaque phagocytosis (Supplementary Figure 7, 

Supplementary Table 5)49.  In summary, we found that the M4 astrocyte/microglial metabolism 

module was enriched in AD genetic risk factors, and that microglia cell type markers within M4 

appeared to be biased towards a protective anti-inflammatory, rather than a deleterious pro-

inflammatory, microglial phenotype. 

 

M4 Astrocyte/Microglial Metabolism Module Proteins Can Be Measured in Cerebrospinal 

Fluid and May Serve as Potential AD Biomarkers 

The ability to assess and monitor pathological brain changes in the preclinical and clinical stages 

of AD is limited, especially in the asymptomatic phase of the disease.  A current focus of AD 

biomarker research is on measurement of brain amyloid-β and tau protein dynamics as assessed 

by radiolabeled tracers to aggregated forms of these proteins, in addition to established 

measurements of amyloid-β and tau protein levels in cerebrospinal fluid (CSF)50,51.  Fluid 

biomarkers of neurodegeneration are also in development52.  However, there are currently no fluid 

biomarkers that are clinically available to assess AD brain pathophysiology beyond amyloid-β and 
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tau.  To explore whether proteins from the M4 astrocyte/microglial metabolism module might also 

be able to serve as AD fluid biomarkers, we analyzed CSF from two separate cohorts:  one cohort 

of 297 subjects consisting of controls and AD patients (Cohort 1), and a second cohort of 96 

subjects classified into control, AsymAD, and AD (Cohort 2).  Subjects in both cohorts were 

classified by the “A/T/N” AD biomarker classification framework (Figure 7A)53.  We measured 532 

CSF protein levels in discovery Cohort 1 using a TMT-MS approach without prior pre-fractionation 

and without depletion of highly abundant proteins in order to avoid potential depletion 

measurement artifacts54,55.  Of these 532 proteins, we observed 22 that mapped to the M4 

astrocyte/microglial metabolism module in brain (Extended Data Figure 13).  All of them showed 

either an increase in AD or no change, with 10 reaching statistical significance at p < 0.05.  Only 

one, cathepsin D (CTSD), showed a trend in the opposite direction.  Of note, CTSD had the lowest 

module eigenprotein correlation value to M4 of all M4 proteins measured in CSF (kME 0.3).  The 

most significantly increased M4 module proteins observed in Cohort 1 are shown in Figure 7B, 

and include the M4 hub proteins CD44, peroxiredoxin-1 (PRDX1), and dimethylarginine 

dimethylaminohydrolase-2 (DDAH2), in addition to the metabolic proteins lactate dehydrogenase 

B-chain (LDHB) and pyruvate kinase (PKM) involved in glycolysis.  To validate these findings, 

and to assess whether the observed changes in CSF levels of M4 proteins occur prior to the 

development of cognitive impairment, we analyzed subjects in Cohort 2, approximately one-third 

of which had AsymAD.  AsymAD was defined as CSF levels of amyloid-β, total tau, and phospho-

tau consistent with an AD diagnosis, but without cognitive impairment.  We were able to measure 

792 proteins in Cohort 2; 27 mapped to the M4 astrocyte/microglial metabolism module in brain 

(Extended Data Figure 14).  Of these 27 proteins, 17 overlapped with M4 proteins measured in 

discovery Cohort 1, and showed the same direction of change in AD CSF.  In addition, many also 

showed significant or trend elevations in AsymAD, including CD44, LDHB, and PKM, and 

correlated with cognitive function (Figure 7C).  In summary, we were able to measure multiple 

M4 astrocyte/microglial metabolism module protein members in human CSF by mass 
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spectrometry without fractionation or prior depletion of highly abundant proteins.  A number of 

these proteins were elevated in AsymAD and AD, including M4 hub proteins CD44, PRDX1, and 

DDAH2. 

  

Discussion 

In this study, we analyzed more than 2000 brains by mass spectrometry-based proteomics to 

arrive at a consensus view of the proteomic changes that occur in brain during progression from 

normal to asymptomatic and symptomatic AD states.  We find that the protein co-expression 

families most strongly correlated to disease reflect synaptic, mitochondrial, RNA binding/splicing, 

and astrocyte/microglial metabolism biological functions, with astrocyte/microglial metabolism 

most significantly associated with AD compared to other biological processes and functions.  

Increases in expression level of the M4 astrocyte/microglial metabolism module are observed with 

aging, but are stronger in AD, reflecting shared biology between “normal” aging and AD.  The M4 

module strongly correlates with APOE4 genotype and is enriched in AD genetic risk factors, 

indicating a potential causative role for this protein co-expression module in disease 

pathogenesis, and appears to serve a protective anti-inflammatory function in model systems, 

suggesting that genetic risk factor polymorphisms that cluster in this module may induce a loss-

of-function phenotype.  M4 astrocyte/microglial module proteins are increased in AsymAD and 

AD CSF, suggesting that proteins within the M4 module may serve as useful biomarkers for 

staging AD progression and for development of novel therapeutic approaches to the disease. 

The robustness of the AD brain protein co-expression network described in this study is derived 

from both the multi-center cohort study design and the proteomics analysis pipeline.  

Neuropathological examination and tissue dissection were performed at each center by different 

individuals prior to tissue transfer to one center for proteomic analysis.  Tissue from each cohort 
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was prepared and analyzed by mass spectrometry-based proteomics separately from other 

cohorts, oftentimes in multiple batches per cohort.  All cohorts were searched together to enforce 

parsimony of protein identifications across cohorts.  The AD protein co-expression network was 

generated from proteins that could be quantified in at least 50% of cases after batch and cohort 

normalization and regression of co-variates, and therefore reflects the core co-expression 

patterns in AD brain.  The protein co-expression modules are not sensitive to differences in mass 

spectrometry instrumentation or protein quantitation approaches, and are not significantly 

influenced by potential case selection bias given that all modules were significantly preserved in 

the ROS/MAP cohort, and were generated by including other well-established epidemiological 

cohorts from across the U.S. such as ACT and BLSA.  Furthermore, the protein co-expression 

modules are not significantly influenced by regional tissue variation among temporal cortex, 

precuneus, and DLPFC brain regions.  Indeed, we observed that all of the larger modules were 

highly preserved in both temporal cortex and precuneus, with preservation p values approaching 

zero in both regions.  This suggests that the biological processes and cell types driving the co-

expression patterns in AD brain are highly shared among these brain regions.  Future proteomic 

analyses that include other brain regions less affected in late-onset AD (e.g, visual cortex) would 

be informative to further explore potential protective processes that may be important for regional 

vulnerability in AD.  Finally, the co-expression modules are robust to the algorithm used to identify 

them, as an orthogonal data dimension reduction technique was able to separately identify the 

protein communities represented by the modules in the co-expression network. 

Six co-expression modules showed significant and robust correlations with amyloid-β plaque load, 

tau tangle burden, and cognitive function:  the M1 synapse/neuron, M3 mitochondrial, M4 

astrocyte/microglial metabolism, M5 endothelial/microglial extracellular matrix, M6 cytoskeleton, 

and M10 RNA binding/splicing modules.  We chose to highlight four of these six modules in the 

subsequent analyses, but the M5 endothelial/microglial extracellular matrix and M6 cytoskeleton 
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modules also deserve attention as protein co-expression families relevant to AD.  Similarly, the 

M11 chaperone/protein folding module and M12 module of unknown function also were 

significantly correlated with all measures except for CDR, and deserve further study.  This is 

especially the case for M12, which in addition to its association with AD traits, was also 

significantly correlated with APOE risk.  Of the four modules with the strongest AD trait 

relationships, the M3 mitochondrial and M4 astrocyte/microglial metabolism modules were most 

strongly associated with APOE risk.  This finding is consistent with prior studies suggesting that 

ApoE4 can cause mitochondrial toxicity56,57 and altered brain energy metabolism58-60, and that 

ApoE variants can have important effects on brain inflammation61-63. 

The M1 synapse/neuron and M4 astrocyte/microglial metabolism modules were significantly 

associated with aging, a finding consistent with mRNA co-expression studies11,46.  In fact, the M1 

module was the most strongly correlated module with aging among all network modules, 

consistent with the known generalized cortical volume loss observed in most aged individuals64.  

However, it is interesting to note that while the M1 module declined in aging, the M3 mitochondrial 

module did not, even though mitochondria are highly populated at the synapse65.  This may 

suggest that “normal” aging is associated with maintenance of mitochondrial number and/or 

function, whereas AD is associated with loss of mitochondrial number/function.  This finding 

stands in contrast to mRNA co-expression results in normal aging, where decreases in 

synapse/neuron modules are accompanied by decreases in mitochondrial metabolism11, and 

highlights a potential divergence between mitochondrial RNA and protein co-expression.  Similar 

to M3, the M10 RNA binding/splicing module was also not changed in normal aging, but was 

altered in AD.  RNA binding protein aggregation and dysfunctional protein splicing is a known 

feature of AD24,66,67, but has not been well-studied in the normal aging brain.  A previous study 

found both common and unique changes in alternatively spliced transcripts between normal aging 

and AD68.  We found that the M10 RNA binding/splicing module was only modestly elevated in 
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AsymAD, and like the M3 mitochondrial module, M10 may more strongly reflect a late AD 

pathophysiologic process.  However, we and others have also observed that certain RNA-binding 

proteins, such as the U1 spliceosome proteins, aggregate early in the disease69,70.  Interestingly, 

M10 correlated with cognitive function in the ROS/MAP cohorts more strongly than the M1 

synapse/neuron module, even though its relationship to amyloid-β and tau aggregates was 

weaker.  Further study of brain RNA binding protein and splicing biology in aging and AD is clearly 

required. 

We assessed the disease specificity of the AD protein co-expression network by analyzing how 

the protein network modules changed in six other neurodegenerative diseases encompassing 

diverse brain pathologies.  One caveat to this analysis is that we analyzed only DLPFC, which is 

not equally affected in all the neurodegenerative diseases we assessed.  With this caveat in mind, 

we observed that FTLD-TDP and CBD had the most similar network changes to AD, suggesting 

that these clinicopathologic entities are fundamentally related to AD at the brain proteomic level.  

It is interesting that TDP-43 pathology and a four-repeat tauopathy (CBD) led to similar network 

changes as AD, whereas synuclein pathology and a different four-repeat tauopathy (PSP) did not, 

at least at end-stage disease.  A proteomic relationship between AD and FTD is supported by the 

fact that mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) protein cause 

microglial dysfunction and lead to AD71,72, whereas mutations in the progranulin (PGRN) protein 

also cause microglial dysfunction and lead to FTD73-75.  Further studies comparing frontal 

predominant AD, FTLD-TDP, and FTLD-tau cases would be informative to assess the degree to 

which the underlying neuropathology observed at autopsy is related to differences in proteomic 

network changes in the DLPFC region. 

We found that two AD protein network modules—the M2 myelin/oligodendrocyte module and the 

M4 astrocyte/microglial metabolism module—were significantly enriched for AD genetic risk 

factors, suggesting that the biological processes reflected by these protein co-expression families 
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are involved in disease etiology.  Interestingly, while the M4 module showed the strongest trait 

relationships to AD, the M2 module was only slightly increased in AD and did not correlate as 

strongly with neuropathology or cognitive function as other AD network modules.  This finding is 

consistent with our prior proteomic studies in DLPFC23,24,61.  A previous study investigating the 

relationship of a similar myelin/oligodendrocyte mRNA brain co-expression module to AD found 

that expression of this module decreased in both AD and PSP in temporal cortex, with stronger 

changes in PSP76.  Another mRNA network study observed downregulation of oligodendrocyte 

module hubs in AD77.  We observed an increase in this module in AD, with no changes in PSP.  

The discrepancy in our findings may relate to possible differences between DLPFC and temporal 

cortex in this co-expression module, differences in module membership that may be important for 

disease relationship, or a divergence between mRNA and protein expression in M2 module 

members.  In fact, the basis for disease causality regarding the M2 myelin/oligodendrocyte 

module may relate more to dysregulation of module member co-expression, rather than to the 

actual change in direction of expression77. 

A key finding from our proteomic study is that glial biology—and microglial biology in particular—

is a likely causal driver of AD pathogenesis.  The AD protein network module most strongly 

associated with AD is enriched in astrocyte and microglial proteins, and is also enriched in 

proteins associated with genetic risk for AD.  The M4 astrocyte/microglial metabolism module 

increases in AsymAD and correlates most strongly with cognitive impairment, suggesting that the 

biological changes reflected by this module occur early in the disease and have significant 

functional consequence on progression to dementia.  A natural assumption would be that 

increases in M4 module expression levels are deleterious to brain health, and that potential 

therapies targeting reduction of M4 would likely be beneficial in AD.  However, several lines of 

evidence support a possible protective role of this co-expression module.  An important 

observation is that AD genetic risk alleles, which are more likely to cause loss-of-function changes 
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rather than gain-of-function changes, are enriched in the M4 module.  The M4 module is also 

enriched in microglial markers that are upregulated in response to amyloid-β deposition and 

downregulated in response to LPS, indicating that the microglial response as reflected in M4 

module expression is likely biased towards an anti-inflammatory disease-associated phenotype44.  

Many M4 proteins are elevated in microglia that are undergoing plaque phagocytosis, which is 

consistent with the strong association of M4 expression with CERAD score and ApoE4, the 

presence of which leads to earlier and more aggressive accumulation of amyloid-β plaques78.  

Notably, when we compare our findings to a prior proteomic study that quantified levels of plaque-

associated proteins in normal versus rapidly-progressive AD79, 7 out of the top 10 plaque-

associated proteins most significantly decreased in rapidly-progressive AD are found in the M4 

module, including M4 hubs MSN and PLEC.  This is consistent with the finding that early microglial 

activation in response to amyloid plaques, as assessed by in vivo microglial imaging studies, is 

correlated with increased grey matter volume and reduced rate of cognitive decline80,81.  

Interestingly, the degree of astrogliosis surrounding plaques seems to be positively correlated 

with improved cognitive function not only in AD, but also in normal aging individuals82.  Taken 

together, these findings suggest that lack of an M4 astrocyte/microglial response to plaques in 

preclinical or clinical AD may lead to more rapid cognitive decline.  In this context, it is worth noting 

that AD risk factor mutations in the microglial TREM2 receptor, which regulates the microglial 

response to amyloid-β plaques, lead to a reduced microglial response to plaque pathology83-86.  

Importantly, recent studies have suggested that TREM2 is also necessary for enabling microglia 

to increase their metabolic rate in response to various stimuli87, which include not only plaques, 

but also myelin debris and the abnormal lipid environment of apoptotic neurons72,88,89.  The M4 

module is highly enriched for metabolic proteins that are likely upregulated to meet the metabolic 

response demand to such stimuli.  The ability to fully recapitulate the M4 module in AD animal 

models would help to advance our mechanistic understanding of M4 module relationships with 

AD neuropathology and cognitive function, and whether it should be targeted for therapeutic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/802959doi: bioRxiv preprint 

https://doi.org/10.1101/802959
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

reduction or enhancement.  Collaborative efforts to generate new AD animal models that better 

reflect AD pathophysiology are currently underway90; however, recent work on microglial and 

astrocyte function in current mouse AD models generally supports the findings in this study, and 

a hypothesis that M4 is associated with a largely protective response72,84,91,92. 

As many co-expression relationships in tissue are driven by cell type23,26,93, we infer that the 

biological processes reflected in the M4 module are related to sugar metabolism primarily in 

astrocytes and microglia, and reflect increased metabolic activity in these cell types in AsymAD 

and AD states.  This is a hypothesis that requires further testing, likely through single cell studies, 

but is consistent with the astrogliosis response in AD and the fact that glycolysis is performed 

predominantly within glia in the brain94.  In the context of M4 glycolytic metabolism, it is interesting 

to speculate on the origin of the reduced fluoro-2-deoxy-D-glucose positron emission tomography 

(FDG-PET) signal observed in AD brain.  Recent animal model work has suggested that loss of 

a proper microglial response through mutations in either TREM2 or PGRN leads to reduced 

cerebral glucose metabolism95, and that normal astrocyte function is also important for brain 

glucose uptake96,97.  Therefore, it is possible that the failure of a proper astroglial compensatory 

or protective response in AD may lead to general neuronal metabolic failure in susceptible brain 

regions, as assessed by the FDG-PET signal, and cognitive deterioration.  The precise 

mechanism by which such metabolic failure occurs in AD is not known, but could involve 

breakdown of the astrocyte-neuron lactate shuttle, upon which neurons are highly dependent for 

normal synaptic activity94.  Evidence also exists that primary metabolic failure could occur in 

neurons prior to involvement of astroglia, especially in ApoE4 carriers57,98,99.  Notably, we 

observed larger relative changes in AsymAD in both the M4 astrocyte/microglial metabolism and 

M3 mitochondrial modules in precuneus compared to DLPFC, consistent with early metabolic 

dysfunction in this brain region in AD100.  The primary cause of abnormal cerebral glucose 

metabolism in AD as measured by FDG-PET remains an area for continued study. 
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Given the pressing need for new biomarkers that reflect AD pathophysiology beyond amyloid and 

tau, we assessed whether M4 module proteins could be detected in CSF, and whether their levels 

changed in AD and AsymAD.  We observed multiple M4 members in CSF that validated in two 

separate cohorts; nearly all of these proteins increased in AD, consistent with the direction of 

change of the M4 module in AD brain.  Many of the proteins also were elevated in AsymAD, 

suggesting that measurement of M4 elevation in biofluids in early stages of the disease—when 

diagnostic information and therapeutic intervention are likely to be of highest utility—is feasible.  

Many of the most significantly elevated M4 protein in CSF are involved in glycolysis, including 

LDHB, PKM, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH).  Elevations in PRDX1, 

DDAH, and protein/nucleic acid deglycase DJ-1 (PARK7) were also observed, all of which are 

important anti-oxidant effector proteins101-103 and are likely elevated in concert with increased 

glycolytic flux.  LDHB, PKM, and DDAH1 have recently been reported as promising AD CSF 

biomarkers104,105.  Separate from the metabolic pathway, we observed increased levels of M4 

proteins osteopontin (SPP1), dickkopf-related protein 3 (DKK3), and CD44.  SPP1 has been 

nominated as an AD CSF biomarker in previous studies106-109.  SPP1 is known to be involved in 

tissue repair110, and promotes phagocytosis of amyloid-β and an anti-inflammatory microglial 

phenotype111,112.  It is closely associated with the CD44 receptor113, which is highly expressed on 

the surface of activated astrocytes114.  While M4 markers may not be entirely specific for AD given 

elevation of the M4 module in FTD and CBD, they may allow for assessment of an injury response 

in AD in conjunction with amyloid and tau biomarkers, and serve as useful biomarkers for other 

neurodegenerative dementias in addition to AD.  Measurement of additional M4 markers in 

biofluids is undoubtedly possible, as our mass spectrometry measurements were performed on 

unfractionated CSF not depleted of highly abundant proteins.  Monitoring multiple M4 protein 

levels in biofluid may provide a robust measure of target engagement for AD therapies. 
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In summary, our comprehensive study on more than 2000 brains and nearly 400 CSF samples 

provides a consensus view of the proteomic network landscape of AD and the biological changes 

associated with asymptomatic and symptomatic stages of the disease, and highlights the central 

role of glial biology in the pathogenesis of the disease.  Programs that target this biology hold 

promise for AD drug therapy and biomarker development, especially those that target pro- and 

anti-inflammatory astrocytes and microglia. 
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Methods 

Brain Tissue Samples and Case Classification 

Brain tissue used in this study was obtained from the autopsy collections of the Baltimore 

Longitudinal Study of Aging115, Banner Sun Health Research Institute116, Mount Sinai School of 

Medicine Brain Bank, Adult Changes in Thought Study, Mayo Clinic Brain Bank, Religious Orders 

Study and Rush Memory and Aging Project117, University of Pennsylvania School of Medicine 

Brain Bank, and the Baltimore Coroner’s Office.  Tissue was from the dorsolateral prefrontal 

cortex (Brodmann Area 9 where available), or temporal cortex and precuneus regions where 

indicated.  Human postmortem tissues were acquired under proper Institutional Review Board 

(IRB) protocols at each respective institution.  Postmortem neuropathological evaluation of 

neuritic plaque distribution was performed according to the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) criteria25, while extent of spread of neurofibrillary tangle pathology 

was assessed with the Braak staging system118.  Other neuropathologic diagnoses were made in 

accordance with established criteria and guidelines119,120.  All case metadata, including age, sex, 

post-mortem interval, cognitive function, APOE genotype, neuropathological criteria, and disease 

status, are provided in Supplementary Table 1.  Case classification harmonization across 

cohorts was performed using the following rubric:  cases with CERAD 0-1 and Braak 0-3 without 

dementia at last evaluation were defined as control (if Braak equals 3, then CERAD must equal 

0); cases with CERAD 1-3 and Braak 3-6 without dementia at last evaluation were defined as 

AsymAD; cases with CERAD 2-3 and Braak 3-6 with dementia at last evaluation were defined as 

AD.  Dementia was defined as MMSE <24, CASI score <81, or CDR ≥1, based on prior 

comparative study121.  Mayo and UPenn cases were not included in the case harmonization 

scheme, and therefore preservation of consensus network modules in these cohorts provides an 

additional degree of robustness. 
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Brain Tissue Homogenization and Protein Digestion 

Procedures for tissue homogenization for all tissues were performed essentially as described23,27.  

Approximately 100 mg (wet tissue weight) of brain tissue was homogenize in 8 M urea lysis buffer 

(8 M urea, 10 mM Tris, 100 mM NaHPO4, pH 8.5) with HALT protease and phosphatase inhibitor 

cocktail (ThermoFisher) using a Bullet Blender (NextAdvance).  Each Rino sample tube 

(NextAdvance) was supplemented with ~100 μL of stainless steel beads (0.9 to 2.0 mm blend, 

NextAdvance) and 500 μL of lysis buffer.  Tissues were added immediately after excision and 

samples were then placed into the bullet blender at 4 °C.  The samples were homogenized for 2 

full 5 min cycles, and the lysates transferred to new Eppendorf Lobind tubes.  Each sample was 

then sonicated for 3 cycles consisting of 5 s of active sonication at 30% amplitude, followed by 

15 s on ice.  Samples were then centrifuged for 5 min at 15,000 x g and the supernatant 

transferred to a new tube.  Protein concentration was determined by bicinchoninic acid (BCA) 

assay (Pierce).  For protein digestion, 100 μg of each sample was aliquoted and volumes 

normalized with additional lysis buffer.  For the ROS/MAP cohort, an equal amount of protein from 

each sample was aliquoted and digested in parallel to serve as the global pooled internal standard 

(GIS) in each TMT batch, as described below.  Similarly, GIS pooled standards were generated 

from the Banner, MSSB, Mayo, Aging, and UPenn cohorts.  Samples were reduced with 1 mM 

dithiothreitol (DTT) at room temperature for 30 min, followed by 5 mM iodoacetamide (IAA) 

alkylation in the dark for another 30 min.  Lysyl endopeptidase (Wako) at 1:100 (w/w) was added 

and digestion allowed to proceed overnight.  Samples were then 7-fold diluted with 50 mM 

ammonium bicarbonate.  Trypsin (Promega) was then added at 1:50 (w/w) and digestion was 

carried out for another 16 h.  The peptide solutions were acidified to a final concentration of 1% 

(vol/vol) formic acid (FA) and 0.1% (vol/vol) trifluoroacetic acid (TFA), and desalted with a 30 mg 

HLB column (Oasis).  Each HLB column was first rinsed with 1 mL of methanol, washed with 1 

mL 50% (vol/vol) acetonitrile (ACN), and equilibrated with 2×1 mL 0.1% (vol/vol) TFA.  The 
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samples were then loaded onto the column and washed with 2×1 mL 0.1% (vol/vol) TFA.  Elution 

was performed with 2 volumes of 0.5 mL 50% (vol/vol) ACN. 

Mass Spectrometry Analysis for Label-free Proteomics 

Mass spectrometry analyses of MSSB, ACT, BLSA, Banner, Mayo, and UPenn cohorts were 

performed on a Q-Exactive Plus mass spectrometer essentially as described23.  Brain-derived 

tryptic peptides (2 μg) were resuspended in peptide loading buffer (0.1% FA, 0.03% TFA, 1% 

ACN) containing 0.2 pmol of isotopically labeled peptide calibrants (ThermoFisher 88321).  

Peptide mixtures were separated on a self-packed C18 (1.9 μm, Dr. Maisch, Germany) fused 

silica column (25 cm x 75 μM internal diameter; New Objective, Woburn, MA) by a NanoAcquity 

UHPLC (Waters, Milford, MA) and monitored on a Q-Exactive Plus mass spectrometer 

(ThermoFisher Scientific, San Jose, CA).  Elution was performed over a 120 minute gradient at a 

rate of 400 nL/min with buffer B ranging from 3% to 80% (buffer A: 0.1% FA and 5% DMSO in 

water, buffer B: 0.1 % FA and 5% DMSO in ACN).  The mass spectrometer cycle was 

programmed to collect one full MS scan followed by 10 data dependent MS/MS scans.  The MS 

scans (300-1800 m/z range, 1,000,000 automatic gain control (AGC), 150 ms maximum ion time) 

were collected at a resolution of 70,000 at m/z 200 in profile mode, and the MS/MS spectra (2 

m/z isolation width, 25% collision energy, 100,000 AGC target, 50 ms maximum ion time) were 

acquired at a resolution of 17,500 at m/z 200.  Dynamic exclusion was set to exclude previous 

sequenced precursor ions for 30 seconds within a 10 ppm window.  Precursor ions with +1 and 

+6 or higher charge states were excluded from sequencing. 

Label-free Quantification  

For the consensus LFQ search, 645 RAW files, including individual cases and pooled GIS 

samples from the MSSB, ACT, Banner and BLSA cohorts, were uploaded onto the Amazon Web 

Services (AWS) Cloud and analyzed using MaxQuant v1.6.3.4 with Thermo Foundation 2.0 for 
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RAW file reading capability.  The Mayo, BLSA precuneus, Aging, and UPenn cohorts were each 

searched separately using MaxQuant.  The search engine Andromeda was used to build and 

search a concatenated target-decoy UniProt Knowledgebase (UniProtKB) containing both Swiss-

Prot and TrEMBL human reference protein sequences (90,411 target sequences downloaded 

April 21, 2015), plus 245 contaminant proteins included as a parameter for the Andromeda search 

within MaxQuant122.  Methionine oxidation (+15.9949 Da), asparagine and glutamine deamidation 

(+0.9840 Da), and protein N-terminal acetylation (+42.0106 Da) were variable modifications (up 

to 5 allowed per peptide); cysteine was assigned a fixed carbamidomethyl modification (+57.0215 

Da).  Only fully tryptic peptides with up to 2 miscleavages were considered in the database search.  

A precursor mass tolerance of ±20 ppm was applied prior to mass accuracy calibration, and ±4.5 

ppm after internal MaxQuant calibration. Other search settings included a maximum peptide mass 

of 6,000 Da, a minimum peptide length of 6 residues, and 0.05 Da tolerance for high resolution 

MS/MS scans.  The false discovery rate (FDR) for peptide spectral matches, proteins, and site 

decoy fraction were each set to 1 percent.  Quantification settings were as follows: re-quantify 

with a second peak-finding attempt after protein identification is complete; match full MS1 peaks 

between runs; use a 0.7 min retention time match window after an alignment function was found 

with a 20 minute retention time search space.  The label free quantitation (LFQ) algorithm in 

MaxQuant123,124 was used for protein quantitation.  The quantitation method considered only razor 

and unique peptides for protein level quantitation.  The total summed protein intensity was also 

used to assess overall signal drift across samples prior to LFQ normalization.  Raw data for each 

cohort is available through the Synapse Web Portal (MSSB, DOI: 10.7303/syn3159438; ACT, 

DOI: 10.7303/syn5759376; BLSA, DOI: 10.7303/syn3606086; Banner, DOI: 

10.7303/syn7170616; Mayo, DOI: 10.7303/syn5550404; UPenn, DOI: 10.7303/syn20929033; 

Aging, DOI: 10.7303/syn20929096).  Searched data used in this study for the consensus LFQ 

cohort (BLSA, Banner, MSSB, and ACT DLPFC) is available at DOI: 10.7303/syn20933797; for 

the Mayo cohort at DOI: 10.7303syn20934018; for the BLSA precuneus at DOI: 
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10.7303/syn20934037; for the Aging cohort at DOI: 10.7303/syn20934088; and for the UPenn 

cohort at DOI: 10.7303/syn20935147. 

Isobaric Tandem Mass Tag (TMT) Peptide Labeling of ROS/MAP Brain Tissues 

Prior to TMT labeling, cases were randomized by co-variates (age, sex, PMI, diagnosis, etc.), into 

50 total batches (8 cases per batch).  Peptides from each individual case (n=400) and the GIS 

pooled standard (n=100) were labeled using the TMT 10-plex kit (ThermoFisher 90406).  In each 

batch, TMT channels 126 and 131 were used to label GIS standards, while the 8 middle TMT 

channels were reserved for individual samples following randomization.  Labeling was performed 

as previously described24,27.  Briefly, each sample (containing 100 μg of peptides) was re-

suspended in 100 mM TEAB buffer (100 μL).  The TMT labeling reagents were equilibrated to 

room temperature, and anhydrous ACN (256 μL) was added to each reagent channel.  Each 

channel was gently vortexed for 5 min, and then 41 μL from each TMT channel was transferred 

to the peptide solutions and allowed to incubate for 1 h at room temperature.  The reaction was 

quenched with 5% (vol/vol) hydroxylamine (8 μl) (Pierce).  All 10 channels were then combined 

and dried by SpeedVac (LabConco) to approximately 150 μL and diluted with 1 mL of 0.1% 

(vol/vol) TFA, then acidified to a final concentration of 1% (vol/vol) FA and 0.1% (vol/vol) TFA.  

Peptides were desalted with a 200 mg C18 Sep-Pak column (Waters).  Each Sep-Pak column 

was activated with 3 mL of methanol, washed with 3 mL of 50% (vol/vol) ACN, and equilibrated 

with 2×3 mL of 0.1% TFA. The samples were then loaded and each column was washed with 

2×3 mL 0.1% (vol/vol) TFA, followed by 2 mL of 1% (vol/vol) FA.  Elution was performed with 2 

volumes of 1.5 mL 50% (vol/vol) ACN.  The eluates were then dried to completeness using a 

SpeedVac.  Only the first 32 batches (256 cases) of the ROS/MAP cohort were used in this 

analysis. 

High-pH Off-line Fractionation of ROS/MAP Brain Tissues 
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High pH fractionation was performed essentially as described125 with slight modification.  Dried 

samples were re-suspended in high pH loading buffer (0.07% vol/vol NH4OH, 0.045% vol/vol 

FA, 2% vol/vol ACN) and loaded onto an Agilent ZORBAX 300 Extend-C18 column (2.1mm x 

150 mm with 3.5 µm beads).  An Agilent 1100 HPLC system was used to carry out the 

fractionation.  Solvent A consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 

2% (vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, 

and 90% (vol/vol) ACN.  The sample elution was performed over a 58.6 min gradient with a 

flow rate of 0.4 mL/min.  The gradient consisted of 100% solvent A for 2 min, then 0% to 12% 

solvent B over 6 min, then 12% to 40 % over 28 min, then 40% to 44% over 4 min, then 44% 

to 60% over 5 min, and then held constant at 60% solvent B for 13.6 min.  A total of 96 individual 

equal volume fractions were collected across the gradient and subsequently pooled by 

concatenation125 into 24 fractions and dried to completeness using a SpeedVac. 

TMT Mass Spectrometry of ROS/MAP Brain Tissues 

All fractions were resuspended in an equal volume of loading buffer (0.1% FA, 0.03% TFA, 1% 

ACN) and analyzed by liquid chromatography coupled to tandem mass spectrometry essentially 

as described126, with slight modifications.  Peptide eluents were separated on a self-packed C18 

(1.9 μm, Dr. Maisch, Germany) fused silica column (25 cm × 75 μM internal diameter (ID); New 

Objective, Woburn, MA) by an Dionex UltiMate 3000 RSLCnano liquid chromatography system 

(ThermoFisher Scientific) and monitored on an Orbitrap Fusion mass spectrometer 

(ThermoFisher Scientific).  Sample elution was performed over a 180 min gradient with flow rate 

at 225 nL/min.  The gradient was from 3% to 7% buffer B over 5 min, then 7% to 30% over 140 

min, then 30% to 60% over 5 min, then 60% to 99% over 2 min, then held constant at 99% solvent 

B for 8 min, and then back to 1% B for an additional 20 min to equilibrate the column.  Buffer A 

was water with 0.1% (vol/vol) formic acid, and buffer B was 80% (vol/vol) acetonitrile in water with 

0.1% (vol/vol) formic acid.  The mass spectrometer was set to acquire in data dependent mode 
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using the top speed workflow with a cycle time of 3 seconds.  Each cycle consisted of 1 full scan 

followed by as many MS/MS (MS2) scans that could fit within the time window.  The full scan 

(MS1) was performed with an m/z range of 350-1500 at 120,000 resolution (at 200 m/z) with AGC 

set at 4x105 and maximum injection time 50 ms.  The most intense ions were selected for higher 

energy collision-induced dissociation (HCD) at 38% collision energy with an isolation of 0.7 m/z, 

a resolution of 30,000, an AGC setting of 5x104, and a maximum injection time of 100 ms.  Five 

of the 32 TMT batches were run on the Orbitrap Fusion mass spectrometer using the SPS-MS3 

method as previously described27.  Further details can be found at [DOI:]. 

TMT ROS/MAP Database Searches and Protein Quantification 

All RAW files (320 RAW files generated from 32 TMT 10-plexes) were analyzed using the 

Proteome Discoverer suite (version 2.3, ThermoFisher Scientific).  MS2 spectra were searched 

against the UniProtKB human proteome database containing both Swiss-Prot and TrEMBL 

human reference protein sequences (90,411 target sequences downloaded April 21, 2015), plus 

245 contaminant proteins.  The Sequest HT search engine was used and parameters were 

specified as follows: fully tryptic specificity, maximum of two missed cleavages, minimum peptide 

length of 6, fixed modifications for TMT tags on lysine residues and peptide N-termini 

(+229.162932 Da) and carbamidomethylation of cysteine residues (+57.02146 Da), variable 

modifications for oxidation of methionine residues (+15.99492 Da) and deamidation of asparagine 

and glutamine (+0.984 Da), precursor mass tolerance of 20 ppm, and a fragment mass tolerance 

of 0.05 Da for MS2 spectra collected in the Orbitrap (0.5 Da for the MS2 from the SPS-MS3 

batches).  Percolator was used to filter peptide spectral matches (PSMs) and peptides to a false 

discovery rate (FDR) of less than 1%.  Following spectral assignment, peptides were assembled 

into proteins and were further filtered based on the combined probabilities of their constituent 

peptides to a final FDR of 1%.  In cases of redundancy, shared peptides were assigned to the 

protein sequence in adherence with the principles of parsimony.  Reporter ions were quantified 
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from MS2 or MS3 scans using an integration tolerance of 20 ppm with the most confident centroid 

setting.  Raw data for the full ROS/MAP cohort is available through the Synapse Web Portal 

(DOI:).  Searched data on the 256 cases used for analysis in this study can be found at DOI: 

10.7303/syn20933795. 

Parallel Reaction Monitoring (PRM) Analysis 

Peptides from brain digests used for the first 3 batches of the untargeted UPenn cohort analysis 

(equal to 1 µg protein digestion) were used for targeted analysis on an Orbitrap Lumos™ Tribrid™ 

Mass Spectrometer (ThermoFisher Scientific) fitted with a Nanospray Flex ion source and coupled 

to a NanoAcuity liquid chromatography system (Waters).  The tryptic peptides were resuspended 

in loading buffer (0.1% TFA, 500 ng/µl), and an external reference peptide mix (Promega) was 

spiked into the sample at the concentration of 0.5 pmol/µl.  The solution (2 µl) was loaded onto a 

self-packed 1.9 µm ReproSil-Pur C18 (Dr. Maisch) analytical column (New Objective, 50 cm × 75 

µm inner diameter; 360 µm outer diameter) heated to 60 °C.  The capillary temperature and spray 

voltage was set at 300 °C and 2.0 kV, respectively.  Elution was performed over a 100 min 

gradient at a rate of 350 nL/min with buffer B ranging from 1% to 32% (buffer A: 0.1% FA in water, 

buffer B: 0.1% FA in ACN).  The column was then washed with 99% buffer B for 10 minutes and 

equilibrated with 1% B for 15 minutes.  The mass spectrometer was set to collect in PRM mode 

using an inclusion peptide list (Supplementary Table 4).  An additional full survey scan was 

collected to assess for possible interference.  Full scans were collected at a resolution of 120,000 

at 200 m/z with an AGC setting of 2x105 ion and a maximum ion transfer (IT) time of 50 ms.  For 

PRM scans, the settings were:  resolution at 30,000 at 200 m/z, AGC target of 1x105 ions, 

maximum IT time of 50 ms, microscans count of 1, isolation width of 1.6 m/z, and isolation offset 

of 0 m/z.  A pre-optimized normalized collision energy of 32% was used to obtain the maximal 

recovery of target product ions.  The top 5-10 product ions from this collision energy optimization 

were used for downstream peptide quantification.  Raw peptide intensities are provided in 
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Supplementary Table 4, and are also deposited electronically at the Synapse Web Portal 

(https://www.synapse.org/#!Synapse:syn20817510/files/). 

Peptide Quantification  

A spectral library was built using Skyline127 (version 4.2) based on tandem mass spectra gathered 

from previous data dependent acquisition methods.  A Skyline template was then created to 

quantify the endogenous peptides.  The template parameters were:  centroided precursor mass 

analyzer, MS1 mass accuracy of 20 ppm; centroided product mass analyzer, MS/MS mass 

accuracy of 20 ppm; include all matching scans.  All rawfiles were then imported and processed 

accordingly.  The resulting extracted ion chromatograms (XICs) of selected fragments were 

manually inspected and peak picking adjustments were made accordingly.  The sum of all product 

ion peak areas was calculated in Skyline and extracted for further statistical analyses.  The peak 

areas were normalized using the peak areas of external reference peptides. 

Selected Reaction Monitoring (SRM) of ROS/MAP Brain Tissues 

Samples were prepared for LC-SRM analysis using a standard protocol described 

elsewhere128,129.  Briefly, on average ~20 mg of DLPFC brain tissue from each subject was 

homogenized in denaturation buffer.  After denaturation with DTT, 400 µg protein aliquots were 

taken for further alkylation with iodoacetamide followed by digestion with trypsin as described.  

The digests were cleaned using C18 solid phase extraction, and 30 µL aliquots at 1 µg/µL 

concentrations were mixed with 30 µL synthetic peptide mix.  LC-SRM experiments were 

performed on a nanoACQUITY UPLC (Waters) coupled to a TSQ Vantage mass spectrometer 

(ThermoScientific), with 2 µL of peptide injection for each brain sample.  Buffer A was 0.1% FA in 

water and buffer B was 0.1% FA in 90% ACN.  Peptide separations were performed on an Acquity 

UPLC BEH 1.7 µm C18 column (75 µm i.d. × 25 cm) at a flow rate 350 nL/min using a gradient of 

0.5% buffer B over 0 to 14.5 min, then 0.5% to 15% over 14.5 to 15.0 min, then 15% to 40% over 
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15 to 30 min, and then 45% to 90% B over 30 to 32 min.  The heated capillary temperature and 

spray voltage was set at 350 °C and 2.4 kV, respectively.  Both the Q1 and Q3 were set as 0.7 

FWHM.  A scan width of 0.002 m/z and a dwell time of 10 ms were used.  All SRM data were 

analyzed using the Skyline software package127.  All data were manually inspected to ensure 

correct peak assignment and peak boundaries.  The peak area ratios of endogenous light 

peptides and their heavy isotope-labeled internal standards (i.e., L/H peak area ratios) were then 

automatically calculated by the Skyline software, and the best transition without matrix 

interference was used for accurate quantification.  Following homogenization of all tissues, small 

aliquots of protein from each of the samples was pooled, which were then digested and served 

as a global external pooled reference standard.  Peptides generated from this pooled standard 

were scattered throughout the study (8 samples per 96-well plate) and were used to capture the 

technical variance that is due to sample preparation steps (except homogenization) and 

instrument measurements.  The signal-to-noise ratio in quantification of each peptide was 

calculated as the ratio of variances across the human subject samples versus the technical 

controls.  Peptides with a signal-to-noise ratio less than 2 were excluded from further analysis.  

The peptide relative abundances were log2 transformed and centered at the median.  The 

abundance of endogenous peptides was quantified as a ratio to spiked-in synthetic peptides 

containing stable heavy isotopes.  The "light/heavy" ratios were log2 transformed and shifted such 

that median log2-ratio was zero.  Normalization adjusted for differences in protein amounts among 

the samples.  During normalization, the log2-ratios were shifted for each sample to make sure the 

median was set at zero.  Peptide redundancy and protein level calculations are described in more 

detail on the AMP-AD knowledge portal (https://www.synapse.org/#!Synapse:syn10468856). 

CSF Samples 

All participants from whom CSF samples were collected provided informed consent under 

protocols approved by the Institutional Review Board (IRB) at Emory University.  All patients 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/802959doi: bioRxiv preprint 

https://www.synapse.org/#!Synapse:syn10468856
https://doi.org/10.1101/802959
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

received standardized cognitive assessments (including MoCA) in the Emory Cognitive 

Neurology clinic, the Emory Goizueta Alzheimer’s Disease Research Center (ADRC), and 

affiliated research studies (Emory Healthy Brain Study [EHBS] and Emory M2OVE-AD study).  All 

diagnostic data were supplied by the ADRC and the Emory Cognitive Neurology Program.  CSF 

was collected by lumbar puncture and banked according to 2014 ADC/NIA best practices 

guidelines.  For patients recruited from the Emory Cognitive Neurology Clinic, CSF samples were 

sent to Athena Diagnostics and assayed for Aβ42, total-Tau, and phospho-Tau (CSF ADmark®) 

using the INNOTEST® assay platform.  CSF samples collected from research participants in the 

ADRC, EHBS, and M2OVE-AD were assayed using the INNO-BIA AlzBio3 Luminex assay.  In 

total, there were two cohorts of CSF samples that were used in the proteomics studies.  Cohort 1 

contained CSF samples from 150 healthy controls and 150 MCI/AD patients.  Cohort 2 included 

CSF obtained from three groups:  32 cognitively normal, 31 AsymAD, and 33 MCI/AD.  Cases 

and normal individuals with AsymAD were defined using established biomarker cutoff criteria for 

AD for each assay platform130,131.  Cohort information is provided in Supplementary Table 2. 

CSF Protein Digestion 

To generate peptides, all crude CSF samples were digested with LysC and trypsin.  Briefly, 20 

µL CSF from each sample was reduced and alkylated with 0.4 µL 0.5 M tris-2(-carboxyethyl)-

phosphine (TCEP) and 2 µL 0.4 M chloroacetamide (CAA) with heating at 90°C for 10 min, 

followed by a 15 min water bath sonication.  The samples were then further denatured by the 

addition of 67.2 µL of 8 M urea buffer (8 M urea, 100 mM NaHPO4, pH 8.5) and digested overnight 

with 1.9 µg LysC (Wako) (1:10 enzyme to protein ratio according to the highest amount of sample). 

Following LysC digestion, the samples were diluted to 1 M urea using 50 mM ammonium 

bicarbonate.  The same amount of trypsin (Promega) was then added (1:10 enzyme to protein 

ratio) and digestion was carried out for another 12 h.  After trypsin digestion, the peptide solutions 

were acidified with a 1% TFA and 10% FA solution to a final concentration of 0.1% TFA and 1% 
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FA.  Peptides were desalted with a 30 mg C18 HLB column (Waters) and eluted in 1 mL of 50% 

ACN.  Aliquots (120 µL) from cohort 1 (n=297) or cohort 2 (n=96) samples were pooled together 

and split into equal volume aliquots (880 µL) for use as the global internal standard (GIS) for TMT 

labeling.  All samples and GIS were dried using a SpeedVac. 

TMT Boost Channel 

Signals of low abundant proteins in the TMT 11-plex were amplified using a boost channel, as 

previously described132,133.  A pooled CSF sample was created separately for each cohort by 

combining 50 µL from each sample in cohort 1 or cohort 2 into a pool for each cohort.  Abundant 

proteins were removed using the High Select Top14 Abundant Proteins Depletion Resin (Thermo 

Scientific A36372BR) according to the manufacturer’s protocol, using a CSF-to-resin volume ratio 

of 1:1 and an incubation time of 15 min.  After immunodepletion, protein concentrations were 

determined by BCA.  Proteins were then reduced and alkylated (10 mM TCEP, 40 mM CAA) for 

10 minutes at 90 °C.  The samples were then subjected to bath sonication for 15 min and dried 

under vacuum in a SpeedVac.  The immunodepleted pooled samples were re-suspended in 6 M 

urea buffer (6 M urea, 75 mM NaHPO4, pH 8.5) at half the volume of the pooled sample prior to 

evaporation.  Samples were digested overnight with LysC at an enzyme to protein ratio of 1:10.  

The following day, samples were diluted with 50 mM ammonium bicarbonate to reduce the urea 

concentration to 1M, and trypsin (Promega) was added (1:10 enzyme to protein ratio).  Digestion 

was allowed to proceed for 12 hr.  Peptides were then desalted using a 200 mg C18 Sep-Pak 

column, and the eluate was dried using a SpeedVac.  Aliquots (600 µg) of the immunodepleted 

pooled CSF samples were separately dissolved in 100 mM TEAB buffer (625 μL) and labeled 

with 5 mg of TMT 126 channel reagent (cohort 1 lot# TF266326, cohort 2 lot# SG253447, 

ThermoFisher Scientific) in anhydrous ACN (256 μL).  The reactions were allowed to proceed for 

1 hr, and were subsequently quenched by adding 5% hydroxylamine (50 μL) and incubating for 

15 min.  The 126 channel was then added to the other channels, as described below. 
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TMT Labeling of Individual and GIS CSF Samples 

All samples, including the GIS, were labeled with the 10-plex TMT kit plus an additional channel, 

for a total of 11 TMT channels (cohort 1 lot# TG273545 for 10-plex, TG273555 for channel 131C; 

cohort 2 lot# SI258088 for 10-plex, SJ258847 for channel 131C, ThermoFisher Scientific).  

Samples were grouped into batches as shown in Supplementary Table 2.  The TMT labeling kit 

was equilibrated to room temperature and dissolved in anhydrous ACN (256 μL).  The samples 

were reconstituted in 100 mM TEAB buffer (50 μL) and mixed with 0.4 mg (20.5 μL) of the 

corresponding labeling reagent.  The labeling reactions were allowed to proceed for 1 hr, and 

were subsequently quenched with 5% hydroxylamine (4 μL).  Per each TMT batch, labeled 

peptides from 9 channels (127N, 128N, 128C, 129N, 129C, 130N, 130C, 131, 131C) were mixed, 

desalted using a 100 mg C18 Sep-Pak column, and dried using a SpeedVac.  The 

immunodepleted pooled sample labeled with the 126 channel (boost channel) was then added to 

each 9-channel TMT mixture at a ratio of 50:1 pooled to individual CSF sample by original 

volume:volume prior to evaporation.  The sample mixtures were desalted using a 200 mg C18 

Sep-Pak column, and dried using a SpeedVac.  

Mass Spectrometry Analysis of CSF  

All samples were resuspended in equal volume of loading buffer (0.1% FA, 0.03% TFA, 1% ACN).  

Peptide eluents were separated on a self-packed C18 (1.9 µm, Dr. Maisch, Germany) fused silica 

column (25 cm × 75 μM internal diameter (ID): New Objective, Woburn, MA) by an Easy-nLC 

system (ThermoFisher Scientific) and monitored on an Orbitrap Fusion Lumos mass spectrometer 

(ThermoFisher Scientific) interfaced with a high-field asymmetric waveform ion mobility 

spectrometry (FAIMS) Pro.  Sample elution was performed over a 180 min gradient (buffer A: 

0.1% FA in water, buffer B: 0.1% FA in 80% ACN) with flow rate at 225 nL/min.  The gradient was 

from 1% to 8% buffer B over 3 min, then from 8% to 40% over 160 min, then from 40% to 99% 
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over 10 min, and then held at 99% B for 10 min. The mass spectrometer was set to acquire data 

in positive ion mode using data dependent acquisition and three (-50, -65 and -85 V) different 

compensation voltages (CV)134.  Data were acquired at each CV for 1 s during each cycle.  Each 

cycle consisted of 1 full scan followed by as many MS2 and MS3 scans as possible within a 1 s 

timeframe. The full scan was performed with an m/z range of 450-1500 at 120,000 resolution (at 

200 m/z) with an AGC setting of 4x105 and maximum injection time 50 ms.  The collision induced 

dissociation (CID) MS/MS scans were collected in the ion trap with an isolation window of 0.7 m/z, 

a collision energy of 35%, AGC setting of 1x104, and a maximum injection time of 50 ms.  The top 

10 product ions were subjected to HCD synchronous precursor selection-based MS3 (SPS-MS3) 

as previously described27.  For SPS-MS3 scans the isolation window was set to 2 m/z, the 

resolution to 50,000, the AGC to 1x105, and the maximum injection time to 105 ms.  For both 

cohorts, a single preliminary run of TMT batch 1 using the above parameters was used to create 

a target inclusion list of peptides that specifically excluded those from the top 15 most abundant 

proteins.  This inclusion list was used for all TMT batches in cohort 1 (n=38) and in cohort 2 

(n=12). 

Database Searches and Protein Quantification of CSF  

All RAW files were analyzed using the Proteome Discoverer Suite (version 2.3, ThermoFisher 

Scientific).  MS/MS spectra were searched against the UniProtKB human proteome database 

(downloaded April 2015 with 90,411 total sequences).  The Sequest HT search engine was used 

to search the RAW files, with search parameters specified as follows:  fully tryptic specificity, 

maximum of two missed cleavages, minimum peptide length of 6, fixed modifications for TMT 

tags on lysine residues and peptide N-termini (+229.162932 Da) and carbamidomethylation of 

cysteine residues (+57.02146 Da), variable modifications for oxidation of methionine residues 

(+15.99492 Da), serine, threonine and tyrosine phosphorylation (+79.966 Da) and deamidation of 

asparagine and glutamine (+0.984 Da), precursor mass tolerance of 20 ppm, and a fragment 
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mass tolerance of 0.6 Da.  Percolator was used to filter PSMs and peptides to an FDR of less 

than 1%.  Following spectral assignment, peptides were assembled into proteins and were further 

filtered based on the combined probabilities of their constituent peptides to a final FDR of 1%.  In 

cases of redundancy, shared peptides were assigned to the protein sequence in adherence with 

the principles of parsimony.  Reporter ions were quantified from MS3 scans using an integration 

tolerance of 20 ppm with the most confident centroid setting, as previously described27.  Cohort 1 

search and quantification results are available at DOI: 10.7303/syn20944902, and Cohort 2 

search and quantification results are available at DOI: 10.7303/syn20944903. 

Controlling for Batch-specific Variance 

We implemented a median polish algorithm for removing technical variance (e.g., due to tissue 

collection, cohort, or batch effects) from a two-way abundance-sample data table as originally 

described by Tukey135.  The algorithm is fully documented and available as an R function, which 

can be downloaded from https://github.com/edammer/TAMPOR. The algorithm implements 

iterations of the below equation, where batch and cohort are interchangeable. 

[Eq. 1]  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ

* 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎�{  𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝑨𝑨𝑨𝑨𝑨𝑨 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  | 𝒂𝒂𝒂𝒂𝒂𝒂 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃}�   

 

Briefly, Equation 1 is applied to each protein measurement (LFQ or TMT reporter abundance) 

across all samples individually where the first term represents batch-wise median-centered 

abundance, and the second term is a batch-specific normalization factor comprised of the grand 

median of all batch-specific medians, divided by the appropriate batch-specific median of median-

centered abundances.  The data matrix is then log2-transformed, and each log2(ratio) is adjusted 

by subtraction of sample (column)-wise median log2(ratio) for all proteins.  Then, ratios are anti-

logged and multiplied by the protein (row)-wise median of all samples used for the Eq. 1, term 1, 

denominator, extracted before Eq. 1 was executed.  This process is iterated until convergence.  
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The use of median polish ensures that the reduction of variance is robust to outliers while the 

overall algorithm preserves biological variance, given that batches have been randomized to 

avoid confounding batch with diagnosis or other biological traits.  Prior to matrix assembly for the 

consensus analysis, intra-cohort batch effects were first removed in the MSSB (batch correction 

with 166 case samples across 7 batches) and Banner (batch correction with 178 case samples 

across 4 batches) cohorts.  All remaining batch corrections restricted the first term denominator 

to global pooled (within cohort) standard sample abundances, and the second term used all 

individual case samples.  Following removal of intra-cohort batch effects in MSSB and Banner, 

all samples were processed jointly with the algorithm in the same sample-protein matrix to capture 

biological variance across all samples in all four cohorts (ACT, Banner, BLSA, and MSSB) for the 

consensus analysis.  The above algorithm was applied to a matrix in which proteins that had ≥ 

50% missing values were removed.  For the consensus LFQ network, 450 case samples (3 ACT 

outliers were removed prior to inclusion, as described below) classified as control, AsymAD, or 

AD by our unified criteria (see case classification methods above) were considered as “all 

samples” for denominators in Eq. 1.  All remaining batch corrections listed as follows restricted 

the first term denominator to global pooled (within cohort) standard sample abundances, and the 

second term used all individual case samples. 

For ROSMAP 32-batch TMT protein abundances, there were two pooled global internal standard 

channels in each TMT batch (n=64), and 256 individual case samples (non-internal standard 

samples).  For the Hopkins aging cohort (84 case samples), global pool mixture samples (3 each 

per 3 batches) were used for the first term denominator, with the second term using all non-global 

pool mixture samples.  For the UPenn PRM analysis (3 batches, 114 case samples, and 9 pooled 

controls), data were likewise batch corrected using 3 global pool mixture samples per batch for 

the first term denominator and all within-batch non-pooled samples for the second term.  UPenn 

LFQ data (10 batches, 330 case samples, and 29 control pools) were similarly batch corrected 
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as described.  CSF 96-case and 300-case TMT normalized abundances were also batch 

corrected using the above algorithm, with equation 1 first term denominator restricted to global 

pooled (within cohort) standard sample abundances, while the second term used all individual 

non-internal standard case samples. 

Regression for Covariates and Outlier Removal  

No imputation of missing values was performed in any cohort.  Nonparametric bootstrap 

regression was performed separately in each cohort by subtracting the trait of interest (age at 

death, gender, or postmortem interval (PMI)) times the median estimated coefficient from 1000 

iterations of fitting for each protein in the cohort-specific log2(abundance) matrix.  Case 

status/diagnosis was also explicitly modeled (i.e., protected) in each regression.  Following 

regression of each individual cohort, we assessed whether any cohort-specific tissue dissection 

bias was present by performing a Spearman rank correlation of traits including age, sex, PMI, and 

white matter markers to the top five principle components (PC) of log2(abundance).  Network 

outlier case samples were not considered in the PCs, and were identified prior to PC analysis 

using Oldham’s ‘SampleNetworks’ v1.06 R script12 as previously published136 using a 3 fold-SD 

cutoff of Z-transformed sample connectivity.  The Spearman rank correlation was performed prior 

to correction of cohort-specific batch effects as described above, and after intra-cohort batch 

correction of the MSSB and Banner cohorts.  All four of the cohorts were confirmed to have no 

significant PC correlation to age, sex, or PMI; however, ACT was observed to have a first PC 

significantly correlated (average rho=0.94) to protein abundance of white matter markers 

identified previously as oligodendrocyte coexpression network hubs23.  These markers were 

BCAS1, SIRT2, MBP, and MAG.  This white matter PC represented 27 percent of variance in the 

ACT cohort, whereas the white matter marker-correlated PC represented 7 to 12 percent variance 

in the other three cohorts.  To adjust for this white matter variance in ACT, we applied a second 

round of bootstrap regression to the 62 non-outlier ACT case sample log2(abundances), using the 
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white matter PC as a regression covariate, and subtracted 28 percent of the white matter marker 

correlated variance to achieve a final variance of 12 percent after recalculation of the top 5 PCs.  

Abundance data for the 450 case samples were then assembled into a matrix of 3334 proteins, 

and cross-cohort batch correction by median polish was performed as described above.  Finally, 

network outlier detection was performed as described above, which removed 31/450 cases from 

consideration in the four-cohort consensus network and differential abundance analyses.  All 

outliers are listed in Supplementary Table 3.  In all other cohorts that were not combined for the 

consensus network analysis, batch correction was performed first, followed by outlier removal, 

followed by removal of proteins with ≥ 50% missing values, and then regression of age, gender, 

and PMI prior to coexpression network and differential abundance analyses.  In the Hopkins aging 

cohort, age was not considered as a trait for regression.  In the CSF cohorts, only age at time of 

collection and sex were considered for regression. 

Differential Abundance Analysis 

Differentially expressed proteins were found using one-way ANOVA followed by Tukey’s 

comparison post-hoc test across control, AsymAD and AD cases.  Significantly altered proteins 

with corresponding p value are provided in Supplementary Tables 3 and 5 for consensus AD 

network proteins and astrocyte/microglial phenotype proteins, respectively.  Differential 

expression is presented as volcano plots, which were generated with the ggplot2 package in R 

v3.5.2. 

Weighted Correlation Network Analysis (WGCNA) 

We used the WeiGhted Correlation Network Analysis (WGCNA) algorithm for our network 

analysis pipeline, as previously described77.  A weighted protein co-expression network for the 

four-cohort consensus data was generated using the 3,334 log2 protein abundance x 419 case-
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sample matrix that had undergone covariate and batch correction as described above.  The 

WGCNA::blockwiseModules() function was used with the following settings: soft threshold power 

beta=5.5, deepSplit=4, minimum module size of 14, merge cut height of 0.07, mean TOM 

denominator, a signed network with partitioning about medioids (PAM) respecting the 

dendrogram, a minimum kME to remain in a module of 0.30, and a reassignment threshold of 

p<0.05.  Specifically, we calculated pair-wise biweight mid-correlations (bicor, a robust correlation 

metric) between each protein pair, and transformed this correlation matrix into a signed adjacency 

matrix137.  The connection strength of components within this matrix was used to calculate a 

topological overlap matrix, which represents measurements of protein expression pattern 

similarity across cohort samples constructed on the pairwise correlations for all proteins within the 

network138.  Hierarchical protein correlation clustering analysis by this approach was conducted 

using 1-TOM, and initial module identifications were established using dynamic tree cutting as 

implemented in the WGCNA::blockwiseModules() function139.  Module eigenproteins were 

defined, which represent the most representative abundance value for a module and which 

explain co-variance of all proteins within a module26.  Pearson correlations between each protein 

and each module eigenprotein were performed; this module membership measure is defined as 

kME.  After the initial network construction, 18 modules consisting of 14 or more proteins were 

detected.  Given high kME similarity between some modules, we used the 

WGCNA::moduleMergeUsingKME() function to reduce the number of modules to 13, with the 

following parameters: percentage of module members checked for kME overlap of 50 percent 

(threshPercent=50), threshold for merging modules with high common kME.intramodule of 25 percent 

(mergePercent=25), and all other parameters default for the function.  After module merging, MEs 

and signed kMEs were recalculated with the WGCNA::moduleEigengenes()  and 

WGCNA::signedKME() functions, respectively.  Finally, we ‘cleaned’ the network of assignments 

with aberrant kME (since WGCNA clustering into modules and merging of those modules use 

hybrid approaches not solely dependent on kME) by applying the following algorithm: remove 
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module members with kME.intramodule <0.28, then check all grey (unclustered) proteins for any kME 

>0.35 and assign to the module with the highest kME.intramodule.  For networks of BLSA precuneus, 

Mayo temporal cortex, and ROS/MAP constructed for network preservation analysis, the pipeline 

described above including batch correction, outlier removal, age/sex/PMI regression, and network 

building was employed as appropriate without module merging.  The blockwiseModules function 

for ROS/MAP used power=10, minimum module size=30 (11,225 proteins in 205 non-excluded 

and non-outlier case samples); for BLSA precuneus used power=8, minimum module size=14 

(3,348 proteins in 46 case samples); and for Mayo used power=5, minimum module size=14 

(3,951 proteins in 107 case samples). 

Network Preservation 

We used the WGCNA::modulePreservation() function to assess network module preservation 

across cohorts.  Z-summary composite preservation scores were obtained using the consensus 

network as the template versus each other cohort tested, with 500 permutations.  Random seed 

was set to 1 for reproducibility, and the quickCor option was set to 0.  We also assessed network 

module preservation using synthetic eigenproteins.  Briefly, protein module members in the 

consensus network template with a kME.intramodule among the top 20th percentile were assembled 

into a synthetic module in each target cohort, and synthetic modules with at least 4 members 

were used to calculate synthetic weighted eigengenes representing the variance of all members 

in the target network across case samples via the WGCNA::moduleEigengenes() function.  

Statistics and correlation scatterplots involving target cohort traits were then calculated and 

visualized. 

Gene Ontology and Cell Type Marker Enrichment Analyses 

To characterize differentially expressed proteins and co-expressed proteins based on gene 

ontology annotation, we used GO Elite v1.2.5 as previously published77, with pruned output 
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visualized using an in-house R script.  Cell type enrichment was also investigated as previously 

published77.  Astrocyte subtype markers were obtained from Zamanian et al.43.  Microglia subtype 

markers were obtained from Rangaraju et al.44. 

GWAS Module Association 

To determine if any protein products of GWAS targets were enriched in a particular module, we 

used the single nucleotide polymorphism (SNP) summary statistics from the International 

Genomics of Alzheimer's Project (http://www.pasteur-

lille.fr/en/recherche/u744/igap/igap_download.php)5 to calculate the gene level association value 

using MAGMA40, as previously described23.  APOE was added to the gene list and assigned a -

log p value of 50, given its known strong association with AD140.  ApoE did not fall within a network 

module, and therefore did not influence the reported module enrichment results.  Similar analyses 

were performed with GWAS candidates for Schizophrenia (SCZ) and Autism Spectrum Disorders 

(ASD)141.  These GWAS datasets were provided and downloaded from the Psychiatric Genomics 

Consortium (http://www.med.unc.edu/pgc/downloads). 

Curation of AD Mouse Model Purified Glial Transcriptomic and Proteomic Data 

Orre et al.48 microarray data files (n=11; files last updated on July 20, 2015) were downloaded 

from the NCBI gene expression omnibus (GEO) datasets website (GEO identifier: GSE74615).  

The data, consisting of 22 samples, was normalized and centered based on limma R package 

user guidelines with backgroundCorrect method=”normexp” and normalizeBetweenArrays 

method=”quantile”.  Transcripts with signal at least 110% of the 95th percentile of all normalized 

red negative control spots on the arrays in at least 4/22 samples were considered as expressed 

above noise in at least one cell type (n=28,157 gene transcripts across N=14 purified microglial 

measurements and N=8 purified astrocyte measurements).  WGCNA collapseRows function was 

used to handle multiple probe mappings to any gene, with probe selection 
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method=”maxRowVariance”.  Grubman et al.49 peptide-level total peak area data for XO4+ 

(amyloid-β plaque phagocytosing) and XO4– (amyloid-β plaque non-phagocytosing) acutely 

purified microglia from AD and WT mice, respectively, were summed and log2-transformed to 

achieve protein-level data for 94 gene product proteins.  Grubman et al. mRNA-level 

measurements were obtained directly and used without further processing. 

Other Statistics 

All statistical analyses were performed in R (v. 3.5.2).  Boxplots represent the median, 25th, and 

75th percentiles, and whiskers with staples represent measurements to the 5th and 95th percentiles 

of non-outlier samples; outlier samples are plotted beyond these whiskers as open circles.  

Correlations were performed using the biweight midcorrelation function as implemented in the 

WGCNA R package.  Comparisons between two groups were performed by t test.  Comparisons 

among three or more groups were performed with Kruskal-Wallis nonparametric ANOVA or 

standard ANOVA with Tukey or Dunnett post hoc pairwise comparison of significance.  P values 

were adjusted for multiple comparisons by false discovery rate (FDR) correction where indicated.  

T-distributed Stochastic Neighbor Embedding (t-SNE) analysis was implemented with R package 

Rtsne, as previously published44.  Module membership graphs were generated using the igraph 

R package as previously described23,142.  
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Figure Legends 

 

Figure 1.  Protein Network Analysis of Asymptomatic and Symptomatic Alzheimer’s 

Disease Brain. (A-C)  Protein levels in brain tissue from control, asymptomatic Alzheimer’s 

disease (AsymAD), and Alzheimer’s disease (AD) patients (N=453) were measured by label-free 

mass spectrometry and analyzed by weighted correlation network analysis (WGCNA) and 

differential abundance (A).  Brain tissue was analyzed from postmortem dorsolateral prefrontal 

cortex (DLPFC, highlighted in yellow) in the Baltimore Longitudinal Study of Aging (BLSA, n=11 

control, n=13 AsymAD, n=20 AD, n=44 total), Banner Sun Health Research Institute Brain Bank 

(Banner, n=26 control, n=58 AsymAD, n=94 AD, n=178 total), Mount Sinai School of Medicine 

Brain Bank (MSSB, n=46 control, n=17 AsymAD, n=103 AD, n=166 total), and the Adult Changes 

in Thought Study (ACT, n=11 control, n=14 AsymAD, n=40 AD, n=65).  (B) A protein correlation 

network consisting of 13 protein modules was generated from 3334 proteins measured across 

four separate cohorts.  (Top) Module eigenproteins, which represent the first principle component 

of the protein expression within each module, were correlated with neuropathological hallmarks 

of Alzheimer’s disease (CERAD, Consortium to Establish a Registry for Alzheimer’s disease 

amyloid-β plaque score, higher scores represent greater plaque burden; Braak, tau neurofibrillary 

tangle staging score, higher scores represent greater extent of tangle burden), cognitive function 

(MMSE, mini-mental status examination score, higher scores represent better cognitive function), 

and overall functional status (CDR, clinical dementia rating score, higher scores represent worse 

functional status).  CERAD and Braak measures were from all cohorts, while MMSE was from 

Banner and CDR was from MSSB.  Strength of positive (red) or negative (blue) correlation is 

shown by two-color heatmap, with p values provided for all correlations with p < 0.05.  Modules 

that showed a significant correlation with all four traits are highlighted in bold.  (Middle) The cell 

type nature of each protein module was assessed by module protein overlap with known neuron, 
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astrocyte, microglia, oligodendrocyte (oligoden), and endothelia cell markers.  Significance of 

overlap is shown by one-color heatmap, with p values provided for overlaps with p < 0.05.  

(Bottom) Gene ontology (GO) analysis of the proteins within each module clearly identified, for 

most modules, the biological processes associated with the module.  (C) Module eigenprotein 

level by case status (left) and apolipoprotein E (APOE) genotype (right) for each protein module 

that had significant correlation to all four traits in (B).  Case status is from all cohorts (control, 

n=94; AsymAD, n=102; AD, n=257).  APOE genotype information is from the BLSA and Banner 

cohorts (APOE 2/2, n=1; APOE 2/3, n=32; APOE 3/3, n=140; APOE 3/4, n=80; APOE 4/4, n=12).  

Two out of the 222 cases were APOE 2/4; these two cases were included in the APOE 3/3 risk 

group for simplification.  APOE and other trait correlations for all modules are provided in 

Extended Data Figure 1.  Module eigenprotein correlations were performed using biweight 

midcorrelation and corrected by the Benjamini-Hochberg method.  Protein module cell type 

overlap was performed using Fisher’s exact test with Benjamini-Hochberg correction.  Differences 

in eigenprotein values were assessed by Kruskal-Wallis one-way ANOVA.  Cntl, control; AsymAD, 

asymptomatic Alzheimer’s disease; AD, Alzheimer’s disease. 

 

 

 

Figure 2.  AD Protein Network Validation in a Longitudinal Cohort of Aging.  (A-C) 

Preservation of AD protein network modules and trait correlations in the Religious Orders Study 

and Memory and Aging Project (ROS/MAP) cohorts.  (A) Protein levels from dorsolateral 

prefrontal cortex (DLPFC) in a total of 219 control, AsymAD, and AD cases from the ROS/MAP 

cohorts were measured using a different mass spectrometry platform and quantification approach 

compared to the cases used to generate the AD network as shown in Figure 1.  The resulting 
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data were used to assess conservation of the AD brain protein network in the ROS/MAP cohorts.  

(B) AD brain protein network module preservation in the ROS/MAP cohorts.  The dashed blue 

line indicates a zsummary score of 1.96, or FDR q value <0.05, above which module preservation 

was considered statistically significant.  The dashed red line indicates a zsummary score of 10, or 

FDR q value ~ 1e-23, above which module preservation was considered highly statistically 

significant.  (C)  Case status and trait preservation in the ROS/MAP cohorts.  The top 20% of 

proteins by kME value in each AD brain protein network module was used to create a synthetic 

eigenprotein, which was then measured by case status in ROS/MAP and correlated with amyloid 

plaque load (CERAD score), tau neurofibrillary tangle burden (Braak stage), and cognitive 

function (global cognitive function composite z-score).  Synthetic eigenprotein analyses for 

modules M1, M3, M4, and M10 are shown.  Analyses for all modules, with additional trait 

correlations, are provided in Extended Data Figure 4.  Differences in module synthetic 

eigenproteins by case status were assessed by Kruskal-Wallis one-way ANOVA.  Module 

synthetic eigenprotein correlations were performed using biweight midcorrelation with Benjamini-

Hochberg correction.  Cntl, control; AsymAD, asymptomatic Alzheimer’s disease; AD, Alzheimer’s 

disease. 

 

Figure 3.  AD Protein Network Is Preserved in Different Brain Regions.  (A-E) Preservation 

of AD protein network modules derived from analysis of DLPFC in other brain regions affected by 

AD.  (A) Protein levels in temporal cortex from a total of 111 control and AD cases from the Mayo 

Brain Bank, and in precuneus from a total of 46 cases from the BLSA, were measured by label-

free mass spectrometry and used to assess conservation of the AD brain protein network derived 

from DLPFC.  (B, C) AD brain protein network preservation in temporal cortex (B) and precuneus 

(C).  The dashed blue line indicates a zsummary score of 1.96, or FDR q value <0.05, above which 

module preservation was considered statistically significant.  The dashed red line indicates a 
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zsummary score of 10, or FDR q value ~ 1e-23, above which module preservation was considered 

highly statistically significant.  (D, E) Case status preservation in temporal cortex and precuneus.  

A synthetic eigenprotein was created for each AD network module as described in Figure 2 and 

measured by case status in temporal cortex (D) and precuneus (E).  Asymptomatic AD was not 

assessed in the Mayo cohort, and is therefore not included in the temporal cortex analyses.  

Synthetic eigenprotein analyses for modules M1, M3, M4, and M10 are shown.  Analyses for all 

modules, with additional trait correlations, are provided in Extended Data Figures 7 and 8.  

Differences in module synthetic eigenproteins by case status were assessed by Welch’s t test (D) 

or Kruskal-Wallis one-way ANOVA (E).  Cntl, control; AsymAD, asymptomatic Alzheimer’s 

disease; AD, Alzheimer’s disease. 

 

Figure 4.  Effects of Aging on AD Protein Network Modules.  (A, B) Protein levels were 

measured in DLPFC from cognitively normal people who died at different ages (age 30-39, n=20; 

age 40-49, n=34; age 50-59, n=17; age 60-69, n=13), and used to analyze AD protein network 

module changes with age.  Brains were obtained from Johns Hopkins University.  (B) A synthetic 

eigenprotein was created for each AD network module as described in Figure 2 and measured 

by age group (left boxplot) as well as correlated with age (right scatterplot) in the aging brain 

cohort.  Synthetic eigenprotein analyses for modules M1, M3, M4, and M10 are shown.  Analyses 

for all modules are provided in Extended Data Figure 9.  Differences in module synthetic 

eigenproteins by age grouping were assessed by Kruskal-Wallis one-way ANOVA.  Synthetic 

eigenprotein correlations were performed using biweight midcorrelation. 

 

Figure 5.  AD Protein Network Module Changes in Other Neurodegenerative Diseases.  (A, 

B) Protein levels were measured in DLPFC from control (n=46), AD (n=49), amyotrophic lateral 
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sclerosis (ALS, n=59), frontotemporal lobar degeneration with TAR DNA-binding protein 43 

inclusions (FTLD-TDP, n=29), progressive supranuclear palsy (PSP, n=27), corticobasal 

degeneration (CBD, n=17), Parkinson’s disease and Parkinsons’s disease dementia (PD/PDD, 

n=81), and multiple system atrophy (MSA, n=23) cases from the University of Pennsylvania Brain 

Bank, and used to analyze AD protein network module changes in different neurodegenerative 

diseases.  (B) A synthetic eigenprotein was created for each AD network module as described in 

Figure 2 and measured by disease group in the UPenn cohort.  Synthetic eigenprotein analyses 

for modules M1, M3, M4, and M10 are shown.  Analyses for all modules are provided in Extended 

Data Figure 10.  Differences in module synthetic eigenproteins were assessed by Kruskal-Wallis 

one-way ANOVA.  Differences between AD and other case groups were assessed by Dunnett’s 

test, the results of which are provided in Supplementary Table 4. 

 

Figure 6.  The M4 Astrocyte/Microglial Metabolism Module is Enriched in AD Genetic Risk 

Factors and Markers of Anti-Inflammatory Disease-Associated Microglia.  (A-D)  Enrichment 

of proteins contained within genomic regions identified by genome wide association studies 

(GWAS) as risk factors for AD, autism spectrum disorder, and schizophrenia was calculated for 

each module in the AD protein network (A).  Modules highlighted in dark red were significantly 

enriched for AD risk factors, and not for risk factors associated with autism spectrum disorders or 

schizophrenia.  The horizontal dotted line indicates a z score level of enrichment of 1.96, or false 

discovery rate (FDR) q value <0.05, above which enrichment was considered statistically 

significant. (B) Enrichment of astrocyte (top) and microglia (bottom) phenotypic markers in AD 

protein network modules.  (Top) Astrocyte phenotype markers indicating upregulation in response 

to acute injury with lipopolysaccharide (LPS) (A1 Inflammatory), middle cerebral artery occlusion 

(A2 Tissue repair), or both types of acute injury (A1/A2 Shared) in a mouse model43 were 

assessed for enrichment in AD network modules.  (Bottom) Microglia markers from an mRNA co-
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expression analysis that are altered after challenge with LPS and/or amyloid-β plaque deposition 

in mouse models44 were assessed for enrichment in AD network modules (Anti-inflammatory, 

decrease with LPS administration and increase with plaque deposition; Pro-inflammatory, 

increase with LPS administration and increase with plaque deposition; Homeostatic, decrease 

with LPS administration and decrease with plaque deposition).  Module enrichment was 

determined by Fisher’s exact test with Benjamini-Hochberg correction. *P < 0.05, **P < 0.01, ***P 

< 0.01, **** P < 0.0001.  (C) The top 100 proteins by module eigenprotein correlation value (kME) 

in module M4.  The size of each circle indicates the relative kME.  Those proteins with the largest 

kME are considered “hub” proteins within the module.  Proteins highlighted in blue are 

upregulated in A2 tissue repair astrocyte and anti-inflammatory microglia; proteins highlighted in 

red are upregulated in A1 inflammatory astrocyte and pro-inflammatory microglia.  Additional such 

proteins are provided in Supplementary Table 5.  (D) The top 30 most differentially abundant 

microglial transcripts in an AD mouse model48 that overlap with proteins in the M4 module, colored 

as shown in (C).  M4 proteins that overlap with transcripts elevated in microglia undergoing active 

amyloid-β plaque phagocytosis49 are provided in Supplementary Figure 7.  (Inset) Transcript 

elevations validated at the protein level in microglia undergoing active amyloid-β plaque 

phagocytosis49. 

 

Figure 7.  M4 Astrocyte/Microglial Metabolism Module Protein Levels Are Elevated in 

AsymAD and AD CSF.  (A-C) Approach to analysis of M4 proteins in CSF from two different 

cohorts (A).  CSF in Cohort 1 (n=297) was obtained from subjects with normal CSF amyloid-β 

and tau levels (controls) and patients with low amyloid-β, elevated tau levels, and cognitive 

impairment (AD).  CSF in Cohort 2 (n=96) was obtained from control subjects and AD patients as 

defined in Cohort 1, as well as subjects with CSF amyloid-β and tau levels that met criteria for AD 

but who were cognitively normal at the time of collection.  CSF was analyzed without prior pre-
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fractionation or depletion of highly abundant proteins; relative protein levels were measured by 

TMT-MS.  (B) Relative CSF protein levels of selected M4 module members in Cohort 1.  Protein 

names are colored according to pro-inflammatory (red) or anti-inflammatory (blue) classification.  

Additional M4 protein measurements, as well as trait correlations for the measured proteins, are 

provided in Extended Data Figure 13.  (C) Relative CSF protein levels of selected M4 module 

members in Cohort 2.  Protein names are colored as in (B).  Additional measurements and trait 

correlations are provided in Extended Data Figure 14.  Differences in protein levels were 

assessed by Welch’s t test (B) or Kruskal-Wallis one-way ANOVA (C).  Correlations were 

performed using biweight midcorrelation.  Cntl, control; AsymAD, asymptomatic Alzheimer’s 

disease; AD, Alzheimer’s disease; TMT, tandem mass tag; MoCA, Montreal Cognitive 

Assessment (higher scores represent better cognitive function). 

 

 

 

Supplementary Figure 1.  Relationship of AD Network Proteins by t-SNE Analysis.  

Dimensionality reduction and visualization by t-distributed stochastic neighbor embedding (t-SNE) 

was applied to proteins that were in the top 25% by kME value within each AD network module.  

Proteins are color coded as shown in Figure 1B according to the network module in which they 

reside.  Network module ontologies and cell type enrichments are provided as shown in Figure 

1B.  Ontologies are highlighted based on the most robust AD trait correlations as shown in Figure 

1B. 

 

Supplementary Figure 2.  AD Protein Network Module Trait and Pathology Correlations.  

(A-C) The eigenprotein of each protein network module was correlated with neuropathological, 
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molecular, and cognitive/functional traits (A).  Protein modules are bolded as in Figure 1B using 

CERAD, Braak, MMSE, and CDR correlations.  Strength of positive (red) or negative (blue) 

correlation is shown by two-color heatmap, with p values provided for all correlations with p < 

0.05.  Neuropathological, molecular, and cognitive/functional correlations were corrected using 

the Benjamini-Hochberg method.  (B) Correlation between CERAD plaque score and Aβ levels 

measured by label free quantification (LFQ) mass spectrometry.  (C) Correlation between Braak 

score (NFT, neurofibrillary tangle) and tau levels measured by LFQ of the microtubule binding 

region (MTBR).  CERAD, Consortium to Establish a Registry for Alzheimer’s disease Aβ plaque 

score (higher scores represent greater plaque burden); Braak, tau neurofibrillary tangle staging 

score (higher scores represent greater extent of tangle burden); Aβ, amyloid-β; α-Syn, alpha 

synuclein; TDP-43, TAR DNA-binding protein 43; MMSE, mini-mental status examination score 

(higher scores represent better cognitive function); CDR, clinical dementia rating score (higher 

scores representing worse functional status); CASI, Cognitive Abilities Screening Instrument 

(higher scores represent better cognitive function).  MMSE is from Banner, CDR is from MSSB, 

and CASI is from ACT. 

 

Supplementary Figure 3.  AD Protein Network Module Changes in Other 

Neurodegenerative Diseases by PRM Analysis.  (A-C) Protein levels for 323 proteins across 

108 brains from the UPenn cohort were measured by parallel reaction monitoring targeted mass 

spectrometry (PRM-MS) (A).  Targeted peptides and individual protein measurements by disease 

group are provided in Supplementary Table 4 and Extended Data Figure 11, respectively.  (B) 

Protein levels across all cases were highly correlated between LFQ and PRM measurements.  

(C) A synthetic eigenprotein was created from proteins that mapped to an AD network module 

and measured across the different disease groups.  Analyses for all modules are provided in 

Extended Data Figure 12. Differences in module synthetic eigenproteins were assessed by 
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Kruskal-Wallis one-way ANOVA.  Differences between AD and other case groups were assessed 

by Dunnett’s test, the results of which are provided in Supplementary Table 4. 

 

Supplementary Figure 4.  Protein Differential Abundance in AD Brain.  (A-C) Differential 

protein abundance for AD versus control (A), AD versus AsymAD (B), and AsymAD versus control 

(C) brain, represented by fold-change versus t statistic for the given comparison.  Proteins are 

colored by the module in which they reside according to the scheme shown in Figure 1B.  The 

bold horizontal dashed line represents p < 0.05.  P values are corrected by the Benjamini-

Hochberg method.  AsymAD, asymptomatic Alzheimer’s disease; AD, Alzheimer’s disease. 

 

Supplementary Figure 5.  Differential Abundance of Reactive Astrocyte Protein Markers in 

AD Brain.  (A-C) Proteins expressed in different astrocytic response states to acute injury43 were 

analyzed for changes in AD.  Astrocyte mRNAs that were upregulated greater than four-fold after 

acute injury by LPS administration (“A1” Inflammatory) (A), middle cerebral artery occlusion (“A2” 

Tissue Repair) (B), or both (“A1/A2 Mixed”) (C) were analyzed for changes in abundance between 

AD and control.  Results are shown as protein fold-change versus t statistic for the given 

comparison.  The bold horizontal dashed line represents p < 0.05.  P values are corrected by the 

Benjamini-Hochberg method.  Proteins are colored by the module in which they reside according 

to the scheme shown in Figure 1B.  AD, Alzheimer’s disease. 

 

Supplementary Figure 6.  Differential Abundance of Microglial Phenotypic Protein Markers 

in AD Brain.  (A-C) Proteins corresponding to microglial mRNAs that were found to be associated 

with different microglial phenotypic states44 were analyzed for changes in AD.  Proteins from 

microglial co-expression modules corresponding to a disease-associated anti-inflammatory (A), 
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disease-associated pro-inflammatory (B), and homeostatic (C) response phenotype were 

analyzed for changes in abundance between AD and control.  Results are shown as protein fold-

change versus t statistic for the given comparison.  The bold horizontal dashed line represents p 

< 0.05.  P values are corrected by the Benjamini-Hochberg method.  Proteins are colored by the 

module in which they reside according to the scheme shown in Figure 1B.  AD, Alzheimer’s 

disease. 

 

Supplementary Figure 7.  M4 Astrocyte/Microglial Metabolism Module Members Increased 

at the Transcript Level in Microglia Undergoing Active Amyloid-β Plaque Phagocytosis.  

mRNA transcripts increased in microglia undergoing active amyloid-β plaque phagocytosis 

(X04+)49 were overlapped with cognate proteins in the M4 module.  There were 23 transcripts that 

overlapped with M4 module members.  Proteins that also overlapped with the top 30 disease-

associated microglia (DAM) markers in the M4 module (Figure 6D) are shown in blue.  Proteins 

that did not overlap with the top 30 DAM markers are shown in cyan.  Proteins in cyan are 

therefore M4 members that may be more specifically elevated in microglia undergoing active 

amyloid-β plaque phagocytosis. 

 

 

 

Extended Data Figure 1.  AD Network Module Phenotype Correlations.  Each module 

eigenprotein was assessed for group differences by case status and APOE genotype, and 

correlated to genetic, neuropathological, cognitive/functional, and molecular traits.  APOE risk 

score: -2 (E2/2), -1 (E2/3), 0 (E3/3 or E2/4), 1 (E3/4), 2 (E4/4).  Eigenprotein differences by case 

status or APOE risk were assessed by Kruskal-Wallis (K-W) one-way ANOVA.  Correlations were 
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performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more 

robust to outliers. 

 

Extended Data Figure 2.  AD Network Module Protein Memberships.  The top 100 proteins 

by module eigenprotein correlation value (kME) in each AD protein network module.  The size of 

each circle indicates the relative kME.  Those proteins with the largest kME are considered “hub” 

proteins within the module, and explain the largest variance in module expression. 

 

Extended Data Figure 3.  GO Analysis on AD Network Modules.  Gene ontology (GO) analysis 

was performed to gain insight into the biological meaning of each AD protein network module.  

Enrichment for a given ontology is shown by z score. 

 

Extended Data Figure 4.  AD Network Validation in ROS/MAP.  The top 20% of proteins by 

kME value in each AD brain protein network module was used to create a synthetic eigenprotein, 

which was then measured by case status in ROS/MAP and correlated with different traits as 

assessed in the ROS/MAP cohorts.  The first boxplot for each module is the AD network 

eigenprotein by case status, given as reference for the second boxplot, which is the synthetic 

eigenprotein in the ROS/MAP cohorts.  Synthetic eigenprotein differences by case status in 

ROS/MAP were assessed by Kruskal-Wallis (K-W) one-way ANOVA.  Correlations were 

performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more 

robust to outliers.  Statistical significance at p <0.05 is highlighted in red. 
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Extended Data Figure 5.  Round 1 Targeted Measurements of AD Network Proteins in 

ROS/MAP.  Levels of 67 proteins were measured by selected reaction monitoring (SRM) mass 

spectrometry across 1016 ROS/MAP cases.  One peptide per protein was selected for 

measurement.  Peptide sequences can be found at 

https://www.synapse.org/#!Synapse:syn10468856.  Protein levels were correlated to Aβ levels as 

measured by SRM, CERAD score, Braak stage, and MMSE.  Protein level differences by case 

status were assessed by Kruskal-Wallis (K-W) one-way ANOVA with Tukey test.  Correlations 

were performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is 

more robust to outliers.  Data for each protein is colored by the AD network module in which it 

resides.  Statistical significance at p <0.05 is highlighted in red. 

 

Extended Data Figure 6.  Round 2 Targeted Measurements in ROS/MAP.  Levels of 37 

proteins were measured by selected reaction monitoring (SRM) mass spectrometry across 1016 

ROS/MAP cases.  Most proteins were measured with at least two peptides per protein, and 

therefore protein level measurements for these proteins are calculated as the average of the 

individual peptide measurements.  Individual peptide measurements are shown after the protein 

level measurements.  Peptide sequences can be found at 

https://www.synapse.org/#!Synapse:syn10468856.  Protein and peptide levels were correlated to 

tau levels as measured by SRM, CERAD score, Braak stage, and MMSE.  Differences in levels 

by case status were assessed by Kruskal-Wallis (K-W) one-way ANOVA with Tukey test.  

Correlations were performed using both Pearson correlation (cor) and biweight midcorrelation 

(bicor), which is more robust to outliers.  Data for each protein and peptide is colored by the AD 

network module in which it resides.  Statistical significance at p <0.05 is highlighted in red. 
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Extended Data Figure 7.  AD Network Preservation in Temporal Cortex.  The top 20% of 

proteins by kME value in each AD brain protein network module was used to create a synthetic 

eigenprotein, which was then measured by case status in the Mayo cohort (temporal cortex) and 

correlated with APOE risk and Braak score.  APOE risk score is described in Extended Data 

Figure 1.  The first boxplot for each module is the AD network eigenprotein by case status, given 

as reference for the second boxplot, which is the synthetic eigenprotein in the Mayo cohort.  

Synthetic eigenprotein differences by case status in the Mayo cohort were assessed by Kruskal-

Wallis (K-W) one-way ANOVA.  Correlations were performed using both Pearson correlation (cor) 

and biweight midcorrelation (bicor), which is more robust to outliers.  Statistical significance at p 

<0.05 is highlighted in red. 

 

Extended Data Figure 8.  AD Network Preservation in Precuneus.  The top 20% of proteins 

by kME value in each AD brain protein network module was used to create a synthetic 

eigenprotein, which was then measured by case status in the Mayo cohort (temporal cortex) and 

correlated with APOE risk and CERAD and Braak scores.  APOE risk score is described in 

Extended Data Figure 1.  The first boxplot for each module is the AD network eigenprotein by 

case status, given as reference for the second boxplot, which is the synthetic eigenprotein in the 

BLSA precuneus cohort.  Synthetic eigenprotein differences by case status in the BLSA 

precuneus cohort were assessed by Kruskal-Wallis (K-W) one-way ANOVA.  Correlations were 

performed using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more 

robust to outliers.  Statistical significance at p <0.05 is highlighted in red. 

 

Extended Data Figure 9.  Effect of Aging on AD Network Modules.  The top 20% of proteins 

by kME value in each AD brain protein network module was used to create a synthetic 
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eigenprotein, which was then measured by age grouping and correlated with age in the aging 

cohort from the Baltimore coroner’s office.  The first boxplot for each module is the AD network 

eigenprotein by case status, given as reference for the second and third boxplots, which is the 

synthetic eigenprotein in the BLSA precuneus cohort measured in two different age groupings.  

Synthetic eigenproteins were also correlated directly with age, using both Pearson correlation 

(cor) and biweight midcorrelation (bicor), which is more robust to outliers.  Synthetic eigenprotein 

differences by case status were assessed by Kruskal-Wallis (K-W) one-way ANOVA.  Statistical 

significance at p <0.05 is highlighted in red. 

 

Extended Data Figure 10.  AD Protein Network Module Changes in Other 

Neurodegenerative Diseases.  The top 20% of proteins by kME value in each AD brain protein 

network module was used to create a synthetic eigenprotein, which was then measured in 

different neurodegenerative diseases in the UPenn cohort.  The first boxplot for each module is 

the AD network eigenprotein by case status, given as reference for the second and third boxplots.  

Other neurodegenerative diseases (otherND) included amyotrophic lateral sclerosis (ALS), 

frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP), 

progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Parkinson’s disease 

and Parkinsons’s disease dementia (PD/PDD), and multiple system atrophy (MSA).  Synthetic 

eigenproteins were also correlated with CERAD and Braak scores, using both Pearson correlation 

(cor) and biweight midcorrelation (bicor), which is more robust to outliers.  Synthetic eigenprotein 

differences by case status were assessed by Kruskal-Wallis (K-W) one-way ANOVA.  Differences 

between AD and other case groups were assessed by Dunnett’s test and are provided in 

Supplementary Table 4.  Statistical significance at p <0.05 is highlighted in red. 
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Extended Data Figure 11.  Targeted Individual Protein Measurements in Other 

Neurodegenerative Diseases.  Peptides from proteins across all modules in the AD network 

were targeted for measurement by parallel reaction monitoring mass spectrometry (PRM) in a 

subset of cases in the UPenn cohort encompassing all disease groups.  Other neurodegenerative 

diseases (otherND) included amyotrophic lateral sclerosis (ALS), frontotemporal lobar 

degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP), progressive supranuclear 

palsy (PSP), corticobasal degeneration (CBD), Parkinson’s disease and Parkinsons’s disease 

dementia (PD/PDD), and multiple system atrophy (MSA).  Protein levels were correlated with 

CERAD and Braak scores, using both Pearson correlation (cor) and biweight midcorrelation 

(bicor), which is more robust to outliers.  Protein level differences by case status were assessed 

by Kruskal-Wallis (K-W) one-way ANOVA.  Differences between AD and other case groups were 

assessed by Dunnett’s test and are provided in Supplementary Table 4.  Data for each protein 

is colored by the AD network module in which it resides.  Statistical significance at p <0.05 is 

highlighted in red. 

 

Extended Data Figure 12.  AD Network Module Changes in Other Neurodegenerative 

Diseases by Targeted Mass Spectrometry Measurements.  A synthetic eigenprotein for each 

AD network module was created from proteins measured by parallel reaction monitoring mass 

spectrometry (PRM) that mapped to an AD network module.  Individual protein measurements by 

disease group are provided in Extended Data Figure 11.  Other neurodegenerative diseases 

(otherND) included amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with 

TAR DNA-binding protein 43 inclusions (FTLD-TDP), progressive supranuclear palsy (PSP), 

corticobasal degeneration (CBD), Parkinson’s disease and Parkinsons’s disease dementia 

(PD/PDD), and multiple system atrophy (MSA).  Synthetic eigenproteins were correlated with 

CERAD and Braak scores, using both Pearson correlation (cor) and biweight midcorrelation 
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(bicor), which is more robust to outliers.  Synthetic eigenprotein differences by case status were 

assessed by Kruskal-Wallis (K-W) one-way ANOVA.  Differences between AD and other case 

groups were assessed by Dunnett’s test and are provided in Supplementary Table 4.  Statistical 

significance at p <0.05 is highlighted in red. 

 

Extended Data Figure 13.  Relative Levels and Trait Correlations of Module M4 Proteins in 

AD CSF Cohort 1.  Relative levels of each protein were measured in control and AD CSF by 

tandem mass tag mass spectrometry (TMT-MS), and correlated with ELISA measurements of 

Aβ42, Tau, and phosphorylated tau, as well as Aβ42/Tau ratio and MoCA score.  ELISA 

measurements are given in pg/mL.  Differences in protein levels were assessed by Welch’s t test.  

Correlations were performed using both Pearson correlation (cor) and biweight midcorrelation 

(bicor), which is more robust to outliers.  Statistical significance at p <0.05 is highlighted in red.  

MoCA, Montreal Cognitive Assessment (higher scores represent better cognitive function). 

 

Extended Data Figure 14.  Relative Levels and Trait Correlations of Module M4 Proteins in 

AsymAD and AD CSF Cohort 2.  Relative levels of each protein were measured in control, 

AsymAD, and AD CSF by tandem mass tag mass spectrometry (TMT-MS), and correlated with 

ELISA measurements of Aβ42, Tau, and phosphorylated tau, as well as Aβ42/Tau ratio and 

MoCA score.  ELISA measurements are given in pg/mL.  Differences in protein levels were 

assessed by Kruskal-Wallis (K-W) one-way ANOVA with Tukey test.  Correlations were performed 

using both Pearson correlation (cor) and biweight midcorrelation (bicor), which is more robust to 

outliers. Statistical significance at p <0.05 is highlighted in red.  MoCA, Montreal Cognitive 

Assessment (higher scores represent better cognitive function).
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