

1 **TITLE**

2 Active zone compaction for presynaptic strength

3

4 **AUTHORS**

5 Achmed Mrestani¹, Philip Kollmannsberger², Martin Pauli^{1,6}, Felix Repp^{1,2,6}, Robert J.
6 Kittel^{1,3,4}, Jens Eilers⁴, Sören Doose⁵, Markus Sauer⁵, Anna-Leena Sirén⁶, Manfred
7 Heckmann^{1*}, Mila M. Paul^{1*}

8

9 ¹ Institute for Physiology, Department of Neurophysiology, Julius-Maximilians-
10 University Würzburg, D-97070 Würzburg, Germany

11 ² Center for Computational and Theoretical Biology, Julius-Maximilians-University
12 Würzburg, D-97074 Würzburg, Germany

13 ³ Institute of Biology, Department of Animal Physiology, Leipzig University, D-04103
14 Leipzig, Germany

15 ⁴ Carl-Ludwig-Institute for Physiology, Leipzig University, D-04103 Leipzig, Germany

16 ⁵ Department of Biotechnology and Biophysics, Julius-Maximilians-University
17 Würzburg, D-97074 Würzburg, Germany

18 ⁶ Department of Neurosurgery, University Hospital of Würzburg, D-97080 Würzburg,
19 Germany

20

21 * Correspondence should be addressed to M.H. (heckmann@uni-wuerzburg.de) and
22 M.M.P. (mila.paul@uni-wuerzburg.de)

23 **ABSTRACT**

24 Synaptic plasticity is considered to underly information processing and memory
25 formation in the brain and stabilization of neurotransmission during plasticity likely
26 includes reorganization of active zones (AZs).

27 Here, we used localization microscopy and hierarchical density-based spatial
28 clustering to probe AZ architecture at the *Drosophila melanogaster* neuromuscular
29 junction. We observed distinct arrangements of the scaffold protein Bruchpilot (Brp) at
30 AZs of high release probability type Ia and low release probability type Ib boutons. Most
31 remarkably, Brp proteins at type Ia AZs were arranged more compact than at type Ib
32 AZs. To ascertain whether adaptations of the AZ scaffold also occur in response to
33 short-term demands, we used philanthotoxin (PhTx) to induce acute homeostatic
34 plasticity. PhTx decreased AZ size, the distance between Brp subclusters and the AZ
35 center, leading to compaction of the Brp scaffold. These changes only occurred at type
36 Ib but not type Ia AZs which, already compact, did not undergo structural
37 rearrangement. In summary, our data describe a molecular compaction of the AZ
38 scaffold reflecting the functional demands at high release probability synapses and
39 during an acute homeostatic challenge.

40

41 **INTRODUCTION**

42 Synapses are complex nanomachines responsible for integration and processing of
43 information. Their architecture and function are optimized for fast and reliable
44 performance (Atwood and Karunianithi, 2002; Taschenberger et al., 2002; Neher and
45 Brose, 2018), however, the structural correlate of synaptic plasticity remains elusive.
46 In the mammalian cerebellum, Purkinje cells receive two different glutamatergic inputs
47 (Palay and Chan-Palay, 1974). Phasic climbing fibers exhibit a higher release
48 probability of about 40 %, whereas tonic parallel fibers show a lower release probability
49 of about 20 % (Dittman et al., 2000; Valera et al., 2012; Schmidt et al., 2013). However,
50 ultrastructural synaptic organization appears to be similar despite smaller mitochondria
51 and larger synaptic vesicles in climbing fibers (Palay and Chan-Palay, 1974; Xu-
52 Friedman et al., 2001).

53

54 In *Drosophila melanogaster* two functionally distinct motorneurons form glutamatergic
55 neuromuscular junctions (NMJs, Karunianithi et al., 2002). Phasic type Ia boutons show
56 higher release probabilities and generate large quanta (Kurdyak et al., 1994;
57 Karunianithi et al., 2002; Lu et al., 2016; Newman et al., 2017), whereas tonic type Ib
58 boutons show moderate release probability and generate small quanta. Paralleling the
59 findings in the cerebellum, type Ia boutons contain larger synaptic vesicles and less
60 mitochondria and release more glutamate per ATP molecule leading to a more energy-
61 efficient design compared to type Ib boutons (Atwood et al., 1993; Lu et al., 2016). Yet
62 again, little is known about the differences in molecular architecture which contribute
63 to the functional differentiation in release probability and synaptic strength.

64

65 The above described differentiation is essentially mediated by the presynapse and
66 likely involves distinct protein arrangement at presynaptic active zones (AZs). The
67 cytomatrix at the active zone (CAZ) consists of an organized set of proteins (Südhof,
68 2012). Large α -helical coiled-coil proteins of the ELKS/CAST family are crucial for the
69 regulation of synaptic transmission (Held et al., 2016; Dong et al., 2018). In *Drosophila*
70 the ELKS/CAST homolog Bruchpilot (Brp) is essential for synchronous glutamate
71 release and its amount was shown to correlate with release probability and structural
72 synaptic differentiation (Kittel et al., 2006; Ehmann et al., 2014; Peled et al., 2014; Paul
73 et al., 2015; Akbergenova et al., 2018). Brp is a major AZ scaffold protein responsible
74 for clustering of presynaptic calcium channels close to release sites creating a proper

75 molecular environment for fast and precise neurotransmitter release (Kittel et al., 2006;
76 Held and Kaeser, 2018). Whereas the Brp N-term was mapped in membrane-
77 proximity, its C-term covers an area of about $0.1 \mu\text{m}^2$, localizes about 155 nm above
78 the postsynaptic receptors (Fouquet et al., 2009; Liu et al., 2011) and is important for
79 tethering of synaptic vesicles (Hallermann et al., 2010). Remarkably, Brp is distributed
80 heterogeneously within the AZ forming about 15 subclusters of $1.6 \times 10^{-3} \mu\text{m}^2$ size
81 (Ehmann et al., 2014).

82

83 Alterations in protein number contribute to synaptic differentiation and plasticity. This
84 is well established for receptor channels in postsynaptic densities (Tang et al., 2016).
85 Less clear is to what extend presynaptic protein number changes contribute to
86 plasticity. Imaging Brp and other AZ components using confocal and STED microscopy
87 provided evidence for an increase in AZ area and cluster numbers in acute and chronic
88 homeostatic plasticity (Weyhersmüller et al., 2011; Goel et al., 2017; Böhme et al.,
89 2019). We suggest that beside an increase in absolute protein numbers per AZ, local
90 protein rearrangements leading to alterations in synaptic strength are conceivable. To
91 address this hypothesis, we performed localization microscopy of AZs in phasic and
92 tonic presynapses at the NMJ and induced presynaptic homeostatic plasticity as a
93 model for acute changes in release (Davis and Müller, 2015). Hierarchical density-
94 based spatial clustering (HDBSCAN) enabled unbiased analysis of our datasets. We
95 identified striking differences in AZ scaffold organization with more compact Brp
96 arrangement, increased molecular density and narrower positioning of AZ subclusters
97 in high release probability, phasic type Ia boutons compared to low probability, tonic
98 type Ib boutons. Furthermore, we observed similar changes following induction of
99 acute presynaptic plasticity only in tonic type Ib boutons. In summary, our data suggest
100 AZ compaction to be a structural correlate of enhanced synaptic transmission in
101 synaptic differentiation and homeostatic plasticity.

102 **MATERIAL AND METHODS**

103 **Fly stocks**

104 Flies were raised on standard cornmeal and molasses medium at 25 °C. *Drosophila*
105 *melanogaster* wildtype strain *w¹¹¹⁸* (Bloomington *Drosophila* Stock Center) male 3rd
106 instar larvae were used for experiments.

107

108 **Philanthotoxin treatment and and larval preparation**

109 Philanthotoxin 433 tris (trifluoroacetate) salt (PhTx, P207 Sigma) was dissolved in
110 dimethyl sulfoxide (DMSO) to obtain a stock solution of 4 mM and stored at -20 °C. For
111 each experiment, the respective volume was further diluted with freshly prepared
112 haemolymph-like solution (HL-3, Stewart et al., 1994) to a final PhTx concentration of
113 20 µM in 0.5 % DMSO. Control experiments were performed with the same DMSO
114 concentration in HL-3. PhTx treatment of semi-intact preparations was performed
115 essentially as described previously (Frank et al., 2006). In brief, larvae were pinned
116 down in calcium-free, ice-cold HL-3 at the anterior and posterior endings, followed by
117 a dorsal incision along the longitudinal axis. Larvae were incubated in 10 µl of 20 µM
118 PhTx in DMSO for 10 minutes at room temperature (22 °C). Following this incubation
119 time, PhTx was replaced by HL-3 and larval preparations were completed, followed by
120 fixation and staining.

121

122 **Fixation, staining and immunofluorescence**

123 After PhTx treatment and dissection, larvae were fixed with 4 % paraformaldehyde in
124 phosphate buffered saline (PBS) for 10 minutes and blocked for 30 minutes with PBT
125 (PBS containing 0.05 % Triton X-100, Sigma) including 5 % natural goat serum
126 (Dianova). Primary antibodies were added for overnight staining at 4 °C. After two short
127 and three long (20 min each) washing steps with PBT, preparations were incubated
128 with secondary antibodies for 3 hours at room temperature, followed by two short and
129 three long washing steps with PBT. Preparations were kept in PBS at 4 °C until
130 imaging. All data were obtained from NMJs formed on abdominal muscles 6/7 in
131 segments A2 and A3, except data for Supplementary Figure 4, which were obtained
132 from NMJs formed on abdominal muscle 4 in segments A2-A4. Directly compared data
133 (e.g. Figure 1C) were obtained from larvae stained in the same vial and measured in
134 one imaging session.

135

136 **dSTORM (*direct stochastic optical reconstruction microscopy*)**

137 Super-resolution imaging of the specimen was performed essentially as previously
138 reported (Ehmann et al., 2014; Paul et al., 2015). Preparations were incubated with
139 monoclonal antibody (mAb) Brp^{Nc82} (1:100, Antibody Registry ID: AB_2314866,
140 Developmental Studies Hybridoma Bank) and secondary antibody goat α -mouse
141 F(ab')₂ fragments labelled with Alexa Fluor647 (1:500, A21237, Thermofisher).
142 Boutons were visualized using Alexa Fluor488 conjugated goat α -horseradish-
143 peroxidase antibody (α -hrp, 1:250, Jackson Immuno Research). After staining, larval
144 preparations were incubated in 100 mM mercaptoethylamin (MEA, Sigma-Aldrich)
145 buffer in PBS, pH 7.8 to 7.9 to allow reversible switching of single fluorophores during
146 data acquisition (van de Linde et al., 2008). In all experiments, images were acquired
147 using an inverted microscope (Olympus IX-71, 60x, NA 1.49, oil immersion) equipped
148 with a nosepiece-stage (IX2-NPS, Olympus). 647 nm (F-04306-113, MBP
149 Communications Inc.) and 488 nm (iBEAM-SMART-488-S, Toptica) lasers were used
150 for excitation of Alexa Fluor647 and Alexa Fluor488, respectively. Laser beams were
151 passed through clean-up filters (BrightLine HC 642/10, Semrock and ZET 488/10,
152 Chroma, respectively) combined by a dichroic mirror (LaserMUX BS 473-491R,
153 1064R, F38-M03, AHF Analysentechnik) and directed onto the probe by an excitation
154 dichroic mirror (HC Quadband BS R405/488/532/635, F73-832, AHF
155 Analysentechnik). The emitted fluorescence was filtered with a quadband-filter (HC-
156 quadband 446/523/600/677, Semrock) and a longpass- (Edge Basic 635, Semrock) or
157 bandpass-filter (Brightline HC 525/50, Semrock) for the red and green channel,
158 respectively, and divided onto two cameras (iXon Ultra DU-897-U, Andor) using a
159 dichroic mirror (HC-BS 640 imaging, Semrock). The green channel was used to
160 visualize individual presynaptic boutons in normal fluorescence microscopy. For the
161 red channel, image resolution was 126 nm x 126 nm per pixel to obtain super-
162 resolution of Brp. Single fluorophores were localized and high resolution-images were
163 reconstructed with rapidSTORM (Heilemann et al., 2008; van de Linde et al., 2011;
164 Wolter et al., 2010; Wolter et al., 2012; www.super-resolution.de). Only fluorescence
165 spots with more than 12000 photons were analyzed and subpixel binning of 10 nm
166 px⁻¹ was applied. For visualization of representative dSTORM measurements,
167 reconstructed images from rapidSTORM with 5 nm binning were opened in FIJI
168 (Schindelin et al., 2012) and where contrast enhanced for clarity. Localization precision
169 (Supplementary Figure 1A) was determined with the NeNa algorithm (nearest neighbor

170 based analysis, Endesfelder et al. 2014), implemented in the LAMA software package
171 (LocAlization Microscopy Analyzer; Malkusch and Heilemann, 2016). To check for
172 homogenous illumination of the samples we analyzed and compared localization
173 intensity of all *d*STORM measurements, (i) for the whole image, and (ii) only for
174 analyzed regions and found no differences in A/D counts between experimental groups
175 (Supplementary Figure 1B).

176

177 **Confocal microscopy**

178 For confocal imaging larvae were mounted in PBS and imaged using a commercial
179 confocal laser scanning microscope (Zeiss LSM 700) equipped with an oil-immersion
180 objective (Plan-Apochromat 63x/1.40 Oil M27). Alexa Fluor647 and Alexa Fluor488
181 were excited with the 639 nm and the 488 nm diode laser lines, repectively. The
182 microscope was operated and the images were stored with ZEN 12 software (black
183 edition, Zeiss AG). For each z-stack 7-13 slices with 200 nm axial spacing were
184 obtained. The gain of the photomultiplier tubes was adjusted to 700 and 600 and laser
185 power was set to 1.5 % and 1 % in red and green channels, respectively, to obtain a
186 good signal with little photobleaching allowing subsequent *d*STORM imaging. The
187 pinhole was set to 70.6 μ m, corresponding to 1.32 Airy units in the red and 1.73 Airy
188 units in the green channel. Images were recorded in 1024 x 1024 (lines x pixels) format
189 with 16-bit data depth. Given an approximate resolution of 200 nm in the red channel,
190 the pixel size, adjusting the zoom factor to 1.2, was set to about 83 nm for sufficient
191 data sampling. Settings resulted in a pixel dwell time of 3.15 μ s.

192

193 **Data evaluation**

194 Localization microscopy data were analyzed with custom written Python code
195 (<https://www.python.org/>, language version 3.6) and the web-based Python interface
196 Jupyter (<https://jupyter.org/index.html>). Localization tables from rapidSTORM were
197 directly loaded and analyzed. Prior to the Python-based analysis the regions of interest
198 (ROI) were masked in the reconstructed, binned images from rapidSTORM using FIJI
199 (1.440, Schindelin et al., 2012). These ROIs corresponded to the terminal 6 boutons
200 according to the α -hrp staining. In earlier work on super-resolved Brp-data, density-
201 based spatial clustering of applications with noise (DBSCAN) was used to identify AZ
202 subclusters (Ehmann et al., 2014). Given the parameters k and ϵ , DBSCAN considers
203 a group of localizations as a cluster if there are at least k residues in a circle with radius

204 ε around a certain localization (Ester et al., 1996). Here, we used an improved
205 approach called hierarchical density-based spatial clustering of applications with noise
206 (HDBSCAN) that, in contrast, extracts the most robust clusters from a cluster hierarchy
207 over varying ε environments that are least sensible to ε variation, i.e have the longest
208 lifetime in the cluster tree (Supplementary Figure 2; Campello et al., 2013). The
209 algorithm is thus more powerful for cluster detection in data with variable density. We
210 used the Python implementation of HDBSCAN (McInnes et al., 2017;
211 <https://github.com/scikit-learn-contrib/hdbscan>), which takes minimum cluster size as
212 the main free parameter, and performed two steps of clustering with different values
213 for minimum cluster size on our localization data: (i) to identify the AZs, and (ii) to
214 extract the subclusters from the AZs. We explored optimal clustering parameters for
215 the detection of active zones and varied the minimum cluster size parameter for
216 HDBSCAN (Supplementary Figure 2F). HDBSCAN in Python takes another parameter
217 called minimum samples. By default, this parameter is set to minimum cluster size but
218 choosing a smaller value allows the algorithm to be less conservative, i.e. extract
219 clusters that might be smaller than minimum cluster size but very robust in the cluster
220 hierarchy. We decided to vary minimum samples as a constant fraction of 25 % of
221 minimum cluster size. As expected, increasing minimum cluster size also leads to
222 increasing cluster sizes in tendency. We visually checked the results of our cluster
223 analyses and concluded that a minimum cluster size of 100 yields the most reliable
224 results for AZ detection. Too high values falsely merge adjacent AZs together whereas
225 too low values lead to fragmenting AZs into smaller clusters. However, we found that
226 changes of AZ properties between different experimental groups were robust to
227 varying parameters for AZ clustering (Supplementary Figure 2F). A second HDBSCAN
228 on the individual AZ clusters was performed with minimum cluster size of 24 and a
229 similar number of subclusters was found compared to the DBSCAN-based subcluster
230 analysis of Ehmann et al., 2014. For our subcluster analysis, the cluster selection
231 method was changed to 'leaf' clustering, which comprises a tendency to more
232 homogenous clusters by extracting those that lie on leaf nodes of the cluster tree rather
233 than the most stable clusters. To quantify cluster area, we computed 2D alpha shapes
234 using CGAL (Computational Geometry Algorithms Library, <https://www.cgal.org>) in
235 Python. The geometrical concept of alpha shapes can be used to calculate the shape
236 and thus the area of a set of points. Given a finite set of points and an alpha value α ,
237 an edge of the shape is drawn between two points whenever they lie on the boundary

238 of a disk with radius $\alpha^{1/2}$ that does not contain any other point (Edelsbrunner and
239 Mücke, 1994). To get the alpha shapes of the AZ clusters and AZ subclusters we
240 choose α -values of 800 nm^2 and 300 nm^2 , respectively. The subcluster center of mass
241 (c.o.m) was calculated as mean of the x- and y-values of all localizations of the
242 subcluster, and the AZ c.o.m as mean of its subcluster c.o.m.s. To estimate the
243 distance of subcluster c.o.m. from AZ c.o.m. the Euclidean distance of these points
244 was computed and divided by the square root of the respective AZ area to obtain the
245 area-normalized distance. For evaluation of Brp cluster circularity, the ratio of the
246 Eigenvalues of each cluster was computed, where 1 indicates a perfect circle and
247 values < 1 indicate decreasing circularity (Supplementary Figure 5A). Exclusion criteria
248 for outliers in all dSTORM data evaluations were AZ area $< 0.03 \mu\text{m}^2$ (Ehmann et al.,
249 2014) and $> 0.3 \mu\text{m}^2$, absolute localization counts per AZ > 8000 and mean AZ
250 localization density > 60000 localizations per μm^2 (about 3-5-fold median). Additional
251 exclusion criteria for type Ib neuron recordings were mean AZ localization count < 1000
252 and at the same time mean AZ area $< 0.095 \mu\text{m}^2$ per image, indicative of insufficient
253 data quality. For visualization of the localization-based results (Figure 1B, Figure 2B)
254 scatter plots were created in Python. H functions as derivatives of Ripley's K function
255 were computed using Python package astropy (Robitaille et al., 2013) for each
256 individual AZ and for the random poisson distribution and curves for display were
257 averaged. The function was evaluated in nm steps for radii from 0 to 120 nm and
258 without correction for edge effects. For nearest neighbor analyses we used scikit-learn
259 (Pedregosa et al., 2011) and computed the mean nearest neighbor distance (NND)
260 from the first nearest neighbor of all localizations per AZ. To simulate confocal
261 resolution (Figure 4) localization tables from rapidSTORM with 5 nm binning were
262 converted to FIJI-readable density matrices where raw integrated density corresponds
263 to the localization count in a pixel. Images were contrast enhanced to obtain 0.1 %
264 saturated pixels, a Gaussian filter with 150 nm standard deviation (SD) was applied
265 and the images were scaled to a pixel size of 80 nm. Representative images for both
266 experimental groups were chosen and only pixels in the same ROIs as described
267 above were used for subsequent processing and analysis. Images were converted to
268 8-bit and the gain was adjusted by scaling all pixels in both images to the same value
269 (the brightest of all analyzed pixels in both images was set to the maximum value of
270 255). Following a standard protocol for the quantification of confocal data of the
271 *Drosophila* NMJ (Schmid et al., 2008; Weyhersmüller et al., 2011) a minimal threshold

272 of 50 was applied, and the ‘Analyze Particles’ function in FIJI was used to create
273 individual masks from the thresholded images. The resulting masks were applied to
274 the non-thresholded simulated confocal images to quantify AZ area as well as the
275 mean intensity of the AZ. STED resolution in Figure 4 was simulated similarly, but a
276 Gaussian filter with 25 nm SD was applied to the density matrices. The images had full
277 gain in 8-bit, thus were not further scaled. Planar-oriented AZs were selected using a
278 circular shape including a central hole for recognition. Selection was performed blinded
279 with respect to the experimental groups. Obvious background was removed and single
280 AZs were cut out from the whole images. AZ area and mean pixel intensity per AZ
281 were measured with a threshold of 18 arbitrary units (a. u.; Böhme et al., 2019).
282 Intensity maxima were extracted using the ‘Find Maxima’ function in FIJI with default
283 settings and quantified per AZ. Confocal images were processed and evaluated in FIJI.
284 Z-stacks were maximum projected and Brp spots segmented with pixel intensity
285 thresholds of 50, 100 and 150 a. u. in 8-bit using the ‘Analyze Particles’ function (Figure
286 5A). Mean pixel intensity of resulting masks was measured in the original images.
287 Corresponding Brp spots, extracted with 100 a. u. threshold, and Brp localization
288 clusters were assigned manually. Only clusters that were clearly distinguishable in both
289 confocal and dSTORM without confluence to neighboring signal were used.
290

291 **Statistics**

292 Statistical analyses were performed with Sigma Plot 13 (Systat Software). Shapiro-
293 Wilk was used to test normality. If data were not normally distributed, we used the non-
294 parametric Mann-Whitney rank sum test for statistical analysis and reported data as
295 median (25th-75th percentile) unless indicated otherwise (Supplementary Figure 2F). If
296 data were normally distributed t-test was used and data were reported as mean \pm SEM
297 unless indicated otherwise (Figure 4E, G). Asterisks indicate statistical significance (p
298 < 0.05) and n denotes sample number. In box plots, horizontal lines represent median,
299 boxes quartiles and whiskers 10th and 90th percentiles. Scatter plots show individual
300 data points unless indicated otherwise. Bin counts in histograms were normalized to
301 the total number of observed events and displayed in %. Linear regression curves were
302 fitted and Spearman correlation coefficient r and statistical significance p of
303 correlations were evaluated in Sigma Plot. All plots were produced with Sigma Plot
304 software and figures assembled using Adobe Illustrator (Adobe, 2015.1.1 release).
305

306 **Code and data availability**

307 The authors declare that custom written Python code and all data sets supporting the
308 findings of this work are available from the corresponding authors.

309 **RESULTS**

310 To analyze the AZ nanostructure in tonic type Ib and phasic type Is boutons (Atwood
311 et al., 1993; Kurdyak et al., 1994; Lnenicka and Keshishian, 2000; Hoang and Chiba,
312 2001), we employed *direct* stochastic optical reconstruction microscopy (dSTORM,
313 Heilemann et al., 2008; van de Linde et al., 2011) overcoming the diffraction limit of
314 conventional light microscopy. We used a highly specific monoclonal antibody Brp^{Nc82},
315 mapping to the C-terminal region of the protein (Fouquet et al., 2009) that has been
316 successfully used to study AZ nanoarchitecture with super-resolution microscopy (Kittel
317 et al., 2006; Ehmann et al., 2014). To test the hypothesis that differences in synaptic
318 performance are reflected by Brp reorganization, we imaged type Ib and type Is AZs
319 on abdominal muscles 6/7 in segments A2 and A3 of male crawling 3rd instar
320 *Drosophila melanogaster* larvae (Figure 1A). Since Brp is the most abundant AZ
321 scaffold protein and the Brp^{Nc82} epitope covers the spatial extent of an individual AZ,
322 we will interpret ‘Brp area’ as ‘AZ area’ in this study. We employed a localization-based
323 clustering algorithm HDBSCAN (Material and Methods) in custom written Python code
324 (Figure 1B). This allowed fast, automated analysis of large data sets with several
325 hundred AZs per experimental group and rapid analysis of their clustering. In addition,
326 the approach facilitated rapid subgroup evaluation of large data sets (Supplementary
327 Figure 5).

328

329 **Differences of AZ nanostructure between type Ib and type Is boutons in**
330 ***Drosophila* wildtype larvae**

331 Our analysis concentrated on the first (most distal) 6 boutons of a string without further
332 selection criteria (Paul et al., 2015). In accordance to previous work (Ehmann et al.,
333 2014), we found that AZ area was smaller in type Is than in type Ib boutons (Figure
334 1C, median (25th-75th percentile) 0.088 (0.06-0.142) μm^2 and 0.106 (0.078-0.162) μm^2 ,
335 respectively, $p < 0.001$). As dSTORM allows to estimate protein numbers (Löschberger
336 et al., 2012; Ehmann et al., 2014) we compared the number of Brp localizations per
337 AZ in both bouton types and found fewer localizations per AZ in type Is boutons (Figure
338 1D, 1399 (873-2194) locs. per AZ and 1586 (1031-2369) locs. per AZ in type Is and
339 type Ib boutons, $p < 0.001$). However, the density of Brp localizations was higher in
340 AZs of type Is than in those of type Ib boutons (Figure 1E, 15146 (12939-17583) locs.
341 per μm^2 and 13819 (11555-16486) locs. per μm^2 , $p < 0.001$). To compare AZ shape,
342 we quantified the circularity of Brp spots as the ratio of their Eigenvalues of the

343 covariance matrix (ratio between 0 and 1; 1 indicating a perfect circle taken as
344 indication for viewing an AZ untilted, i.e. from the top, see Material and Methods) and
345 extracted the distributions for both groups. We found that AZ circularity of type Is
346 boutons was smaller than of type Ib boutons (Figure 1F, 0.58 (0.45-0.72) and 0.65
347 (0.52-0.76), respectively, $p < 0.001$). In summary, AZs of type Is boutons are smaller,
348 comprise a higher Brp concentration and have a less circular shape than AZs of type
349 Ib boutons.

350

351 **Distinct organization of Bruchpilot subclusters in type Ib and type Is boutons**

352 A previously published clustering algorithm (modified from Bar-On et al., 2012)
353 revealed that Brp molecules are distributed heterogeneously within the AZ (Ehmann
354 et al., 2014). The authors detected on average 14.5 ± 0.4 (mean \pm SEM) Brp clusters
355 per CAZ unit in type Ib boutons and calculated that ~74 % of all Brp localizations are
356 clustered. Cluster algorithms are not suitable to decide whether a point distribution is
357 clustered or not-clustered. Here, we used Ripley's K function and its derivatives L and
358 H function to determine properties of spatial point patterns independently from
359 conventional clustering algorithms (Kiskowski et al., 2009). Positive values for H(r)
360 indicate clustering, negative values indicate dispersion or edge effects and maximum
361 positive values roughly correspond to the radius of putative clusters. To confirm that
362 Brp comprises a clustered substructural organization at the AZ, we computed H
363 functions of all localizations of individual AZs, obtained averaged curves for the whole
364 population of type Ib and type Is AZs and compared them to the expected curves for a
365 random Poisson distribution (Figure 2A upper panel). These curves show positive
366 values between 1 and 58 nm and 1 and 55 nm with their maxima at 24 nm and 23 nm
367 for type Ib and type Is AZs, respectively. This confirms clustering of Brp on a
368 substructural level and closely matches with published size of Brp submodules
369 (Ehmann et al., 2014). Another way to extract quantitative information from localization
370 distributions is a nearest neighbor analysis (Szoboszlay et al., 2017), a technique
371 successfully used previously to study structure and dynamics of AZ proteins (Glebov
372 et al., 2017; Rebola et al., 2019). The mean nearest neighbor distance (NND) of all Brp
373 localizations per AZ was smaller at type Is than at type Ib AZs (Figure 2A lower panel,
374 4.1 (3.7-4.5) nm and 4.3 (3.9-4.7) nm, $p < 0.001$) as expected for a higher protein
375 density. We conclude that Brp arrangement in AZs of type Is and Ib neurons differs.

376 To further investigate whether Brp subcluster (sc.) organization is also different in the
377 two motor inputs, we developed custom written Python code using the aforementioned
378 HDBSCAN (Material and Methods). In addition to the determination of individual
379 subclusters, this localization-based analysis allowed us to define a center of mass
380 (c.o.m.) for each AZ as well as for its individual subclusters and therefore measure
381 their specific interspaces (Figure 2B). Our analysis revealed that the number of
382 subclusters per AZ was lower in type Is than in type Ib boutons (Figure 2C, 13 (8-20)
383 and 14 (9-21), $p = 0.004$) and subcluster size was smaller (Figure 2D, $1.5 (1.2-1.9) \times$
384 $10^{-3} \mu\text{m}^2$ and $1.6 (1.3-2.0) \times 10^{-3} \mu\text{m}^2$, $p < 0.001$). Interestingly, whereas absolute
385 numbers of Brp localizations (locs.) per subcluster remained unaltered (Figure 2E, 56
386 (50-63) locs. per sc. and 55 (50-62) locs. per sc. in type Is and type Ib boutons, $p =$
387 0.618), Brp localization density of an individual subcluster was higher in type Is than in
388 type Ib AZs (Figure 2F, 37238 (31515-44125) locs. per μm^2 and 34077 (28599-39907)
389 locs. per μm^2 in type Is and type Ib boutons, $p < 0.001$). Furthermore, the clustering
390 algorithm defined individual c.o.m.s for each AZ, as well as for their subclusters (Figure
391 2B). The distance between AZ c.o.m. and subcluster c.o.m.s (referred to as ‘radial
392 distance’) was compared in AZs of both bouton types and was significantly smaller in
393 type Is boutons (Figure 2G, 114 (90-154) nm and 120 (99-156) nm in type Is and type
394 Ib boutons, $p < 0.001$). Since AZ area was smaller in Is AZs too, we normalized this
395 parameter to the size of the respective AZ. This gave an inverse effect (Figure 2H,
396 0.39 (0.35-0.43) a. u. and 0.37 (0.34-0.40) a. u. in type Is and type Ib boutons, $p <$
397 0.001), which suggests a different configuration of Brp subclusters in type Is AZs. In
398 summary, AZs of type Is boutons contain fewer subclusters, which are smaller but
399 contain a higher density of Brp molecules, and in addition, these subclusters are
400 located closer to the AZ center. Taken together, our data provide evidence that the
401 higher release probability of type Is boutons might be reflected by a more compact AZ
402 scaffold.

403

404 **Acute homeostatic plasticity changes Bruchpilot organization in type Ib boutons**

405 Next, we wanted to investigate whether differences of the AZ scaffold can also occur
406 in response to a short-term functional demand. Thus, we studied the effect of acute
407 presynaptic homeostasis induced by PhTx, which is characterized by
408 an increase in quantal content and number of release-ready vesicles (Frank et al.,
409 2006; Weyhersmüller et al., 2011; Davis and Müller, 2015). Using dSTORM we

410 analyzed AZ configuration of type Ib boutons in wildtype larvae incubated in DMSO
411 (control, ctrl) or in PhTx (phtx, Figure 3A). AZ area was reduced in phtx larvae (Figure
412 3B, 0.109 (0.074-0.169) μm^2 and 0.101 (0.068-0.148) μm^2 in ctrl and phtx, $p = 0.009$).
413 In addition, whereas absolute Brp localization numbers were unchanged in phtx
414 (Figure 3C, 1532 (1007-2303) locs. per AZ and 1453 (926-2346) locs. per AZ in ctrl
415 and phtx, $p = 0.236$), the molecular density of Brp was increased after PhTx treatment
416 (Figure 3D, 13555 (11308-16236) locs. per μm^2 and 14082 (11756-17204) locs. per
417 μm^2 in ctrl and phtx, $p = 0.009$). Thus, acute homeostatic plasticity induces a
418 rearrangement of Brp within individual AZs of type Ib boutons without changing the
419 number of Brp molecules per AZ. Previous work discovered a proximo-distal gradient
420 along the type Ib bouton string regarding structure and function, with distal boutons
421 containing more AZs with elevated Brp counts and glutamate release compared to
422 proximal ones (Peled and Isacoff, 2011; Ehmann et al., 2014; Paul et al., 2015).
423 Therefore, we aimed to explore whether the structural changes in response to PhTx
424 treatment occur in a distinct spatial pattern within the NMJ. We performed subgroup
425 analysis of AZs in type Ib boutons number 1-6 separately, and per definition the last
426 bouton, i.e. the most distal one, was referred to as bouton number 1 (Figure 3E, Paul
427 et al., 2015). Spearman correlation coefficients displayed no significant correlation
428 between bouton number and Brp localization density in both groups (Figure 3E, $r =$
429 0.657 and $p = 0.175$ and $r = 0.829$ and $p = 0.0583$ in ctrl and phtx). Thus, the observed
430 density increase occurs in all boutons along the string. These data support the
431 conclusion that structural plasticity in acute homeostasis happens homogeneously at
432 the NMJ and does not include differentiation between boutons of a given type Ib
433 neuron.

434
435 To elucidate if Brp reorganization during acute homeostasis also takes place within
436 subclusters of the AZ scaffold, we again employed the aforementioned algorithms for
437 determination of subclusters. H functions for control and phtx revealed modular AZ
438 structures, as described above for wildtype type Is and Ib boutons (Supplementary
439 Figure 3A). Next, we measured nearest neighbor distances of all AZ localizations and
440 found a decrease in phtx larvae (Supplementary Figure 3B, 4.4 (3.9-4.7) nm and 4.2
441 (3.8-4.6) nm in ctrl and phtx, $p < 0.001$). Comparison of the number of Brp subclusters
442 per AZ detected by HDBSCAN revealed no difference between both groups (Figure
443 3F, 15 (10-21) and 13 (9-21) in ctrl and phtx, $p = 0.084$). However, subcluster area was

444 slightly decreased after PhTx treatment (Figure 3G, 1.7 (1.3-2.1) μm^2 and 1.6 (1.3-2.0)
445 μm^2 in ctrl and phtx, $p = 0.025$). Interestingly, comparing Brp localizations per
446 subcluster and Brp localization density in both groups yielded comparable effects as
447 described for type Ib and type Is boutons (Figure 2): whereas absolute Brp localization
448 numbers remained unchanged after PhTx treatment (Figure 3H, 57 (51-64) locs. per
449 sc. and 56 (51-64) locs. per sc. in ctrl and phtx, $p = 0.480$), Brp localization density of
450 an individual subcluster increased during acute homeostasis (Figure 3I, 33914 (28276-
451 40553) locs. per μm^2 and 34290 (29464-42454) locs. per μm^2 in ctrl and phtx, $p =$
452 0.022). This increased molecular density of Brp subclusters both in strongly releasing
453 type Is boutons as well as in PhTx-treated type Ib boutons is in line with the increase
454 in release probability. Finally, we examined radial distances between the c.o.m. of an
455 AZ and the subcluster c.o.m.s. Remarkably, we found that PhTx decreased radial
456 distance (Figure 3J, 125 (102-163) nm and 116 (96-153) nm in ctrl and phtx, $p = 0.003$).
457 Taken together, these data show that Brp reorganization during acute homeostasis
458 also occurs within individual subclusters of type Ib AZs without changing the Brp
459 amount per subcluster or per AZ.

460

461 Up to this point, data were obtained from NMJs on abdominal muscles 6/7. Some
462 earlier studies imaged abdominal muscle 4 to analyze the effect of PhTx on AZs (Goel
463 et al., 2017; Böhme et al., 2019). The NMJ on muscle 4 forms only type Ib boutons,
464 which might lead to different results and also excludes the possibility to compare two
465 motorinputs at the same NMJ. Thus, we repeated PhTx treatment, performed
466 dSTORM imaging of NMJs of muscle 4 and applied our cluster analysis. This yielded
467 similar results as shown for type Ib AZs on abdominal muscles 6/7 (Supplementary
468 Figure 4).

469

470 **Subgroup analysis of AZ structure in planar view**

471 It is arguable that the orientation of individual AZs has to be taken into account while
472 analyzing radial distributions of molecule clusters. Thus, we used the earlier described
473 tool in our analysis algorithm to measure Brp circularity (Figure 1F) and extracted the
474 distributions in ctrl and phtx (Supplementary Figure 5). As AZ circularity was unaffected
475 by PhTx (Supplementary Figure 5A, 0.64 (0.52-0.75) and 0.65 (0.52-0.77) in ctrl and
476 phtx, $p = 0.161$), it appeared appropriate to analyze the whole dataset without
477 subgroup selection. Furthermore, to address whether planar oriented AZs (i.e.

478 circularity closer to 1) change similarly following PhTx treatment as the whole AZ
479 population, we investigated the relation between AZ area and circularity. Interestingly,
480 this uncovered an inverse correlation represented by Spearman correlation coefficients
481 (Supplementary Figure 5B, $r = -0.241$, $p < 0.001$ and $r = -0.271$ in ctrl and phtx, $p <$
482 0.001). We interpret that low circularity is indicative of AZs in side view or of large Brp
483 spots that partially arise from merged AZs lying nearby in 2D projection. The latter have
484 been referred to as double ring structures, grouped CAZ units or cluster AZs (Kittel et
485 al., 2006; Ehmann et al., 2014; Akbergenova et al., 2018). Assuming that some
486 structural parameters depend strongly on the orientation of the respective AZ, we
487 analyzed AZ area and radial distance in a subsample of AZs with circularity ≥ 0.5 ,
488 assuming a planar orientation (Supplementary Figure 5C). We found a pronounced
489 decrease in AZ area (0.103 (0.075 - 0.149) μm^2 and 0.094 (0.068 - 0.135) μm^2 in ctrl and
490 phtx, $p = 0.002$) and a similar decrease of radial distance in both groups (119 (101 -
491 148) nm and 112 (95 - 139) nm in ctrl and phtx, $p < 0.001$). These data indicate that Brp
492 subcluster compaction correlates with a functional AZ state adjusted to presynaptic
493 potentiation.

494

495 **Nanoscale molecular compaction appears as increased area and intensity in
496 confocal and STED simulations**

497 The effect of presynaptic homeostasis on AZ structure examined with confocal and
498 STED microscopy showed an increase of Brp spot area and intensity (Weyhersmüller
499 et al., 2011; Goel et al., 2017; Böhme et al., 2019). Our *d*STORM measurements,
500 however, revealed a significantly smaller AZ area but an increase of Brp localization
501 density following PhTx treatment (Figure 3). To gain a better understanding how earlier
502 described changes of AZ structure during acute homeostasis relate to our findings, we
503 performed simulations of confocal spatial resolution applying a Gaussian filter of 150
504 nm SD and 80 nm pixel size to our original *d*STORM data (Figure 4A, B). 3D bar plots
505 of mean pixel intensity with 80 nm bins of two example AZs in ctrl and phtx illustrate
506 the applied thresholding level of 50 a. u. used for further quantification (Figure 4C,
507 compare Figure 4B in Weyhersmüller et al., 2011). Analysis of AZ area and mean pixel
508 intensity in one representative *d*STORM image per group after simulation of confocal
509 resolution revealed an increase of both AZ parameters (Figure 4E, 0.346 (0.155 - 0.725)
510 μm^2 and 0.442 (0.230 - 0.678) μm^2 in ctrl and phtx; mean pixel intensity (mean \pm SEM):
511 80 ± 2 a. u. and 96 ± 3 a. u. in ctrl and phtx). In comparison, analysis of AZ area and

512 Brp localization density in that image in original resolution showed the decrease in AZ
513 area and the increase of Brp localization density that was described for the whole
514 dataset (Figure 4D, 0.127 (0.074-0.185) μm^2 and 0.101 (0.072-0.141) μm^2 , 13396
515 (11444-15049) locs. per μm^2 and 14657 (12834-18221) locs. per μm^2 in ctrl and phtx).
516 We conclude that intensity-based quantification with confocal resolution may lead to
517 inverse results concerning AZ area compared to localization-based analysis. In the
518 next step, we simulated STED resolution in the same images used before for confocal
519 simulation and applied a Gaussian filter of 25 nm SD (Figure 4F). AZ area and mean
520 pixel intensity were measured similarly as mentioned above, but with a threshold of 18
521 a. u., and intensity maxima per AZ were detected with a peak finding algorithm in FIJI.
522 This analysis revealed an increased AZ area and mean pixel intensity, as well as a
523 slight increase of the number of intensity maxima per AZ after induction of presynaptic
524 homeostasis (Figure 4G, AZ area 0.08 (0.06-0.103) μm^2 and 0.089 (0.075-0.115) μm^2
525 in ctrl and phtx; mean pixel intensity mean \pm SEM: 39 ± 1 a. u. and 53 ± 1 a. u. in ctrl
526 and phtx; intensity maxima per AZ 3 (2-4) and 3 (3-5) in ctrl and phtx). In summary,
527 simulation of STED resolution gives inverse results for the number of clusters per AZ
528 matching to aforementioned findings.

529

530 **Correlative imaging links increased localization density to increased confocal 531 intensity and AZ area**

532 To further study the correlation between localization density and the confocally
533 measured AZ area and signal intensity suggested by our simulation, we performed
534 sequential confocal-dSTORM imaging of Brp in type Ib boutons (Figure 5A and B).
535 Confocal data were analyzed with intensity thresholds of 50, 100 and 150 a. u. to clarify
536 the influence thresholding has on quantification (Figure 5A). As expected, higher
537 thresholds improved segmentation of individual Brp spots but at the same time
538 eliminated more signal, whereas a low threshold provided best signal preservation but
539 led to insufficient segmentation. For further quantification 100 a. u. thresholding was
540 used. Figure 5C shows enlarged AZs overlaid in confocal and dSTORM resolution in
541 green, magenta and blue to mark AZ identity. Magenta and blue AZs in Figure 5Ci
542 display areas of $0.143 \mu\text{m}^2$ and $0.118 \mu\text{m}^2$ in dSTORM and localization densities of
543 20590 locs. per μm^2 and 14775 locs. per μm^2 , respectively, with a clearly separated
544 green AZ. Confocal imaging cannot distinguish this green AZ and, due to the high
545 localization density of the magenta AZ, further overestimates AZ area compared to

546 *d*STORM ($0.417 \mu\text{m}^2$ and $0.171 \mu\text{m}^2$ for the merged green and magenta AZ and the
547 blue AZ in confocal). Thresholding of confocal images can also lead to complete loss
548 of signal that is included in *d*STORM quantification (Figure 5Cii). Additionally,
549 segmentation of closely spaced AZs is superior using HDBSCAN-based quantification
550 of localization data compared to thresholding-based quantification of confocal data
551 (Figure 5Ciii). In the next step we quantified AZs of the whole dataset after correlative
552 confocal-*d*STORM imaging. Distribution of AZ area was broader in confocal
553 microscopy than in *d*STORM (Figure 5D, $0.164 (0.103-0.246) \mu\text{m}^2$ and $0.101 (0.0768-$
554 $0.147) \mu\text{m}^2$). As expected, we obtained positive correlations between the mean pixel
555 intensity per AZ measured with confocal and the localization density per AZ measured
556 with localization microscopy (Figure 5E, $r = 0.471$, $p < 0.001$). In addition, the
557 localisation density correlated stronger to the confocally-measured than to the
558 *d*STORM-measured AZ area (Figure 5F, $r = 0.361$, $p < 0.001$ and $r = 0.148$, $p =$
559 0.00618). This indicates that a higher localization density in *d*STORM may lead to an
560 apparent enlargement of AZ area in confocal microscopy and supports the findings of
561 our data simulation.

562

563 **AZ ultrastructure of type Ia boutons remains unchanged during acute**
564 **homeostatic plasticity**

565 Finally, we wanted to test whether homeostatic plasticity changes AZs of type Ia
566 boutons. Previous work at the *Drosophila* NMJ showed that chronic homeostasis
567 occurs exclusively at type Ib boutons (Newman et al., 2017; Li et al., 2018). However,
568 acute homeostasis has not been imaged so far. Thus, we applied our cluster algorithm
569 to analyze AZs of type Ia boutons to clarify potential changes after induction of acute
570 homeostasis (Figure 6A). Remarkably, AZ area, Brp localization numbers and Brp
571 density remained unchanged following PhTx treatment (Figure 6B-D). In addition,
572 subcluster analysis as performed before revealed that PhTx treatment did not change
573 the nanoarrangement of Brp within subclusters during acute homeostasis (Figure 6E-
574 H). We conclude that the restriction of presynaptic plasticity to Ib neuron terminals in
575 chronic homeostasis also holds true for structural rearrangements at the AZ for PhTx
576 induced acute homeostasis.

577 **DISCUSSION**

578 Our localization microscopy data show that the molecular AZ scaffold is compacted at
579 stronger high release probability synapses and rearranged during an acute
580 homeostatic challenge. Brp subclusters are rapidly reorganized during strengthening.
581 PhTx induces changes only at AZs of larger, phasic type Ib boutons, which favors the
582 hypothesis that functional homeostatic plasticity at the *Drosophila* NMJ exclusively
583 demands participation of individual motor inputs. The molecular configuration of AZs
584 including its release sites reflects a certain physiological AZ state and the adaptation
585 to functional demands (Kittel and Heckmann, 2016; Ghelani and Sigrist, 2018). This
586 study introduces a new AZ state characterized by Brp compaction associated with
587 strong synapses, high release probability and during acute homeostatic plasticity.

588

589 **Distinct molecular architecture and homeostatic response between AZs of low
590 and high release probability**

591 The amount of Brp appears to scale with release probability (Kittel et al., 2006; Peled
592 et al., 2014; Akbergenova et al., 2018). Our study suggests a direct link between the
593 molecular AZ arrangement and its transmission properties. Using localization
594 microscopy and HDBSCAN we show that AZs of phasic type Is boutons are smaller
595 and have higher Brp concentrations than tonic type Ib boutons. Furthermore, our study
596 confirms that Brp is distributed heterogeneously within the AZ and provides evidence
597 that subcluster organization differs substantially between the motor inputs. At high
598 release probability type Is boutons, subclustes are smaller, contain higher Brp
599 concentrations and are located closer to the AZ center. We hypothesize that this
600 compacted nanoarchitecture reflects a high release probability AZ state for positioning
601 of synaptic vesicles closer to release sites.

602

603 Differences between homeostatic responses of type Ib and type Is boutons have been
604 described in a model of chronic homeostasis (Newman et al., 2017; Li et al., 2018).
605 We investigated the effects of acute homeostasis and found that structural
606 rearrangements exclusively take place at type Ib AZs (Figures 3 and 6). This either
607 favors the hypothesis that acute homeostatic plasticity is accomplished by distinct
608 molecular mechanisms or, in line with the aforementioned findings, is restricted to type
609 Ib terminals. Wentzel et al., 2018 demonstrated that synaptic vesicles recruited from
610 vesicle pools during acute homeostatic plasticity are highly sensitive to EGTA.
611 Differences in coupling distance between the two motor inputs are conceivable, since

612 type Is boutons exhibit higher release probabilities and less short-term facilitation.
613 Hence, reduction of the distance between Brp subclusters and the AZ center
614 (containing the highest density of presynaptic voltage-gated calcium channels,
615 VGCCs) in type Is boutons would not lead to further increase in synaptic release. In
616 contrast, more loosely coupled type Ib boutons could profit from further approximation
617 of Brp to VGCCs, observed in localization microscopy as a decrease in radial distance
618 (Figure 3J, Supplementary Figure 5C). Previous work showed a proximo-distal
619 gradient in release probability along type Ib bouton chains (Peled and Isacoff, 2011).
620 To investigate whether this gradient influences the ability of an AZ to undergo
621 homeostatic plasticity, we analyzed the effect of PhTx in type Ib boutons along the
622 string (Paul et al., 2015). Interestingly, PhTx increased Brp density regardless of the
623 bouton position (Figure 3E) indicating that release probability variation along the
624 bouton string is not limiting for AZ compaction during homeostasis.

625

626 **Compaction of the AZ scaffold without recruitment of Brp molecules**

627 Confocal microscopy revealed an increase in Brp area and intensity after PhTx
628 treatment, interpreted as more Brp molecules (Weyhersmüller et al., 2011; Goel et al.,
629 2017). However, our localization microscopy data provide no evidence for Brp
630 recruitment to the AZ. We suggest that PhTx stimulation leads to an increased Brp
631 density in the AZ and within its subclusters (Figure 3, Supplementary Figure 4). We
632 suggest that AZ compaction is a plasticity pattern to enhance synaptic function and
633 that the increased Brp intensity in confocal microscopy corresponds to the increased
634 protein density due to compaction of the AZ scaffold (Figures 4 and 5). To our
635 knowledge there are no correlative data between confocal microscopy and localization
636 microscopy of AZs available so far. We performed correlative confocal-dSTORM
637 microscopy and provide evidence that a higher protein density in dSTORM translates
638 into an apparent area increase in confocal (Figure 5F). Analysis of confocal data was
639 performed using a conventional thresholding approach (Schmid et al., 2008;
640 Weyhersmüller et al., 2011; Goel et al., 2017). This quantification of the spatial extent
641 of fluorescence signal depends on its intensity. Large structures with low intensity can
642 appear smaller than smaller structures with higher intensity (Figures 4D, E and 5C, F).
643 In contrast, in localization microscopy the photon count of the integrated single-
644 molecule signal is used as selection criterion independent of the pixel size of the
645 reconstructed image (Heilemann et al., 2008). Every fluorophore with an intensity over
646 the threshold is treated equally. To emphasize this technical strength, in this study we

647 left pixel-based quantification and established algorithms working only with the
648 localization coordinates. In combination with HDBSCAN tuned to find stable clusters
649 in data with varying density, we propose an optimized method for analysis of the spatial
650 extent of fluorescence signal. The first super-resolution data on the effects of
651 homeostatic plasticity using STED microscopy reported an increased AZ area in
652 GluRIIA mutants (Weyhersmüller et al., 2011). Our data reveal a more compact Brp
653 scaffold in response to PhTx stimulation. Simulations and correlative confocal-
654 dSTORM microscopy show that Brp compaction results in an apparent increase of AZ
655 size and numbers of Brp modules as described by Böhme et al., 2019. Furthermore,
656 protein density might also have an impact on the differential regulation of calcium
657 channels at single AZs (Gratz et al., 2019). In addition, it appears that chronic and
658 acute homeostasis display different AZ states with respect to structural adaptation
659 aiming at stabilization of neurotransmission. To this end, chronological challenging of the
660 release machinery can plausibly lead to AZ growth, whereas stabilization during
661 minutes may happen by compaction of already available molecules without protein
662 translation (Frank et al., 2006).

663
664 Preceding studies suggested that the AZ scaffold dynamically changes on the minute
665 timescale (Holderith et al., 2012). Different changes are conceivable, (i) decrease in
666 protein numbers and/or AZ size, (ii) increase in protein numbers and/or AZ size or (iii)
667 rearrangement of proteins and/or changes in AZ size. Our data strongly support the
668 third option, which may also be the fastest and most cost-efficient option. Members of
669 the ELKS/CAST family have been shown to regulate the abundance of presynaptic
670 VGCCs and release probability at the Calyx of Held (Dong et al., 2018) and the
671 abundance of RIM and Bassoon was found to scale with the strength of evoked release
672 and AZ area in hippocampal neurons (Matz et al., 2010; Holderith et al., 2012). In
673 *Drosophila* Brp is a well conceivable candidate to change dynamically during
674 homeostatic plasticity (Held and Kaeser, 2018). Our localization microscopy data are
675 in line with these data and suggest a structural correlate of functional homeostasis
676 within presynaptic terminals.

677
678 **AZ nanoscopy**
679 Localization microscopy provides information about how AZs change during
680 presynaptic plasticity (Tang et al., 2016; Glebov et al., 2017) and allows to decipher

681 how amount and arrangement of certain presynaptic proteins are adapted (Nusser,
682 RIM clusters with diameters of ~80 nm were described in hippocampal neurons
683 and show remarkable reorganization during synaptic plasticity (Tang et al., 2016). We
684 believe that at the *Drosophila* AZ Brp subclusters are important functional units
685 likewise. Considering the size of an individual subcluster ($1.6 \times 10^{-3} \mu\text{m}^2$, Figure 2D,
686 3G) corresponding to a circle with ~50 nm diameter, dSTORM localization precision is
687 not limiting (Supplementary Figure 1). However, due to the size of the primary-
688 secondary antibody complex estimated to be around 13 nm (Ehmann et al., 2014),
689 which gives a minimum diameter of 26 nm, subcluster size could still be overestimated
690 and Brp density could be even higher. Böhme et al., 2019 using STED microscopy
691 found fewer Brp subclusters per AZ compared to Ehmann et al., 2014 and the present
692 study. We assume that these differences are caused by different imaging and data
693 evaluation approaches. The drawbacks of a thresholding-based analysis illustrated for
694 confocal microscopy are also evident for quantification of STED data. However, it is
695 possible that STED data describe an intermediate of 6-7 subclusters containing the 15
696 subclusters revealed by dSTORM. A related issue is the apparent ring like
697 arrangement of Brp in STED images of AZs (Kittel et al., 2006; Weyhersmüller et al.,
698 2011; Böhme et al., 2019). In our dSTORM measurements of Brp in AZs rings are less
699 prominent which is probably due to resolution (more prominent rings appearing at the
700 center of the images in Fig. 4F). In addition, only a fraction of AZs has a circular shape
701 (Supplementary Figure 5A), thus, the ring configuration is not a property of all AZs.
702

703 As the structure of *Drosophila* AZs is highly diverse (Figures 1C and 3B) we aimed for
704 an unbiased way of data selection to prevent subjective bias and to represent the
705 heterogeneous population with respect to projection artifacts and orientation (Pauli et
706 al., 2019). Furthermore, the here presented algorithm allowed fast and automated
707 analysis of the whole data set or of a subsample of AZs (Supplementary Figure 5). The
708 density-based clustering approach detects clusters in data with varying density.
709 Nevertheless, it's unclear if clustering of other AZ molecules coincides with functional
710 synaptic properties. In the mammalian cerebellum tightly coupled stellate synapses
711 exhibit clustering of VGCCs, whereas loosely coupled granule cell synapses show a
712 non-clustered VGCC distribution (Rebola et al., 2019).

713

714 Our HDBSCAN-based analysis detected fewer subclusters in high release probability
715 type IIs AZs. Considering the increased localization density, we cannot rule out that
716 changes in subcluster numbers depend on signal density. Localization density in ptx
717 was increased to a similar extent without change in absolute subcluster numbers,
718 which shows in principle that changes in subcluster numbers can be independent. The
719 formation of synaptic vesicle clusters depends on liquid-liquid phase separation, that
720 is achieved by intrinsically disordered regions (IDRs) that do not fold into any stable
721 secondary or tertiary structures (Milovanovic et al., 2018). Glutamine-rich IDRs have
722 also been implicated in the formation of coiled-coils and protein agglomerates (Fiumara
723 et al., 2010). In liquid-liquid phase separations of prion-like FUS (Fused in Sarcoma)
724 family proteins, tyrosine and arginine residues govern the saturation concentration of
725 phase separation, glycine residues maintain liquidity, whereas glutamine and serine
726 residues promote hardening (Wang et al., 2018). The C-terminal end of Brp tethers
727 synaptic vesicles and comprises a stretch of glutamine residues (Hallermann et al.,
728 2010). AZ compaction during homeostasis could arise from vesicles engaging in liquid-
729 liquid phase separation with Brp C-terms. While the molecular binding partners of the
730 Brp C-term are still unclear, a functional interaction with Complexin was reported
731 (Scholz et al., 2019). Regarding the aforementioned model of phase separation of
732 vesicles and Brp and the position of the Brp^{Nc82} epitope, it is also attractive to speculate
733 that all Brp molecules forming one subcluster might tether a single synaptic vesicle.
734 This hypothesis matches with EM studies describing on average 12 vesicles tethered
735 to a single CAZ (Böhme et al., 2016) and with reconstructions of EM tomography data
736 (Zhan et al., 2016). Finally, it appears promising to correlate the transmission
737 properties of an individual AZ using transgenically expressed GCaMP Ca²⁺ sensors
738 (Akbergenova et al., 2018; Gratz et al., 2019) with its nanoarchitecture imaged with
739 super-resolution microscopy to link synaptic activity with ultrastructure.

740

741

742

743

744

745

746

747

748 **AUTHOR CONTRIBUTIONS**

749 A.M., J.E., A.L.S., M.S., M.H. and M.M.P. designed experiments. A.M., M.P., M.H. and
750 M.M.P. performed experiments. A.M., P.K., F.R., M.P., R.J.K., J.E., S.D., M.H. and
751 M.M.P. analyzed the data. A.M., M.H. and M.M.P. wrote the manuscript with the help
752 of all co-authors. A.L.S., M.S., M.H. and M.M.P. coordinated the study and provided
753 funding.

754

755

756 **ACKNOWLEDGEMENTS**

757 This work was supported by grants from the German Research Foundation (DFG)
758 TRR166/B06 to A.L.S. and M.H., TRR166/B02 to S.D., TRR166/B04 to M.S.,
759 KI1460/5-1 and KI1460/4-1 to R.J.K. and from the IZKF Würzburg to A.L.S. and M.H.
760 (N229). The authors thank T. Langenhan for scientific discussions and M. Oppmann
761 and F. Köhler for excellent technical assistance. The authors declare no conflict of
762 interest.

763

764 **REFERENCES**

765

766 Akbergenova Y, Cunningham KL, Zhang YV, Weiss S, Littleton JT. 2018.
767 Characterization of developmental and molecular factors underlying release
768 heterogeneity at Drosophila synapses. *Elife* **10**:7. doi: 10.7554/eLife.38268.

769

770 Atwood HL, Govind CK, Wu CF. 1993. Differential ultrastructure of synaptic terminals
771 on ventral longitudinal abdominal muscles in Drosophila larvae. *Journal of*
772 *Neurobiology* **24**:1008-1024.

773

774 Atwood HL, Karunanihi S. 2002. Diversification of synaptic strength: presynaptic
775 elements. *Nature Reviews Neuroscience* **3**:497-516.

776

777 Bar-On D, Wolter S, van de Linde S, Heilemann M, Nudelmann G, Nachliel E, Gutman
778 M, Sauer M, Ashery U. 2012. Super-resoluuation imaging reveals the internal
779 architecture of nanosized syntaxin clusters. *Journal of Biological Chemistry*
780 **287**:27158-27167 doi: 10.1074/jbc.M112.353250.

781

782 Böhme MA, Beis C, Reddy-Alla S, Reynolds E, Mampell MM, Grasskamp AT,
783 Lützkendorf J, Bergeron DD, Driller JH, Babikir H, Göttfert F, Robinson IM, O'Kane CJ,
784 Hell SW, Wahl MC, Stelzl U, Loll B, Walter AM, Sigrist SJ. 2016. Active zone scaffolds
785 differentially accumulate Unc13 isoforms to tune Ca^{2+} channel-vesicle coupling. *Nature*
786 *Neuroscience* **19**:1311-1320. doi: 10.1038/nn.4364.

787

788 Böhme MA, McCarthy AW, Grasskamp AT, Beuschel CB, Goel P, Jusyte M, Laber D,
789 Huang S, Rey U, Petzoldt AG, Lehmann M, Göttfert F, Haghghi P, Hell SW, Owald D,
790 Dickman D, Sigrist SJ, Walter AM. 2019. Rapid active zone remodeling consolidates
791 presynaptic potentiation. *Nature Communications* **10**:1085. doi: 10.1038/s41467-019-
792 08977-6.

793

794 Campello RJ, Moulavi D, Sander J. 2013. Density-based clustering based on
795 hierarchical density estimates. In *Pacific-Asia Conference on Knowledge Discovery*
796 and *Data Mining*. pp. 160-172. Springer Berlin Heidelberg.

797

798 Davis GW, Müller M. 2015. Homeostatic control of presynaptic neurotransmitter
799 release. *Annual Review of Physiology* **77**:251-270. doi: 10.1146/annurev-physiol-
800 021014-071740.

801

802 Dittman JS, Kreitzer AC, Regehr WG. 2000. Interplay between facilitation, depression,
803 and residual calcium at three presynaptic terminals. *Journal of Neuroscience* **20**:1374-
804 1385.

805

806 Dong W, Radulovic T, Goral RO, Thomas C, Suarez Montesinos M, Guerrero-Given
807 D, Hagiwara A, Putzke T, Hida Y, Abe M, Sakimura K, Kamasawa N, Ohtsuka T, Young
808 SM Jr. 2018. CAST/ELKS Proteins Control Voltage-Gated Ca^{2+} Channel Density and
809 Synaptic Release Probability at a Mammalian Central Synapse. *Cell Reports* **24**:284-
810 293. doi: 10.1016/j.celrep.2018.06.024.

811

812 Edelsbrunner H, Mücke EP. 1994. Three-dimensional alpha shapes. *ACM*
813 *Transactions on Graphics* **13**:43-72. doi: 10.1145/174462.156635.

814

815 Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ, Holm T, Rings A,
816 DiAntonio A, Hallermann S, Ashery U, Heckmann M, Sauer M, Kittel RJ. 2014.
817 Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states.
818 *Nature Communications* **5**:4650. doi: 10.1038/ncomms5650.

819 Endesfelder U, Malkusch S, Fricke F, Heilemann M. 2014. A simple method to estimate
820 the average localization precision of a single-molecule localization microscopy
821 experiment. *Histochemistry and Cell Biology* **141**:629-38. doi: 10.1007/s00418-014-
822 1192-3.

823 Ester M, Kriegel HP, Sander J, Xu X. 1996. A Density-Based Algorithm for Discovering
824 Clusters in Large Spatial Databases with Noise. *Proc. 2nd Int. Conf. on Knowledge
825 Discovery and Data Mining*. Portland OR:226-231.

826 Fiumara F, Fioriti L, Kandel ER, Hendrickson WA. 2010. Essential role of coiled coils
827 for aggregation and activity of Q/N-rich prions and PolyQ proteins. *Cell* **143**:1121-35.
828 doi: 10.1016/j.cell.2010.11.042.

829

830 Fouquet W, Owald D, Wichmann C, Mertel S, Depner H, Dyba M, Hallermann S, Kittel
831 RJ, Eimer S, Sigrist SJ. 2009. Maturation of active zone assembly by Drosophila
832 Bruchpilot. *Journal of Cell Biology* **186**:129-145. doi: 10.1083/jcb.200812150.

833

834 Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW. 2006. Mechanisms
835 underlying the rapid induction and sustained expression of synaptic homeostasis.
836 *Neuron* **52**:663-677.

837

838 Ghelani T, Sigrist SJ. 2018. Coupling the Structural and Functional Assembly of
839 Synaptic Release Sites. *Frontiers in Neuroanatomy* **12**:81. doi:
840 10.3389/fnana.2018.00081.

841

842 Glebov OO, Jackson RE, Winterflood CM, Owen DM, Barker EA, Doherty P, Ewers H,
843 Burrone J. 2017. Nanoscale Structural Plasticity of the Active Zone Matrix Modulates
844 Presynaptic Function. *Cell Reports* **18**:2715-2728. doi: 10.1016/j.celrep.2017.02.064.

845

846 Goel P, Li X, Dickman D. 2017. Disparate Postsynaptic Induction Mechanisms
847 Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy.
848 *Cell Reports* **21**:2339-2347. doi: 10.1016/j.celrep.2017.10.116.

849

850 Gratz SJ, Goel P, Bruckner JJ, Hernandez RX, Khateeb K, Macleod GT, Dickman D,
851 O'Connor-Giles KM. 2019. Endogenous Tagging Reveals Differential Regulation of
852 Ca^{2+} Channels at Single Active Zones during Presynaptic Homeostatic Potentiation
853 and Depression. *Journal of Neuroscience* **39**:2416-2429. doi:
854 10.1523/JNEUROSCI.3068-18.2019.

855

856 Hallermann S, Kittel RJ, Wichmann C, Weyhersmüller A, Fouquet W, Mertel S, Owald
857 D, Eimer S, Depner H, Schwärzel M, Sigrist SJ, Heckmann M. 2010. Naked dense
858 bodies provoke depression. *Journal of Neuroscience* **30**:14340-14345. doi:
859 10.1523/JNEUROSCI.2495-10.2010.

860

861 Heilemann M, van de Linde S, Schüttelpelz M, Kasper R, Seefeldt B, Mukherjee A,
862 Tinnefeld P, Sauer M. 2008. Subdiffraction-Resolution Fluorescence Imaging with

863 Conventional Fluorescent Probes. *Angewandte Chemie International Edition* **33**:6172-
864 6176. doi: 10.1002/anie.200802376.

865

866 Held RG, Liu C, Kaeser PS. 2016. ELKS controls the pool of readily releasable vesicles
867 at excitatory synapses through its N-terminal coiled-coil domains. *eLife* **5**:e14862. doi:
868 10.7554/eLife.14862.

869

870 Held RG, Kaeser PS. 2018. ELKS active zone proteins as multitasking scaffolds for
871 secretion. *Open Biology* **8**:170258. doi: 10.1098/rsob.170258.

872

873 Hoang B, Chiba A. 2001. Single-cell analysis of Drosophila larval neuromuscular
874 synapses. *Developmental Biology* **229**:55-70.

875

876 Holderith N, Lorincz A, Katona G, Rózsa B, Kulik A, Watanabe M, Nusser Z. 2012.
877 Release probability of hippocampal glutamatergic terminals scales with the size of the
878 active zone. *Nature Neuroscience* **15**:988-997. doi: 10.1038/nn.3137.

879

880 Karunianithi S, Marin L, Wong K, Atwood HL. 2002. Quantal size and variation
881 determined by vesicle size in normal and mutant Drosophila glutamatergic synapses.
882 *Journal of Neuroscience* **22**:10267-10276.

883

884 Kiskowski MA, Hancock JF, Kenworthy AK. 2009. On the use of Ripley's K-function
885 and its derivatives to analyze domain size. *Biophysical Journal* **97**:1095-103. doi:
886 10.1016/j.bpj.2009.05.039.

887

888 Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA,
889 Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ. 2006.
890 Bruchpilot promotes active zone assembly, Ca^{2+} channel clustering, and vesicle
891 release. *Science* **312**:1051-1054.

892

893 Kittel RJ, Heckmann M. 2016. Synaptic Vesicle Proteins and Active Zone Plasticity.
894 *Frontiers in Synaptic Neuroscience* **8**:8. doi: 10.3389/fnsyn.2016.00008.

895

896 Kurdyak P, Atwood HL, Stewart BA, Wu CF. 1994. Differential physiology and
897 morphology of motor axons to ventral longitudinal muscles in larval Drosophila. *Journal*
898 *of Comparative Neurology* **350**:463-472.

899

900 Li X, Goel P, Wondolowski J, Paluch J, Dickman D. 2018. A Glutamate Homeostat
901 Controls the Presynaptic Inhibition of Neurotransmitter Release. *Cell Reports* **23**:1716-
902 1727. doi: 10.1016/j.celrep.2018.03.130.

903

904 Liu KS, Siebert M, Mertel S, Knoche E, Wegener S, Wichmann C, Matkovic T,
905 Muhammad K, Depner H, Mettke C, Bückers J, Hell SW, Müller M, Davis GW, Schmitz
906 D, Sigrist SJ. 2011. RIM-binding protein, a central part of the active zone, is essential
907 for neurotransmitter release. *Science* **334**:1565-1569. doi: 10.1126/science.1212991.

908

909 Lnenicka GA, Keshishian H. 2000. Identified motor terminals in Drosophila larvae show
910 distinct differences in morphology and physiology. *Journal of Neurobiology* **43**:186-
911 197.

912

913 Löschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M, Krohne G,

914 Sauer M. 2012. Super-resolution imaging visualizes the eightfold symmetry of gp210
915 proteins around the nuclear pore complex and resolves the central channel with
916 nanometer resolution. *Journal of Cell Science* **125**:570-575. doi: 10.1242/jcs.098822.
917

918 Lu Z, Chouhan AK, Borycz JA, Lu Z, Rossano AJ, Brain KL, Zhou Y, Meinertzhagen
919 IA, Macleod GT. 2016. High-Probability Neurotransmitter Release Sites Represent an
920 Energy-Efficient Design. *Current Biology* **26**:2562-2571. doi:
921 10.1016/j.cub.2016.07.032.
922

923 Malkusch S, Heilemann M. 2016. Extracting quantitative information from single-
924 molecule super-resolution imaging data with LAMA - LocAlization Microscopy
925 Analyzer. *Science Reports* **6**:34486. doi: 10.1038/srep34486.
926

927 Matz J, Gilyan A, Kolar A, McCarvill T, Krueger SR. 2010. Rapid structural alterations
928 of the active zone lead to sustained changes in neurotransmitter release. *Proceedings
929 of the National Academy of Sciences* **107**:8836-8841. doi: 10.1073/pnas.0906087107.
930

931 McInnes L, Healy J, Astels S. 2017. hdbscan: Hierarchical density based clustering,
932 *Journal of Open Source Software* **2**:205. doi:10.21105/joss.00205.
933

934 Milovanovic D, Wu Y, Bian X, De Camilli P. 2018. A liquid phase of synapsin and lipid
935 vesicles. *Science* **361**:604-607. doi: 10.1126/science.aat5671.
936

937 Neher E, Brose N. 2018. Dynamically Primed Synaptic Vesicle States: Key to
938 Understand Synaptic Short-Term Plasticity. *Neuron* **100**:1283-1291. doi:
939 10.1016/j.neuron.2018.11.024.
940

941 Newman ZL, Hoagland A, Aghi K, Worden K, Levy SL, Lee LP, Isacoff EY. 2017. Input-
942 Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction.
943 *Neuron* **93**:1388-1404. doi: 10.1016/j.neuron.2017.02.028.
944

945 Nusser Z. 2018. Creating diverse synapses from the same molecules. *Current Opinion
946 in Neurobiology* **51**:8-15. doi: 10.1016/j.conb.2018.01.001.
947

948 Palay SL, Chan-Palay V. 1974. Cerebellar Cortex – Cytology and Organization.
949 *Springer Verlag Berlin Heidelberg*.
950

951 Paul MM, Pauli M, Ehmann N, Hallermann S, Sauer M, Kittel RJ, Heckmann M. 2015.
952 Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active
953 zone differentiation. *Frontiers in Cellular Neuroscience* **9**:29. doi:
954 10.3389/fncel.2015.00029.
955

956 Pauli M, Paul MM, Proppert S, Sharifi M, Repp F, Kollmannsberger P, Sauer M,
957 Heckmann M, Sirén AL. 2019. Targeted volumetric single-molecule localization
958 microscopy of defined presynaptic structures in brain sections. *bioRxiv* March 05,
959 2019. doi: <https://doi.org/10.1101/568279>.
960

961 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
962 Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher
963 M, Perrot M, Duchesnay E. 2011. Scikit-learn: Machine Learning in Python. *Journal of
964 Machine Learning Research* **12**:2825–2830.

965 Peled ES, Newman ZL, Isacoff EY. 2014. Evoked and spontaneous transmission
966 favored by distinct sets of synapses. *Current Biology* **24**:484-493. doi:
967 10.1016/j.cub.2014.01.022.

968

969 Peled ES, Isacoff EY. 2011. Optical quantal analysis of synaptic transmission in wild-
970 type and rab3-mutant *Drosophila* motor axons. *Nature Neuroscience* **14**:519-526. doi:
971 10.1038/nn.2767.

972

973 Rebola N, Reva M, Kirizs T, Szoboszlay M, Lőrincz A, Moneron G, Nusser Z,
974 DiGregorio DA. 2019. Distinct Nanoscale Calcium Channel and Synaptic Vesicle
975 Topographies Contribute to the Diversity of Synaptic Function. *Neuron* doi:
976 10.1016/j.neuron.2019.08.014. [Epub ahead of print]

977

978 Robitaille TP, Tollerud EJ, Greenfield P, Droettboom M, Bray E, Aldcroft T, Davis M,
979 Ginsburg A, Price-Whelan AM, Kerzendorf WE, Conley A, Crighton N, Barbary K,
980 Muna D, Ferguson H, Grollier F, Parikh MM, Nair PH, Günther HM, Deil C, Woillez J,
981 Conseil S, Kramer R, Turner JEH, Singer L, Fox R, Weaver BA, Zabalza V, Edwards
982 ZI, Bostroem KA, Burke DJ, Casey AR, Crawford SM, Dencheva N, Ely J, Jenness T,
983 Labrie K, Lim PL, Pierfederici F, Pontzen A, Ptak A, Refsdal B, Servillat M, Streicher
984 O. 2013. Astropy: A community Python package for astronomy. *Astronomy &*
985 *Astrophysics* **558**:A33. doi: 10.1051/0004-6361/201322068.

986

987 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch
988 S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K,
989 Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image
990 analysis. *Nature methods* **7**:676-682. doi:10.1038/nmeth.2019.

991

992 Schmid A, Hallermann S, Kittel RJ, Khorramshahi O, Frölich AM, Quentin C, Rasse
993 TM, Mertel S, Heckmann M, Sigrist SJ. 2008. Activity-dependent site-specific changes
994 of glutamate receptor composition in vivo. *Nature Neuroscience* **11**:659-66. doi:
995 10.1038/nn.2122. Epub 2008 May 11.

996

997 Schmidt H, Brachtendorf S, Arendt O, Hallermann S, Ishiyama S, Bornschein G, Gall
998 D, Schiffmann SN, Heckmann M, Eilers J. 2013. Nanodomain coupling at an excitatory
999 cortical synapse. *Current Biology* **23**:244-249. doi: 10.1016/j.cub.2012.12.007.

1000

1001 Scholz N, Ehmann N, Sachidanandan D, Imig C, Cooper BJ, Jahn O, Reim K, Brose
1002 N, Meyer J, Lamberty M, Altrichter S, Bormann A, Hallermann S, Pauli M, Heckmann
1003 M, Stigloher C, Langenhan T, Kittel RJ. 2019. Complexin cooperates with Bruchpilot
1004 to tether synaptic vesicles to the active zone cytomatrix. *Journal of Cell Biology*
1005 **218**:1011-1026. doi: 10.1083/jcb.201806155. Epub 2019 Feb 19.

1006

1007 Stewart BA, Atwood HL, Renger JJ, Wang J, Wu CF. 1994. Improved stability of
1008 *Drosophila* larval neuromuscular preparations in haemolymph-like physiological
1009 solutions. *Journal of Comparative Physiology* **175**:179-191.

1010

1011 Südhof TC. 2012. The presynaptic active zone. *Neuron* **75**:11-25. doi:
1012 10.1016/j.neuron.2012.06.012.

1013

1014 Szoboszlay M, Kirizs T, Nusser Z. 2017. Objective quantification of nanoscale protein
1015 distributions. *Science Reports* **7**:15240. doi: 10.1038/s41598-017-15695-w.

1016 Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. 2016. A trans-
1017 synaptic nanocolumn aligns neurotransmitter release to receptors. *Nature* **536**:210-4.
1018

1019 Taschenberger H, Leão RM, Rowland KC, Spirou GA, von Gersdorff H. 2002. Optimizing synaptic architecture and efficiency for high-frequency transmission.
1020 *Neuron* **36**:1127-1143.
1021

1022

1023 Valera AM, Doussau F, Poulain B, Barbour B, Isope P. 2012. Adaptation of granule cell to Purkinje cell synapses to high-frequency transmission. *Journal of Neuroscience* **32**:3267-3280. doi: 10.1523/JNEUROSCI.3175-11.2012.
1024

1025

1026 van de Linde S, Sauer M, Heilemann M. 2008. Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. *Journal of Structural Biology* **164**:250-254. doi: 10.1016/j.jsb.2008.08.002. Epub 2008 Aug 26.
1027

1028

1029

1030

1031

1032 van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M Sauer M. 2011 Direct stochastic optical reconstruction microscopy with standard fluorescent probes. *Nature Protocols* **7**:991–1009.
1033

1034

1035

1036 Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA. 2018. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. *Cell* **174**:688-699.e16. doi: 10.1016/j.cell.2018.06.006.
1037

1038

1039

1040

1041 Wentzel C, Delvendahl I, Sydlik S, Georgiev O, Müller M. 2018. Dysbindin links presynaptic proteasome function to homeostatic recruitment of low release probability vesicles. *Nature Communications* **9**:267. DOI: <https://doi.org/10.1038/s41467-017-02494-0>.
1042

1043

1044

1045

1046 Weyhersmüller A, Hallermann S, Wagner N, Eilers J. 2011. Rapid active zone remodeling during synaptic plasticity. *Journal of Neuroscience* **31**:6041-6052. doi: 10.1523/JNEUROSCI.6698-10.2011.
1047

1048

1049

1050 Wolter S, Schüttelpelz M, Tscherepanow M, van de Linde S, Heilemann M, Sauer M. 2010. Real-time computation of subdiffraction-resolution fluorescence images. *Journal of Microscopy* **237**:12-22. doi: 10.1111/j.1365-2818.2009.03287.x.
1051

1052

1053

1054 Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle MC, van de Linde S, Sauer M. 2012. rapidSTORM: Accurate, fast and open-source software for localization microscopy. *Nature Methods* **9**:1040-1041. doi: 10.1038/nmeth.2224.
1055

1056

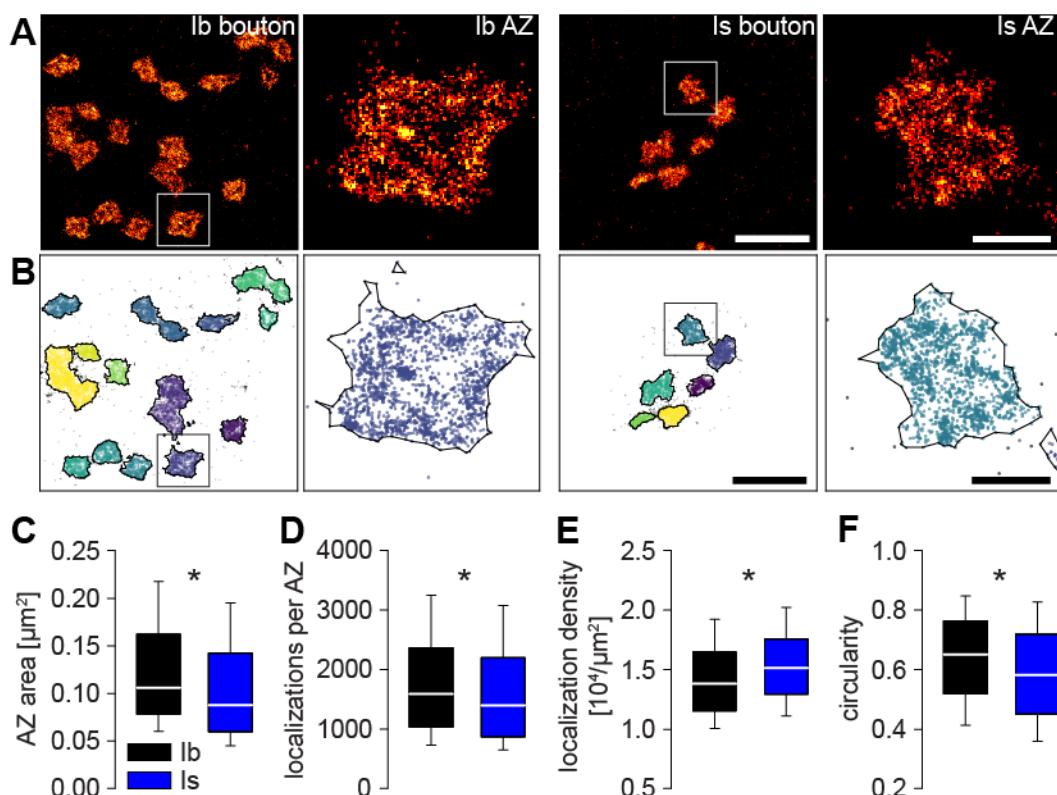
1057

1058 Xu-Friedman MA, Harris KM, Regehr WG. 2001. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. *Journal of Neuroscience* **21**:6666-6672.
1059

1060

1061

1062 Zhan H, Bruckner J, Zhang Z, O'Connor-Giles K. 2016. Three-dimensional imaging of Drosophila motor synapses reveals ultrastructural organizational patterns. *Journal of Neurogenetics* **30**:237-246. DOI: 10.1080/01677063.2016.1253693.
1063


1064

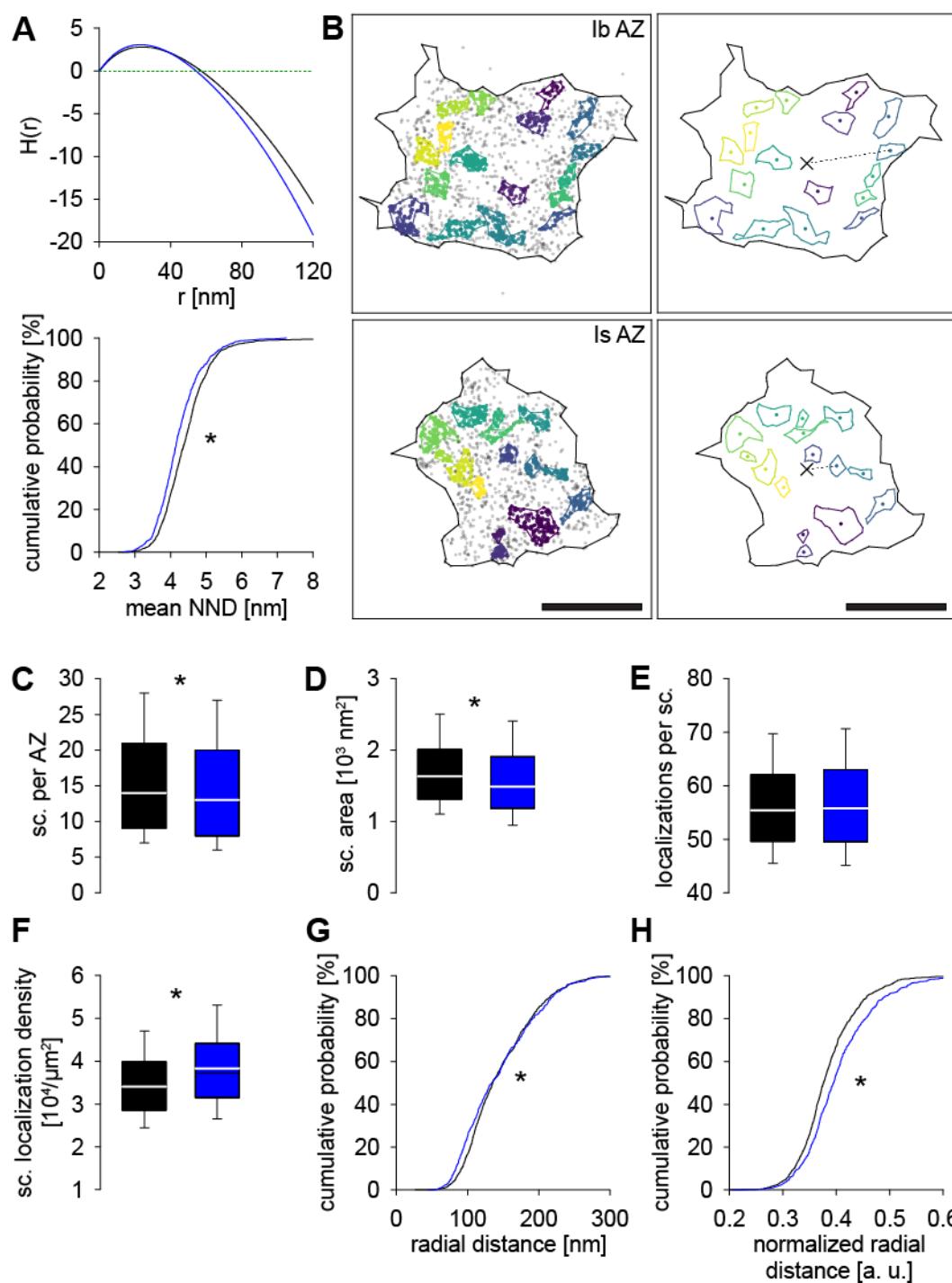
1065

1066

1067
1068

FIGURES

1069
1070

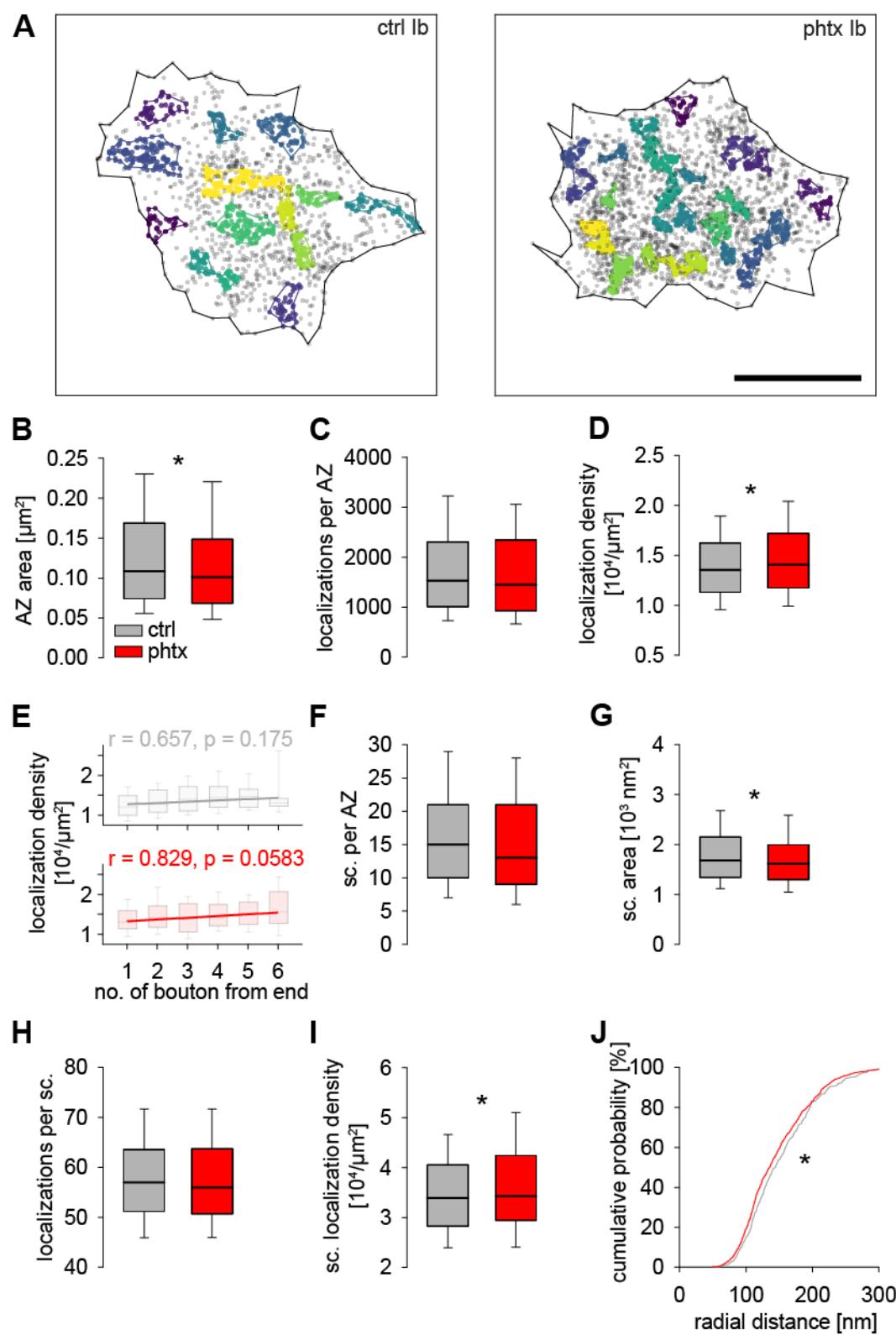

Figure 1. More compact Brp arrangement at AZs of type Is boutons.

(A) Representative dSTORM images of a type Ib bouton and a type Is bouton of a wildtype *Drosophila* NMJ on abdominal muscles 6/7 stained with Brp^{Nc82} antibody labelled with Alexa Fluor647 conjugated F(ab')₂ fragments. Enlargement of boxed AZs. Scale bars in (A, B) 1 μm for boutons and 200 nm for AZs.

(B) Boutons and AZs from (A) displayed via the analysis algorithm used throughout this manuscript. Individual AZs are surrounded by black lines indicating alpha shapes to determine AZ area and circularity, clustered Brp localizations are shown as colored dots (with colors indicating cluster identity), unclustered Brp localizations as grey dots.

(C) AZ area in type Ib boutons (black, for C-F n = 1120 AZs from 22 NMJs from 10 animals) and type Is boutons (blue, for C-F n = 673 AZs from 18 NMJs from 10 animals) shown as box plots.

(D-F) Number of Brp localizations per individual AZ, Brp localization density and AZ circularity in both bouton types.

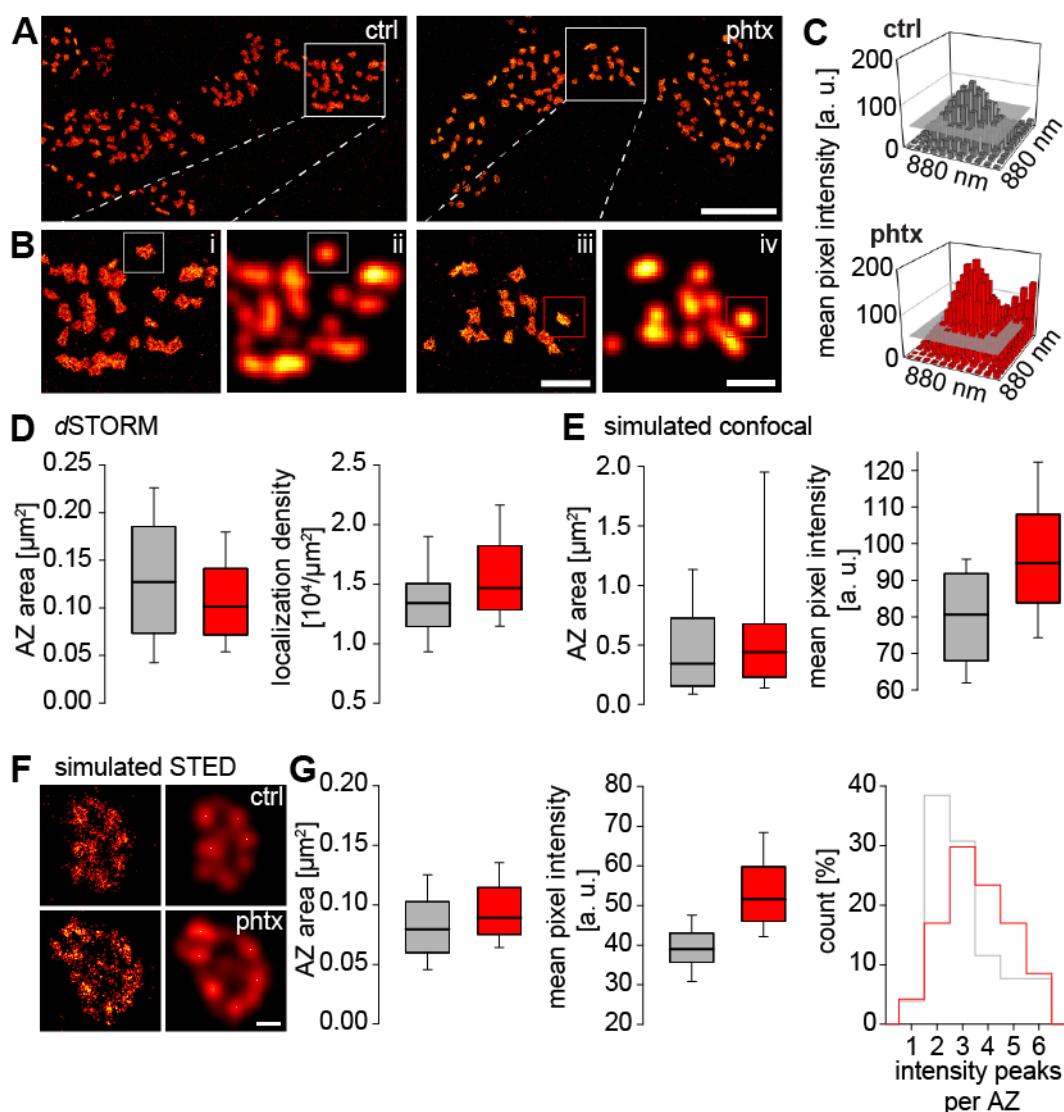

1084

1085 **Figure 2. Distinct Brp subcluster organization in type Ib and type Is boutons.**

1086 (A) Upper panel: Averaged H functions (derivative from Ripley's K function, see
1087 Material and Methods) of all AZs of type Ib (black) and type Is boutons (blue). Lower
1088 panel: Cumulative plots of the mean nearest neighbor distance (NND) of all Brp
1089 localizations per AZ in type Ib ($n = 1120$ AZs from 22 NMJs from 10 animals) and type
1090 Is boutons ($n = 673$ AZs from 18 NMJs from 10 animals).

1091 (B) Left panels: Scatter plots illustrating the analysis algorithm applied to AZs shown
1092 in Figure 1B with colored Brp subclusters surrounded by colored lines indicating alpha

1093 shapes for area determination. Unclustered Brp localizations are displayed as grey
1094 dots. Right panels: Determination of the center of mass (c.o.m.) of the AZ (cross) and
1095 of individual subclusters (colored dots) for measurement of radial distances
1096 (exemplified by dashed line for one subcluster). Scale bars 200 nm.
1097 (C) Subcluster numbers per individual type Ib AZ (for C-H n = 1120 AZs from 22 NMJs
1098 from 10 animals) and type Is AZ (for C-H n = 673 AZs from 18 NMJs from 10 animals).
1099 (D-F) Subcluster area (D), number of Brp localizations per subcluster (E) and Brp
1100 localization density (F) in both bouton types.
1101 (G) Cumulative plots of the radial distance between the AZ c.o.m. and the c.o.m. of
1102 individual subclusters in both bouton types.
1103 (H) Cumulative plots of radial distances shown in (G) normalized to the AZ area.



1104

1105 **Figure 3. Acute homeostatic plasticity decreases AZ size, enhances Brp**
1106 **localization density and changes subcluster organization in type Ib boutons.**

1107 (A) Scatter plots of type Ib AZs from a control animal (ctrl, left) and a Philanthotoxin
1108 treated animal (phtx, right), respectively. Scale bar 200 nm.

1109 (B-D) AZ area (B), number of Brp localizations per AZ (C) and Brp localization density
1110 (D) in ctrl (grey, for B-J n = 568 AZs from 13 NMJs from 6 animals) and phtx larvae
1111 (red, for B-J n = 792 AZs from 14 NMJs from 5 animals).
1112 (E) Brp localization density in both groups shown as boxplots for individual boutons
1113 number 1-6 from the end of the bouton string. Spearman correlation coefficients show
1114 no significant correlation between AZ localization density and bouton position in ctrl (n
1115 = 240, 140, 102, 71, 54, 19 AZs for boutons 1-6) and phtx (n = 251, 134, 146, 117, 78,
1116 51 AZs for boutons 1-6, respectively).
1117 (F-I) Subcluster numbers per type Ib AZ (F), subcluster area (G), the number of Brp
1118 localizations per subcluster (H) and Brp localization density (I) in ctrl and phtx.
1119 (J) Cumulative plots of the radial distance between the AZ c.o.m. and the c.o.m. of
1120 individual subclusters in both groups.

1121

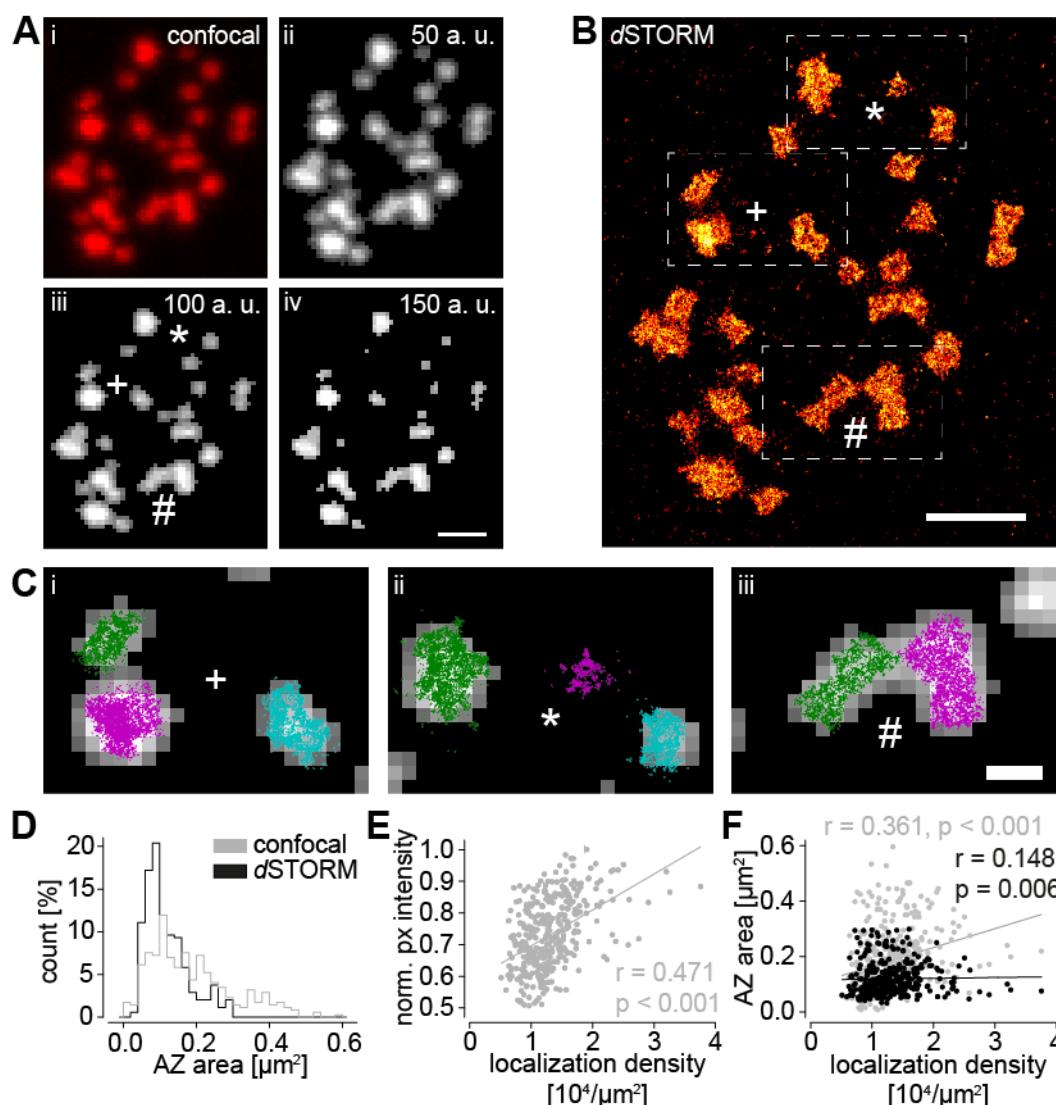
1122 **Figure 4. Nanoscale molecular compaction appears as increased area and**
 1123 **intensity in confocal simulation and as more Brp clusters in STED simulation.**

1124 (A) Sections of dSTORM images in ctrl and phtx in resolution generally used in this
 1125 manuscript (5 nm binning, Material and Methods). Boxes highlight enlarged regions in
 1126 (B). Scale bar 4 μ m.

1127 (B) Enlarged regions from (A) with dSTORM resolution (i / iii) and simulated confocal
 1128 resolution (ii / iv, 80 nm pixels, 150 nm Gaussian blur). Boxes highlight selected AZs
 1129 in (C). Scale bars 1.2 μ m.

1130 (C) 3D bar plots of mean pixel intensity in confocal resolution of boxed AZs in (B). Grey
 1131 plane indicates thresholding level of 50 a. u. which was used for quantification in (E).

1132 (D) AZ area and Brp localizations obtained from dSTORM analysis in ctrl (grey, n = 57
 1133 AZs) and phtx (red, n = 100 AZs).


1134 (E) AZ area and mean pixel intensity quantified as shown in (C), i.e. by assuming
 1135 confocal resolution, in ctrl (n = 30 AZs) and phtx (n = 35 AZs). Note that confluence of

1136 individual Brp spots at this level of resolution leads to a deviant number of AZs
1137 compared to (D).

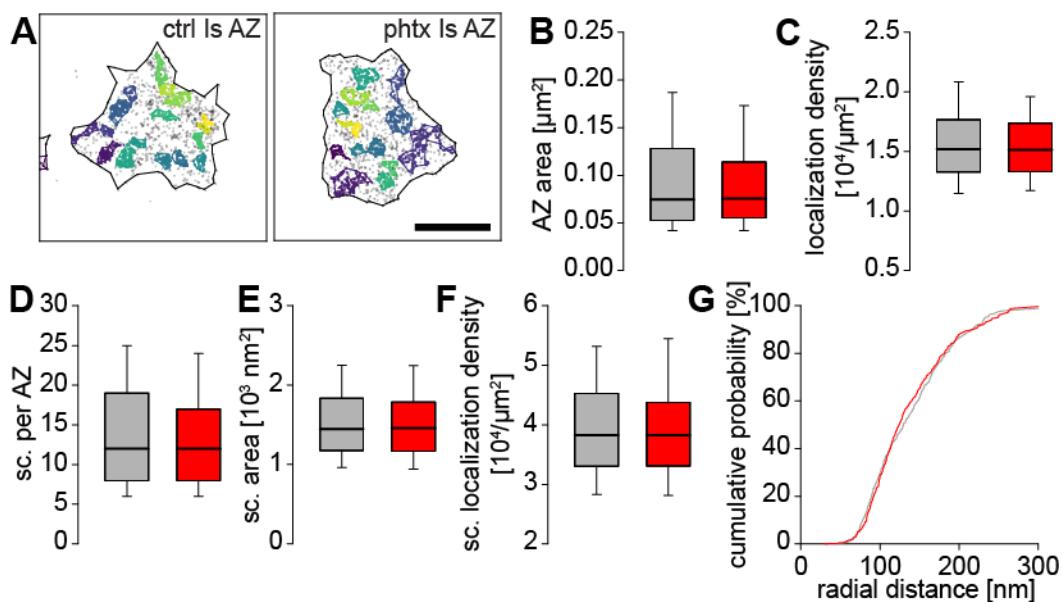
1138 (F) Example type Ib AZs of ctrl (upper panels) and phtx (lower panels) in *d*STORM
1139 resolution (left) and simulated STED resolution (25 nm Gaussian blur, right). White
1140 spots indicate maxima detected with FIJI peak finding algorithm.

1141 (G) AZ area, mean pixel intensity and number of intensity peaks, i.e. Brp modules, per
1142 AZ obtained from simulated STED analysis (Material and Methods) in ctrl (n = 26 AZs)
1143 and phtx (n = 47 AZs).

1144

1145

1146 **Figure 5. Correlative confocal-dSTORM microscopy links increased localization**
1147 **density to increased confocal intensity and AZ area.**


1148 (A) Representative confocal image of a type Ib bouton stained as described above
1149 (see Figure 1A). (i) unprocessed original image and (ii, iii, iv) after applying an 8-bit 50,
1150 100 and 150 a. u. threshold to the original image. Symbols mark corresponding regions
1151 in (B) enlarged in (C). Scale bar 1 μm .

1152 (B) Representative dSTORM image of the same bouton as shown in (A). Boxes
1153 correspond to enlarged regions in (C). Scale bar 1 μm .

1154 (C) Enlarged confocal AZs thresholded with 100 a. u. in grey corresponding to boxed
1155 regions in (B) and overlaid scatter plots of Brp localizations from dSTORM (green,
1156 magenta, blue for cluster identity). Localization clusters at the edges are not displayed.
1157 Scale bar 330 nm.

1158 (D) AZ area in confocal (grey) and dSTORM imaging (black, for D-F n = 343
1159 corresponding AZs from 12 NMJs from 7 animals).

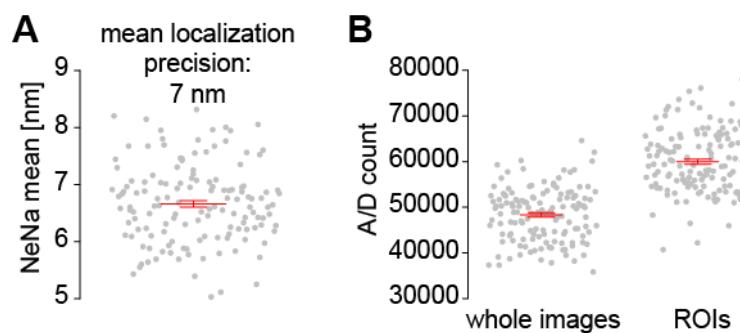
1160 (E) Spearman correlation coefficient shows a positive correlation between the
1161 normalized mean pixel intensity in confocal imaging and *d*STORM localization density.
1162 (F) Spearman correlation coefficients show a much stronger correlation between AZ
1163 area in confocal imaging and localization density (grey) than in AZ area measured with
1164 *d*STORM and localization density (black).

1165

1166 **Figure 6. No further AZ compaction in type Ia boutons following PhTx
1167 stimulation.**

1168 (A) Scatter plots of AZs in type Ia boutons of ctrl and phtx larvae. Scale bar 200 nm.

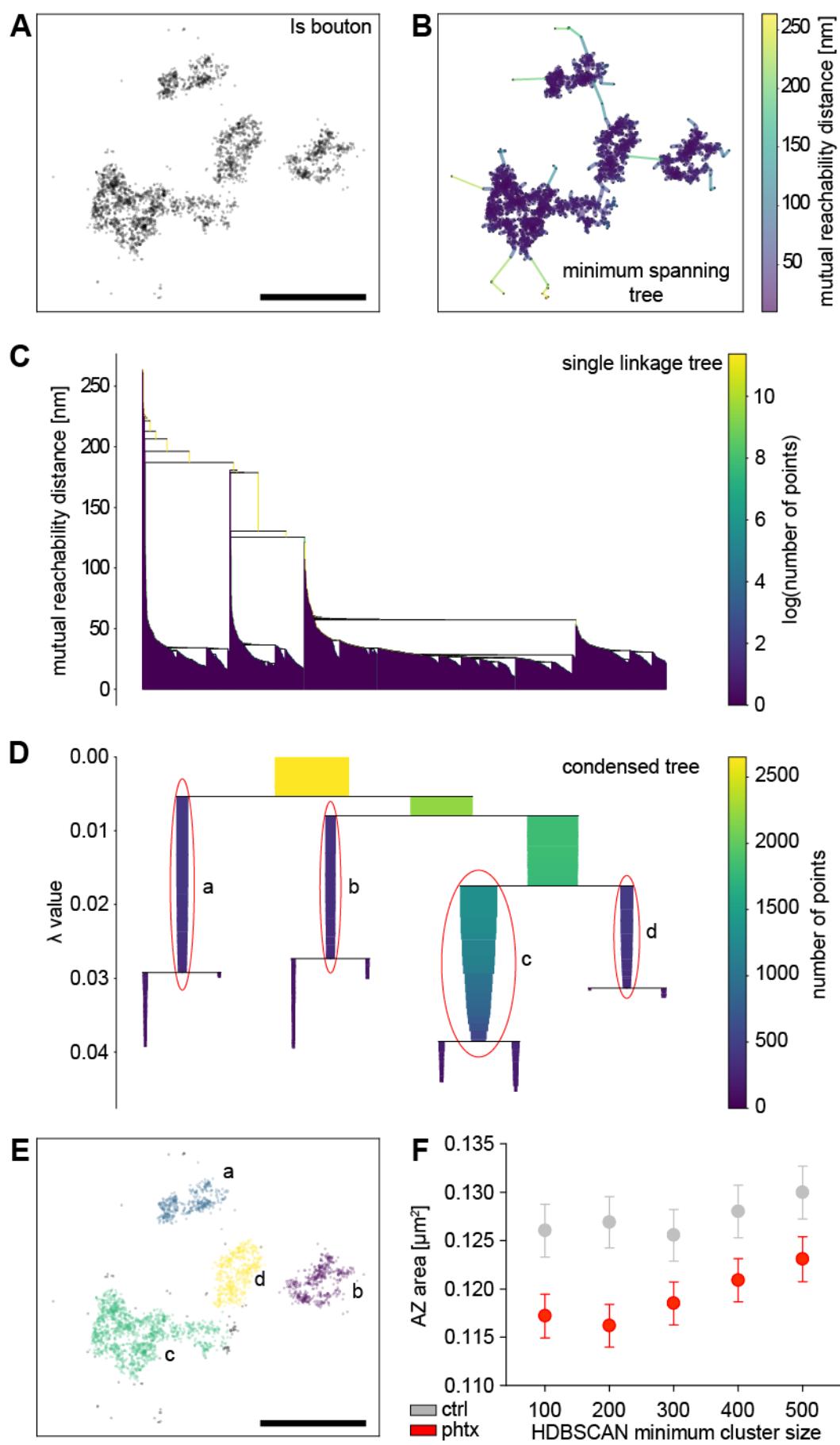
1169 (B, C) AZ area (B) and Brp localization density (C) in ctrl (grey, for B-G n = 449 AZs
1170 from 16 NMJs from 6 animals) and phtx (red, for B-G n = 406 AZs from 13 NMJs from
1171 5 animals).


1172 (D-F) Number of subclusters per AZ (D), subcluster area (E) and Brp localization
1173 density of subclusters (F) in ctrl and phtx.

1174 (G) Cumulative plots of the radial distance between the AZ c.o.m. and the c.o.m. of
1175 individual subclusters in both groups.

1176

1177 **SUPPLEMENTARY MATERIAL**


1178

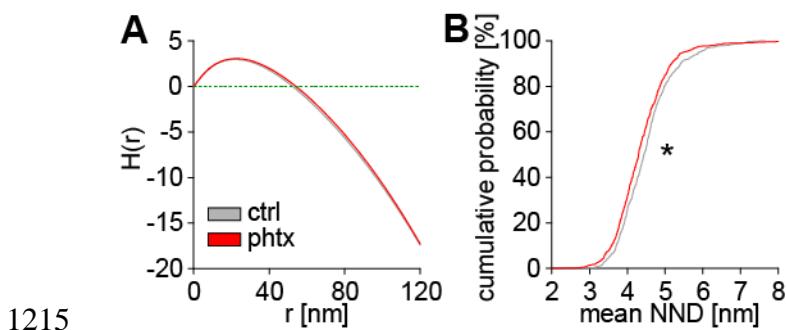
1180 **Supplementary Figure 1. Quantification of localization precision and intensity.**

1181 (A) Scatter plots of localization precision determined by NeNa algorithm. Data points
1182 (grey) correspond to single dSTORM measurements related to Figures 1-3, 6 and
1183 Supplementary Figure 4 (for A and B). Mean localization precision (red, mean \pm SEM)
1184 was 7 nm in this study.

1185 (B) A/D counts in whole dSTORM images and in regions of interest (ROIs) for the
1186 experimental groups. Data points for individual images (grey) as well as mean \pm SEM
1187 (red) are displayed. There were no significant differences between groups.

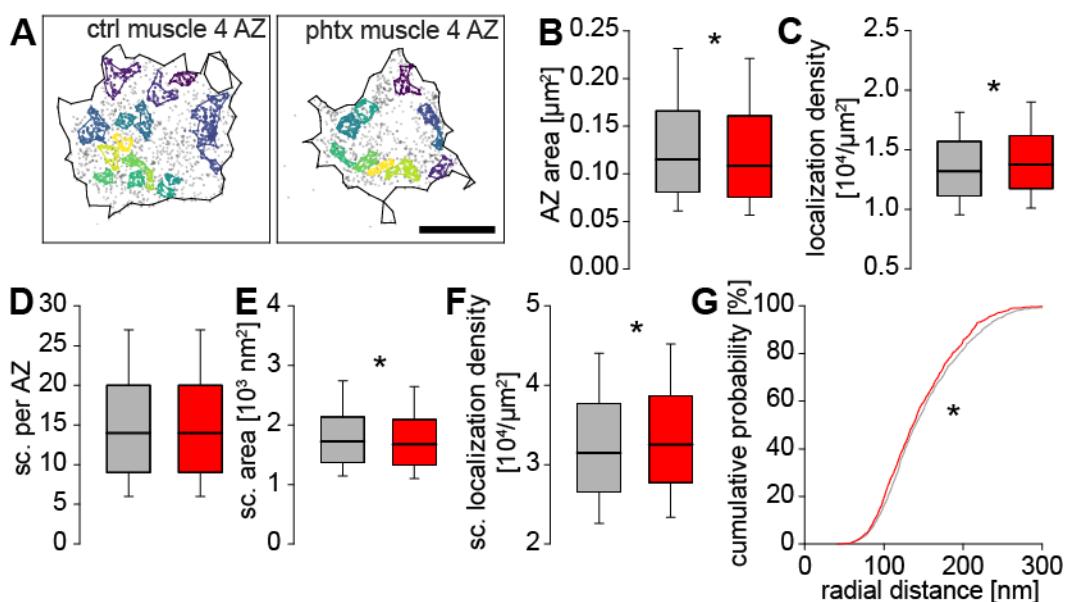
1190 **Supplementary Figure 2. HDBSCAN principle and robustness.**

1191 (A) Scatter plot of Brp localizations of a type Ia bouton. Scale bar 500 nm.


1192 (B) Minimum spanning tree generated with HDBSCAN in Python (minimum cluster size
1193 100, minimum samples 25, cluster selection method 'excess of mass', see Material
1194 and Methods) for bouton displayed in (A). Color of the lines between nearest points
1195 indicates their respective mutual reachability distance according to the color bar.

1196 (C) Single linkage tree computed based on the mutual reachability distance.

1197 (D) Condensed cluster tree computed from single linkage tree based on minimum
1198 cluster size. Red circles correspond to the most robust clusters in this example and
1199 lowercase letters indicate cluster identity corresponding to (E). The λ -value is the
1200 reciprocal of the mutual reachability distance.

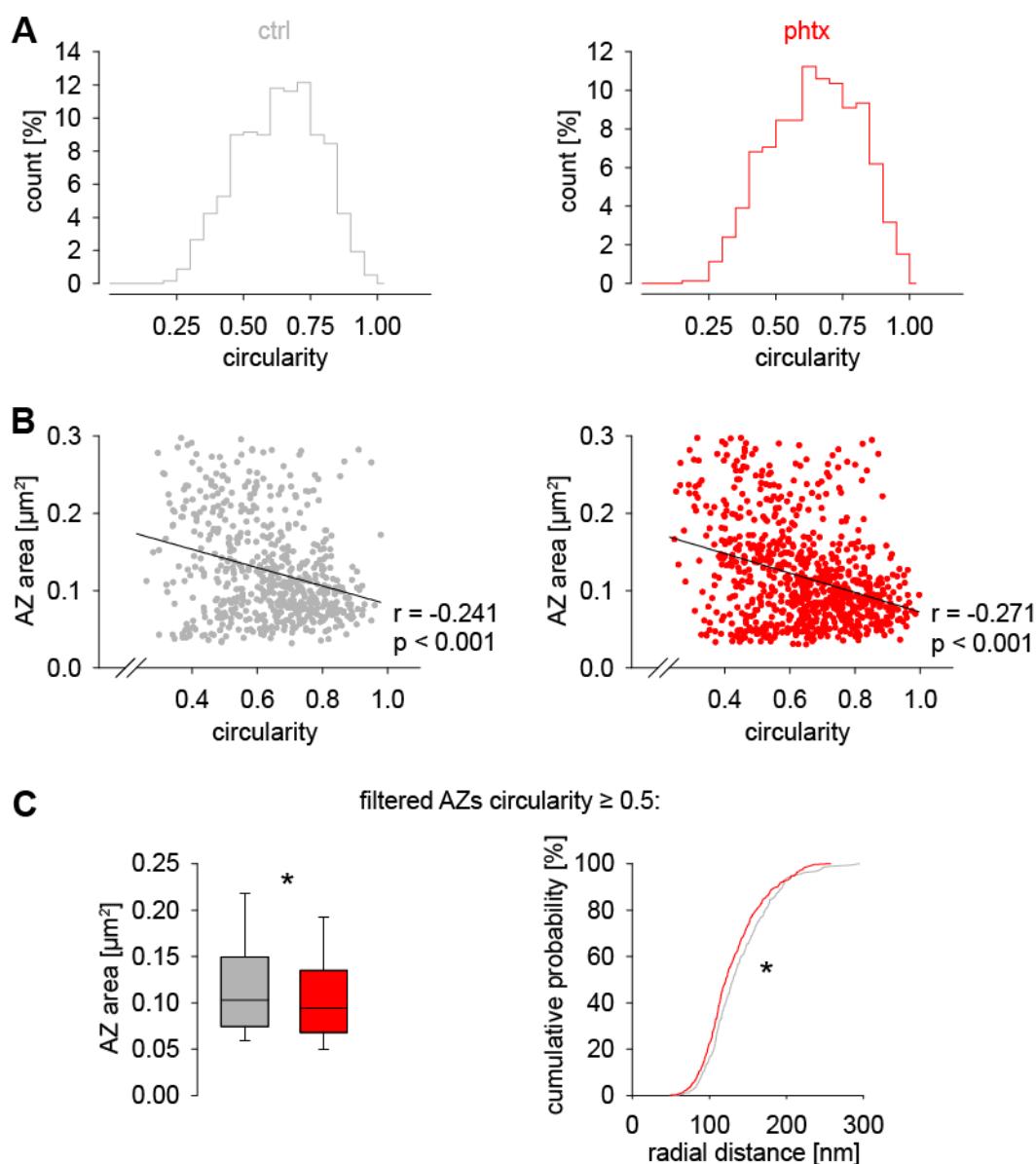

1201 (E) Data from (A-D) with individual localization clusters in different colors and
1202 lowercase letters indicating cluster identity corresponding to (D). Grey points indicate
1203 unclustered localizations. Scale bar 500 nm.

1204 (F) Scatter plots (mean \pm SEM) showing the relation between varying HDBSCAN
1205 minimum cluster size for the detection of AZ clusters and AZ area with HDBSCAN
1206 minimum samples at a constant fraction of 25 % in ctrl (grey) and phtx (red) type Ib
1207 boutons of NMJs on muscles 6/7. Differences in AZ area between both groups show
1208 the same tendency independent of parameter variation and, thus, are considered to
1209 be robust. Visualization of the clustering with different parameter combinations showed
1210 similarly reliable behavior with a slight tendency to better cluster segmentation for
1211 smaller values. For the quantification throughout this manuscript the parameter
1212 combination minimum cluster size 100 and minimum samples 25 was chosen for AZ
1213 detection. Data for all parameters in this plot were equally corrected for outliers with
1214 the same thresholds (Material and Methods).

1215
1216 **Supplementary Figure 3. H functions and nearest neighbor analysis of AZs**
1217 **during acute homeostatic plasticity.**

1218 (A) Averaged H functions (derivative from Ripley's K function, see Material and
1219 Methods) of all AZ localizations of ctrl (grey) and phtx (red). Positive values for $H(r)$
1220 indicate clustering and negative values dispersion or edge effects. Maximum positive
1221 values roughly correspond to the radius of putative AZ subclusters.
1222 (B) Cumulative plots of the mean nearest neighbor distance of all Brp localizations per
1223 AZ in both groups (ctrl: $n = 568$ AZs from 13 NMJs from 6 animals; phtx: $n = 792$ AZs
1224 from 14 NMJs from 5 animals).

1225


1226 **Supplementary Figure 4. AZ nanoarchitecture in type Ib boutons from NMJs on**
1227 **abdominal muscle 4 of *Drosophila* 3rd instar larvae.**

1228 (A) Scatter plots of a ctrl and a phtx type Ib AZ. Scale bar 200 nm.

1229 (B, C) AZ area (B) and Brp localization density (C) in ctrl (grey, for B-G n = 1183 AZs
1230 from 20 NMJs from 6 animals) and phtx (red, for B-G n = 1445 AZs from 22 NMJs from
1231 8 animals).

1232 (D-F) Subcluster numbers per individual type Ib AZ (D), subcluster area (E) and
1233 subcluster localization density (F) in both groups.

1234 (G) Cumulative plots of the radial distance between the AZ c.o.m. and the c.o.m. of
1235 individual subclusters in ctrl and phtx.

1236

1237 **Supplementary Figure 5. AZ circularity in type Ib boutons after PhTx treatment.**

1238 (A) AZ circularity (ratio of Eigenvalues with 1.0 representing a perfect circle) in ctrl

1239 (grey, $n = 568$ AZs from 13 NMJs from 6 animals) and phtx (red, $n = 792$ AZs from 14

1240 NMJs from 5 animals). Phtx did not change circularity of AZs ($p = 0.161$).

1241 (B) Scatter plots illustrating correlation of AZ circularity and area in ctrl and phtx and

1242 linear regression curves (black lines). Spearman coefficients r and p -values show

1243 negative correlations between groups.

1244 (C) AZs with circularity ≥ 0.5 (which was taken as indication for an AZ viewed from top)

1245 were used to compare AZ organization in ctrl and phtx. Box plots of AZ area and

1246 cumulative plots of the radial distance between the AZ c.o.m. and the c.o.m. of

1247 individual subclusters ($n = 442$ AZs from 13 NMJs from 6 animals and $n = 621$ AZs

1248 from 14 NMJs from 5 animals in ctrl and phtx, respectively).