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Abstract 

Pathogenic variants in BRCA1 and BRCA2 (BRCA1/2) lead to increased risk of breast, ovarian, and 

other cancers, but most variant positive individuals in the general population are unaware of their risk, 

and little is known about the prevalence of pathogenic BRCA1/2 variants in non-European populations. 

We investigated BRCA1/2 prevalence and impact using exome sequencing and electronic health record 

(EHR) data from 30,223 adult participants of the BioMe Biobank in New York City. There were 218 (0.7%) 

individuals harboring expected pathogenic variants, resulting in an overall prevalence of 1 in 139. In sub-

populations defined by genetic ancestry, the highest prevalence was in individuals of Ashkenazi Jewish 

(AJ; 1 in 49), Filipino and Southeast Asian (1 in 81), and Non-AJ European (1 in 103) descent. Among 218 

variant positive individuals, 112 (51.4%) harbored known founder variants: 80 had AJ founder variants 

(BRCA1 c.5266dupC and c.68_69delAG, and BRCA2 c.5946delT), 7 had a Puerto Rican founder variant 

(BRCA2 c.3922G>T), and 25 had one of 19 other founder variants. Non-European populations were more 

likely to harbor BRCA1/2 variants that were not classified in ClinVar, or that had uncertain or conflicting 

evidence for pathogenicity. Within mixed ancestry populations, such as Hispanic/Latinos with genetic 

ancestry from Africa, Europe, and the Americas, there was a strong correlation between the proportion 

African genetic ancestry and the likelihood of harboring a BRCA1/2 variant with uncertain or conflicting 

evidence for pathogenicity. Based on EHR and participant questionnaire data, ~28% of variant positive 

individuals had a personal history, and ~45% a personal or family history of BRCA1/2-associated cancers. 

Approximately 27% of variant positive individuals had evidence of prior clinical genetic testing for 

BRCA1/2. However, individuals with AJ founder variants were twice as likely to have had a clinical test 

(38%) than those with other pathogenic variants (19%). These findings deepen our knowledge about 

BRCA1/2 variants and associated cancer risk in diverse populations, indicate a gap in knowledge about 

potential cancer-related variants in non-European populations, and suggest that genomic screening in 

diverse patient populations may be an effective tool to identify at-risk individuals.   
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Background 

The recognition of strong familial clustering of breast and ovarian cancer (1), followed by the 

discovery of the BRCA1 and BRCA2 (BRCA1/2) genes in 1994 (2) and 1995 (3), respectively, has led to the 

study and characterization of BRCA1/2-related hereditary breast and ovarian cancer syndrome (HBOC). 

Inherited pathogenic variants in either of these genes cause a significantly elevated risk for cancer of the 

female breast as well as high grade serous ovarian, tubal and peritoneal carcinoma. The risk for other 

cancers, including prostate, male breast, pancreas, melanoma and possibly others, is also increased (4). 

Pathogenic variants in these genes are highly penetrant and inherited in an autosomal dominant pattern. 

  The prevalence of pathogenic BRCA1/2 variants has been previously estimated, with historical 

data suggesting a prevalence of approximately 1 in 400 individuals in the general population (5, 6). A 

higher prevalence has been observed in certain populations; for example, approximately 1 in 42 

individuals of Ashkenazi Jewish (AJ) descent harbor one of three common founder variants (7, 8). Founder 

variants in other populations have also been described, including Icelandic, French Canadian, and Puerto 

Rican populations, and others (9). Recent unselected population-based genomic screening efforts have 

demonstrated a higher than expected prevalence of BRCA1/2 pathogenic variants in predominantly 

European-ancestry individuals, approximately 1 in 190, with only half of these individuals meeting current 

guidelines for genetic testing (10-12) and only 18% having prior knowledge of their BRCA1/2 status 

through clinical genetic testing (13).  

Understanding of the prevalence and contribution to cancer risk of BRCA1/2 variants in non-

European populations has been limited by racial and ethnic disparities in genetic research (14). In addition 

to reduced uptake of genetic testing in diverse populations (15-18), there is a higher rate of detection of 

variants of uncertain significance in non-European populations (19-21). Here, we evaluated the range of 

BRCA1/2 variants in a diverse patient population from the BioMe Biobank in New York City, and explored 

clinical characteristics of individuals harboring expected pathogenic variants in BRCA1/2. 

 

Materials and Methods 

Setting and Study Population 

The BioMe Biobank is an electronic health record (EHR)-linked biobank of over 50,000 participants 

from the Mount Sinai Health System (MSHS) in New York, NY. Participant recruitment into BioMe has been 

ongoing since 2007, and occurs predominantly through ambulatory care practices across the MSHS. The 

BioMe participants in this analysis were recruited between 2007 and 2015, with approximately half 

coming from general medicine and primary care clinics and the rest from different specialty or multi-
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specialty sites at MSHS. BioMe participants consent to provide DNA and plasma samples linked to their 

de-identified EHRs. Participants provide additional information on self-reported ancestry, personal and 

family medical history through questionnaires administered upon enrollment. This study was approved 

by the Icahn School of Medicine at Mount Sinai’s Institutional Review Board. The study population 

consisted of 30,223 consented BioMe participants aged 18 years or older (upon enrollment), and with 

exome sequence data available through a collaboration with the Regeneron Genetics Center.  

Generation and QC of Genomic Data 

 Sample preparation and exome sequencing were performed at the Regeneron Genetics Center as 

previously described (22) yielding N=31,250 samples and n=8,761,478 sites. Genotype array data using 

the Illumina Global Screening Array was also generated for each individual (23). Post-hoc filtering of the 

sequence data included filtering of N=329 low-quality samples, including low coverage, contaminated and 

genotype-exome discordant samples; N=208 gender discordant and duplicate samples were also 

removed. This resulted in N=30,813 samples for downstream analysis, and N=30,223 samples from 

participants aged 18 years and older. Mean depth of coverage for remaining samples was 36.4x, and a 

minimum depth of 27.0x, and sequence coverage was sufficient to provide at least 20x haploid read depth 

at >85% of targeted bases in 96% of samples. Sites with missingness greater than 0.02 (n=267,955 sites) 

were removed, as were sites showing allele imbalance (n=320,877; allelic balance < 0.3 or > 0.8).  Samples 

were stratified by self-reported ancestry, and sites with Hardy Weinberg equilibrium P<1x10-6 (n=12,762) 

were removed from analysis. Variants at multi-allelic sites in BRCA1 and BRCA2 (n=124) underwent the 

same quality control workflow as those from bi-allelic sites, with the exception that allelic balance was 

calculated only among heterozygous carriers of multi-allelic variants. Multi-allelic sites for which the mean 

allelic balance among heterozygous carriers was < 0.3 or > 0.8 were excluded from downstream analysis. 

This resulted in the exclusion of n=1 site, leaving a total of n=123 for further analysis. Manual inspection 

of pileups was performed for carriers (N=22) of the n=13 multi-allelic sites annotated as pathogenic in 

ClinVar. Of these, N=6 out of 7 carriers of the 13:32339421:C:CA variant were determined to be false 

positives and excluded from downstream analyses. 

Self-Reported and Genetic Ancestry 

Self-reported ancestry categories were derived from a multiple-choice survey administered to 

participants upon enrollment into the BioMe Biobank (23). Participants could select one or more of the 

following categories: African-American/African, American Indian/Native American, Caucasian/White, 

East/Southeast Asian, Hispanic/Latino, Jewish, Mediterranean, South Asian/Indian, or Other. Individuals 

who selected “Jewish”, “White/Caucasian”, or both were designated as “European American”. Individuals 
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who selected “Mediterranean”, “Other”, or both were designated as “Other”. Individuals who selected 

multiple categories including “Hispanic/Latino” were designated as “Hispanic/Latino”. Individuals from 

the “Native American”, “Other”, or “Multiple Selected” categories were excluded from downstream 

analysis of prevalence in self-reported groups.  

Genetic ancestry in the form of Identity-by-Descent community designation was performed on a 

subset of participants excluding second degree relatives and above, yielding 17 distinct communities 

representing patterns of cultural endogamy and recent diaspora to New York City. Eight of these 

communities with >400 unrelated participants were used for downstream analysis of prevalence. These 

communities included individuals with African-American and African ancestry (N=6,874), non-AJ European 

ancestry (N=5,474), AJ ancestry (N=3,887), Filipino and other Southeast Asian ancestry (N=556), as well as 

ancestry from Puerto Rico (PR; N=5,105), the Dominican Republic (DR; N=1,876), Ecuador (N=418), and 

other Central and South American communities (N=1,116). Full details of the global ancestry inference, 

genetic community detection, and genotype quality control are described in Belbin et al., 2019 (23). 

Finally, we determined the proportion African genetic ancestry in mixed ancestry Hispanic/Latino 

populations using the ADMIXTURE (24) software. We assumed five ancestral populations (k=5) with 5-fold 

cross validation across n=256,052 SNPs in N=27,984 unrelated participants that were also genotyped on 

the Global Screening Array (GSA), in addition to N=4,149 reference samples representing 5 continental 

regions (23). We estimated relatedness using the software KING (25), and for all prevalence estimates in 

self-reported and genetic ancestry groups, we excluded second degree relatives and above.  

BRCA1/2 Variant Annotation 

Sequence variants were annotated with the Variant Effect Predictor (VEP; Genbank gene 

definitions; BRCA1 NM_007294.3, BRCA2 NM_000059.3). In order to reduce the set of false positive 

predicted loss-of-function (pLOF) calls, we also ran Loss-Of-Function Transcript Effect Estimator – LOFTEE, 

and defined the consensus calls from both methods as the set of pLOF variants for the study. Sequenced 

variants were cross-referenced with the ClinVar database (accessed July 2018) (26) and annotated 

according to their ClinVar assertions when available as pathogenic, likely pathogenic, uncertain 

significance, benign, likely benign, or with conflicting interpretations of pathogenicity. All variants with 

conflicting interpretations were manually reviewed in ClinVar (accessed November 2018) by a genetic 

counselor (J.A.O. or E.R.S.).  In addition, we included the following categories of pLOF variants not 

classified in ClinVar: single nucleotide variants (SNVs) leading to a premature stop codon, loss of a start 

codon, or loss of a stop codon; SNVs or insertion/deletion sequence variants (indels) disrupting canonical 

splice acceptor or donor dinucleotides; open reading frame shifting indels leading to the formation of a 
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premature stop codon. The union of ClinVar pathogenic/likely pathogenic and pLOF variants was termed 

“expected pathogenic”, and this set of variants was used to identify individuals in BioMe for subsequent 

analyses of HBOC-related clinical characteristics. 

BRCA1/2 Founder Variants 

All expected pathogenic variants detected in BRCA1/2 were reviewed for evidence of a founder 

effect. This was carried out by manual review of each expected pathogenic variant by a genetic counselor 

(E.R.S.) in the Human Gene Mutation Database (27), ClinVar, and PubMed utilizing the currently 

designated HGVS nomenclature for each variant (28), as well as previous designations as noted in ClinVar. 

Variants were considered to be founder variants if they were described as such in the primary literature, 

based on confirmatory haplotype analysis or population frequency. 

Clinical Characteristics in Variant Positive Individuals 

 Individuals harboring expected pathogenic variants in BRCA1/2 in BioMe, termed “variant 

positive”, were evaluated for any evidence of personal or family histories of HBOC-related cancers, 

through extraction of International Classification of Diseases (ICD)-9 and ICD-10 codes from participant 

EHRs (Supplementary Table S1). These data were supplemented by participant questionnaire data for 

personal and family histories of HBOC-related cancers, which were available for 61 variant positive 

individuals. Medical record review of variant positive individuals was carried out independently by two 

individuals, including genetic counselors (J.A.O., E.R.S., or S.A.S.) and a clinical research coordinator (J.E.R.) 

to determine whether participants had evidence of previous clinical genetic testing for BRCA1/2. Data 

were summarized using medians and interquartile ranges (IQR) for continuous variables and frequencies 

and percentages for categorical variables. Pearson’s chi-squared test was used to test for statistical 

independence of different categorical outcomes measured in the study. 

HBOC-Related Cancers Case-Control and Phenome-Wide Association Studies 

Cases were defined as participants having any of the ICD-9 or ICD-10 codes for personal history of 

HBOC-related cancers (Supplementary Table S1). Controls were defined as individuals without any of 

these ICD-9 or ICD-10 codes. We tested for association with variant positive compared to variant negative 

participants (defined as not having any variants that were pathogenic, uncertain/conflicting, or 

unclassified in ClinVar (novel)). Genotypes were coded using an additive model (0 for variant negative and 

1 for variant positive). We repeated the analysis to compare participants with uncertain/conflicting 

variants with variant negative participants. We excluded individuals determined to be second degree 

relatives and above from the analysis. Odds ratios were estimated by logistic regression, and adjusted for 

age, sex and the first 5 principal components of ancestry.  
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We also performed a phenome-wide association study (PheWAS) of variant positive vs. variant 

negative participants using ICD-9 and ICD-10 based diagnosis codes that were collapsed to hierarchical 

clinical disease groups (termed phecodes) (29, 30). We performed logistic regression systematically using 

BRCA1/2 expected pathogenic carrier status as the primary predictor variable and the presence of a given 

phecode as the outcome variable, excluding second degree relatives and above, and adjusting for age, sex 

and the first 5 principal components. To minimize spurious associations due to limited numbers of case 

observations, we restricted analyses to phecodes present at least 5 times among carriers, resulting in a 

total of p=260 tests. Statistical significance was determined using Bonferroni correction (Bonferroni 

adjusted significance threshold p<1.9x10-4). Logistic regression analyses were performed using PLINK 

(v1.90b3.35) software. 

 

Results 

We evaluated BRCA1/2 variants among 30,223 adult participants of the BioMe Biobank with 

available exome sequence data and genotype array data. Participants were 59.3% female and had a 

median age of 59 years (Table 1). The majority of participants (74.3%) were of non-European descent, 

based on self-report. A total of 1601 variants were analyzed, including 1,478 (92.3%) occurring at bi-allelic 

sites and 123 (7.7%) at multi-allelic sites. The majority of variants were missense (63.5%), and 1,335 

(83.4%) variants were available in ClinVar (Supplementary Table S2). The proportion of individuals 

harboring BRCA1/2 variants that were not classified in ClinVar (novel) was lowest in individuals of self-

reported European descent (0.8%), and highest in individuals of South Asian descent (2.3%; Figure 1A). 

The proportion of individuals harboring BRCA1/2 variants of uncertain significance or with conflicting 

interpretations of pathogenicity (uncertain/conflicting) in ClinVar was lowest in individuals of self-

reported European descent (4.1%) and highest in those of self-reported African/African-American descent 

(12.2%; Figure 1B). We saw a similar trend when investigating genetic ancestry within populations with 

recent mixed ancestry, for example Hispanic/Latino populations, who can trace their recent ancestry to 

Europe, Africa, and the Americas (Supplementary Figure S1). Although the mean uncertain/conflicting 

variant rate in all self-reported Hispanic/Latino participants was 8.5% (95% CI 7.9%-9.1%) (Figure 1b), this 

rate was almost two-fold higher in those with >60% African genetic ancestry (11.3% (95% CI 9.2%-13.9%) 

compared to those with <20% African genetic ancestry (6.9% (95% CI 6.1%-7.8%); chi-squared p<3.2x10-

4; Supplementary Figure S1). 

Exome sequence data of the BRCA1/2 genes was then used to identify expected pathogenic 

variants. There were 102 variants with a pathogenic or likely pathogenic assertion in ClinVar, all of which 
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had a 2- or 3-star review status (Supplementary Table S3). There were 10 additional pLOF variants 

(frameshift or stop gained) that were not classified in ClinVar, including 2 in BRCA1 and 8 in BRCA2. The 

10 pLOF variants were each observed as singletons in BioMe, and only one of them (BRCA2 c.1039C>T) 

was found in the gnomAD database (31) with an allele frequency of 0.000004, suggesting that these are 

rare in the general population. The union of 102 ClinVar pathogenic and 10 additional rare pLOF variants 

was the set of expected pathogenic BRCA1/2 variants (N = 112) used to define variant positive individuals 

in BioMe. 

Overall, 218 (0.7%) individuals in BioMe harbored expected pathogenic variants in BRCA1/2: 86 

(39.4%) of these individuals had an expected pathogenic variant in BRCA1, 131 (60.1%) had a variant in 

BRCA2, and 1 (0.5%) individual had a variant in both BRCA1 (c.68_69delAG) and BRCA2 (c.5946delT). 

Variant positive individuals were 62.8% female and had a median age of 58 years (Table 1). The prevalence 

of BioMe participants harboring expected pathogenic variants in BRCA1/2 was 1:139 (Table 2). In a subset 

of individuals excluding second degree relatives and above (N=27,816), overall prevalence was unchanged 

at 1:134. In the unrelated subset, prevalence was highest in individuals of self-reported European descent 

(1:66) and lowest in those of Hispanic/Latino descent (1:283). We previously used genotype array data to 

identify fine-scale population groups in BioMe using genetic ancestry (23), revealing eight communities 

with greater than 400 individuals represented (Table 2). Across these, prevalence was highest in 

individuals with AJ ancestry (1:49), among whom the majority (72 out of 80 individuals, or 90.0%) 

harbored one of the three AJ founder variants (c.5266dupC and c.68_69delAG in BRCA1, and c.5946delT 

in BRCA2), and 8 individuals (10.0%) harbored a different variant in BRCA1/2 (Supplementary Table S3). 

Prevalence was lower in non-AJ Europeans (1:103), and lowest in those with ancestry from PR (1:341) and 

DR (1:469; Table 2). 

We identified 23 unique founder variants that have previously been reported in multiple founder 

populations, including 13 variants in BRCA1 and 10 in BRCA2 (Table 3). A total of 112 of 218 variant positive 

individuals (51.4%) were identified as harboring at least one founder variant (61 individuals with a variant 

in BRCA1, 50 with BRCA2, and 1 with both BRCA1 and BRCA2). The majority of identified founder variants 

were accounted for by the three AJ founder variants, with 80 individuals in BioMe harboring at least one 

of these variants, 72 of whom had AJ genetic ancestry. There were 32 participants harboring non-AJ 

founder variants in BRCA1/2, the most common being BRCA2 c.3922G>T, a well-documented founder 

variant in PR (32). Among 15 BRCA1/2 variant positive individuals with genetic ancestry from PR, 7 (46.7%) 

harbored the BRCA2 c.3922G>T variant, and 3 others (20.0%) harbored Chilean or Spanish founder 

variants (Table 3).   
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 We evaluated the clinical characteristics of BRCA1/2 variant positive individuals using EHR-

extracted diagnosis codes (Supplementary Table S1), as well as additional personal and family medical 

history questionnaire data available for 61 of these individuals. Overall, 61 of 218 (28.0%) BRCA1/2 variant 

positive individuals had a documented personal history and 98 (45.0%) had either a personal or family 

history of HBOC-related cancer (breast, ovarian, pancreatic, prostate, or melanoma; Table 4). Variant 

positive females were 2.8 times more likely than males to have a personal or family history of HBOC-

related cancers (chi-squared p<1.0x10-6). Among variant positive females (N = 137), 53 (38.7%) had HBOC-

related cancers, including 50 (36.5%) with breast or ovarian cancer. Among the three females with cancer 

other than breast or ovarian, two had pancreatic cancer and one had melanoma. There were 3 (2.2%) 

variant positive females who had more than one cancer, all of whom had both breast and ovarian cancer: 

one with BRCA1 c.68_69delAG, and two with BRCA2 c.5946delT. Among variant positive males (N = 81), 2 

(2.5%) had breast cancer (BRCA1 c.5266dupC and BRCA2 c.4471_4474delCTGA), and 6 (7.4%) had prostate 

cancer (two men with BRCA1 c.5266dupC, and one man each with BRCA1 c.68_69delAG, BRCA2 

c.2808_2811delACAA, BRCA2 c.5946delT, and BRCA2 c.4716_4717delinsAAAGACC). One of these men 

(1.2%) had more than one cancer (breast and pancreatic) and harbored BRCA2 c.4471_4474delCTGA. 

We assessed the number of variant positive individuals with prior knowledge of their BRCA1/2 

variant status. Review of medical records revealed that 58 (26.6%) had EHR evidence of clinical genetic 

testing for BRCA1/2 (Table 4). Among 98 variant positive individuals with a personal or family history of 

HBOC-related cancer, 51 (52.0%) had evidence of clinical genetic testing. Only 5 of 81 (6.2%) males had 

evidence of clinical genetic testing, compared to 53 of 137 (38.7%) females (chi-squared p< 3.6x10-7). 

Although personal rates of cancer were similar among individuals with AJ founder variants and those with 

other variants (28.8% vs. 27.5%, chi-squared p=0.18), knowledge of BRCA1/2 variant status varied: 31 of 

80 (38.8%) individuals with AJ founder variants had documented evidence of clinical genetic testing, 

compared to only 27 of 138 (19.6%) individuals harboring other BRCA1/2 variants (chi-squared p<3.4x10-

3). 

We tested for association with HBOC-related cancers in variant positive (N=208) compared to 

variant negative (not harboring any ClinVar pathogenic, uncertain/conflicting, or novel variants; 

N=24,927) participants in the unrelated subset. Variant positive individuals had increased odds of HBOC-

related cancers (odds ratio (OR) 5.6; 95% confidence interval (CI) 4.0 to 8.0; p=6.7x10-23). In contrast, 

participants harboring uncertain/conflicting variants (N=2,395) did not have increased odds of HBOC-

related cancers (OR 1.2; 95% CI 1.0 to 1.4; p=0.1). To more comprehensively evaluate the clinical 

consequences of expected pathogenic variants in BRCA1/2, we performed a PheWAS of variant positive 
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vs. variant negative participants. Using a Bonferroni significance threshold of p=1.9x10-4 for associations 

with 260 clinical diagnoses, we identified significant associations with “Malignant neoplasm of female 

breast” (OR 8.1; 95% CI 5.4 to 12.2; p=2.2x10-23) and “Other specified disorders of breast” (OR 6.9; 95% CI 

2.9 to 16.2; p=9.0x10-6; Supplementary Figure S2). There were no associations with other types of cancer 

or non-cancer phenotypes, including known HBOC-related cancers, suggesting we may have been 

underpowered to observe other relevant associations. 

 

Discussion 

In this study, we demonstrate the ability of large-scale, population-based genomic sequencing to 

identify and characterize consequential variants in BRCA1/2 in a large, ethnically diverse health system. 

We found an overall prevalence of 1 in 139 individuals with expected pathogenic variants in BRCA1/2, 

observed differing frequencies of such variants among a broad range of represented ancestries, and 

discovered that the majority of individuals harboring these variants were unaware of their genomic risk 

status.  

The overall prevalence of expected pathogenic BRCA1/2 variants in our population was higher 

than previous estimates (5, 6, 13), and may be partly explained by the large number of founder variants 

detected. The highest prevalence was 1 in 49 (2.1%) in individuals with AJ genetic ancestry, which is similar 

to the previously established prevalence of 1 in 42 (2.3%) in this population (7, 8). The high proportion of 

AJ individuals in our cohort (14.0%) contributed to the high overall prevalence observed. Multiple other 

founder variants were also detected in different populations in our study, including the c.3922G>T 

(p.Glu1308Ter) variant in BRCA2 that we found in almost half of the variant positive individuals with 

ancestry from PR, consistent with previous findings (32). We report, for the first time, prevalence 

estimates in a number of diverse populations, including African American and Hispanic/Latino populations 

for which these estimates did not previously exist. 

Our findings also revealed that non-European populations, and particularly those most genetically 

divergent from European populations, are more likely to harbor BRCA1/2 variants that are not classified 

in public databases, or that have uncertain or conflicting evidence for pathogenicity. This was also evident 

in mixed ancestry populations such as Hispanic/Latino populations, in whom the proportion of variants 

with uncertain/conflicting interpretations correlated with the percent African genetic ancestry. While 

BRCA1/2 variant positive individuals had significantly increased risk of HBOC-related cancers, those with 

uncertain/conflicting variants did not, suggesting that many of these variants are likely to be benign or of 
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low penetrance. These data add to a growing body of literature (19-21) underscoring the pressing need 

to further characterize genomic variation across diverse populations. 

As with previous studies, there was a higher rate of relevant cancers in BRCA1 variant positive 

individuals than in BRCA2, and in women than in men (13, 33, 34). Over one-third of the variant positive 

females in our study had a documented current or prior diagnosis of a HBOC-related cancer. Genomic 

screening in individuals with cancer still provides an opportunity for early detection or prophylaxis, as 

evidenced by the finding of a second primary cancer in four participants. Genomic screening in apparently 

healthy men may represent an opportunity for intervention through increased prostate surveillance, given 

the recently recognized contribution of germline BRCA1/2 variants to metastatic prostate cancer burden 

(35).  

Knowledge of BRCA1/2 status as documented in participant EHRs was only 27% overall, and even 

lower (20%) in individuals with non-AJ founder variants, confirming prior reports of clinical under-

ascertainment (13). Of note, 10% of the variant positive AJ individuals harbored non-founder variants, 

consistent with previous findings (36), and highlighting the need for comprehensive testing of BRCA1/2 

genes rather than targeted screening for specific founder variants in this population. The observed 

difference in clinical testing among individuals with or without AJ founder variants, despite similar rates 

of cancer, indicates that there may be additional barriers to genetic testing in populations that are not 

considered higher risk on the basis of ancestry. Obstacles in non-AJ populations could include lack of 

patient awareness about BRCA1/2, lower suspicion for HBOC by healthcare providers, or reduced access 

and/or uptake of genetic testing in certain populations within the context of broader healthcare 

disparities. Such barriers have been described in African American and Hispanic/Latino populations, the 

two largest non-European populations in BioMe, suggesting that interventions to improve awareness, 

risk-perception, and patient-provider communication are needed to reduce disparities in BRCA1/2 testing 

in diverse populations (37).  

Current evidence- and expert opinion-driven guidelines (10, 11, 38) as well as statistical models 

(39-42) to identify potential candidates for BRCA1/2 testing are mainly based on the number of individuals 

with relevant cancers in a kindred, age(s) of diagnosis, and ancestry. Testing criteria have widened over 

time with the recognition that they do not sufficiently identify all individuals harboring a BRCA1/2 

pathogenic variant.  Nevertheless, our findings suggest that current clinical practices still miss a significant 

opportunity for reducing morbidity and mortality through identification of high-risk variant positive 

individuals. While we were unable to evaluate whether variant positive individuals would meet current 

testing criteria, we did observe that almost half of those with a relevant personal or family history of 
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cancer had no evidence of clinical BRCA1/2 testing. The potential for improved health outcomes from 

genomic screening through ascertainment of patients and identification of at-risk relatives through 

cascade testing (43, 44) supports the Centers for Disease Control and Prevention’s designation of HBOC 

as a tier 1 genomic condition for which positive public health impact exists 

(https://www.cdc.gov/genomics/implementation/toolkit/tier1.htm).  

There are limitations to our study. The study population consisted of individuals recruited from 

clinical care sites, which does not necessarily reflect the general population of New York City. However, 

these findings do provide insight into diverse patient populations that were ascertained in a relatively 

unselected, population-based manner, and that have not been previously represented in similar research 

efforts. The observed prevalence of BRCA1/2 expected pathogenic variants may represent an 

underestimate, as certain variants would not be detected via this approach, including large copy number 

variants, which make up approximately 10% of all BRCA1/2 pathogenic variants (45-48). Additionally, 

some percentage of variants of uncertain significance may in fact be pathogenic, and likely will be 

classified as such in the future. We were also constrained by the use of EHR-extracted clinical information, 

which may not reflect complete medical and family history (49), and may downwardly bias the true 

penetrance of HBOC in our cohort.  

 

Conclusions 

Genomic screening for pathogenic BRCA1/2 variants in apparently healthy individuals has the 

potential to lead to earlier diagnosis of cancer via increased surveillance, as well as cancer risk reduction 

via prophylactic medical interventions. In this study, we provide evidence for a higher overall prevalence 

of BRCA1/2 expected pathogenic variants in the BioMe Biobank than historically appreciated, in line with 

recent findings from another unselected clinical care cohort (13). We show that this approach can 

effectively identify at-risk individuals across ethnically diverse and underserved populations such as those 

present in BioMe. These findings are in part due to the cross-sectional representation of founder variants 

from multiple different populations, which accounted for over half of individuals harboring pathogenic 

variants in this study. We demonstrate that genomic screening for BRCA1/2 in diverse patient populations 

may be an effective tool to identify otherwise unrecognized HBOC-associated variants, in order to prevent 

or diagnose disease. However, further work is needed to accurately classify pathogenic variants in non-

European populations, in order to most effectively use this strategy to improve health outcomes in diverse 

settings. 
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Figure 1. Among 1601 BRCA1/2 variants identified in the BioMe Biobank, there were 266 variants not 
classified in ClinVar (novel) and 635 variants of uncertain significance or with conflicting interpretations 
of pathogenicity in ClinVar (uncertain/conflicting). The proportion of individuals harboring novel (Figure 
1A), or uncertain/conflicting (Figure 1B) variants varied across self-reported ancestry categories, and was 
lowest among individuals of European descent (0.8% and 4.1%, respectively). The proportion of 
individuals harboring novel variants was highest in individuals of South Asian descent (2.3%), and the 
proportion harboring uncertain/conflicting variants was highest in individuals of African/African-American 
descent (12.2%). AA, African/African-American descent; ESA, East/Southeast Asian descent; EA, European 
descent; HA, Hispanic/Latino descent; SA, South Asian descent.  
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Table 1. Demographics of exome sequenced adult BioMe biobank participants, and of individuals 
harboring expected pathogenic variants in BRCA1/2. 
 

  Sequenced BioMe 
participants (N = 30,223) 

BRCA1/2 variant 
negative (N = 20,760)* 

BRCA1/2 variant positive 
(N = 218) 

Age, median (IQR) 59 (45-70) 59 (46-70) 58 (43-70) 

Female, N (%) 17,914 (59.3) 15,986 (59.1) 137 (62.8) 

Self-Reported Ancestry, N (%)  

African/African-American 6,878 (22.8) 5,877 (28.3) 33 (15.1) 

East/Southeast Asian 757 (2.5) 659 (3.2) 6 (2.8) 

European  7,772 (25.7) 7,265 (35.0) 121 (55.8) 

Hispanic/Latino 10,460 (34.6) 9,360 (45.1) 34 (15.6) 

Native American 52 (0.2) 47 (0.2) 0 (0) 

South Asian 605 (2.0) 543 (2.6) 0 (0) 

Other 2,343 (7.8) 2,111 (10.2) 13 (6.0) 

Multiple selected 1,125 (3.7) 1,006 (4.9) 10 (4.6) 

Not Available 231 (0.8) 192 (0.9) 1 (0.5) 

*Variant negative participants are defined as not having any variants that were pathogenic, uncertain/conflicting, or unclassified in ClinVar 
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Table 2. Prevalence of expected pathogenic BRCA1/2 variants in the BioMe Biobank. We assessed the 
prevalence of BRCA1/2 variants in all sequenced participants, in an unrelated subset of participants, across 
self-reported ancestry groups, and across genetic ancestry groups for which there were greater than 400 
individuals. 
 

Population Characteristics N BRCA1/2 Variant Positive, N (%) Estimated Prevalence 
All sequenced participants 30,223 218 (0.7) 1:139 
Unrelated subset - including only one individual 
in every first- and second-degree relationship  27,816 208 (0.7) 1:134 

Self-reported ancestry (unrelated subset)    
African/African-American 6,236 31 (0.5) 1:201 
East/Southeast Asian 739 6 (0.8) 1:123 
European 7,600 116 (1.5) 1:66 
Hispanic/Latino 9,050 32 (0.4) 1:283 
Native American 47 0 (0) - 
South Asian 585 0 (0) - 
Other 2,271 13 (0.6) - 
Multiple selected 1,078 9 (0.7) - 
Not Available 211 1 (0.5) - 
Genetic ancestry (unrelated subset)    
African-American and African 6,874 31 (0.5) 1:222 
Ashkenazi Jewish 3,889 80 (2.1) 1:49 
Non-Ashkenazi Jewish European 5,474 53 (1.0) 1:103 
Filipino and Southeast Asian 566 7 (1.2) 1:81 
Dominican 1,876 4 (0.2) 1:469 
Ecuadorian 418 2 (0.5) 1:209 
Puerto Rican 5,105 15 (0.3) 1:365 
Other Central and South American 1,116 8 (0.7) 1:140 
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Table 3. Founder variants identified among 112 BRCA1/2 expected pathogenic variants in the BioMe 
Biobank. 
  

Gene cDNA Position# BioMe Self-Reported 
Ancestry (# Hets) 

BioMe Genetic Ancestry (# Hets) Previously Described Founder 
Population (Reference) 

BRCA1 c.5335delC ESA (1) Filipino and Southeast Asian (1) Filipino (50) 
BRCA1 c.5266dupC EA (6) AJ (5), Non-AJ European (1) AJ (8, 51) 
BRCA1 c.5123C>A EA (1) Non-AJ European (1) Columbian, Spanish (52) 
BRCA1 c.4327C>T O (1) Non-AJ European (1) French Canadian (53), Mexican, 

Columbian, Peruvian (54) 
BRCA1 c.3817C>T HA (1) Puerto Rican (1) Chilean (55) 
BRCA1 c.3756_3759delGTCT EA (2) Non-AJ European (1) French Canadian* (56) 
BRCA1 c.3331_3334delCAAG AA (1), HA (1) African-American and African (1), Other 

Central and South American (1) 
Colombian (52), Chilean (55) 

BRCA1 c.2475delC EA (1) AJ (1) Scandinavian* (57) 
BRCA1 c.303T>G AA (1) African-American and African (1) African (58) 

BRCA1 c.211A>G HA (2), ESA (1) Puerto Rican (2), Filipino and Southeast 
Asian (1) 

Spanish (59) 

BRCA1 c.181T>G EA (1) Non-AJ European (1) Polish* (60) 
BRCA1 c.116G>A M (1)  Italian (61) 
BRCA1 c.68_69delAG EA (36), M (4), O (1) AJ (38) AJ (8, 62) 
BRCA2 c.2808_2811delACAA HA (1) Other Central and South American (1) Western European (63), Columbian 

(64) 
BRCA2 c.3922G>T HA (8) Puerto Rican (7) Puerto Rican (32) 
BRCA2 c.4631delA O (1) Filipino and Southeast Asian (1) Filipino (50) 
BRCA2 c.5351dupA M (1) Non-AJ European (1) Dutch (63) 
BRCA2 c.5576_5579delTTAA ESA (1) Filipino and Southeast Asian (1) Japanese (65) 
BRCA2 c.5857G>T AA (1) African-American and African (1) French Canadian (66) 
BRCA2 c.5946delT EA (30), M (1), O (2) AJ (30), Non-AJ European (1) AJ (8, 63) 
BRCA2 c.6644_6647delACTC HA (1) African-American and African (1) French* (67) 
BRCA2 c.7480C>T EA (1), HA (1) Non-AJ European (1), Dominican (1) Korean (68), Finnish (69) 
BRCA2 c.7913_7917delTTCCT EA (1) AJ (1) Czech* (70) 
Abbreviations: Hets, heterozygous carriers; AA, African/African-American descent; AJ, Ashkenazi Jewish ancestry; EA, European descent; ESA, 
East/Southeast Asian descent; HA, Hispanic/Latino descent;  M, multiple selected ancestries; O, other self-reported ancestry. 
#cDNA position provided for BRCA1 ENST00000357654 (NM_007294.3) and BRCA2 ENST00000380152 (NM_000059.3) 
*Variant described in literature as a founder variant, but no haplotype evidence available 
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Table 4. Clinical characteristics of BRCA1/2 variant positive individuals. Evidence of HBOC-related 
cancers (breast, ovarian, prostate, pancreatic, and melanoma) and of clinical genetic testing among 218 
BioMe biobank participants harboring expected pathogenic BRCA1/2 variants. 
 

Population Characteristics 
Breast and Ovarian Cancers All HBOC-Related Cancers 

Evidence of clinical 
genetic testing, N (%) Personal History, 

N (%) 
Personal or Family 
History, N (%) 

Personal History, 
N (%) 

Personal or Family 
History, N (%) 

All Variant Positive (N = 218) 52 (23.9) 88 (40.4) 61 (28.0) 98 (45.0) 58 (26.6) 

By Gene      

BRCA1 (N = 86) 27 (31.4) 44 (51.2) 29 (33.7) 44 (51.2) 31 (36.0) 

BRCA2 (N = 131) 24 (18.3) 43 (32.8) 31 (23.7) 53 (40.5) 26 (19.8) 

Both BRCA1 and BRCA2 (N = 1) 1 (100.0) 1 (100.0) 1 (100.0) 1 (100.0) 1 (100.0) 

By Gender      

Female (N = 137) 50 (36.5) 78 (56.9) 53 (38.7) 81 (59.1) 53 (38.7) 

Male (N = 81) 2 (2.5) 10 (12.3) 8 (9.9) 17 (21.0) 5 (6.2) 

P-value (chisq test) 3.9x10-8 1.6x10-11 9.7x10-6 1.0x10-6 3.6x10-7 

By Founder Variants      

With AJ Founder Variant (N = 80) 18 (22.5) 38 (47.5) 23 (28.8) 41 (51.3) 31 (38.8) 

Without AJ Founder Variant (N = 138) 34 (24.6) 50 (36.2) 38 (27.5) 57 (41.3) 27 (19.6) 

P-value (chisq test) 0.85 0.14 0.18 0.97 3.4x10-3 
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