

1 **The Bovine Genome Variation Database (BGVD): Integrated Web-
2 database for Bovine Sequencing Variations and Selective Signatures**

3

4 Ningbo Chen^{1, #, a}, Weiwei Fu^{1, #, b}, Jianbang Zhao^{2, c}, Jiafei Shen^{1, d}, Qiuming Chen^{1, e}, Zhuqing Zheng^{1, f},
5 Hong Chen^{1, g}, Tad S. Sonstegard^{3, h}, Chuzhao Lei^{1, i}, Yu Jiang^{1, j, *}

6

7 *¹Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of
8 Animal Science and Technology, Northwest A&F University, Yangling 712100, China*

9 *²College of Information Engineering, Northwest A&F University, Yangling 712100, China*

10 *³Recombinetics, Inc., St Paul, MN, USA*

11

12 [#]Equal contributions.

13 ^{*}Corresponding author.

14 E-mail: yu.jiang@nwafu.edu.cn (Jiang Y).

15

16 **Running title:** *Chen N et al / Bovine Variation and Selective Signature Database*

17

18 ^aORCID: 0000-0001-6624-5885.

19 ^bORCID: 0000-0001-6140-0284.

20 ^cORCID: 0000-0002-8807-915X.

21 ^dORCID: 0000-0002-4564-8375.

22 ^eORCID: 0000-0002-2334-176X.

23 ^fORCID: 0000-0002-4570-7646.

24 ^gORCID: 0000-0001-5528-3923.

25 ^hORCID: 0000-0002-6446-9276.

26 ⁱORCID: 0000-0003-1647-1037.

27 ^jORCID: 0000-0003-4821-3585.

28

29 No. of words: 2048.

30 No. of figures: 4.

31 No. of tables: 1.

32

33 **Abstract**

34 Next-generation sequencing has yielded a vast amount of cattle genomic data for the global
35 characterization of population genetic diversity and the identification of regions of the genome
36 under natural and artificial selection. However, efficient storage, querying and visualization of
37 such large datasets remain challenging. Here, we developed a comprehensive Bovine Genome
38 Variation Database (BGVD, <http://animal.nwsuaf.edu.cn/BosVar>) that provides six main
39 functionalities: Gene Search, Variation Search, Genomic Signature Search, Genome Browser,
40 Alignment Search Tools and the Genome Coordinate Conversion Tool. The BGVD contains
41 information on genomic variations comprising ~60.44 M SNPs, ~6.86 M indels, 76,634 CNV
42 regions and signatures of selective sweeps in 432 samples from modern cattle worldwide. Users
43 can quickly retrieve distribution patterns of these variations for 54 cattle breeds through an
44 interactive source of breed origin map using a given gene symbol or genomic region for any of
45 the three versions of the bovine reference genomes (ARS-UCD1.2, UMD3.1.1, and Btau 5.0.1).
46 Signals of selection are displayed as Manhattan plots and Genome Browser tracks. To further
47 investigate and visualize the relationships between variants and signatures of selection, the
48 Genome Browser integrates all variations, selection data and resources from NCBI, the UCSC
49 Genome Browser and AnimalQTLdb. Collectively, all these features make the BGVD a useful
50 archive for in-depth data mining and analyses of cattle biology and cattle breeding on a global
51 scale.

52

53 **Keywords:** Bovine; Sequence variation; Selective signatures; QTL; Web-database

54

55 **Introduction**

56 Cattle are usually considered the most economically important livestock. The species numbers
57 more than 1.4 billion on a global scale, constituting some 800 extant cattle breeds (FAO, 2016,
58 <http://www.fao.org/home/en/>). Cattle are now kept on all inhabited continents, in contrasting
59 climatic zones and under very different conditions [1]. The different uses of cattle and the
60 selection for desired traits have resulted in diverse populations distributed across the world. To
61 meet projected global demands for food, initiatives such as the cattle genome project [2–5] are
62 generating resequencing data from breeds worldwide. The DNA-based selection tools built
63 from these data are further accelerating rates of genetic gain and improving animal health and
64 welfare [2]. However, the limited amount of variation data provided by dbSNP [6], restricted
65 access to the 1000 Bull Genomes Project [7], and the existence of only sporadic cattle databases

66 that are specialized in gene and quantitative trait locus (QTL) annotation [8–10] considerably
67 hinder the utility of these data. Furthermore, accessing and integrating resequencing data in a
68 highly interactive, user-friendly web interface, especially data for allele frequency resource and
69 selection in natural populations, is a pre-requisite for identifying functional genes. Therefore,
70 building a public data repository is vital for collecting a wide variety of cattle resequencing data
71 and performing integrative, in-depth analyses within the research community.

72 Here, we develop the Bovine Genome Variation Database (BGVD), the first web-based
73 public database for accessing dense and broadly representative bovine whole-genome variation
74 data. The BGVD is a data repository that focuses on single nucleotide polymorphisms (SNPs),
75 indels, copy number variations (CNVs), and selective signatures underlying domestication and
76 population bottleneck events. We have implemented a large number of summary statistics
77 informative for the action of selection, such as nucleotide diversity (π) [11], heterozygosity
78 (H_p) [12], integrated haplotype score (iHS) [13], Weir and Cockerham's F_{ST} [14], cross-
79 population extended haplotype homozygosity (XP-EHH) [15], and the cross-population
80 composite likelihood ratio (XP-CLR) [16] (Table 1). Six early differentiated ancestral
81 populations were used for selection analysis: African taurine, European taurine, Eurasian
82 taurine, East Asian taurine, Chinese indicine and Indian indicine. The current version of the
83 BGVD contains 60,439,391 SNPs, 6,859,056 indels, and 76,634 CNV regions derived from
84 432 cattle. With its functionalities for browsing for variations and their selection scores, the
85 BGVD provides an important publicly accessible resource to the research community to
86 facilitate breeding research and applications and provides information on dominant functional
87 loci and targets for genetic improvement through selection.

88

89 **Database structure and content**

90 The BGVD includes SNPs, indels, CNVs, genomic selection, and other database resources
91 including NCBI, UCSC Genome Browser, AnimalQTLdb, KEGG, and AmiGO 2 for cattle. A
92 detailed description is provided in the following sections and documents on the homepage.

93

94 **Sample information**

95 Our data set integrates genomes from previously published cattle genetic works [3–5,17–21],
96 providing a total of 432 samples representing 54 breeds. All raw sequence data were obtained
97 from the Sequence Read Archive (SRA) of NCBI. The set of samples is grouped by location of
98 breed origin and contains the following number of individuals: 108 West European, 83 Central-

99 South European, 9 Middle East, 9 Tibetan, 28 Northeast Asian, 47 North-Central Chinese, 21
100 Northwest Chinese, 33 South Chinese, 24 Indo-Pakistan, and 70 African cattle. Geographic
101 information and other detailed information for each sample are provided on the homepage and
102 the corresponding ‘Sample Table’ page.

103

104 **Variants information**

105 Data were processed and loaded into the BGVD using the following pipeline according to
106 previously published protocols [5] (**Figure 1A**, see detailed description on the Documentation
107 page at of the website). First, short, 250 bp paired-end Illumina reads were aligned to the Btau
108 5.0.1 genome assembly (GCF_000003205.7) using BWA [22], resulting in an average of ~13X
109 coverage of the bovine genome among the cattle varieties. Duplicate reads were removed using
110 Picard tools (<http://broadinstitute.github.io/picard/>). The Genome Analysis Toolkit (GATK)
111 was used to detect SNPs and indels [23]. A total of ~60.4 million autosomal SNPs and ~6.8
112 million autosomal indels were identified. Beagle was used to phase the identified SNPs [24].
113 Annotation of SNPs and indels was carried out by using snpEff [25] . Minor allele frequency
114 (MAF) for all cattle and allele frequencies for each breed and the “core” cattle group (see
115 Population structure section) were calculated with PLINK [26]. CNVcaller [27] was used to
116 discover CNVs, and 76,634 CNV regions (CNVR) were detected in 432 cattle genomes. Then,
117 the CNVs were annotated using Annovar [28]. Given that three versions of the bovine genome,
118 Btau 5.0.1, UMD3.1.1, and the newly released ARS-UCD1.2 (project accession:
119 NKLS00000000), are commonly used, we produced liftOver chain files
120 (Btau5.0.1ToUMD3.1.1.chain.gz and Btau5.0.1ToARS-UCD1.2.chain.gz) and converted
121 variation coordinates to those of the other two genomes using liftOver [29].

122

123 **Population structure**

124 The population structure of all cattle was inferred using Eigensoft and ADMIXTURE [30,31],
125 based on the genome-wide unlinked SNP dataset, all according to previously published
126 protocols [5]. All 432 individuals were used for principal component analysis, and the results
127 were consistent with our previous results [6], except that the African taurine cattle were split
128 from other taurine cattle (Figure 1B). To reduce the bias due to sample size, 10 individuals were
129 randomly selected for breeds that had more than 10 samples. A total of 317 cattle samples were
130 selected for estimating ancestral populations by setting $K = 2$ through $K = 8$ in ADMIXTURE
131 (Figure 1C). Combining our previous results [5], in addition to five geographically distributed
132 ancestral groups (European taurine, Eurasian taurine, East Asian taurine, Chinese indicine, and

133 Indian indicine), African taurine was added in this study (Figure 1B).

134

135 **Selection evaluation**

136 The BGVD provides signatures of selection for eight groups, six of which were the “core” cattle
137 groups that we identified as ancestral groups and the other two of which were directly divided
138 into two categories based on sub-species: *Bos indicus* and *Bos taurus*. Here, selective signals
139 were evaluated using six methods, namely, Pi , H_p , iHS , F_{ST} , XP-EHH, and XP-CLR (**Table 1**).

140

141 **Database implementation**

142 The web interface of the BGVD was built by combining an Apache web server, the PHP
143 language, HTML, JavaScript, and the relational database managements system MySQL. High-
144 quality SNPs, indels, CNVs, selection scores and their corresponding annotations, classification
145 and threshold values, were processed with Perl scripts and stored in the MySQL database. The
146 server application was written in PHP, and CodeIgniter was chosen as the model-view-
147 controller (MVC) framework for the system. A client interface developed with HTML5 and
148 JavaScript was used to implement search, data visualization and download. Moreover, we
149 introduced web-based software such as BLAST, BLAT, liftOver, and the UCSC Genome
150 Browser (hereafter referred to as ‘Gbrowse’) [29,32] into the BGVD. Information including
151 variations, selection scores, gene annotation, QTLs, and phastCons conserved elements of 20-
152 way mammals and 100-way vertebrates was integrated into Gbrowse to facilitate global
153 presentation.

154

155 **Web interface and usage**

156 The BGVD uses a series of user-friendly interfaces to display results. All the parts in our
157 browser are dynamic and interactive. We provided six main functionalities: (i) Gene Quick
158 Search, (ii) Variation Search, (iii) Genomic Selection Search, (iv) Genome Browser, (v)
159 Alignment Search Tools (BLAT/BLAST), and (vi) Genome Coordinate Conversion Tool
160 (liftOver).

161 For “Gene Quick Search”, we integrated information from NCBI, AmiGO 2, and KEGG.
162 Users can input a gene symbol to view all available information, including basic gene
163 information (e.g., genomic location, transcript and protein profile, relevant Gene Ontology (GO)
164 ID, GO terms, and KEGG pathways), gene variations (e.g., SNPs, indels, and CNVs), as well
165 as selective signatures. We also provide links to Gbrowse and external databases (NCBI,

166 AmiGO 2, and KEGG) to help the user obtain more information, such as gene/mRNA/protein
167 sequence, KEGG Orthology (KO), and motif.

168 For “Variation Search”, the BGVD allows users to obtain information on SNPs, indels,
169 and CNVs by searching for a specific gene or a genomic region in three versions of the bovine
170 genome (ARS-UCD1.2, UMD3.1.1, and Btau 5.0.1) (**Figure 2A**). Users can filter SNPs and
171 indels further by “Advanced Search”, in which certain parameters (Figure 2B), such as MAF
172 and consequence type, can be set; this option enables users to narrow down the items of interest
173 in an efficient and intuitive manner.

174 The results are presented in an interactive table and graph. For SNPs and indels, users can
175 obtain related details including variant position, alleles, MAF, variant effect, rs ID and the allele
176 frequency distribution pattern in 54 cattle breeds worldwide (Figure 2C) or in six “core” cattle
177 groups (Figure 2D), which could help users dynamically visualize breed-specific (rs384881761,
178 *KRT27*) [2] or ancestral group-specific (rs109815800, *PLAG1*) [33] variants and their global
179 geographical distributions.

180 For CNVs, users can obtain information about CNVR, such as intersected genomic regions,
181 CNV length, the closest gene, consequence type (**Figure 3A**), and copy number distribution in
182 432 individuals representing 49 cattle populations. We provide three types of display formats
183 of copy number distributions in which the categories and haploid copy number of each
184 individual can be viewed (Figure 3B–D), such as the “view” button, which produces a
185 scatterplot (*MATN3*); “Gbrowse”, which is linked to the “CNVR Bar” track (*KIT*); and the more
186 detailed visualization “cnvBar” track, which generates a box-whisker plot (*CIITA*) [34].

187 In the genomic signature interface, users can select a specific gene symbol or genomic
188 region, one of the statistical methods (P_i , H_p , iHs, F_{ST} , XP-CLR, or XP-EHH), and a specific
189 “core” cattle group to view the selection scores (Table 1 and **Figure 4A**). In our database, the
190 selection scores are pre-processed by several algorithms (Z-transform and logarithm). The
191 results are retrieved in a tabular format (Figure 4B). When users click the “show” button on the
192 table, selective signals are displayed in Manhattan plots or common graphics, where the target
193 region or gene is highlighted in a red/blue colour. In addition, the “Gbrowse” button can locate
194 the position of the selection and differentiation profiles of specific groups (Figure 4C). To
195 demonstrate the function of our database, we extracted results for a number of putatively
196 selected genes detected by different methods: *OR2T33* [35] (Figure 4B, C), *STOM*, *EPB42* [3],
197 *PLAG1* [33], *MSRB3* [35], *CDC42SE1* [36], *R3HDM1* [37], and *ASIP* [5] (Figure 4C).

198 To further investigate the relationship between variations and signatures of selection,
199 Gbrowse has been introduced to support our database. Currently, 57 tracks have been released

200 for the Btau 5.0.1 assembly. Users can search with a gene symbol or genomic region to see
201 SNPs, indels, CNVs, genomic signatures, QTLs, and conserved elements in the global view.
202 All search pages in the BGVD allow quick access to Gbrowse to deepen the functional inference
203 of the candidate gene or region by combining other tracks. Most noteworthy, the phased
204 haplotypes from six “core” cattle groups are displayed in “SNPs&Hap” track. The ‘squish’ or
205 ‘pack’ view highlights local patterns of genetic linkage between variants. In the haplotype
206 sorting display, variants are presented as vertical bars with reference alleles in blue and alternate
207 alleles in red so that local patterns of linkage can be easily discerned when clustering is used to
208 visually group co-occurring allele sequences in haplotypes. We display different haplotypes of
209 the *Bos taurus* and *Bos indicus* groups in Figure 4C. We highlight that the tracks of selection
210 statistics from different populations are visualized in different colours (Figure 4D).

211 We also introduced two sequence alignment tools, webBlat, and NCBI wwwBLAST, as
212 well as a genome coordinate conversion tool (liftOver) [29] into the BGVD. The webBlat tool
213 can be used to quickly search for homologous regions of a DNA or mRNA sequence, which can
214 then be displayed in Gbrowse. BLAST can find regions of local similarity between sequences,
215 which can be used to infer functional and evolutionary relationships between sequences. The
216 liftOver tool is used to translate genomic coordinates from one assembly version into another.
217 Our database provides an online lift from Btau_5.0.1 to UMD_3.1.1 and from Btau_5.0.1 to
218 ARS-UCD1.2.

219

220 **Discussion**

221 By applying summary statistics to a relatively extensive data set from cattle genomes, we
222 provide a timely and expandable resource for the population genomics research community. An
223 associated user-friendly genome browser gives a representation of the genetic variation in a
224 genomic region of interest and offers functionality for an array of downstream analyses. We
225 expect that the database will prove useful for genome mining through the large number of test
226 statistics and the fine-grained character of resequencing data. We believe that this expandable
227 resource will facilitate the interpretation of signals of selection at different temporal,
228 geographical and genomic scales.

229

230 **Authors' contributions**

231 NC, WF, and YJ conceived of the project and designed the research. NC and WF drafted the
232 manuscript. TS, CL, YJ, HC, and ZZ revised the manuscript. NC, JS, and QC performed the

233 data analyses. WF and JZ wrote the source code for the BGVD.

234

235 Competing interests

236 The authors declare that they have no competing interests.

237

238 Acknowledgments

239 The project was supported by the National Natural Science Foundation of China (31822052),
240 the National Thousand Youth Talents Plan (both to Yu Jiang), the National Beef Cattle and Yak
241 Industrial Technology System (Grant No. CARS-37) and the National Natural Science
242 Foundation of China (Grant No. 31872317) (both to Chuzhao Lei).

243

244 References

245 [1] Felius M, Koolmees PA, Theunissen B, Lenstra JA. On the breeds of cattle—historic and current classifications. Diversity 2011;3:660–92.

246

247 [2] Daetwyler HD, Capitan A, Pausch H, Stothard P, Van Binsbergen R, Brondum RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet 2014;46:858–65.

248

249

250 [3] Kim J, Hanotte O, Mwai O, Dessie T, Bashir S, Diallo B, et al. The genome landscape of indigenous African cattle. Genome Biol 2017;18:34.

251

252 [4] Stothard P, Liao X, Arantes AS, De Pauw M, Coros C, Plastow G, et al. A large and diverse collection of bovine genome sequences from the Canadian Cattle Genome Project. GigaScience 2015;4:49.

253

254 [5] Chen N, Cai Y, Chen Q, Li R, Wang K, Huang Y, et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun 2018;9:2337.

255

256 [6] Cunningham F, Achuthan P, Akanni W, Allen J, Amode M R, Armean IM, et al. Ensembl 2019. Nucleic Acids Res 2018;47:746–51.

257

258 [7] Hayes BJ, MacLeod IM, Daetwyler HD, Phil BJ, Chamberlain AJ, Vander Jagt C, et al. Genomic prediction from whole genome sequence in livestock: the 1000 bull genomes project. 10th World Cong Genet Appl Livestock Produc (WCGALP) 2014.

259

260

261 [8] Song S, Tian D, Li C, Tang B, Dong L, Xiao J, et al. Genome Variation Map: a data repository of genome variations in BIG Data Center. Nucleic Acids Res 2018;46:944–9.

262

263 [9] Elsik CG, Unni D, Diesh C, Tayal A, Emery ML, Nguyen HN, et al. Bovine Genome Database: new tools for gleaning function from the *Bos taurus* genome. Nucleic Acids Res 2016;44:834–9.

264

265 [10] Childers CP, Reese JT, Sundaram JP, Vile DC, Dickens CM, Childs KL, et al. Bovine Genome Database: integrated tools for genome annotation and discovery. Nucleic Acids Res 2011;39:830–4.

266

267 [11] Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 1979;76:5269–73.

268

269 [12] Rubin C, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010;464:587–91.

270

271 [13] Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol 2006;4:446–58.

272

273 [14] Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. *Evolution*
274 1984;38:1358–70.

275 [15] Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide detection and
276 characterization of positive selection in human populations. *Nature* 2007;449:913–8.

277 [16] Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. *Genome Res*
278 2010;20:393–402.

279 [17] Heaton MP, Smith TPL, Carnahan JK, Basnayake V, Qiu J, Simpson B, et al. Using diverse U.S. beef cattle
280 genomes to identify missense mutations in EPAS1, a gene associated with pulmonary hypertension.
281 *F1000Research* 2016;5:2003.

282 [18] Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, et al. Diversity and population-genetic
283 properties of copy number variations and multicopy genes in cattle. *DNA Res* 2016;23:253–62.

284 [19] Shin D, Lee HJ, Cho S, Kim HJ, Hwang JY, Lee C, et al. Deleted copy number variation of Hanwoo and
285 Holstein using next generation sequencing at the population level. *BMC Genomics* 2014;15:240.

286 [20] Tsuda K, Kawaharamiki R, Sano S, Imai M, Noguchi T, Inayoshi Y, et al. Abundant sequence divergence in
287 the native Japanese cattle Mishima-Ushi (*Bos taurus*) detected using whole-genome sequencing. *Genomics*
288 2013;102:372–8.

289 [21] Kawaharamiki R, Tsuda K, Shiwa Y, Araikichise Y, Matsumoto T, Kanesaki Y, et al. Whole-genome
290 resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi.
291 *BMC Genomics* 2011;12:103–10.

292 [22] Li H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. *Bioinformatics*
293 2012;28:1838–44.

294 [23] McKenna N, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky AM, et al. The Genome Analysis
295 Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*
296 2010;20:1297–303.

297 [24] Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-
298 genome association studies by use of localized haplotype clustering. *Am J Hum Genet* 2007;81:1084–97.

299 [25] Cingolani P, Platts AE, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting
300 the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain
301 w1118; iso-2; iso-3. *Fly* 2012;6:80–92.

302 [26] Purcell S, Neale BM, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-
303 genome association and population-based linkage analyses. *Am J Hum Genet* 2007;81:559–75.

304 [27] Wang X, Zheng Z, Cai Y, Chen T, Li C, Fu W, et al. CNVcaller: highly efficient and widely applicable software
305 for detecting copy number variations in large populations. *GigaScience* 2017;6:1–12.

306 [28] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput
307 sequencing data. *Nucleic Acids Res* 2010;38:e164.

308 [29] Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, et al. The UCSC Genome Browser
309 database: 2018 update. *Nucleic Acids Res* 2018;46:762–9.

310 [30] Patterson N, Price AL, Reich D. Population structure and eigenanalysis. *PLoS Genet* 2006;2:e190.

311 [31] Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.
312 *Genome Res* 2009;19:1655–64.

313 [32] Geer LY, Marchlerbauer A, Geer RC, Han L, He J, He S, et al. The NCBI BioSystems database. *Nucleic Acids*
314 *Res* 2010;38:492–6.

315 [33] Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, et al. Meta-analysis
316 of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals.
317 *Nat Genet* 2018;50:362–7.

318 [34] Liu GE, Brown T, Hebert DA, Cardone MF, Hou Y, Choudhary RK, et al. Initial analysis of copy number
319 variations in cattle selected for resistance or susceptibility to intestinal nematodes. *Mamm Genome* 2011;22:111–
320 21.
321 [35] Ramey HR, Decker JE, Mckay SD, Rolf MM, Schnabel RD, Taylor JF. Detection of selective sweeps in cattle
322 using genome-wide SNP data. *BMC Genomics* 2013;14:382.
323 [36] Portoneto LR, Sonstegard TS, Liu GE, Bickhart DM, Silva MVGBD, Machado MA, et al. Genomic
324 divergence of zebu and taurine cattle identified through high-density SNP genotyping. *BMC Genomics*
325 2013;14:876.
326 [37] Gibbs R, Taylor J, Van Tassel C, Barendse W, Eversole K, Gill C, et al. Genome-wide survey of SNP variation
327 uncovers the genetic structure of cattle breeds. *Science* 2009;324:528–32.
328

329 **Figure legends**

330 **Figure 1 Analysis pipeline used to construct the database and population analysis of 432
331 cattle**

332 **A.** Analysis pipeline used to construct the database. **B.** Principal component analysis of 432
333 cattle; different numbers in B represent six “core” cattle groups. **C.** Model-based clustering of
334 cattle breeds using the program ADMIXTURE with $K = 2$ to 8 (plotted in R).
335

336 **Figure 2 Screenshots of a single nucleotide polymorphism (SNP) data search and the
337 results for two examples**

338 **A.** Search items involving rs ID, gene name and position of three bovine reference genomes. **B.**
339 Advanced Search menu enabling filtering for minor allele frequency and consequence type. **C.**
340 Detailed annotation of the rs384881761 locus of the *KRT27* gene and the allele frequency
341 distribution pie-chart of 54 cattle breeds worldwide. **D.** Display format of the allele frequency
342 for the rs109815800 locus of *PLAG1* among defined ancestral groups.
343

344 **Figure 3 Screenshots of a copy number variation region (CNVR) data search and three
345 types of display formats of the results**

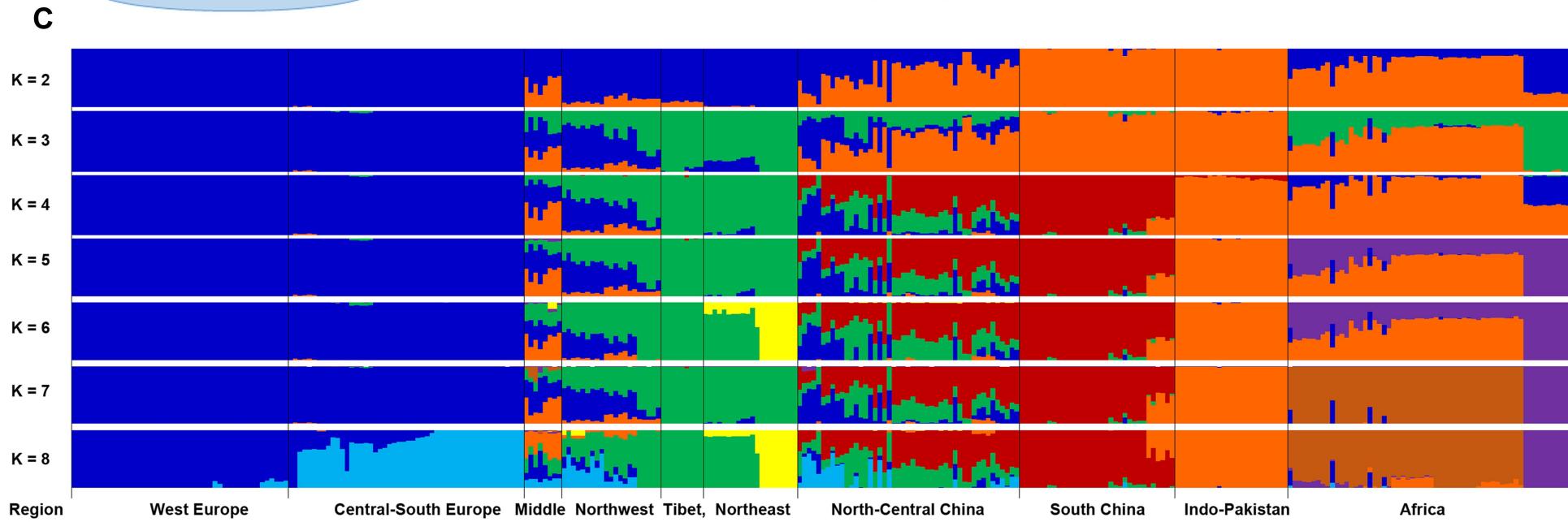
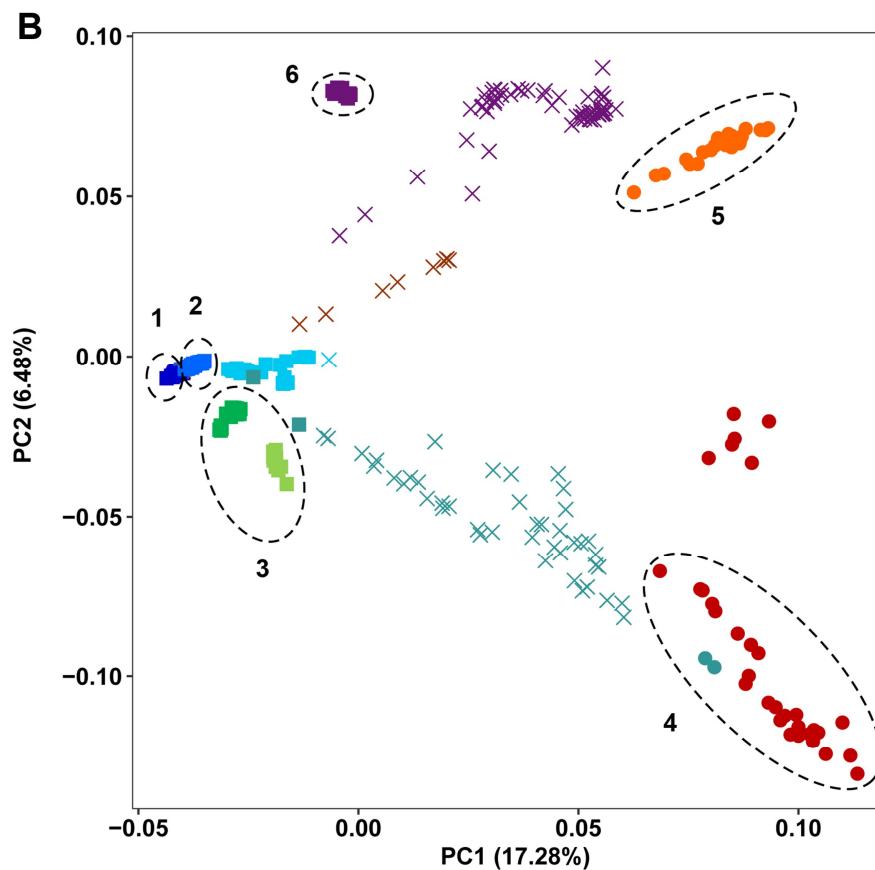
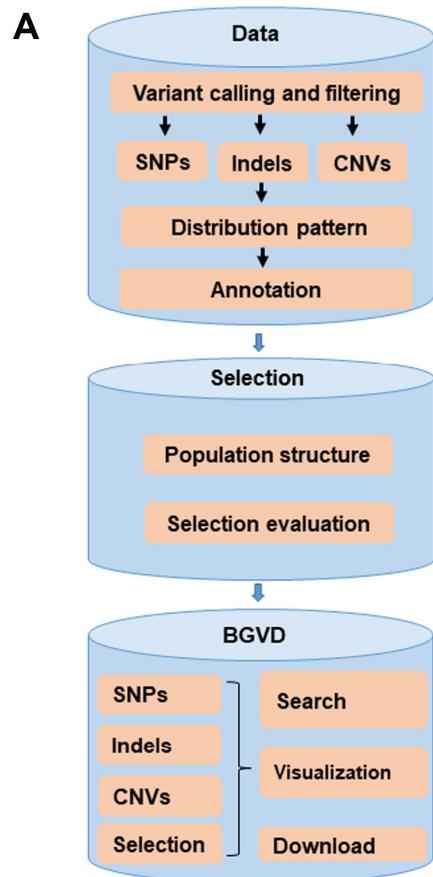
346 **A.** Search items involving the gene name and position of three bovine reference genomes. **B.**
347 Results involving detailed annotation for the CNVR and copy number distribution patterns of
348 432 individuals representing 49 populations. An example of *MATN3*, which showed different
349 copy numbers in the Holstein population. **C.** “CNVR Bar” track in the bar chart format in UCSC
350 Genome Browser (Gbrowse). An example of the *KIT* gene, which is related to coat color in
351 Herefords. **D.** The more detailed visualization “CNVR Bar” track in the format of a box-whisker
352 plot, displaying copy number distribution in 49 cattle populations. An example of *CIITA*, which

353 lies within a high-frequency gain CNVR identified in multiple breeds that showed nematode
354 resistance.

355

356 **Figure 4 Screenshots of a search for genomic selection data and representation of the**
357 **selection data**

358 **A.** Search items involving gene name, position, and one of the statistical methods (nucleotide
359 diversity (Pi), heterozygosity (Hp), integrated haplotype score (iHS), Weir and Cockerham's
360 F_{ST} , cross-population extended haplotype homozygosity (XP-EHH), and the cross-population
361 composite likelihood ratio (XP-CLR)), and specific "core" cattle groups. **B.** Detailed annotation
362 for the target gene or region in the variant grid and the corresponding selective signal at the
363 chromosome and whole-genome levels, respectively. An example of selective signal of the
364 *OR2T33* gene in Eurasian taurine population. **C.–E.** The display of 57 tracks in UCSC Genome
365 Browser (Gbrowse) in the BGVD. Numbers 1-16 represent the corresponding tracks. (C)
366 Example of the *OR2T33* gene in "SNPs&Hap" track. Different haplotypes of the *Bos taurus*
367 and *Bos indicus* groups are shown in blue and red, respectively. D. Examples of the six selection
368 scores of the *POFUT1* gene in the Chinese indicine (CN) group, and where each group is
369 represented by a different color. Here, we show F_{ST} scores of Indian indicine (IN) and East
370 Asian (EA) groups with orange and blue, respectively. E. Fifty-seven tracks in Gbrowse.




371

372 **Table**

373 **Table 1 Statistical terms for selection sweep in the Bovine Genome Variation Database**
374 **(BGVD)**

Table 1 Statistical terms for selection sweep in the Bovine Genome Variation Database (BGVD)

Statistical term	Abbreviation	Population 1	Population 2	Windows
Nucleotide diversity	Pi	Indian indicine (IN)		30k
Heterozygosity	H_p	Chinese indicine (CN)		60k
Integrated haplotype score	his	East Asian taurine (EA) Eurasian taurine (EUA) European taurine (EUR) African taurine (AFR) <i>Bos indicus</i> (BIN) <i>Bos taurus</i> (BTA)		30k
Weir and Cockerham's Fst	F_{ST}	Indian indicine (IN)	Other five groups	30k
Cross-population composite likelihood ratio	XP-CLR	Chinese indicine(CN)	Other five groups	30k
Cross-population extended haplotype homozygosity	XP-EHH	East Asian taurine (EA) Eurasian taurine (EUA) European taurine (EUR) African taurine (AFR) <i>Bos indicus</i> (BIN)	Other five groups Other five groups Other five groups Other five groups <i>Bos taurus</i> (BTA)	30k

A SNPs (single nucleotide polymorphisms)

Please enter a dbSNP ID, or a gene symbol, or a chromosome location for one of the genome versions, such as Btau 5.0.1 (GCF_000003205.7), UMD3.1.1 (GCF_000003055.6) and ARS-UCD1.2 (GCF_002263795.1), to obtain a SNP information and allele frequency distribution pattern in 54 world-wide cattle breeds or six "core" cattle groups.

Basic search

dbSNP ID: e.g., [rs384881761](#), [rs109815800](#)

Or Gene symbol: e.g., [PLAG1](#), [KRT27](#), [HOXD4](#)

Or Chromosome location: For Btau_5.0.1, e.g., [19:41811000-41811922](#), [19:41811922](#)

Or Chromosome location: For UMD_3.1.1, e.g., [19:41636098-41636961](#), [19:41636961](#)

Or Chromosome location: For ARS-UCD1.2, e.g., [19:40981387-40982250](#), [19:40982250](#)

B Advanced search

Minor allele frequency \geq (range: 0-1)

Consequence type: Transcript variant

- Coding variant
 - Missense_variant
 - Initiator_codon_variant
 - Start_lost
 - Stop_lost
 - Stop_gained
 - Stop_retained_variant
 - Synonymous_variant
- Non-coding variant
 - 5_prime_UTR_variant
 - Start_gained
 - 3_prime_UTR_variant
 - Intron_variant
 - Non_coding_transcript_exon_variant
- Splice variant
 - Splice_acceptor_variant
 - Splice_donor_variant
 - Splice_region_variant
- Intragenic variant
 - Intragenic_variant
- Intergenic variant
 - Upstream_gene_variant
 - Downstream_gene_variant
 - Intergenic_variant

C SNPs found

Details

KRT27.NM_001075815.1:protein_coding:exon18:c.276C>G:p.Asn92Lys

Chr	Position	Alleles	MA	MAF	Consequence type	Gene	Variant ID	Position of UMD3.1.1	Position of ARS_UCD1.2	Gene details	Breed frequency	Core_group frequency	Visualization
19	41811922	G/C	C	0.006	missense_variant	KRT27	rs384881761	19:41636961	19:40982250	Show	Show	Show	Gbrowse

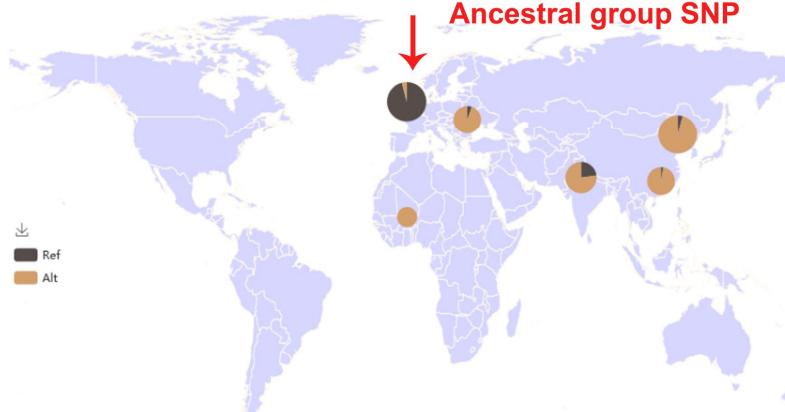
Showing 1 to 1 of 1 entries

Previous 1 Next

Allele frequency distribution of world-wide cattle breeds **Pie-chart on world map**

Breed (number): Frequency
Angus(25):0.000
RedAngus(16):0.000
Hereford(21):0.000
Holstein(44):0.000
Devon(1):0.000
MaineAnjou(6):0.000
Charolais(14):0.000
Salers(1):0.000
Limousin(1):0.000
Piedmontese(5):0.000
Gelbvieh(21):0.000
Simmental(23):0.109
Jersey(12):0.000
Rashokh(9):0.000
Kazakh(9):0.000

D SNPs found


PLAG1.NM_005192576.3:intron13:c.-216-319C>A

Chr	Position	Alleles	MA	MAF	Consequence type	Gene	Variant ID	Position of UMD3.1.1	Position of ARS_UCD1.2	Gene details	Breed frequency	Core_group frequency	Visualization
14	25197461	T/G	G	0.401	intron_variant	PLAG1	rs109815800	14:25015640	14:23338890	Show	Show	Show	Gbrowse

Showing 1 to 1 of 1 entries

Previous 1 Next

Allele frequency distribution of six ancestral cattle groups

Breed (number): Frequency
Indian_Indicine(24):0.771
Chinese_Indicine(19):0.974
East_Asian_taurine(37):0.959
European_taurine(38):0.039
Eurasian_taurine(19):0.947
Africa_taurine(10):1.000

A CNVs (Copy number variations)

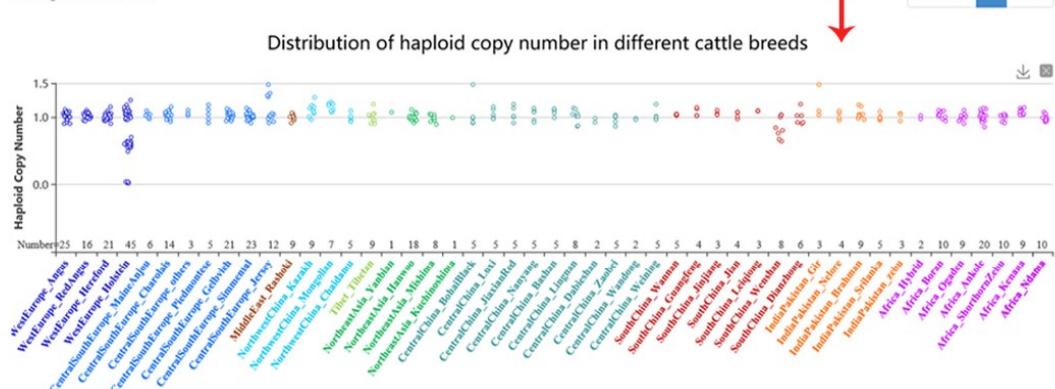
Please enter a gene symbol or a chromosome location for one of the genome versions, such as Blau 5.0.1 (GCF_000003205.7), UMD3.1.1 (GCF_000003055.6) and ARS-UCD1.2 (GCF_002263795.1), to obtain CNV region (CNVR) information of intersected genomic region, CNV length, the closest gene, consequence type and copy number distribution in 432 individuals representing 49 cattle populations.

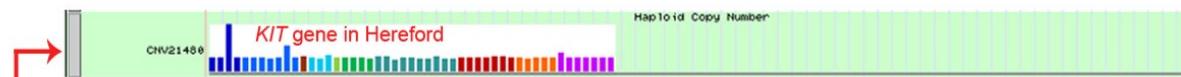
Search by gene symbol or chromosome position

Gene symbol: e.g., *KIT*, *MATN3*, *CIITA*

Or Chromosome location: For Btalu_5.0.1, e.g., *6:72045201-72050800*

Or Chromosome location: For UMD_3.1.1, e.g., *6:71746228-71751827*

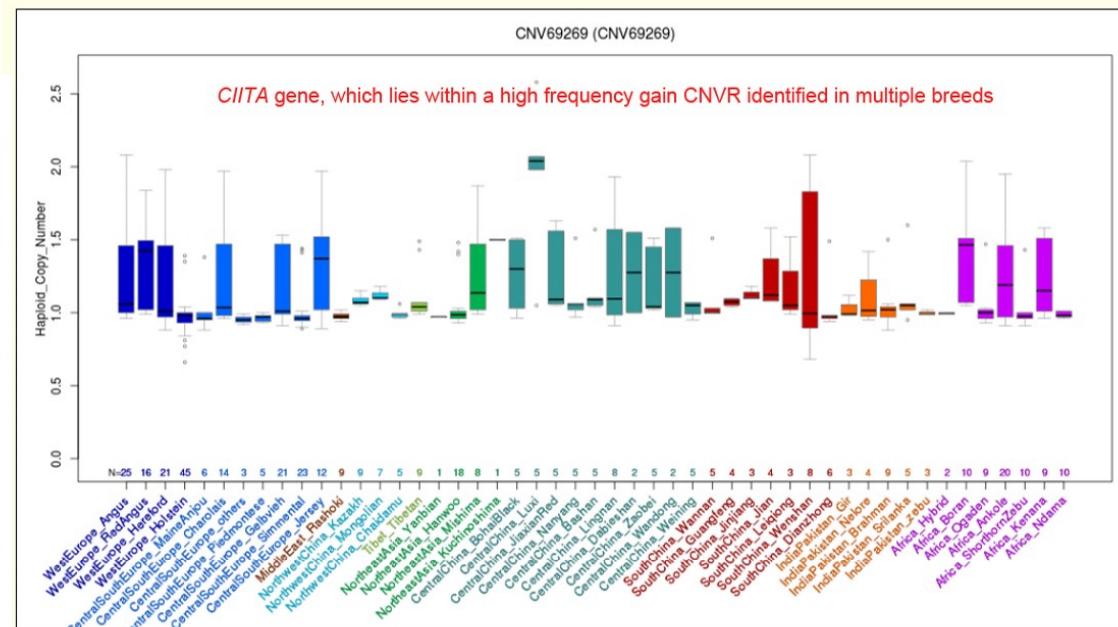

Or Chromosome location: For ARS-UCD1.2, e.g., *11:78818628-78827428*


B CNVR found

Chr	Start	End	Length	Consequence_type	Gene	Position of UMD3.1.1	Position of ARS_UCD1.2	CNVR_distribution	Visualization
11	79102801	79111600	8800	upstream	MATN3	11.78884355-78893154	11.78818628-78827428	View	Gbrowse

Showing 1 to 1 of 1 entries

C



↓ Link to CNV details

D

Haploid Copy Number (CNV69269)

Name of transcript: CNV69269
Name of gene: CNV69269
Total all median values: 53.87 Haploid_Copy_Number
Maximum median value: 2.04 Haploid_Copy_Number in CentralChina_Luxi
Score: 999
Genomic position: Btau_5_0_1 25_9649602-9705600
Strand: +

[View all data points for CNV69269 \(CNV69269\)](#)

← CNV details, group category of each individual

A Selective signatures

Please enter a gene symbol or a chromosome location (Btau 5.0.1, accession: GCF_000003205.7), and select one of the statistical methods as well as specific "core" cattle populations to view the selection score.

Search by gene symbol or chromosome position

Gene symbol: OR2T33 e.g., OR2T33

Or Chromosome location: e.g., 7:43260001-43290000, 7:43280000

Statistical methods:

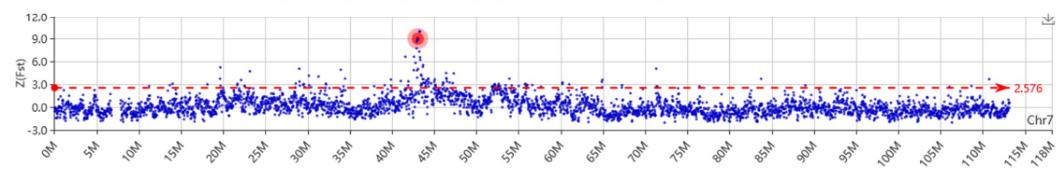
- PI: Nucleotide diversity
- Hp: Heterozygosity
- iHS: Integrated haplotype score
- FST: Fixation Index
- XP-CLR: Cross-population composite likelihood ratio
- XP-EHH: Cross-population extended haplotype homozygosity

Population:

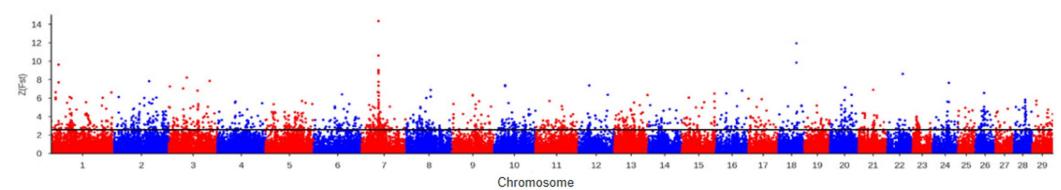
- Indian indicine Vs Other five groups
- Chinese indicine Vs Other five groups
- East Asian taurine Vs Other five groups
- Eurasian taurine Vs Other five groups**
- European taurine Vs Other five groups
- African taurine Vs Other five groups
- Bos indicus Vs Bos taurus

Search Reset

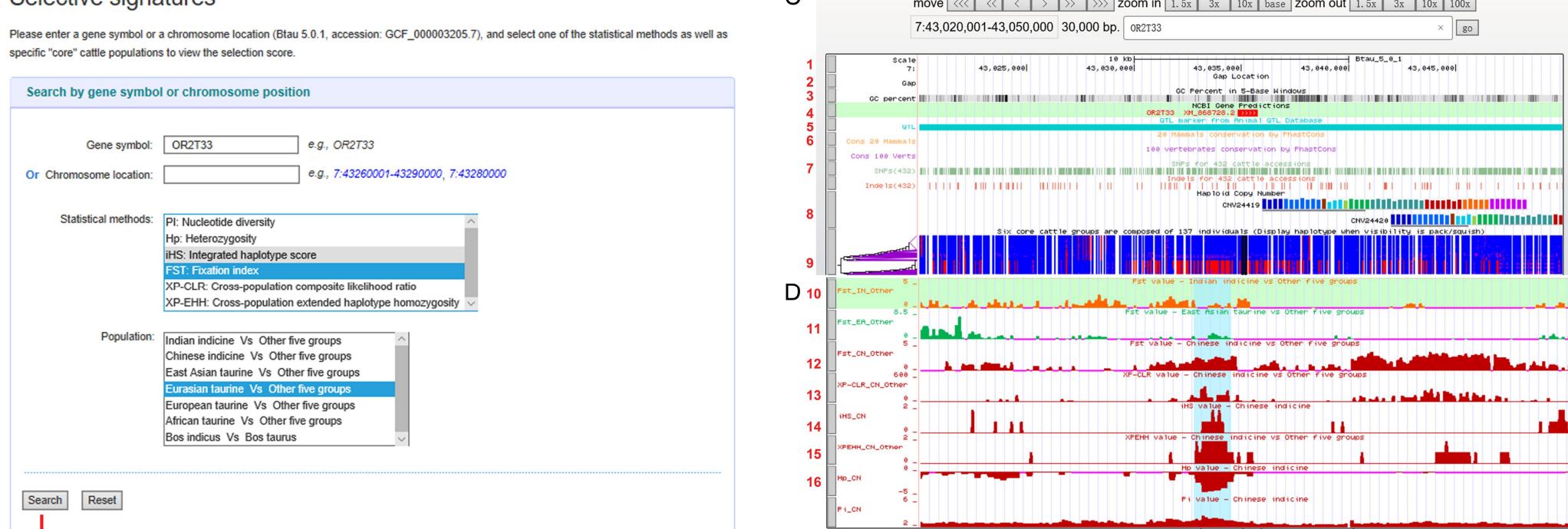
B Selective region found


FST: Eurasian taurine vs other five groups

User query	Selective region	Gene symbol	Window number*size (bp)	Signature figure	Visualization
OR2T33	7:43020001-43050000	OR2T33	1*30000	Show	Gbrowse


Showing 1 to 1 of 1 entries

Previous 1 Next


Selective signatures at the Chr7 (target region or gene is highlighted in red, see Z(Fst) value > 0)

Genome-wide detection of selective signatures

C UCSC Genome Browser on Btau_5_0_1 November 08th, 2017 Assembly (Btau_5_0_1)

