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Abstract 

Background: Adenine auxotrophy is a commonly used non-selective genetic marker in yeast research. 

It allows investigators to easily visualize and quantify various genetic and epigenetic events by simply 

reading out colony color. However, manual counting of large numbers of colonies is extremely time-

consuming, difficult to reproduce and possibly inaccurate.  

Results: Using cutting-edge neural networks, we have developed a fully automated pipeline for colony 

segmentation and classification, which speeds up white/red colony quantification 100-fold over manual 

counting by an experienced researcher.   

Conclusions: Our approach uses readily available training data and can be smoothly integrated into 

existing protocols, vastly speeding up screening assays and increasing the statistical power of 

experiments that employ adenine auxotrophy.  
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Background 

Auxotrophy is the inability of an organism to synthesize a particular organic compound required for its 

growth. For example, yeasts with mutations in the adenine biosynthetic pathway cannot grow on media 

lacking adenine. When grown under adenine-limiting conditions, adenine auxotrophs grow but 

accumulate a cell-limited red pigment in their vacuoles, whereas wild type cells grow white. This red/white 

colony color assay has been widely used over the last decades for the investigation of many biological 
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processes, such as recombination, copy number, chromosome loss, plasmid stability, prion propagation, 

or epigenetic gene regulation in both budding and fission yeasts. However, adapting this assay to 

quantitative high-throughput applications has proven challenging, as it requires extensive scoring of 

colony phenotypes by eye. In addition to being time-consuming and tedious, manual colony scoring may 

suffer from inaccuracy and irreproducibility. Nonetheless, up to now manual scoring is a common practice 

in the yeast community. Modern machine-learning techniques such as deep learning have made huge 

strides in automated image classification in recent years and are beginning to be applied to previously 

intractable problems in the biomedical imaging domain. We set out to leverage these recent 

developments to build a computational pipeline that would enable fully automated high-throughput 

adenine auxotrophy-based screening and quantification.  

Typically, red/white colony color assays start with plating individual yeast cells on limiting adenine 

indicator plates and allowing them to grow until they form colonies large enough to be inspected by eye. 

Each plate may represent an independent condition or genotype, the penetrance of which can be assessed 

by quantifying the percentage of non-white colonies per plate. In order to create a pipeline that would fit 

into existing protocols as seamlessly as possible, we considered our input to be images of plates and our 

desired output to be percentages of white and non-white colonies per plate. Two major tasks are required 

to generate this output: separating the colonies from the plate background and classifying them 

individually as white or non-white. 

These two tasks could conceivably be completed either in one step, as with a single-shot detector1 or 

RetinaNet2, or in two separate steps, such as with a semantic segmentation, where each pixel is assigned 

a label such as “foreground” or “background”, followed by classification of cropped images. While a single-

step approach may be preferable from the perspective of algorithmic efficiency and speed3, the training 

data annotations are more complex, requiring both manually assigned labels and matched bounding 

boxes identifying the location of each colony on a plate. As insufficient training data is a common problem 
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hampering efforts to apply deep learning in many biological domains4, we opted to use a pragmatic 

approach, treating the segmentation and classification steps as separate problems (Fig. 1a). This allowed 

us to use simpler and, when available, pre-existing annotations for training data: for the segmentation 

task, we used masks generated previously using the Ilastik image-processing toolkit5, while for the 

classification task, we relied on manual labels assigned by experienced biologists to cropped images of 

single colonies. All of our training data consisted of Schizosaccharomyces pombe colonies, with red 

pigment resulting from heterochromatin-mediated silencing of the ade6+ gene. 

 

Implementation 

All analyses were performed in Python v. 3.6.5 inside a conda virtual environment (v. 4.5.4). Deep learning 

models were built and trained using the fast.ai library (https://github.com/fastai/fastai)6. Image 

processing steps were performed using the scikit-image library (v. 0.13.1) (https://scikit-image.org/)7. 

Model training and prediction was run on a GeForce GTX 1080 GPU with CUDA v. 9.0 and CUDNN v. 7.1.2. 

Image segmentation 

A modified U-net architecture using a Resnet-34 network pre-trained on ImageNet as the encoder was 

used as the network architecture for the plate image segmentation task8,9. A total of 492 pairs of plate 

images and corresponding segmentation masks generated by Ilastik were used as training data, with 

approximately 20% (95 pairs) set aside for validation. Binary cross-entropy with logits 

(“BCEWithLogitsLoss”) was used as a loss function, and the dice coefficient was used as an evaluation 

metric. Data augmentation was applied to the training images with the following transformations: random 

rotation up to 4 degrees, random horizontal flip, random adjustment of brightness and contrast. The same 

transformations, except for adjustment of brightness and contrast, were applied to the training masks.  
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The network was first trained with center-cropped masks and images resized to 512x512 pixels, with a 

batch size of 4. A weight decay parameter of 1e-7 was used for all training. First, only the last layer was 

trained using stochastic gradient descent with restarts (SGDR) for 1 cycle of 8 epochs, using a circular 

learning rate scheduler with a maximum learning rate of 4e-2, a minimum learning rate of 8e-3, 1 epoch 

of increasing learning rate, and 7 epochs of decreasing learning rate10,11. Next, all layers were trained using 

SGDR for 1 cycle of 20 epochs. Differential learning rates were applied across layers, with the first 1/3 of 

layers having a maximum learning rate of 1e-4, the middle 1/3 having a maximum learning rate of 1e-3, 

and the last 1/3 having a maximum learning rate of 1e-2. A circular learning rate scheduler was again used, 

with minimum learning rates of 1/20th of respective maximum learning rates, 2 epochs of increasing 

learning rates, and 18 epochs of decreasing learning rates. The resulting weights were then saved and 

used as a starting point to train the network with larger, 1024x1024 images. 

Training images and masks were scaled up to 1024x1024 pixels and the network was further trained. First, 

only the last layer was trained using SGDR for 1 cycle of 2 epochs, using a circular learning rate scheduler 

with a maximum learning rate of 4e-2, a minimum learning rate of 8e-3, 0.5 epochs of increasing learning 

rate, and 1.5 epochs of decreasing learning rate. Next, all layers were trained using SGDR for 20 cycles of 

20 epochs. Differential learning rates were applied across layers, with the first 1/3 of layers having a 

maximum learning rate of 4e-5, the middle 1/3 having a maximum learning rate of 2e-4, and the last 1/3 

having a maximum learning rate of 4e-3. A circular learning rate scheduler was again used, with minimum 

learning rates of 1/20th of respective maximum learning rates, 2.5 epochs of increasing learning rates per 

cycle, and 17.5 epochs of decreasing learning rates per cycle. The resulting weights were saved and used 

for prediction. 
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Colony classification 

A Resnet-34 network that had been pre-trained on ImageNet was used as the network architecture for 

the colony classification task. The final output layer was replaced with a layer predicting 5 classes (“white”, 

“red”, “pink”, “variegating” and “bad segmentation”). A total of 1476 manually labeled, cropped images 

of individual colonies were used as training data, with approximately 20% (295 images) set aside for 

validation. Out of the total pool of images, 537 were labeled as “white”, 273 as “red”, 310 as “pink”, 318 

as “variegating”, and 38 as “bad segmentation”. Validation images were chosen so as to have the same 

proportions among the five classes as in the total pool. For training, images were resized to 50x50 pixels 

and a batch size of 128 was used. Stochastic gradient descent (SGD) with a Momentum of 0.9 was used as 

an optimization algorithm. Categorical cross-entropy was used as a loss function, and both log loss and 

accuracy were used as evaluation metrics. Data augmentation was applied to the training images with the 

following transformations: random rotation up to 10 degrees, random rotation or reflection of dihedral 

group 8, random adjustment of brightness and contrast, random zoom up to 1.1x.   

The last layer of the network was first trained without data augmentation for 1 epoch using a learning 

rate of 1e-2. Data augmentation was then added, and it was trained with SGDR for 3 cycles of 1 epoch 

each using cosine annealing, with an initial learning rate of 1e-2. Next, all layers were trained for 17 sets 

of 3 cycles of increasing length (1 epoch, followed by 2 epochs, followed by 4 epochs), for a total of 51 

cycles and 119 epochs. Differential learning rates were applied across layers, with the first 1/3 of layers 

having a maximum learning rate of 1.1e-4, the middle 1/3 having a maximum learning rate of 3.3e-4, and 

the last 1/3 having a maximum learning rate of 1e-3. Training was stopped when over-fitting was 

observed, and the resulting weights were saved and used for prediction. 
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Mask prediction, post-processing and colony class prediction 

The full prediction pipeline is implemented as follows: first, plate images are center-cropped and resized 

to 1024x1024 pixels. Segmentation masks are predicted using the trained U-net network, then resized to 

match the dimensions of the original (center-cropped) images. Border clearing and morphological opening 

are applied to the masks, reducing plate edge artefacts. Individual colonies are then labelled and a 

bounding box is drawn around each one, defining a region. Finally, colonies are selected if they have a 

regional eccentricity <= 0.6 and a regional area >= 400 pixels. Selected colonies are cropped and saved as 

individual .jpg images, retaining information about which plate each colony came from.  

Classes are then predicted for individual colonies using the trained Resnet-34 network with test-time 

augmentation. This applies the same data augmentation transforms as were used during training to the 

test images, creating four randomly transformed versions of each image, then takes the average 

prediction for all four plus the original. The five colony class predictions are then aggregated per plate, 

and the percentage of non-white colonies is defined as the sum of predicted red, pink and variegating 

colonies divided by the sum of all properly segmented colonies (excluding those in the “bad 

segmentation” class). Segmentation and colony class prediction can also be performed separately, 

allowing for classification of previously-segmented images. 

 

Results 

To perform the segmentation task, we chose a U-net-like architecture implemented in the fast.ai library6. 

U-net was developed specifically for semantic segmentation and has been successfully applied to complex 

biomedical images such as electron microscopy of neuronal structures and MRI or ultrasound images in 

breast cancer screening9,12,13. We trained the U-net network using 492 plate images and corresponding 

Ilastik-generated masks, with 20% kept aside for validation (see Implementation for full training 
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parameters). After training, visual inspection of predicted masks revealed an accurate segmentation of 

colonies from background, although some errors remained around plate edges (Fig. 1b). This was not 

unexpected, considering that the Ilastik-generated masks also often contained artefacts at the edges. In 

order to circumvent this problem, we applied post-processing on the predicted masks, which effectively 

removed artefacts. The vast majority of resulting cropped regions contained a single colony; however, a 

few regions still contained multiple small, overlapping colonies. To reduce possible bias that might result 

from counting multiple colonies as one, we filtered these out during the classification stage.  

For the classification task, we fine-tuned a Resnet-34 architecture that was pre-trained on ImageNet 

(http://www.image-net.org/)8,14, also implemented in the fast.ai library6. We trained the network using 

1476 images of individually cropped colonies, which were split into five manually-labeled classes: white, 

red, pink, variegating, and multiple colonies. Again, 20% of colony images were kept aside for validation. 

After training, we achieved a validation accuracy of 91.8% across the five classes (Fig. 1d). Further, 

aggregating the three classes of non-white colonies together (red, pink and variegating) yielded a much 

higher validation accuracy of 98.6%. This higher pooled accuracy was encouraging, considering our desired 

output of percentages of white and non-white colonies per plate. It also demonstrates that most 

classification errors occur within non-white classes rather than between white and non-white classes, an 

expected result given that the non-white classes often do not have clear distinctions and can be difficult 

to define even by eye.  

While we were encouraged by our high validation accuracy, we wanted to test the pipeline’s performance 

against manual counting in a real-world, experimental context. To this end, we took data from two 

published experiments testing trans-generational inheritance of ade6+ silencing in S. pombe15. In these 

experiments, ade6+ silencing was first induced by expression of small interfering RNAs (siRNAs) that are 

complementary to the ade6+ gene in a paf1-Q264Stop nonsense-mutant background, leading to red 

colonies. Paf1 is a subunit of the Paf1 complex (Paf1C), which represses siRNA-induced heterochromatin 
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formation in S. pombe16. In the presence of the paf1-Q264Stop allele, the silenced (red) phenotype was 

inherited through meiosis, even in the absence of the original siRNAs that have triggered ade6+ repression. 

This was not the case if the progeny inherited a paf1+ wild type allele, i.e. the red silencing phenotype was 

lost. However, these white paf1+ cells inherited a marked ade6+ epiallele (ade6si3), which reinstated 

silencing when cells became mutant for Paf1 again in subsequent generations15. The following 

experiments were performed to quantify different aspects of this phenomenon.  

In the first experiment, paf1-Q264Stop cells that inherited the ade6si3 allele and re-established the red 

silencing phenotype were plated on limiting adenine indicator plates to quantify the maintenance of this 

re-established silencing through mitosis. Out of 59 plates derived from a red progenitor colony, our 

automated pipeline predicted a mean of 84.7% non-white colonies, indicating a high degree of 

maintenance of ade6+ silencing. 10 of these plates were manually counted, and the mean difference in 

the percent of counted and predicted non-white colonies was 2.1 percentage points (Fig. 2a). As a control, 

colonies derived from cells of white paf1-Q264Stop progenitor colonies were also quantified by both 

methods. The automated pipeline predicted a mean of 0.57% non-white colonies across 60 plates, while 

manual counting of colonies on 12 plates detected 0 non-white colonies (Fig 2b). 

The second experiment was performed to assess mitotic stability of the ade6si3 epiallele. White paf1+ cells 

with an ade6si3 epiallele were grown exponentially and a sample was crossed to white paf1-Q264Stop cells 

every 3 days (30-40 mitotic divisions) over 19 days total. Progeny of these crosses were also observed to 

re-establish silencing; however, the frequency of re-establishment declined with the number of mitotic 

divisions the cells had gone through. The percentage of non-white colonies on plates resulting from 

crosses at each time point was both counted manually (66000 colonies total) and predicted using the 

automated pipeline. Both methods showed a near-exponential decrease in non-white colonies over time; 

the mean difference in the percent of non-white colonies between the two methods ranged from 0.26 to 

5.1 percentage points (Fig 2c).  
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Discussion and Conclusions 

We observed several factors that contributed to the accuracy of the automated pipeline predictions 

versus manual counting. In general, the pipeline performed with very high accuracy on plates with a low 

(< 5%) percentage of non-white colonies; however, on some plates that had been grown for over two 

weeks, white colonies formed an irregular ring-like morphology and tended to be mis-classified as pink. 

The accuracy of the pipeline was also decreased for plates with very dense, small colonies. This may be 

partly due to the difficulty in segmenting individual colonies when they are touching one another, leading 

to many colonies being excluded from the analysis. Very small colonies are also more likely to be 

mistakenly filtered out during post-processing. Since cells with a silenced ade6+ gene tend to grow more 

slowly, this may lead to bias, as very small colonies are more likely to be non-white. However, plating cells 

at a controlled density and imaging the plates after an appropriate amount of time can counteract this 

potential bias. We have posted a full suggested protocol describing plating and imaging for most accurate 

prediction on Protocol Exchange (https://protocolexchange.researchsquare.com/.) 

Our fully automated pipeline can be run on a CUDA-enabled CPU or GPU. On a GeForce GTX 1080 GPU, it 

took approximately 45 minutes to process 245 plate images, representing an 80-100x speedup over 

manual counting by an experienced biologist. In addition to saving time and manual labor, the pipeline 

has the potential to increase reproducibility by removing variations between individual researchers or 

computer monitors. Our pragmatic approach, combining transfer learning with readily available 

annotations, allows us to achieve accuracy comparable to human performance with relatively little 

training data. Our work should thus enable larger-scale experiments and higher statistical power, 

unlocking a true quantitative use of the red/white color assay in yeast research. We have made the code 

and trained network weights freely available to the community at https://github.com/fmi-basel/buehler-

colonyclassification. 
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ABBREVIATIONS 

 

SGDR  stochastic gradient descent with restarts  

SGD  stochastic gradient descent  

MRI  magnetic resonance imaging 

S. pombe Schizosaccharomyces pombe 

Paf1C  polymerase associated factor 1 complex 

siRNA  small interfering RNA 

ade6si3  ade6+ epiallele marked with histone H3 lysine 9 tri-methylation and siRNAs 

NCCR   national centers of competence in research  

FMI  Friedrich Miescher institute for biomedical research  

MTA  material transfer agreement  

UBMTA  uniform biological material transfer agreement 
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FIGURE LEGENDS 

 

Figure 1. Overview of deep learning setup and results. a) Schematic of the entire automated colony 

classification pipeline. Plate images are given as input, then pass through a U-net network for 

segmentation prediction, resulting in cropped colony images. These are then fed into a Resnet-34 network 

for classification, followed by plate-level aggregation into white and non-white percentages. b) An 

example input plate image (left), and the same image overlaid with the predicted segmentation mask 

(right). c) Examples of cropped colonies classified into each of the 5 possible classes. d) Confusion matrix 

showing the results of the classification step (Resnet-34 network) on the validation data. Numbers in each 

square indicate the number of colonies with each true (y-axis) and predicted (x-axis) label. 

 

Figure 2. Comparison of automated colony classification and manual counting on experimental data. a) 

Boxplots showing the predicted or manually counted percentage of non-white colonies per plate on plates 

resulting from red paf1-Q264Stop; ade6si3 cells. n = 59 (predicted) or n = 10 (counted). b) Boxplots showing 

the predicted or manually counted percentage of non-white colonies per plate on plates resulting from 

white paf1-Q264Stop cells. n = 59 (predicted) or n = 12 (counted). For boxplots, center line is median, 

bottom and top hinges are 1st and 3rd quartiles, whiskers show the most extreme points within 1.5 times 

the interquartile range, and more extreme values are plotted as individual points. c) Mean predicted or 

manually counted percentages of non-white colonies per plate across a time course of mitotically dividing 

white paf1+ ade6si3 cells crossed to white paf1-Q264Stop cells every 3 days. The time course was repeated 

with 11 independent biological replicates, and 6 plates per replicate per timepoint were quantified by 

automated prediction (n=66 per time point). The mean of all 66 plates is reported for each timepoint. For 
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manual counting, one plate per replicate per timepoint was counted (n=11 per time point); the mean of 

11 plates is reported for each timepoint. 
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