

1 A fungal arrestin protein contributes to cell cycle progression and pathogenesis

2

3 Calla L. Telzrow,^{a,b} Connie B. Nichols,^a Natalia Castro-Lopez,^c Floyd L. Wormley Jr.,^{c*}

4 J. Andrew Alspaugh^{a,b}#

5

6 ^aDepartment of Medicine, Duke University School of Medicine, Durham, NC

7 ^bDepartment of Molecular Genetics and Microbiology, Duke University School of

8 Medicine, Durham, NC

9 ^cDepartment of Biology, University of Texas at San Antonio, San Antonio, TX

10 *Current address: Texas Christian University, Fort Worth, TX

11

12

13 Running Head: Arrestin proteins in *C. neoformans*

14

15

16 #Address correspondence to J. Andrew Alspaugh, andrew.alspaugh@duke.edu

17

18

19 Abstract word count: 231

20 Text word count: 5,955

21 **ABSTRACT**

22 Arrestins, a structurally specialized and functionally diverse group of proteins, are
23 central regulators of adaptive cellular responses in eukaryotes. Previous studies on
24 fungal arrestins have demonstrated their capacity to modulate diverse cellular
25 processes through their adaptor functions, facilitating the localization and function of
26 other proteins. However, the mechanisms by which arrestin-regulated processes are
27 involved in fungal virulence remain unexplored. We have identified a small family of four
28 arrestins - Ali1, Ali2, Ali3, and Ali4 - in the human fungal pathogen *Cryptococcus*
29 *neoformans*. Using complementary microscopy, proteomic, and reverse genetic
30 techniques, we have defined a role for Ali1 as a novel contributor to cytokinesis, a
31 fundamental cell cycle-associated process. We observed that Ali1 strongly interacts with
32 proteins involved in lipid synthesis, and that *ali1Δ* mutant phenotypes are rescued by
33 supplementation with lipid precursors that are used to build cellular membranes. From
34 these data, we hypothesize that Ali1 contributes to cytokinesis by serving as an adaptor
35 protein, facilitating the localization of enzymes that modify the plasma membrane during
36 cell division, specifically the fatty acid synthases, Fas1 and Fas2. Finally, we assessed
37 the contributions of the *C. neoformans* arrestin family to virulence, to better understand
38 the mechanisms by which arrestin-regulated adaptive cellular responses influence
39 fungal infection. We observed that the *C. neoformans* arrestin family contributes to
40 virulence, and that the individual arrestin proteins likely fulfill distinct functions that are
41 important for disease progression.

42 **IMPORTANCE**

43 To survive in unpredictable conditions, all organisms must adapt to stressors by
44 regulating adaptive cellular responses. Arrestin proteins are conserved regulators of
45 adaptive cellular responses in eukaryotes. Studies that have been limited to mammals
46 and model fungi have demonstrated that disruption of arrestin-regulated pathways is
47 detrimental for viability. The human fungal pathogen *Cryptococcus neoformans* causes
48 more than 180,000 infection-related deaths annually, especially among
49 immunocompromised patients. In addition to being genetically-tractable, *C. neoformans*
50 has a small arrestin family of four members, lending itself to a comprehensive
51 characterization of its arrestin family. This study serves as a functional analysis of
52 arrestins in a pathogen, particularly in the context of fungal fitness and virulence. We
53 investigate the functions of one arrestin protein, Ali1, and define its novel contributions
54 to cytokinesis. We additionally explore the virulence contributions of the *C. neoformans*
55 arrestin family and find that they contribute to disease establishment and progression.

56 INTRODUCTION

57 Tight regulation of signal transduction pathways is necessary for appropriate
58 cellular adaptation to the environment. Arrestins are a group of multifunctional proteins
59 that modulate the activation and repression of diverse signaling pathways in eukaryotes
60 (1–4). Structurally, arrestins are defined by protein domains with conserved β -sheet-rich
61 regions, termed the N-terminal and C-terminal arrestin domains, that provide important
62 secondary structure guiding protein localization and activity (5, 6). Functionally,
63 arrestins link plasma membrane-initiated signals to intracellular responses by regulating
64 signal internalization and intracellular signaling cascades. In doing so, arrestins enable
65 the eukaryotic cell to fine-tune adaptive cellular responses through three specific
66 mechanisms: desensitizing G protein-coupled receptors (GPCRs), scaffolding signaling
67 cascades, and serving as adaptor proteins (1–4).

68 Nearly four decades ago, arrestins were first discovered for their unique ability to
69 “arrest” cellular responses to persistent stimuli, in a classical process termed
70 desensitization (7). Desensitization has been most commonly reported for and most
71 extensively explored in visual and β -arrestins, classes of arrestins that are specific to
72 metazoan cells (7–9). A third class of arrestins, the α -arrestins, are the evolutionary
73 predecessors of the visual and β -arrestins (3, 5, 10–12). Present in all eukaryotes
74 except for plants, α -arrestins share the ability to perform desensitization (13, 14).
75 Beyond desensitization, non-traditional arrestin roles have been recently elucidated in
76 model fungi. Fungal α -arrestins often act as scaffolds, physically bringing different
77 components of signaling cascades within functional proximity of each other (10, 15–17).
78 Additionally, other fungal α -arrestins function as adaptors, facilitating proper localization

79 and function of other proteins. They often serve as ubiquitin ligase adaptors by means
80 of proline-rich ubiquitin ligase binding motifs, or PxY sites, but α -arrestins can also act
81 as adaptors for cytosolic proteins beyond those involved in ubiquitination (14, 18–21).
82 Through these mechanisms, arrestins enable eukaryotic cells to terminate, promote,
83 and modulate diverse adaptive cellular response signaling pathways both at the plasma
84 membrane and throughout the cytosol.

85 The regulation of adaptive cellular responses is particularly important for
86 pathogenic fungi because, in order to cause disease, they must quickly adjust to the
87 hostile environment of the human host. Our laboratory and others have defined many
88 fungal adaptive cellular response pathways, such as the Ras1 pathway and the Rim
89 alkaline pH-sensing pathway, that are required for fungal virulence (22–27). However,
90 the mechanisms by which adaptive cellular responses are regulated in pathogenic fungi
91 are incompletely understood. The human fungal pathogen *Cryptococcus neoformans* is
92 able to transition from its natural reservoir in the soil to establish infection in the host,
93 resulting in more than 180,000 infection-related deaths annually, especially among
94 immunocompromised patients (28). In contrast to other fungal model systems that
95 encode numerous α -arrestin proteins in their genomes, we identified four α -arrestin
96 proteins in *C. neoformans*: Ali1, Ali2, Ali3, and Ali4. This limited set of arrestin proteins
97 allows for investigations of individual arrestin protein function, as well as assessment of
98 arrestins as a collective family. Using Ali1 as a model, we report that Ali1 is a novel
99 regulator of cytokinesis, and that this regulatory role is particularly important in the
100 presence of stress. Additionally, we determine that Ali1 regulates cytokinesis through a
101 typical arrestin role, likely functioning as an adaptor protein. Lastly, we demonstrate

102 that, although Ali1 is not individually required for fatal infection, the α -arrestin family as a
103 whole contributes to fungal virulence. By using the *C. neoformans* α -arrestins to explore
104 the mechanisms by which fungal pathogens regulate their adaptive cellular responses,
105 we can gain a deeper understanding of the establishment and progression of fungal
106 infections.

107

108 **RESULTS**

109 ***C. neoformans* contains a small family of four arrestin proteins.**

110 Previous work recently reported two putative α -arrestin proteins in the *C.*
111 *neoformans* proteome, Ali1 (CNAG_02857) and Ali2 (CNAG_02341) (Arrestin-Like 1
112 and 2) (Fig. 1) (25). These proteins were identified as α -arrestins based on the
113 presence of the N-terminal and C-terminal arrestin domains. We performed a search of
114 the *C. neoformans* proteome to identify all α -arrestin domain-containing proteins (29). In
115 doing so, we identified two additional α -arrestin proteins, Ali3 (CNAG_04137) and Ali4
116 (CNAG_05343), each of which contains a single C-terminal arrestin domain (Fig. 1). In
117 addition to the arrestin domains, each of the identified *C. neoformans* α -arrestin proteins
118 also contains multiple ubiquitin ligase binding sites, or PxY sites, which are common
119 features of α -arrestins (Fig. 1) (3, 12, 14). For the sake of simplicity, the *C. neoformans*
120 α -arrestins will simply be referred to as “arrestins” throughout the remainder of this
121 manuscript.

122 To prioritize our studies, we compared the protein sequence of each of the *C.*
123 *neoformans* arrestin proteins with those in *Saccharomyces cerevisiae* and humans, two
124 organisms with well-characterized arrestin families. Because there is often limited
125 protein sequence conservation between arrestins in different species, we used two
126 different programs within the Basic Local Alignment Search Tool (BLAST) algorithm.
127 Protein-protein BLAST (blastp) was utilized to detect arrestin proteins in the *S.*
128 *cerevisiae* and human proteomes with moderate to high degrees of homology with the
129 *C. neoformans* arrestin proteins (30). We also used Position-Specific Iterated BLAST
130 (PSI-BLAST) to detect arrestin proteins in the *S. cerevisiae* and human proteomes with

131 low, but potentially relevant, degrees of homology with the *C. neoformans* arrestin
132 proteins (31, 32). Ali1 was the only *C. neoformans* arrestin protein that shared
133 significant sequence homology with multiple *S. cerevisiae* arrestins and a human
134 arrestin (Tables S1 & S2). In all of these instances, the identified sequence homology
135 was located within the arrestin domains of both proteins. We therefore elected to focus
136 our initial studies on Ali1.

137 **Ali1 exhibits cell cycle-regulated localization that is dependent on the Ras
138 signaling pathway.**

139 We first investigated the subcellular localization of Ali1, positing that its
140 localization would be indicative of function. We C-terminally tagged Ali1 with green
141 fluorescent protein (GFP) and validated proper expression, stability, and function of the
142 Ali1-GFP fusion protein using quantitative real time PCR, western blotting, and mutant
143 phenotype complementation, respectively (data not shown). Following validation, we
144 incubated the wild-type (WT) strain and the Ali1-GFP strain to mid-logarithmic growth
145 phase in yeast-peptone-dextrose (YPD) medium at 30°C, a nutrient-rich growth
146 condition, and tissue culture (TC) medium at 37°C, a stressful condition that more
147 closely mimics the host environment. Using epifluorescence microscopy, we observed
148 identical patterns of localization in both conditions: Ali1-GFP localizes diffusely
149 throughout the cytoplasm and is excluded from the vacuole in non-budding cells (Fig.
150 2A). However, in budding cells, Ali1-GFP is enriched at the developing septum, and it
151 also localizes within discrete puncta at the poles (Fig. 2A). To confirm this localization,
152 we performed subcellular fractionations to measure the relative abundances of Ali1-
153 GFP within the soluble (cytoplasmic) and insoluble (membrane-associated) cellular

154 fractions. We observed that Ali1-GFP is enriched in the insoluble fraction, indicating that
155 Ali1-GFP is associated with insoluble cellular components such as the plasma
156 membrane, intracellular membranes, and cell wall components (Fig. 2B). Together
157 these observations suggest that Ali1 may be a novel contributor to cell polarity and/or
158 cell division.

159 Previous work in our group identified *C. neoformans* Ras1 as a GTPase that is
160 required for cytokinesis and polarized growth, particularly in the presence of cell stress
161 (22, 23, 33). Therefore, we hypothesized that Ras1 might also be required for the cell
162 cycle-associated localization of Ali1-GFP. To test this, we constructed a strain that, in
163 addition to expressing *ALI1-GFP*, also expressed *mCherry-RAS1* under a galactose-
164 regulatable promoter (23). When incubated in galactose as the sole carbon source
165 (YPGal), cells express *RAS1* at levels similar to WT cells, which is confirmed by
166 *mCherry-Ras1* localization to the plasma membrane. In contrast, *RAS1* expression is
167 repressed when this strain is incubated in glucose as the sole carbon source (YPD).
168 When incubated in YPGal (WT) conditions, Ali1-GFP localizes to the septum and poles
169 of dividing cells as previously observed (Fig. 2C). However, in YPD (*ras1Δ*) conditions,
170 Ali1-GFP localization to the septum and poles of budding cells is impaired (Fig. 2C). We
171 quantified the frequency of Ali1-GFP localization to the septum and poles specifically
172 among budding cells and observed that the polarized pattern of Ali1-GFP localization is
173 significantly decreased in YPD (*ras1Δ*) conditions compared to YPGal (WT) conditions
174 (Fig. 2D). These data indicate that Ali1-GFP localization to sites associated with cell
175 polarity is dependent on Ras1.

176 **Ali1 is a regulator of cytokinesis.**

177 From the distinct, cell cycle-regulated localization pattern of Ali1-GFP, we
178 hypothesized that Ali1 is involved in the process of cell division. To test this hypothesis,
179 we constructed a loss-of-function *ali1Δ* mutant and analyzed this strain for cytokinesis
180 defects. *C. neoformans* cells with loss-of-function mutations in septin genes, known
181 contributors to cytokinesis, exhibit cytokinesis defects when grown at elevated
182 temperatures (34). We incubated the WT strain, the *ali1Δ* mutant, and the
183 complemented (*ali1Δ* + *ALI1*) strain at the permissive temperature of 30°C, or the more
184 stressful temperature of 39°C, and assessed the cells for cytokinesis defects by DIC
185 microscopy. We observed that the *ali1Δ* mutant exhibits similar morphology to the WT
186 strain at 30°C (Fig. 3A). However, at 39°C, we observed that the *ali1Δ* mutant displays
187 an increased incidence of cytokinesis defects, specifically elongated cells, wide bud
188 necks, and cells that fail to complete cytokinesis (Fig. 3A) (23, 34). We quantified this
189 observation and found that the *ali1Δ* mutant exhibits a higher frequency of cytokinesis
190 defects at 39°C than the WT strain, and that this *ali1Δ* mutant phenotype is rescued by
191 complementation with the WT *ALI1* allele (Fig. 3B & S1). This observation implicates
192 Ali1 in the regulation of cytokinesis.

193 Because the temperature-dependent cytokinesis phenotype of the *ali1Δ* mutant
194 mimics that of septin mutants, we next hypothesized that Ali1 is required for septin
195 protein complex formation. To do so, we analyzed septin protein localization in the WT
196 strain compared to the *ali1Δ* mutant. Using epifluorescence microscopy, we observed
197 that the septin protein, Cdc10-mCherry, localizes to the septum of budding cells in both
198 the WT and *ali1Δ* mutant backgrounds, indicating that Ali1 is not required for assembly
199 of septin proteins at the site of septum formation (Fig. 3C). Although Ali1 is not required

200 for this particular septin protein localization, we next hypothesized that Ali1 may be
201 involved in cytokinesis by modulating the function of other interacting proteins at the
202 septum and poles.

203 **Ali1-GFP interacts with proteins involved in lipid metabolism.**

204 To better understand the mechanism by which Ali1 regulates cytokinesis, we
205 performed a proteomic screen to identify potential protein interactors of Ali1. To do so,
206 we incubated the Ali1-GFP strain, and the WT strain as a negative control, to mid-
207 logarithmic growth phase in YPD medium. We subsequently conditioned the cultures in
208 YPD or TC media at 30°C, in order to capture protein-protein interactions at the most
209 permissive temperature, for three hours. Following cell lysis, GFP immunoprecipitations
210 were performed to enrich for Ali1-GFP. The immunoprecipitations were then analyzed
211 by LC/ESI/MS/MS to identify proteins that potentially interact with Ali1-GFP in these two
212 conditions. A total of 1,122 proteins were identified as potential Ali1-GFP interactors
213 using this approach (Table S3). We applied unbiased methods to enrich for proteins in
214 both YPD and TC conditions that were highly represented in the Ali1-GFP
215 immunoprecipitations and lowly represented, if at all, in the respective WT
216 immunoprecipitation. This prioritization scheme resulted in 59 and 62 potentially
217 biologically-relevant protein interactors of Ali1-GFP in YPD and TC conditions,
218 respectively (Tables S4 & S5). Table 1 displays the top 30 hits from this experiment in
219 YPD medium, organized by decreasing average exclusive unique peptide count (APC)
220 and increasing APC identified in the WT immunoprecipitation. Table 2 displays the top
221 30 hits from this experiment in TC medium, organized by decreasing APC and
222 increasing APC identified in the WT immunoprecipitation.

223 We observed that the Ali1-GFP protein interactome, both in YPD and TC
224 conditions, was enriched in proteins involved in two biological processes: protein
225 localization/stability and lipid metabolism. Enrichment of proteins involved in protein
226 localization/stability, such as ubiquitination proteins, has been reported for arrestins in
227 other organisms, particularly arrestins that perform adaptor functions (1, 11, 12, 35).
228 Ubiquitination proteins were found in both conditions, but were more highly represented
229 in TC conditions along with various proteasome subunits (Tables 1 & 2; Tables S4 &
230 S5). Supporting our Ali1-GFP localization observations, the septin proteins Cdc10,
231 Cdc11, and Cdc12 were also identified at low abundances, indicating potential transient
232 interactions with Ali1-GFP (Table S3). Interestingly, in addition to protein
233 localization/stability, the interactome of Ali1-GFP was highly enriched in proteins
234 involved in lipid metabolism. Multiple proteins involved in lipid synthesis and
235 degradation were identified in both YPD and TC conditions. Specifically, the fatty acid
236 synthase β subunit, Fas1, was the overall strongest potential interactor in both
237 conditions (Tables 1 & 2). The enzymatic partner of Fas1, the fatty acid synthase α
238 subunit, Fas2, was also identified at very high abundances in both YPD and TC
239 conditions (Tables 1 & 2). The observation that Fas1 and Fas2 were the most abundant
240 interactors in multiple, independent experiments conducted in both YPD and TC
241 conditions, as well as the fact that previous proteomic experiments we have conducted
242 with other proteins of interest did not find enrichment of the fatty acid synthases,
243 suggest that Fas1 and Fas2 are true, specific interactors of Ali1 (26). These data
244 indicate that Ali1 may be involved in the regulation of localized lipid production at the

245 developing septum and poles of budding cells, assisting in efficient cytokinesis,
246 especially in stressful growth conditions.

247 **The *ali1Δ* mutant has impaired cell surface integrity that is rescued by lipid
248 precursor supplementation.**

249 Using the data collected from the Ali1-GFP proteomic screen, we further
250 explored the mechanism by which Ali1 regulates cytokinesis. As previously discussed,
251 we identified many potential interactors of Ali1-GFP involved in lipid metabolism, a
252 process that is essential for proper synthesis and organization of the cell surface,
253 specifically the cell membrane. Therefore, we assessed the cell surface integrity of the
254 *ali1Δ* mutant. We incubated the WT strain, the *ali1Δ* mutant, and the *ali1Δ* + *ALI1* strain
255 at 30°C in the presence of various cell surface stressors: calcofluor white, Congo red,
256 SDS, and caffeine (36–39). The *ali1Δ* mutant exhibits modest susceptibility to caffeine,
257 a cell surface stressor that serves as a marker of cell surface integrity, when incubated
258 at 30°C (Fig. 4A) (40, 41). This phenotype is drastically enhanced when the *ali1Δ*
259 mutant is incubated at the more stressful temperature of 37°C (Fig. 4B). At both
260 temperatures, this sensitivity is rescued by complementation with the WT *ALI1* allele,
261 indicating likely alterations to the *ali1Δ* mutant cell surface.

262 As well as its role as a cell surface stressor, caffeine is an inhibitor of the target
263 of rapamycin complex 1 (TORC1) (36, 40). To determine if Ali1 functions in a pathway
264 related to TORC1 function, we assessed the sensitivity of the *ali1Δ* mutant strain to
265 rapamycin. We observed a two-fold decrease in the rapamycin MIC for the *ali1Δ* mutant
266 compared to the WT strain at both 30°C (*ali1Δ* MIC₅₀ = 1.56 ng/mL; WT MIC₅₀ = 3.12
267 ng/mL) and 37°C (*ali1Δ* MIC₅₀ = 0.78 ng/mL; WT MIC₅₀ = 1.56 ng/mL). Inhibition of

268 TORC1 induces autophagy in yeast (42). If caffeine-mediated inhibition of TORC1 is
269 more effective in the *ali1Δ* mutant than in the WT strain, causing the *ali1Δ* mutant to
270 display caffeine sensitivity, the *ali1Δ* mutant should be more susceptible to inducers of
271 autophagy than the WT strain. Given the minimal change in rapamycin sensitivity of the
272 *ali1Δ* mutant, we assessed the ability of the *ali1Δ* mutant strain to survive in nitrogen
273 deprivation, a known inducer of autophagy (43). We incubated the WT strain, the *ali1Δ*
274 mutant strain, and the *ali1Δ* + *AL1* strain on synthetic low-ammonium dextrose (SLAD)
275 medium at 30°C and 37°C. We observed that all strains displayed similar growth
276 kinetics (data not shown). These data suggest that the caffeine sensitivity of the *ali1Δ*
277 mutant is not due to dysregulation of autophagy, and that Ali1 likely does not directly
278 function in a TORC1-related pathway.

279 In addition to the observation that the two strongest potential interactors of Ali1-
280 GFP were Fas1 and Fas2, we also found that the fatty acid synthase inhibitor,
281 cerulenin, is slightly more active against the *ali1Δ* mutant ($MIC_{50} = 0.15 \mu\text{g/mL}$) than the
282 WT strain ($MIC_{50} = 0.3 \mu\text{g/mL}$). From these data, we hypothesized that the caffeine
283 susceptibility of the *ali1Δ* mutant may be caused by impaired lipid synthesis. We
284 supplemented the caffeine medium with various compounds involved in lipid synthesis
285 and utilization, media additions that are frequently used to support the *in vitro* growth of
286 lipid auxotrophic fungi such as *Malassezia* species (44). The addition of ox bile (10
287 mg/mL), which aids in the degradation and absorption of lipids, and Tween 60 (1%),
288 which serves as an emulsifier, rescued the caffeine sensitivity of the *ali1Δ* mutant at
289 30°C, but not at 37°C (Fig. 4). The addition of glycerol (0.4%), a precursor for
290 phospholipids and triglycerides, completely rescued the caffeine sensitivity of the *ali1Δ*

291 mutant at both 30°C and 37°C (Fig. 4). In order to eliminate the possibility that glycerol
292 was solely providing osmotic support that allowed for the *ali1Δ* mutant to overcome its
293 caffeine sensitivity, we also supplemented the caffeine medium with sorbitol (1 M) and
294 observed that it did not rescue the caffeine sensitivity of the *ali1Δ* mutant at either
295 temperature (data not shown) (45, 46). Collectively, these observations indicate that
296 lipid precursor supplementation is sufficient to suppress the caffeine sensitivity of the
297 *ali1Δ* mutant, suggesting that the loss of cell surface integrity of the *ali1Δ* mutant is
298 caused in part by impaired localized lipid synthesis and/or deposition, potentially at the
299 site of cell separation.

300 **The *C. neoformans* arrestin family supports virulence *in vitro* and *in vivo*.**

301 Because we observed that the *ali1Δ* mutant exhibits phenotypes that are relevant
302 to pathogenesis, specifically cytokinesis defects at elevated temperature and sensitivity
303 to the cell surface stressor caffeine, we hypothesized that Ali1 may support fungal
304 virulence. As a preliminary assessment, we evaluated the ability of the *ali1Δ* mutant to
305 survive and proliferate in an *in vitro* macrophage co-culture system (26, 47, 48). We co-
306 cultured the WT strain, the *ali1Δ* mutant, and the *ali1Δ* + *ALI1* strain for 24 hours with
307 J774A.1 murine macrophages. We observed that the *ali1Δ* mutant displays a moderate,
308 reproducible reduction in its ability to survive in the presence of macrophages compared
309 to the WT strain, a phenotype that is rescued by complementation with the WT *ALI1*
310 allele (Fig. 5A). We then performed *in vivo* studies in a murine inhalation model of
311 cryptococcal infection (38, 48, 49). Following intranasal inoculation of C57BL/6 mice (n
312 = 10) with 10⁴ colony forming units (CFU) of each strain, we observed no differences
313 between the WT strain and the *ali1Δ* mutant in their abilities to cause lethal infection

314 (Fig. 5B). From these results, we concluded that *Ali1* has modest contributions to *in vitro*
315 survival in the presence of macrophages, but does not promote *in vivo* virulence in a
316 murine inhalation infection model.

317 Because the *ali1Δ* mutant individually does not exhibit significant virulence
318 defects, we next determined whether the *C. neoformans* arrestin family, collectively,
319 contributes to virulence. To do so, we utilized the *ali1Δali2Δali3Δali4Δ* mutants, referred
320 to as the “arrestin null” mutants, in which all four known *C. neoformans* arrestins are
321 ablated. Similar to our studies with the *ali1Δ* mutant, we evaluated the ability of three
322 independent arrestin null mutants to survive and proliferate in an *in vitro* macrophage
323 co-culture system (26, 47, 48). To do so, we co-cultured the WT strain, the *MATa* KN99
324 strain (which was used in genetic crosses to generate the arrestin null mutants), and
325 three arrestin null mutants for 24 hours with J774A.1 murine macrophages. We
326 observed that all three arrestin null mutants exhibit a marked reduction in their abilities
327 to survive in the presence of macrophages, compared to the WT strain and the *MATa*
328 KN99 strain (Fig. 5C). A representative arrestin null mutant, *ali1Δali2Δali3Δali4Δ* - #2
329 (CLT57), was then assessed for virulence in the murine inhalation model (38, 48, 49).
330 Following intranasal inoculation of C57BL/6 mice (n = 10) with 10⁴ CFU of the WT strain
331 or the arrestin null mutant, we observed that the arrestin null mutant displays a
332 significant attenuation in virulence compared to the WT strain (Fig. 5D). Mice infected
333 with the WT strain exhibited a median survival time of 28 days, while those infected with
334 the arrestin null mutant exhibited a median survival time of 45.5 days (Fig. 5D). These
335 data collectively indicate that the *C. neoformans* arrestin family contributes to both *in*
336 *vitro* and *in vivo* virulence.

337 **The *C. neoformans* arrestins likely serve distinct cellular functions.**

338 In order to identify possible mechanisms by which the *C. neoformans* arrestin
339 family contributes to virulence, we created individual *ali1Δ*, *ali2Δ*, *ali3Δ*, and *ali4Δ* loss-
340 of-function mutants. Following strain confirmation, we assessed the growth kinetics of
341 the arrestin mutants in the presence of various cellular stressors. Specifically, we
342 incubated the WT strain, the individual arrestin mutants, and the arrestin null mutants in
343 the presence of physiologically-relevant stressors, such as elevated temperature
344 (39°C), high salt (1.5 M NaCl), and alkaline pH (pH 8), as well as cell surface stressors,
345 such as caffeine (1 mg/mL) and SDS (0.03%) (25, 39, 40, 50). We observed that the
346 individual arrestin mutants display distinct, but overlapping, phenotypes in the presence
347 of these stressors (Fig. 6). All of these individual arrestin mutant phenotypes are
348 rescued by complementation with the respective WT arrestin allele (Fig. S2).

349 Because we observed that the *ali2Δ* mutant has an enhanced caffeine sensitivity
350 phenotype compared to the *ali1Δ* mutant, we hypothesized that the *ali2Δ* mutant would
351 display more severe virulence defects than the *ali1Δ* mutant. To test this hypothesis, we
352 co-cultured the WT strain, the *ali2Δ* mutant, the *ali2Δ + ALI2-GFP* strain, and an
353 *ali1Δali2Δ* mutant for 24 hours with J774A.1 murine macrophages. The *ali2Δ* mutant had
354 a significant reduction in its ability to survive in the presence of macrophages compared
355 to the WT strain, a phenotype that is rescued by complementation with the WT *ALI2*
356 allele (Fig. S3). The *ali2Δ* mutant survival rate (67%) is lower than what was observed
357 for the *ali1Δ* mutant (79%) (Fig. 5A). Additionally, the *ali1Δali2Δ* mutant exhibits a more
358 severe survival impairment (43%) than either the *ali1Δ* mutant or *ali2Δ* mutant alone,

359 indicating that Ali1 and Ali2 have additive effects that contribute to survival in the
360 presence of macrophages.

361 The arrestin null mutants share many phenotypes with the individual arrestin
362 mutants, such as sensitivity to high temperature, caffeine, and high salt, as well as
363 resistance to SDS (Fig. 6). Uniquely, the arrestin null mutants display a slight increase
364 in growth rate in the presence of alkaline pH (Fig. 6). The most pronounced phenotypes
365 of the arrestin null mutants, growth defects in the presence of high temperature and
366 caffeine, were not rescued by glycerol (0.4%) supplementation but were partially
367 rescued by osmotic support with sorbitol (1M) supplementation (Fig. S4). These data
368 suggest that the *C. neoformans* arrestin proteins likely perform distinct, nonredundant
369 cellular functions that contribute to survival in physiologically-relevant conditions and
370 cell surface stability.

371 **DISCUSSION**

372 **Arrestins have been well-characterized in model fungi systems.**

373 The model ascomycete fungi, such as *S. cerevisiae*, *Aspergillus nidulans*, and
374 *Schizosaccharomyces pombe*, all contain relatively large α -arrestin families of nine to
375 eleven members (29). Based on the presence of the conserved arrestin domains, α -
376 arrestins are predicted to exist in the other three major fungal groups: the
377 basidiomycetes, the zygomycetes, and the chytrids (29). We used *C. neoformans* as a
378 genetically-tractable basidiomycete, with a relatively small arrestin family of four
379 members, to more broadly characterize fungal α -arrestin functions, both individually and
380 collectively. Additionally, because *C. neoformans* is a major human pathogen, we
381 interrogated the functional contributions of fungal α -arrestins to virulence. The fact that
382 the α -arrestins, despite lacking catalytic activity themselves, have remained present
383 within all major fungal groups indicates that they are likely functionally important
384 proteins within the fungal kingdom.

385 **Ali1 is important for cytokinesis in the presence of cellular stress.**

386 Septins are conserved GTP-binding proteins that create the septum in
387 eukaryotes, often serving as scaffolds for other proteins that direct cell cycle
388 progression (51–53). In *S. cerevisiae*, the septin proteins assemble into filaments at the
389 mother bud neck, creating the hourglass-shaped septum, and are required for normal
390 cytokinesis (53). The *C. neoformans* septins have been shown to function similarly. *C.*
391 *neoformans* septin mutants display cytokinesis defects when incubated at elevated
392 temperatures and also display modest sensitivity to cell surface stressors, such as
393 caffeine and SDS (34).

394 We observed that Ali1 has cell cycle-associated localization, with enrichment at
395 the septum and poles of budding cells. Our protein interactome analysis supported this
396 observation, with multiple septin proteins, Cdc10, Cdc11, and Cdc12, identified at low
397 levels in the Ali1-GFP immunoprecipitations. Protein-protein interactions with septin
398 proteins are typically transient, potentially explaining the low APC for the septin proteins
399 using this experimental approach (54). Additionally, we found that the *ali1Δ* mutant
400 displays an increased incidence of cytokinesis defects at elevated temperature and
401 sensitivity to the cell surface stressor caffeine, thus phenocopying the *C. neoformans*
402 septin mutants (34). These data suggest that Ali1 is a regulator of cytokinesis that is
403 particularly important in the presence of stress. Whole transcriptome analyses of
404 synchronized *C. neoformans* cells have shown that Ali1 expression is cyclic, or
405 regulated with the cell cycle, with its peak expression occurring about 15 minutes prior to
406 bud emergence (55). As a potential regulator of cytokinesis, this expression pattern
407 would enable the *ALI1* transcript to be transcribed, and the Ali1 protein to be translated
408 and localize to the septum and poles as cell division is occurring.

409 In addition to and in collaboration with septins, Ras GTPases are conserved
410 regulators of cell division in eukaryotes. Our laboratory has shown that the *C.*
411 *neoformans* Ras1 protein directs polarized growth and actin polarization, particular in
412 the presence of stress (22, 23, 33). When Ras1 is inhibited, septins are unable to
413 organize at the septum to perform their scaffolding functions and cells display
414 morphological and cytokinesis defects (23). We demonstrated that in the absence of
415 Ras1, Ali1 localization to the septum and poles is impaired. This observation indicates
416 that the cell cycle-regulated localization of Ali1 is dependent on Ras1.

417 **Ali1 likely fulfills an adaptor role aiding cytokinesis.**

418 Cytokinesis is a highly organized and regulated process in fungi. In *S. cerevisiae*,
419 cell wall enzymes, such as the β (1-3)-glucan synthases and the chitin synthases,
420 localize to the septum and poles to help build the septum and cell wall during cell
421 division. (56–58). It is believed that *C. neoformans* also directs cytokinesis similarly. For
422 example, *C. neoformans* cells lacking Chs3, a chitin synthase, or Ags1, the α (1-3)-
423 glucan synthase, display cytokinesis defects during budding (59, 60). Similar to the cell
424 wall, the cell membrane must be remodeled to aid in bud growth and cytokinesis in
425 fungi. To our knowledge, little work has focused on the degradation and rebuilding of
426 the fungal cell membrane during cytokinesis. However, in the bacterium *Mycobacterium*
427 *tuberculosis*, fatty acid synthase proteins localize to the poles and septum to synthesize
428 the mycomembrane during cell division (61).

429 Fungal fatty acid synthases, which belong to the microbial type I fatty acid
430 synthase family, are cytosolic multi-enzymes that heterodimerize to form hexamers
431 (α 6 β 6) (62–64). Once in this complex, they employ their individual component enzymes
432 to synthesize de novo a diversity of lipid products that are used for cellular metabolism,
433 signaling, and biological membranes. In *C. neoformans*, Fas1 and Fas2 are required for
434 viability in standard laboratory conditions and are targets of the fatty acid synthase
435 inhibitor cerulenin (65). Through our protein interactome analysis, we found that the two
436 strongest potential interactors of Ali1 are Fas1 and Fas2. We tested the sensitivity of the
437 *ali1* Δ mutant to cerulenin and observed that the *ali1* Δ mutant strain is slightly more
438 sensitive to cerulenin than the WT strain. In conjunction with these data, we observed
439 that the *ali1* Δ mutant displays sensitivity to the cell surface stressor caffeine, which is

440 enhanced in the presence of temperature stress. In addition to its roles as a cell surface
441 stressor, caffeine is believed to inhibit TORC1 (36, 40). The caffeine sensitivity of the
442 *ali1Δ* mutant may be explained by the fact that TORC1 is an upstream activator of lipid
443 synthesis genes in eukaryotes, including fatty acid synthases (66–68). Supplementation
444 with exogenous lipid precursors, but not the osmotic stabilizer sorbitol, may reverse the
445 caffeine sensitivity of the *ali1Δ* mutant by compensating for an insufficiency in
446 substrates used to synthesize cellular membranes. These data collectively suggest that
447 Ali1 is required for complete Fas1 and Fas2 function.

448 The *S. pombe* α -arrestin, Art1, regulates cytokinesis through its adaptor function
449 (69). Art1 is required for the localization of Rgf3, the guanine nucleotide exchange factor
450 for the regulatory subunit of the β -glucan synthase, Rho1, to the septum, likely so that it
451 can help build the septum. Our data suggest that Ali1 functions similarly to Art1. We
452 hypothesize that Ali1 acts as an adaptor for Fas1 and Fas2, aiding in their localization to
453 the septum and poles, so that they can rebuild the cell membrane during cytokinesis
454 (Fig. 7). In the absence of Ali1, cells are left with small, localized defects in the cell
455 surface because they are unable to repair the membrane, or are delayed in membrane
456 repair, compared to WT cells, particularly in the presence of stress. This results in the
457 cytokinesis and cell surface defects observed in the *ali1Δ* mutant. Previous work in both
458 mammals and fungi have demonstrated the importance of fatty acid synthesis for
459 progression through the cell cycle (70–72). Additionally, the mechanism by which Ali1 is
460 able to perform its adaptor function for Fas1 and Fas2 may be ubiquitin-mediated,
461 through interactions with the E3 ubiquitin ligase Rsp5 (Fig. 7). Ali1 contains four
462 potential ubiquitin ligase binding sites, or PxY sites. We also observed that Ali1 interacts

463 with multiple ubiquitination proteins, including E1, E2, and E3 proteins, particularly in TC
464 conditions (73). Ubiquitination is most often considered in the context of proteasomal
465 degradation, but it can also direct diverse subcellular localizations (74–76).

466 Future investigations can explore the interactions between Ali1 and the fatty acid
467 synthases, Fas1 and Fas2. Additionally, the localizations of Fas1 and Fas2 in the WT
468 and the *ali1Δ* mutant backgrounds can also be assessed. However, it is possible that it
469 may be difficult to draw conclusions from these experiments. Fas1 and Fas2 are
470 abundant, diffusely cytosolic proteins in *S. cerevisiae* (77). If this is also the case for *C.*
471 *neoformans*, it may be challenging to observe any transient interactions or enrichments
472 of these proteins at the septum and poles.

473 **The *C. neoformans* arrestin family contributes to virulence.**

474 Upon infection, pathogens must regulate their adaptive cellular responses to
475 acclimate to the stressors of the host environment. Work largely conducted in
476 ascomycete fungi has demonstrated that disruption of α -arrestin-regulated adaptive
477 cellular responses is detrimental for fungal survival and pathogenesis. For example, the
478 α -arrestin Rim8 scaffolds the Rim alkaline pH response pathway in *Candida albicans*;
479 the *rim8Δ* mutant displays attenuation in a murine model of systemic candidiasis,
480 indicating that Rim8 is required for adaptation to the host environment (78). Given many
481 investigations demonstrating that human arrestin proteins regulate cellular processes
482 that are involved in human disease, we propose that fungal arrestins similarly regulate
483 fungal adaptive cellular responses important for disease establishment and progression
484 (79–82).

485 This study directly investigates the virulence contributions of fungal α -arrestins.
486 Implementing a murine inhalation model of cryptococcal infection, we observed that the
487 individual *ali1* Δ mutant does not display virulence attenuation, but that the arrestin null
488 mutant exhibits a significant delay in its ability to cause fatal disease. These data
489 suggest that the arrestins, collectively, are involved in adaptation to the host
490 environment in *C. neoformans*. Since we observed that the *ali2* Δ mutant displays more
491 severe attenuation in its ability to survive in the presence of macrophages than the *ali1* Δ
492 mutant, we propose that Ali2 is a compelling subject for future investigations.
493 Additionally, because the arrestin mutants have distinct phenotypes in the presence of
494 different cellular stressors, as well as because the *C. neoformans* arrestin family is very
495 small, we hypothesize that the *C. neoformans* arrestins have distinct cellular functions
496 that contribute to adaptation to the host. Functional redundancy has been observed for
497 mammalian and fungal arrestins, therefore it is possible that the *C. neoformans*
498 arrestins could have some degree of overlapping functions while maintaining protein-
499 specific activities as well (19, 83).

500 We have demonstrated that the *C. neoformans* arrestin family contains four
501 members that share little primary amino acid sequence conservation with human
502 arrestins. These fungal-specific proteins likely mediate various cellular functions
503 including efficient progression through the cell cycle, especially under stressful growth
504 conditions. Fungal arrestins therefore offer unique insight into mechanisms of stress
505 response and cellular adaptation in this diverse group of eukaryotes.

506 **MATERIALS AND METHODS**

507 **Strains, media, and growth conditions**

508 All strains used in this study were generated in the *C. neoformans* var. *grubii* H99
509 (*MAT α*) or KN99 (*MAT α*) backgrounds and are included in Table 3. Strains were
510 maintained on yeast extract-peptone-dextrose (YPD) medium (1% yeast extract, 2%
511 peptone, 2% dextrose, and 2% agar for solid medium). To regulate *RAS1* expression,
512 yeast extract-peptone-galactose (YPGal) medium (1% yeast extract, 2% peptone, and
513 3% galactose) was utilized (23). CO₂-independent tissue culture (TC, Gibco) medium
514 was used to mimic an *in vivo* environment, as described previously (84). To assess
515 mutant strain cell surface phenotypes, NaCl (1.5 M) and Congo red (0.5%) were added
516 to YPD medium before autoclaving, while caffeine (1 mg/mL), calcofluor white (1
517 mg/mL), and SDS (0.03%) were filter sterilized and added to YPD medium after
518 autoclaving (38). Synthetic low-ammonium dextrose (SLAD) medium (0.17% yeast
519 nitrogen base without amino acids and without ammonium sulfate, 50 μ M ammonium
520 sulfate, 2% dextrose, and 2% agar) was used as a nitrogen deprivation medium to
521 induce autophagy. Lipid precursor supplementation was achieved by adding ox bile
522 (HiMedia Labs) (10 mg/mL) and Tween 60 (1%) to medium before autoclaving, or by
523 adding sterile glycerol (0.4%) to medium after autoclaving. Sorbitol supplementation
524 was achieved by adding sorbitol (1M) to medium before autoclaving. Alkaline pH plates
525 were made by adding 150 mM HEPES buffer to YPD medium and adjusting the pH to
526 8.15 with NaOH prior to autoclaving (25). Unless otherwise indicated, strains were
527 incubated at 30°C.

528 **Molecular biology and strain construction**

529 All plasmids used in this study are listed in Table 4. All primers utilized in this
530 study are listed in Table 5. All strains were generated by biolistic transformation, unless
531 otherwise described (85). Detailed methods for the construction of all strains used in
532 this study are included in File S1 (86–88).

533 **BLAST analyses**

534 To identify homology between the *C. neoformans* arrestins and those in *S.*
535 *cerevisiae* and humans, Basic Local Alignment Search Tool (BLAST, NCBI) was used.
536 The protein sequences of each of the *C. neoformans* arrestins was searched against
537 the *S. cerevisiae* S288C (taxid:559292) and human (taxid:9606) proteomes using the
538 default parameters for protein-protein BLAST (blastp) and Position-Specific Iterated
539 BLAST (PSI-BLAST) (30–32). Alignments considered significant, those with E values
540 less than 1, are included in Tables S1 (*S. cerevisiae*) and S2 (human).

541 **Fluorescent and light microscopy**

542 All images in this study (differential interference contrast [DIC] and fluorescent)
543 were captured using a Zeiss Axio Imager A1 microscope equipped with an Axio-Cam
544 MRM digital camera. To assess subcellular localization of Ali1-GFP, the WT (H99)
545 strain and the Ali1-GFP (CLT7) strain were incubated for 18 hours with 150 rpm shaking
546 in YPD medium at 30°C or TC medium at 37°C. Cells were then pelleted, washed with
547 phosphate-buffered saline (PBS), and imaged.

548 To measure the frequency of cell cycle-associated localization of Ali1-GFP in the
549 presence and absence of Ras1, the Ali1-GFP + mCherry-Ras1 (CBN486) strain was
550 incubated for 18 hours at 30°C with 150 rpm shaking in YPGal medium. Cells were
551 pelleted, washed three times with PBS, normalized by spectrophotometry, and then

552 resuspended to an OD₆₀₀ of 0.2 in either YPGal medium (to induce *RAS1* expression) or
553 YPD medium (to repress *RAS1* expression) for 18 hours at 30°C with 150 rpm shaking
554 (23). Cells were then pelleted, washed with PBS, and imaged. Results are reported as
555 the average percentage (+/- standard error of the mean [SEM]) of actively budding cells
556 that displayed Ali1-GFP localization to the septum and/or poles. Statistical significance
557 was determined using Student's *t*-test (GraphPad Software, San Diego, CA). A
558 minimum of 600 cells were analyzed in both YPGal and YPD conditions across three
559 biological replicates using ImageJ Software (Fiji) (89, 90).

560 To analyze the morphology of the *ali1Δ* mutant cells, the WT (H99), *ali1Δ*
561 (KS120), and *ali1Δ* + *ALI1* (CLT6) strains were incubated for 18 hours at 30°C with 150
562 rpm shaking in YPD medium. An OD of approximately 0.2 for each strain was
563 transferred to fresh YPD medium and subsequently incubated at either 30°C or 39°C for
564 18 hours with 150 rpm shaking. Cells were then pelleted, washed with PBS, and
565 imaged. Results are reported as the average percentage (+/- SEM) of total cells
566 displaying morphological defects. Statistical significance was determined using one-way
567 analysis of variance (ANOVA) and the Tukey-Kramer test (GraphPad Software, San
568 Diego, CA). A minimum of 600 cells were analyzed across three biological replicates
569 using ImageJ Software (Fiji) (89, 90).

570 To assess whether Ali1 is required for septin protein localization, the Cdc10-
571 mCherry (LK001) strain and the Cdc10-mCherry + *ali1Δ* (CLT42) strain were incubated
572 for 18 hours at either 30°C or 37°C with 150 rpm shaking in YPD medium. Cells were
573 then pelleted, washed with PBS, and imaged.

574 **Protein isolation, membrane fractionation, and western blotting**

575 For all protein experiments, protein extracts were prepared as previously
576 described (25, 26). Briefly, the WT (H99) and the Ali1-GFP (CLT7) strains were
577 incubated for 18 hours at 30°C with 150 rpm shaking in YPD medium. Cells were
578 pelleted, flash frozen on dry ice, and lysed by bead beating. The crude lysate was
579 cleared by centrifugation at 2,500 x g at 4°C for 5 minutes and the supernatant (total cell
580 lysate) was transferred to a new tube. Total cell lysate protein concentrations were
581 measured using bicinchoninic acid assay (BCA).

582 To determine the relative abundance of Ali1 in different cellular fractions, WT
583 (H99) and the Ali1-GFP (CLT7) strains were incubated and lysed as above. Total cell
584 lysates (T) were separated by ultracentrifugation at 30,000 x g for 1 hour at 4°C (27).
585 The soluble fraction (S) was transferred to a new tube and the insoluble pellet (I) was
586 resuspended in an equivalent volume of lysis buffer containing 1% Triton X-100. All
587 samples were normalized by total protein concentration. Western blots were performed
588 as described previously using an anti-GFP primary antibody (1/5,000 dilution, Roche)
589 followed by an anti-mouse peroxidase-conjugated secondary antibody (1/25,000
590 dilution, Jackson Labs). Proteins were detected by enhanced chemiluminescence (ECL
591 Prime Western blotting detection reagent, GE Healthcare).

592 **Proteomic experiment preparation and analysis**

593 Proteomic analysis was performed with a single replicate for the WT (H99) strain
594 in both YPD and TC conditions, and in triplicate for the Ali1-GFP (CLT7) strain in both
595 YPD and TC conditions. To prepare total cell lysates for this experiment, the WT (H99)
596 strain and the Ali1-GFP (CLT7) strain were incubated for 18 hours at 30°C with 150 rpm
597 shaking in YPD medium. Both strains were normalized to an OD₆₀₀ of 1, resuspended in

598 either YPD or TC media, and then incubated for 3 hours at 30°C with 150 rpm. Cells
599 were pelleted and lysed as described above to extract total cell lysates.
600 Immunoprecipitations from total cell lysates were performed by addition of 25 µL GFP-
601 Trap resin (Chromotek) and inversion at 4°C for 2 hrs. Mass spectrometry analysis was
602 performed on immunoprecipitations by the Duke Proteomics Core Facility, as described
603 previously (26). A description of this analysis is included in File S1.

604 We prioritized hits from this proteomic analysis to enrich for proteins with
605 stronger potential interactions with Ali1-GFP. First, we averaged the exclusive unique
606 peptide counts (APC) for each potential interactor identified in YPD or TC conditions,
607 and subsequently selected those that had an APC of 2 or more for further analysis. We
608 then calculated the percentage of the APC that was identified in the respective WT
609 immunoprecipitation for each potential protein interactor. Those proteins that had less
610 than 20% of the APC identified in the respective WT immunoprecipitation were
611 determined to be unique interactors of Ali1-GFP. All proteins identified using this
612 prioritization scheme in YPD and TC conditions can be found in Tables S4 and S5,
613 respectively. All 1,122 identified proteins, except for those not belonging to *C.*
614 *neoformans*, are included in Table S3.

615 **Macrophage co-culture experiments**

616 The ability of strains to survive in the presence of macrophages was assessed as
617 previously described (26). Briefly, 10⁵ J774.1 macrophages were incubated with 10⁵
618 opsonized fungal cells – WT (H99), KN99a, *ali1*Δ (KS120), *ali1*Δ + *ALI1* (CLT6), *ali2*Δ
619 (KS96-2), *ali2*Δ + *ALI2*-GFP (CLT67), *ali1*Δ*ali2*Δ (KS97-2), and the arrestin null (CLT56,
620 CLT57, and CLT58) mutants. Co-cultures of J774.1 macrophages and phagocytosed

621 fungal cells were incubated for 24 hours at 37°C with 5% CO₂. Phagocytosed fungal
622 cells were collected, serially diluted, and plated onto YPD agar to assess the number of
623 viable *C. neoformans* cells by quantitative culture. Results are reported as the average
624 percentage (+/- SEM) of recovered colony-forming units (CFU), normalized to the WT
625 (H99) strain, generated from at least 4 biological replicates. Statistical significance was
626 determined using one-way analysis of variance (ANOVA) and the Tukey-Kramer test
627 (GraphPad Software, San Diego, CA).

628 **Mouse survival experiments**

629 The murine inhalation model of cryptococcosis was used to assess virulence of
630 the stains in this study (49). C57BL/6 female mice were acquired from Charles Rivers
631 Laboratories. Mice were anesthetized with 2% isoflurane utilizing a rodent anesthesia
632 device (Eagle Eye Anesthesia, Jacksonville, FL) and were infected via the intranasal
633 route with 10⁴ CFU of either the WT (H99) strain, the *ali1Δ* (KS120) mutant, the *ali1Δ* +
634 *ALI1* (CLT6) strain, or an arrestin null (CLT57) mutant in 30 µl of sterile PBS. Mice (n =
635 10) were monitored twice daily and sacrificed if moribund. Survival data were
636 statistically analyzed using log-rank test (GraphPad Software, San Diego, CA). Animal
637 experiments were approved by The University of Texas at San Antonio Institutional
638 Animal Care and Use Committee (IACUC) and mice were handled according to IACUC
639 guidelines.

640 **Minimum inhibitory concentration (MIC) testing**

641 To measure strain susceptibilities to rapamycin and cerulenin, MIC testing was
642 performed using species-specific modifications to standard CLSI testing methods for

643 broth microdilution testing of antifungal susceptibility (91, 92). A detailed description of
644 this method is described in File S1.

645 **ACKNOWLEDGEMENTS**

646 This work was supported by NIH R01 grant AI074677 (J.A.A.). We would like to thank
647 the Duke Proteomics Core Facility for assistance with our proteomic experiments. We
648 would also like to acknowledge the Madhani laboratory at UCSF and NIH funding
649 R01AI100272 for the publicly available deletion mutant collections in *C. neoformans*
650 (Fungal Genetics Stock Center, 2015/2016 Madhani plates).

651 **REFERENCES**

652 1. Shenoy SK, Lefkowitz RJ. 2011. β -Arrestin-mediated receptor trafficking and
653 signal transduction. *Trends Pharmacol Sci* **32**:521–33.
654 doi:10.1016/j.tips.2011.05.002.

655 2. Patwari P, Lee RT. 2012. An expanded family of arrestins regulate metabolism.
656 *Trends Endocrinol Metab* **23**:216-22. doi:10.1016/j.tem.2012.03.003.

657 3. Puca L, Brou C. 2014. α -Arrestins - New players in Notch and GPCR signaling
658 pathways in mammals. *J Cell Sci* **127**:1359–67. doi:10.1242/jcs.142539.

659 4. Peterson YK, Luttrell LM. 2017. The diverse roles of arrestin scaffolds in G
660 protein-coupled receptor signaling. *Pharmacol Rev* **69**:256–297.
661 doi:10.1124/pr.116.013367.

662 5. Alvarez CE. 2008. On the origins of arrestin and rhodopsin. *BMC Evol Biol* **8**:1–
663 13. doi:10.1186/1471-2148-8-222.

664 6. Aubry L, Guetta D, Klein G. 2009. The arrestin fold: Variations on a theme. *Curr
665 Genomics* **10**:133–142. doi:10.2174/138920209787847014.

666 7. Kühn H, Hall SW, Wilden U. 1984. Light-induced binding of 48-kDa protein to
667 photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin.
668 *FEBS Lett* **176**:473–478. doi:10.1016/0014-5793(84)81221-1.

669 8. Zuckerman R, Cheasty JE. 1986. A 48 kDa protein arrests cGMP
670 phosphodiesterase activation in retinal rod disk membranes. *FEBS Lett* **207**:35–
671 41. doi:10.1016/0014-5793(86)80008-4.

672 9. Benovic JL, Kühn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. 1987.
673 Functional desensitization of the isolated β -adrenergic receptor by the β -

674 adrenergic receptor kinase: Potential role of an analog of the retinal protein
675 arrestin (48-kDa protein). *Proc Natl Acad Sci U S A* **84**:8879–82.
676 doi:10.1073/pnas.84.24.8879.

677 10. Li W, Mitchell AP. 1997. Proteolytic activation of Rim1p, a positive regulator of
678 yeast sporulation and invasive growth. *Genetics* **145**:63–73.

679 11. Boase NA, Kelly JM. 2004. A role for creD, a carbon catabolite repression gene
680 from *Aspergillus nidulans*, in ubiquitination. *Mol Microbiol* **53**:929–940.
681 doi:10.1111/j.1365-2958.2004.04172.

682 12. Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. 2008. Arrestin-related ubiquitin-
683 ligase adaptors regulate endocytosis and protein turnover at the cell surface. *Cell*
684 **135**:714–725. doi: 10.1016/j.cell.2008.09.025.

685 13. Alvaro CG, O'Donnell AF, Prosser DC, Augustine AA, Goldman A, Brodsky JL,
686 Cyert MS, Wendland B, Thorner J. 2014. Specific α -arrestins negatively regulate
687 *Saccharomyces cerevisiae* pheromone response by down-modulating the G-
688 protein-coupled receptor Ste2. *Mol Cell Biol* **34**:2660–81.
689 doi:10.1128/MCB.00230-14.

690 14. Prosser DC, Pannunzio AE, Brodsky JL, Thorner J, Wendland B, O'Donnell AF.
691 2015. α -Arrestins participate in cargo selection for both clathrin-independent and
692 clathrin-mediated endocytosis. *J Cell Sci* **128**:4220–34. doi:10.1242/jcs.175372.

693 15. Herrador A, Herranz S, Lara D, Vincent O. 2010. Recruitment of the ESCRT
694 machinery to a putative seven-transmembrane-domain receptor is mediated by an
695 arrestin-related protein. *Mol Cell Biol* **30**:897–907. doi:10.1128/MCB.00132-09.

696 16. Herranz S, Rodríguez JM, Bussink H-J, Sánchez-Ferrero JC, Arst HN, Peñalva

697 MA, Vincent O. 2005. Arrestin-related proteins mediate pH signaling in fungi. *Proc*
698 *Natl Acad Sci U S A* **102**:12141–6. doi:10.1073/pnas.0504776102.

699 17. Gomez-Raja J, Davis DA. 2012. The β -arrestin-like protein Rim8 is
700 hyperphosphorylated and complexes with Rim21 and Rim101 to promote
701 adaptation to neutral-alkaline pH. *Eukaryot Cell* **11**:683–693.

702 18. Nikko E, Sullivan JA, Pelham HRB. 2008. Arrestin-like proteins mediate
703 ubiquitination and endocytosis of the yeast metal transporter Smf1. *EMBO Rep*
704 **9**:1216–1221. doi:10.1038/embor.2008.199.

705 19. Nikko E, Pelham HRB. 2009. Arrestin-mediated endocytosis of yeast plasma
706 membrane transporters. *Traffic* **10**:1856–67. doi:10.1111/j.1600-
707 0854.2009.00990.

708 20. O'Donnell AF, Apffel A, Gardner RG, Cyert MS. 2010. α -Arrestins Aly1 and Aly2
709 regulate intracellular trafficking in response to nutrient signaling. *Mol Biol Cell*
710 **21**:3552–66. doi:10.1091/mbc.E10-07-0636.

711 21. Hervás-Aguilar A, Galindo A, Peñalva MA. 2010. Receptor-independent ambient
712 pH signaling by ubiquitin attachment to fungal arrestin-like PalF. *J Biol Chem*
713 **285**:18095–18102. doi:10.1074/jbc.M110.114371.

714 22. Nichols CB, Perfect ZH, Alspaugh JA. 2007. A Ras1-Cdc24 signal transduction
715 pathway mediates thermotolerance in the fungal pathogen *Cryptococcus*
716 *neoformans*. *Mol Microbiol* **63**:1118–1130. doi:10.1111/j.1365-2958.2006.05566.

717 23. Ballou ER, Kozubowski L, Nichols CB, Alspaugh JA. 2013. Ras1 acts through
718 duplicated Cdc42 and Rac proteins to regulate morphogenesis and pathogenesis
719 in the human fungal pathogen *Cryptococcus neoformans*. *PLoS Genet*

720 9:e1003687. doi:10.1371/journal.pgen.1003687.

721 24. O'Meara TR, Holmer SM, Selvig K, Dietrich F, Alspaugh JA. 2013. Cryptococcus
722 neoformans Rim101 is associated with cell wall remodeling and evasion of the
723 host immune responses. *MBio* 4:e00522-12. doi:10.1128/mBio.00522-12.

724 25. Ost KS, O'Meara TR, Huda N, Esher SK, Alspaugh JA. 2015. The Cryptococcus
725 neoformans alkaline response pathway: Identification of a novel rim pathway
726 activator. *PLoS Genet* 11:e1005159. doi:10.1371/journal.pgen.1005159.

727 26. Pianalto KM, Ost KS, Brown HE, Alspaugh JA. 2018. Characterization of
728 additional components of the environmental pH-sensing complex in the
729 pathogenic fungus Cryptococcus neoformans. *J Biol Chem* 293:9995–10008.
730 doi:10.1074/jbc.RA118.002741.

731 27. Brown HE, Ost KS, Esher SK, Pianalto KM, Saelens JW, Guan Z, Andrew
732 Alspaugh J. 2018. Identifying a novel connection between the fungal plasma
733 membrane and pH-sensing. *Mol Microbiol* 109:474–493. doi:10.1111/mmi.13998.

734 28. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM,
735 Denning DW, Loyse A, Boulware DR. 2017. Global burden of disease of HIV-
736 associated cryptococcal meningitis: An updated analysis. *Lancet Infect Dis*
737 17:873–881. doi:10.1016/S1473-3099(17)30243-8.

738 29. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, Kissinger JC, Li
739 W, Nayak V, Pinney DF, Stoeckert CJ, Roos DS. 2012. FungiDB: An integrated
740 functional genomics database for fungi. *Nucleic Acids Res* 40:D675-81.
741 doi:10.1093/nar/gkr918.

742 30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment

743 search tool. *J Mol Biol* **215**:403–410. doi:10.1016/S0022-2836(05)80360-2.

744 31. Altschul S, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.

745 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database

746 search programs. *Nucleic Acids Res* **25**:3389–3402. doi:10.1093/nar/25.17.3389.

747 32. Schäffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin E V,

748 Altschul SF. 2001. Improving the accuracy of PSI-BLAST protein database

749 searches with composition-based statistics and other refinements. *Nucleic Acids*

750 *Res* **29**:2994–3005. doi:10.1093/nar/29.14.2994.

751 33. Alspaugh JA, Cavallo LM, Perfect JR, Heitman J. 2000. Ras1 regulates

752 filamentation, mating and growth at high temperature of *Cryptococcus*

753 *neoformans*. *Mol Microbiol* **36**:352–365. doi:10.1046/j.1365-2958.2000.01852.

754 34. Kozubowski L, Heitman J. 2010. Septins enforce morphogenetic events during

755 sexual reproduction and contribute to virulence of *Cryptococcus neoformans*. *Mol*

756 *Microbiol* **75**:658-75. doi:10.1111/j.1365-2958.2009.06983.

757 35. Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Girnita A, Lefkowitz RJ, Larsson O.

758 2005. β -Arrestin is crucial for ubiquitination and down-regulation of the insulin-like

759 growth factor-1 receptor by acting as adaptor for the Mdm2 E3 ligase. *J Biol*

760 *Chem* **280**:24412–9. doi:10.1074/jbc.M501129200.

761 36. Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC,

762 Garnier P, Prestwich GD, Leonardson A, Garrett-Engle P, Rush CM, Bard M,

763 Schimmack G, Phillips JW, Roberts CJ, Shoemaker DD. 2004. Discovering

764 modes of action for therapeutic compounds using a genome-wide screen of yeast

765 heterozygotes. *Cell* **116**:121–137. doi:10.1016/s0092-8674(03)01035-3.

766 37. Ram AFJ, Klis FM. 2006. Identification of fungal cell wall mutants using
767 susceptibility assays based on calcofluor white and congo red. *Nat Protoc*
768 1:2253–2256. doi:10.1038/nprot.2006.397.

769 38. Esher SK, Ost KS, Kohlbrenner MA, Pianalto KM, Telzrow CL, Campuzano A,
770 Nichols CB, Munro C, Wormley FL, Alspaugh JA. 2018. Defects in intracellular
771 trafficking of fungal cell wall synthases lead to aberrant host immune recognition.
772 *PLOS Pathog* 14:e1007126. doi:10.1371/journal.ppat.1007126.

773 39. Schroeder L, Ikui AE. 2019. Tryptophan confers resistance to SDS-associated cell
774 membrane stress in *Saccharomyces cerevisiae*. *PLoS One* 14:e0199484.
775 doi:10.1371/journal.pone.0199484.

776 40. Truman AW, Kim KY, Levin DE. 2009. Mechanism of Mpk1 mitogen-activated
777 protein kinase binding to the Swi4 transcription factor and its regulation by a novel
778 caffeine-induced phosphorylation. *Mol Cell Biol* 29:6449–61.
779 doi:10.1128/MCB.00794-09.

780 41. Levin DE. 2011. Regulation of cell wall biogenesis in *Saccharomyces cerevisiae*:
781 The cell wall integrity signaling pathway. *Genetics* 189:1145–75.
782 doi:10.1534/genetics.111.128264.

783 42. Noda T, Ohsumi Y. 1998. Tor, a phosphatidylinositol kinase homologue, controls
784 autophagy in yeast. *J Biol Chem* 273:3963–6. doi:10.1074/jbc.273.7.3963.

785 43. Shpilka T, Welter E, Borovsky N, Amar N, Shimron F, Peleg Y, Elazar Z. 2015.
786 Fatty acid synthase is preferentially degraded by autophagy upon nitrogen
787 starvation in yeast. *Proc Natl Acad Sci U S A* 112:1434–9.
788 doi: 10.1073/pnas.1409476112.

789 44. Kaneko T, Makimura K, Onozaki M, Ueda K, Yamada Y, Nishiyama Y,
790 Yamaguchi H. 2005. Vital growth factors of *Malassezia* species on modified
791 CHROMagar Candida. *Med Mycol* **43**:699–704.
792 doi:10.1080/13693780500130564.

793 45. Philips J, Herskowitz I. 1997. Osmotic balance regulates cell fusion during mating
794 in *Saccharomyces cerevisiae*. *J Cell Biol* **138**:961–74. doi:10.1083/jcb.138.5.961.

795 46. Hartland K, Pu J, Palmer M, Dandapani S, Moquist PN, Munoz B, DiDone L,
796 Schreiber SL, Krysan DJ. 2016. High-throughput screen in *Cryptococcus*
797 *neoformans* identifies a novel molecular scaffold that inhibits cell wall integrity
798 pathway signaling. *ACS Infect Dis* **2**:93–102. doi:10.1021/acsinfecdis.5b00111.

799 47. Feldmesser M, Kress Y, Novikoff P, Casadevall A. 2000. *Cryptococcus*
800 *neoformans* is a facultative intracellular pathogen in murine pulmonary infection.
801 *Infect Immun* **68**:4225–37. doi:10.1128/iai.68.7.4225-4237.200.

802 48. Esher SK, Ost KS, Kozubowski L, Yang DH, Kim MS, Bahn YS, Alspaugh JA,
803 Nichols CB. 2016. Relative contributions of prenylation and postprenylation
804 processing in *Cryptococcus neoformans* pathogenesis. *mSphere* **30**: e00084-15.
805 doi:10.1128/mSphere.00084-15.

806 49. Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. 2000. Urease as a
807 virulence factor in experimental cryptococcosis. *Infect Immun* **68**:443–8.
808 doi:10.1128/iai.68.2.443-448.2000.

809 50. Nichols CB, Ferreyra J, Ballou ER, Alspaugh JA. 2009. Subcellular localization
810 directs signaling specificity of the *Cryptococcus neoformans* Ras1 protein.
811 *Eukaryot Cell* **8**:181–9. doi:10.1128/EC.00351-08.

812 51. Spiliotis ET, Kinoshita M, Nelson WJ. 2005. A mitotic septin scaffold required for
813 mammalian chromosome congression and segregation. *Science* **307**:1781–1785.
814 doi:10.1126/science.1106823.

815 52. Kinoshita M. 2006. Diversity of septin scaffolds. *Curr Opin Cell Biol* **18**:54–60.
816 doi:10.1016/j.ceb.2005.12.005.

817 53. Glomb O, Gronemeyer T. 2016. Septin organization and functions in budding
818 yeast. *Front Cell Dev Biol* **4**:123. doi:10.3389/fcell.2016.00123.

819 54. Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J. 2016. Detection of
820 protein-protein interactions at the septin collar in *Saccharomyces cerevisiae* using
821 a tripartite split-GFP system. *Mol Biol Cell* **27**:2708–25. doi:10.1091/mbc.E16-05-
822 0337.

823 55. Kelliher CM, Leman AR, Sierra CS, Haase SB. 2016. Investigating conservation
824 of the cell-cycle-regulated transcriptional program in the fungal pathogen,
825 *Cryptococcus neoformans*. *PLOS Genet* **12**:e1006453.
826 doi:10.1371/journal.pgen.1006453.

827 56. Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T,
828 Levin DE, Ohya Y. 1996. Identification of yeast Rho1p GTPase as a regulatory
829 subunit of 1,3- β -glucan synthase. *Science* **272**:279–281.

830 57. Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A. 2001. The yeast cell wall and
831 septum as paradigms of cell growth and morphogenesis. *J Biol Chem* **276**:19679–
832 82. doi:10.1074/jbc.R000031200.

833 58. Chuang JS, Schekman RW. 1996. Differential trafficking and timed localization of
834 two chitin synthase proteins, Chs2p and Chs3p. *J Cell Biol* **135**:597–610.

835 doi:10.1083/jcb.135.3.597.

836 59. Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK. 2005. A chitin
837 synthase and its regulator protein are critical for chitosan production and growth
838 of the fungal pathogen *Cryptococcus neoformans*. *Eukaryot Cell* **4**:1902–12.
839 doi:10.1128/EC.4.11.1902-1912.2005.

840 60. Reese AJ, Yoneda A, Breger JA, Beauvais A, Liu H, Griffith CL, Bose I, Kim MJ,
841 Skau C, Yang S, Sefko JA, Osumi M, Latge JP, Mylonakis E, Doering TL. 2007.
842 Loss of cell wall α (1-3) glucan affects *Cryptococcus neoformans* from
843 ultrastructure to virulence. *Mol Microbiol* **63**:1385–98. doi:10.1111/j.1365-
844 2958.2006.05551.

845 61. Carel C, Nukdee K, Cantaloube S, Bonne M, Diagne CT, Laval F, Daffé M, Zerbib
846 D. 2014. *Mycobacterium tuberculosis* proteins involved in mycolic acid synthesis
847 and transport localize dynamically to the old growing pole and septum. *PLoS One*
848 **9**:e97148. doi:10.1371/journal.pone.0097148.

849 62. Mahmoud YA, Abu el Souod SM, Niehaus WG. 1996. Purification and
850 characterization of fatty acid synthetase from *Cryptococcus neoformans*.
851 *Mycopathologia* **136**:75–84.

852 63. Lynen F, Engeser H, Foerster EC, Fox JL, Hess S, Kresze GB, Schmitt T,
853 Schreckenbach T, Siess E, Wieland F, Winnewisser W. 1980. On the Structure of
854 Fatty Acid Synthetase of Yeast. *Eur J Biochem* **112**:431–442. doi:10.1111/j.1432-
855 1033.1980.tb06105.

856 64. Schweizer E, Hofmann J. 2004. Microbial type I fatty acid synthases (FAS): Major
857 players in a network of cellular FAS systems. *Microbiol Mol Biol Rev* **68**:501–17.

858 doi:10.1128/MMBR.68.3.501-517.2004.

859 65. Chayakulkeeree M, Rude TH, Toffaletti DL, Perfect JR. 2007. Fatty acid synthesis
860 is essential for survival of *Cryptococcus neoformans* and a potential fungicidal
861 target. *Antimicrob Agents Chemother* **51**:3537–45. doi:10.1128/AAC.00442-07.

862 66. Peng T, Golub TR, Sabatini DM. 2002. The immunosuppressant rapamycin
863 mimics a starvation-like signal distinct from amino acid and glucose deprivation.
864 *Mol Cell Biol* **22**:5575–84. doi:10.1128/mcb.22.15.5575-5584.2002.

865 67. Soliman GA. 2011. The integral role of mTOR in lipid metabolism. *Cell Cycle*
866 **10**:861–2. doi:10.4161/cc.10.6.14930.

867 68. Madeira JB, Masuda CA, Maya-Monteiro CM, Matos GS, Montero-Lomelí M,
868 Bozaquel-Morais BL. 2015. Torc1 inhibition induces lipid droplet replenishment in
869 yeast. *Mol Cell Biol* **35**:737–46. doi:10.1128/MCB.01314-14.

870 69. Davidson R, Laporte D, Wu JQ. 2015. Regulation of Rho-GEF Rgf3 by the
871 arrestin Art1 in fission yeast cytokinesis. *Mol Biol Cell* **26**:453–66.
872 doi:10.1091/mbc.E14-07-1252.

873 70. Saitoh S, Takahashi K, Nabeshima K, Yamashita Y, Nakaseko Y, Hirata A,
874 Yanagida M. 1996. Aberrant mitosis in fission yeast mutants defective in fatty acid
875 synthetase and acetyl CoA carboxylase. *J Cell Biol* **134**:949-61.
876 doi:10.1083/jcb.134.4.949.

877 71. Al-Feel W, DeMar JC, Wakil SJ. 2003. A *Saccharomyces cerevisiae* mutant strain
878 defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle.
879 *Proc Natl Acad Sci U S A* **100**:3095–3100. doi:10.1073/pnas.0538069100.

880 72. Scaglia N, Tyekucheva S, Zadra G, Photopoulos C, Loda M. 2014. De novo fatty

881 acid synthesis at the mitotic exit is required to complete cellular division. *Cell*
882 *Cycle* **13**:859–68. doi:10.4161/cc.27767.

883 73. Callis J. 2014. The ubiquitination machinery of the ubiquitin system. *Arab B*
884 **12**:e0174. doi:10.1199/tab.0174.

885 74. Yu J, Deng R, Zhu HH, Zhang SS, Zhu C, Montminy M, Davis R, Feng GS. 2013.
886 Modulation of fatty acid synthase degradation by concerted action of p38 MAP
887 kinase, E3 ligase Cop1, and SH2-tyrosine phosphatase Shp2. *J Biol Chem*
888 **288**:3823–30. doi:10.1074/jbc.M112.397885.

889 75. Merlini L, Fraschini R, Boettcher B, Barral Y, Lucchini G, Piatti S. 2012. Budding
890 yeast Dma proteins control septin dynamics and the spindle position checkpoint
891 by promoting the recruitment of the Elm1 kinase to the bud neck. *PLoS Genet*
892 **8**:e1002670. doi:10.1371/journal.pgen.1002670.

893 76. Juanes MA, Piatti S. 2016. Control of formin distribution and actin cable assembly
894 by the E3 ubiquitin ligases Dma1 and Dma2. *Genetics* **204**:205–20.
895 doi:10.1534/genetics.116.189258.

896 77. Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD.
897 2005. The spatial organization of lipid synthesis in the yeast *Saccharomyces*
898 *cerevisiae* derived from large scale green fluorescent protein tagging and high
899 resolution microscopy. *Mol Cell Proteomics* **4**:662–72. doi:10.1074/mcp.M400123-
900 MCP200.

901 78. Davis D, Edwards JE, Mitchell AP, Ibrahim AS. 2000. *Candida albicans* Rim101
902 pH response pathway is required for host-pathogen interactions. *Infect Immun*
903 **68**:5953–9. doi:10.1128/iai.68.10.5953-5959.2000.

904 79. Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T,
905 Feldman RD, Ferguson SSG, Kelvin DJ. 2000. Regulation of tyrosine kinase
906 activation and granule release through β -arrestin by Cxcr1. *Nat Immunol* 1:227–
907 233. doi:10.1038/79767.

908 80. Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G. 2004. Identification of β -
909 arrestin2 as a G protein-coupled receptor-stimulated regulator of NF- κ B
910 pathways. *Mol Cell* 14:303–17.

911 81. Radin JN, Orihuela CJ, Murti G, Guglielmo C, Murray PJ, Tuomanen EI. 2005. β -
912 Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis
913 of *Streptococcus pneumoniae*. *Infect Immun* 73:7827–35.
914 doi:10.1128/IAI.73.12.7827-7835.2005.

915 82. Bhattacharyya S, Hope TJ, Young JA. 2011. Differential requirements for clathrin
916 endocytic pathway components in cellular entry by Ebola and Marburg
917 glycoprotein pseudovirions. *Virology* 419:1–9. doi:10.1016/j.virol.2011.07.018.

918 83. Vines CM, Revankar CM, Maestas DC, LaRusch LL, Cimino DF, Kohout TA,
919 Lefkowitz RJ, Prossnitz ER. 2003. N-formyl peptide receptors internalize but do
920 not recycle in the absence of arrestins. *J Biol Chem* 278:41581–4.
921 doi:10.1074/jbc.C300291200.

922 84. Ost KS, Esher SK, Leopold Wager CM, Walker L, Wagener J, Munro C, Wormley
923 FL, Alspaugh JA. 2017. Rim pathway-mediated alterations in the fungal cell wall
924 influence immune recognition and inflammation. *MBio* 8:e02290-16.
925 doi:10.1128/mBio.02290-16.

926 85. Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR. 1993. Gene transfer

927 in *Cryptococcus neoformans* by use of biolistic delivery of DNA. *J Bacteriol*
928 175:1405–11. doi:10.1128/jb.175.5.1405-1411.1993.

929 86. Kim MS, Kim SY, Jung KW, Bahn YS. 2012. Targeted gene disruption in
930 *Cryptococcus neoformans* using double-joint PCR with split dominant selectable
931 markers. *Methods Mol Biol* 845:67-84. doi:10.1007/978-1-61779-539-8_5.

932 87. Chun CD, Madhani HD. 2010. Applying genetics and molecular biology to the
933 study of the human pathogen *Cryptococcus neoformans*. *Methods Enzymol*
934 470:797-831. doi:10.1016/S0076-6879(10)70033-1.

935 88. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays
936 with tobacco tissue cultures. *Physiol Plant* 15:473–497. doi:10.1111/j.1399-
937 3054.1962.tb08052.

938 89. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of
939 image analysis. *Nat Methods* 9:671–675. doi:10.1038/nmeth.2089.

940 90. Abràmoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with ImageJ.
941 *Biophotonics Int* 11:36-42.

942 91. Pfaller MA, Rinaldi MG, Galgiani JN, Bartlett MS, Body BA, Espinel-Ingroff A,
943 Fromling RA, Hall GS, Hughes CE, Odds FC. 1990. Collaborative investigation of
944 variables in susceptibility testing of yeasts. *Antimicrob Agents Chemother*
945 34:1648–54. doi:10.1128/aac.34.9.1648.

946 92. Clinical and Laboratory Standards Institute (CLSI). 2008. Reference method for
947 broth dilution antifungal susceptibility testing of yeasts; Approved Standard-Third
948 Edition. Clinical and Laboratory Standards Institute, Wayne, PA.

949 93. Perfect JR, Lang SD, Durack DT. 1980. Chronic cryptococcal meningitis: A new

950 experimental model in rabbits. *Am J Pathol* **101**:177–94.

951 94. Nielsen K, Cox GM, Wang P, Toffaletti DL, Perfect JR, Heitman J. 2003. Sexual
952 cycle of *Cryptococcus neoformans* var. *grubii* and virulence of congenic a and α
953 isolates. *Infect Immun* **71**:4831–41. doi:10.1128/iai.71.9.4831-4841.2003.

954 95. Fraser JA, Subaran RL, Nichols CB, Heitman J. 2003. Recapitulation of the
955 sexual cycle of the primary fungal pathogen *Cryptococcus neoformans* var. *gattii*:
956 Implications for an outbreak on Vancouver Island, Canada. *Eukaryot Cell* **2**:1036–
957 45. doi:10.1128/ec.2.5.1036-1045.2003.

958 96. McDade HC, Cox GM. 2001. A new dominant selectable marker for use in
959 *Cryptococcus neoformans*. *Med Mycol* **39**:151-4. doi:10.1080/mmy.39.1.151.154.

960 97. Price MS, Nichols CB, Alspaugh JA. 2008. The *Cryptococcus neoformans* Rho-
961 GDP dissociation inhibitor mediates intracellular survival and virulence. *Infect*
962 *Immun* **76**:5729–37. doi:10.1128/IAI.00896-08.

963 **TABLE 1.** The most abundant 30 proteins identified as potential Ali1-GFP interactors in
964 YPD medium^a

Gene ID	Gene Name	Gene Product	Average Peptide Count (APC)	Percent of APC identified in WT
CNAG_02099	<i>FAS1</i>	Fatty acid synthase, beta subunit	9.0	0.0
CNAG_02100	<i>FAS2</i>	Fatty acid synthase, alpha subunit	8.7	11.5
CNAG_02748		UTP-glucose-1-phosphate uridylyltransferase	8.7	11.5
CNAG_07373		Carbamoyl-phosphate synthase, large subunit	8.0	0.0
CNAG_03944		Chaperone regulator	6.7	15.0
CNAG_03358		Phosphoglycerate kinase	6.0	0.0
CNAG_04441		Polyadenylate-binding protein, cytoplasmic and nuclear	6.0	16.7
CNAG_01464	<i>FHB1</i>	Flavohemoglobin	5.7	17.6
CNAG_00418		S-adenosylmethionine synthase	5.3	18.8
CNAG_01586		F-type H-transporting ATPase, B subunit	5.0	0.0
CNAG_02545		Inorganic pyrophosphatase	5.0	0.0
CNAG_04659		Pyruvate decarboxylase	4.7	0.0
CNAG_02928		Large subunit ribosomal protein L5e	4.3	0.0
CNAG_05759		Acetyl-CoA carboxylase/biotin carboxylase	4.0	0.0
CNAG_07363		Isocitrate dehydrogenase, NAD-dependent	4.0	0.0
CNAG_02673		NAD dependent epimerase/dehydratase	3.7	0.0
CNAG_02811		Small subunit ribosomal protein S29	3.7	0.0
CNAG_07745	<i>MPD1</i>	Alcohol dehydrogenase, propanol-preferring	3.3	0.0
CNAG_00176		Glutamate carboxypeptidase	3.3	0.0
CNAG_01404		Hsp71-like protein	3.3	0.0
CNAG_02500		Calnexin	3.0	0.0
CNAG_02991		Cofilin	3.0	0.0
CNAG_02943		Cytoplasmic protein	3.0	0.0
CNAG_03588	<i>LYS2</i>	L-amino adipate-semialdehyde dehydrogenase	3.0	0.0
CNAG_02736		T-complex protein 1, theta subunit	3.0	0.0
CNAG_03765	<i>TPS2</i>	Trehalose-phosphatase	3.0	0.0
CNAG_00136		Ubiquitin-activating enzyme E1	3.0	0.0
CNAG_07558		Uncharacterized protein	3.0	0.0
CNAG_06112		Carbamoyl-phosphate synthase arginine-specific, large chain	2.7	0.0
CNAG_00879		Glutamate dehydrogenase	2.7	0.0

965 ^a The average peptide count (APC) was calculated by averaging the exclusive unique
966 peptide counts for each potential interactor across three biological replicates. The
967 percent of APC identified in the WT immunoprecipitation was calculated by dividing the

968 APC of each potential interactor by the exclusive unique peptide count found in the WT
969 immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
970 as less than 20% of the APC identified in the WT immunoprecipitation, were considered
971 to be unique interactors with Ali1-GFP. These potential protein interactors are prioritized
972 by APC (most to least) and percentage of APC identified in the WT control (lowest to
973 highest).

974 **TABLE 2.** The most abundant 30 proteins identified as potential Ali1-GFP interactors in
975 TC medium^a

Gene ID	Gene Name	Gene Product	Average Peptide Count (APC)	Percent of APC identified in WT
CNAG_02099	<i>FAS1</i>	Fatty acid synthase, beta subunit	19.3	0.0
CNAG_02100	<i>FAS2</i>	Fatty acid synthase, alpha subunit	16.7	6.0
CNAG_04327		Uncharacterized protein	10.3	9.7
CNAG_05355	<i>RSP5</i>	E3 ubiquitin-protein ligase	6.0	0.0
CNAG_05978		Glutamate-tRNA ligase	6.0	16.7
CNAG_03588	<i>LYS2</i>	L-amino adipate-semialdehyde dehydrogenase	6.0	16.7
CNAG_03701		3-phosphoshikimate 1-carboxyvinyltransferase	5.7	17.6
CNAG_00743		Imidazoleglycerol phosphate synthase, cyclase subunit	5.3	0.0
CNAG_07561		6-phosphogluconate dehydrogenase, decarboxylating I	5.3	18.8
CNAG_06175		26S proteasome, regulatory subunit N2	4.7	0.0
CNAG_01216		6-phosphogluconolactonase	4.0	0.0
CNAG_00602		Eukaryotic translation initiation factor 3, subunit I	4.0	0.0
CNAG_00136		Ubiquitin-activating enzyme E1	4.0	0.0
CNAG_06666		Alpha-1,4 glucan phosphorylase	3.7	0.0
CNAG_02565		Homoaconitase, mitochondrial	3.7	0.0
CNAG_02035		Triosephosphate isomerase	3.7	0.0
CNAG_05650	<i>UBP5</i>	Ubiquitin carboxyl-terminal hydrolase 7	3.7	0.0
CNAG_00708		Pre-mRNA-splicing factor Slt11	3.3	0.0
CNAG_01981		Sulfide:quinone oxidoreductase	3.3	0.0
CNAG_03249		THO complex, subunit 4	3.3	0.0
CNAG_00649		Tryptophan synthase, beta subunit	3.3	0.0
CNAG_02858	<i>ADE12</i>	Adenylosuccinate synthetase	3.0	0.0
CNAG_01189		DNA-directed RNA polymerase I, subunit RPA1	3.0	0.0
CNAG_02545		Inorganic pyrophosphatase	3.0	0.0
CNAG_04976		Zuotin	3.0	0.0
CNAG_04951		3-deoxy-7-phosphoheptulonate synthase	2.7	0.0
CNAG_02500		Calnexin	2.7	0.0
CNAG_06730	<i>GSK3</i>	CMGC/GSK protein kinase	2.7	0.0
CNAG_00700		Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase	2.7	0.0
CNAG_02315		Ubiquinol-cytochrome c reductase, iron-sulfur subunit	2.7	0.0

976 ^a The average peptide count (APC) was calculated by averaging the exclusive unique
977 peptide counts for each potential interactor across three biological replicates. The
978 percent of APC identified in the WT immunoprecipitation was calculated by dividing the

979 APC of each potential interactor by the exclusive unique peptide count found in the WT
980 immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
981 as less than 20% of the APC identified in the WT immunoprecipitation, were considered
982 to be unique interactors with Ali1-GFP. These potential protein interactors are prioritized
983 by APC (most to least) and percentage of APC identified in the WT control (lowest to
984 highest).

985 **TABLE 3.** Strains used in this study

Strain	Genotype	Source
H99	<i>MATα</i>	(93)
KN99a	<i>MATα</i>	(94)
KS120	<i>MATα ali1Δ::NEO</i>	(25)
CLT6	<i>MATα ali1Δ::NEO + ALI1-NAT</i>	This study
CLT7	<i>MATα ali1Δ::NEO + H-ALI1-GFP-NAT</i>	This study
CBN327	<i>MATα GAL7-mCherry-RAS1-NEO</i>	This study
CBN486	<i>MATα ali1Δ::NEO + H-ALI1-GFP-NAT + GAL7-mCherry-RAS1-NEO</i>	This study
LK001	<i>MATα CDC10-mCherry-NEO</i>	(34)
CLT42	<i>MATα ali1Δ::NAT + CDC10-mCherry-NEO</i>	This study
KS96-2	<i>MATα ali2Δ::NAT</i>	(25)
CLT67	<i>MATα ali2Δ::NAT + ALI2-GFP-NEO</i>	This study
CLT8	<i>MATα ali3Δ::NAT</i>	Madhani, 2015
CLT32	<i>MATα ali3Δ::NAT</i>	This study
CLT62	<i>MATα ali3Δ::NAT + ALI3-NEO</i>	This study
CLT9	<i>MATα ali4Δ::NAT</i>	Madhani, 2015
CLT63	<i>MATα ali4Δ::NAT + ALI4-NEO</i>	This study
KS97-2	<i>MATα ali1Δ::NEO + ali2Δ::NAT</i>	(25)
CLT35	<i>MATα ali3Δ::NAT + ali4Δ::NAT</i>	This study
CLT56	<i>MATα ali1Δ::NEO + ali2Δ::NAT + ali3Δ::NAT + ali4Δ::NAT #1</i>	This study
CLT57	<i>MATα ali1Δ::NEO + ali2Δ::NAT + ali3Δ::NAT + ali4Δ::NAT #2</i>	This study
CLT58	<i>MATα ali1Δ::NEO + ali2Δ::NAT + ali3Δ::NAT + ali4Δ::NAT #3</i>	This study

986

987 **TABLE 4.** Plasmids used in this study

Plasmid	ORF	Backbone	Source
pJAF	Neomycin resistance cassette (<i>NEO</i>)		(95)
pCH233	Nourseothricin resistance cassette (<i>NAT</i>)		(96)
pCT1	<i>ALI1</i> (including promoter and terminator); <i>NAT</i>	pCH233	This study
pCN20	Histone <i>H3</i> promoter; <i>NAT</i>	pCH233	(97)
pKS85	Histone <i>H3</i> promoter; <i>RRA1</i> ; <i>GFP</i> ; <i>RRA1</i> (terminator only); <i>NAT</i>	pCH233	(26)
pCT3	Histone <i>H3</i> promoter; <i>ALI1</i> ; <i>GFP</i> ; <i>RRA1</i> (terminator only); <i>NAT</i>	pUC19	This study
pCT11	<i>ALI2</i> (including promoter); <i>GFP</i> ; <i>FKS1</i> (terminator only); <i>NEO</i>	pUC19	This study
pCT8	<i>ALI3</i> (including promoter and terminator); <i>NEO</i>	pJAF	This study
pCT10	<i>ALI4</i> (including promoter and terminator); <i>NEO</i>	pJAF	This study

988

989 **TABLE 5.** Primers used in this study

Primer name	Primer sequence (5'-3')	Purpose
<i>Deletion constructs</i>		
AA3254	GAGGACTACTGGCGTCAA	<i>ali1Δ</i> primer 1
AA3255	GTCATAGCTTTCTGCTGTCGGACCGTGTATCG	<i>ali1Δ</i> primer 2
AA3256	CGATAAACACGGTCCGACAGCAGGAAACAGCTATGAC	<i>ali1Δ</i> primer 3
AA3257	ATATTATAAGTTAGAGGTTAGGTTTCCCAGTCACGAC	<i>ali1Δ</i> primer 4
AA3258	GTCGTGACTGGAAAAACCTAACCTCTAACCTATAATAT	<i>ali1Δ</i> primer 5
AA3259	GGACGGGAGTGTAAATGAGGA	<i>ali1Δ</i> primer 6
AA3505	CTGAGCGGTGTCCTTTCTC	<i>ali2Δ</i> primer 1
AA3506	GTCATAGCTTTCTGGGTGTTGGTGTGGTTGTCGTGGT	<i>ali2Δ</i> primer 2
AA3507	ACCACGACAACCACACCCACACCCAGGAAACAGCTATGAC	<i>ali2Δ</i> primer 3
AA3508	GTATATCTAGATTGAACAACTAAGTTTCCCAGTCACGAC	<i>ali2Δ</i> primer 4
AA3509	GTCGTGACTGGAAAAACCTAGTTGTTCAATCTAGATATAC	<i>ali2Δ</i> primer 5
AA3510	TTTCAGTTCCGAGGTGCTCT	<i>ali2Δ</i> primer 6
AA4096	AAGGTGTTCCCCGACGACGAATCG	NAT split marker F
AA4097	AACTCCGTCGCGAGCCCCATCAAC	NAT split marker R
AA3934	TCGATGCGATTTCGCT	NEO split marker F
AA3935	CCTGAATGAACTGCAGGA	NEO split marker R
<i>Cloning</i>		
AA5124	TACCGAGCTCGGATCCGTGTCGTTAGCGGACTCGGTATCT	<i>ALI1</i> fragment F
AA5125	CGTTACTAGTGGATCCTCCGCTACATAACCACCATCCCTG	<i>ALI1</i> fragment R
AA5192	GAGCTCGGTACCCGGGGATCGGCAGATACGATATGTTGGCGC	<i>ALI1-GFP</i> fragment 1 F
AA5185	GAGAGGGCATGGTATAGATGTGTTGGTGTGTTG	<i>ALI1-GFP</i> fragment 1 R
AA5186	ATCTATCACCATGCCCTCTCGTTGGATCCAAGC	<i>ALI1-GFP</i> fragment 2 F
AA5187	TGCTCACCAATTGCTCCTGTCGGCGCCCC	<i>ALI1-GFP</i> fragment 2 R
AA5188	GACAGGAGCAATGGTGAGCAAGGGCGAGG	<i>ALI1-GFP</i> fragment 3 F
AA5204	CAGGTCGACTCTAGAGGATCCTGCGAGGATGTGAGCTGG	<i>ALI1-GFP</i> fragment 3 R
AA5518	AATTGAGCTCGGTACCCGGGGATCGACCATCAACGCCAGCGTATTAAC	<i>ALI2-GFP</i> fragment 1 F
AA5519	CTTGCTCACCATATCTTGAGCCTGTTGCGG	<i>ALI2-GFP</i> fragment 1 R
AA5520	CAGGCTCAGAGATATGGTGAGCAAGGGCGAG	<i>ALI2-GFP</i> fragment 2 F
AA5521	GCCTGCAGGTCGACTCTAGAGGATCCTGCGAGGATGTGAGCTG	<i>ALI2-GFP</i> fragment 2 R
AA4424	GATCCTCTAGAGTCGACCTG	pUC19 F
AA4425	GATCCCCGGGTACCGAGCTC	pUC19 R
AA5415	CGTCGCACTAGTATTGTGAGCGCGCTATAGTG	<i>ALI3</i> fragment F
AA5416	CGTCGCACTAGTCAAGAATGGTGACACTGCCAAC	<i>ALI3</i> fragment R
AA5417	CGTCGCACTAGTTCTCCTGCGGAGGCTTATTAG	<i>ALI4</i> fragment F
AA5418	CGTCGCACTAGTACAACTAGCTGGCATCTAG	<i>ALI4</i> fragment R

991 **FIGURE 1.** The *C. neoformans* arrestin proteins. The arrestin proteins within the *C.*
992 *neoformans* proteome – Ali1, Ali2, Ali3, and Ali4 – were identified by the presence of the
993 conserved β -sheet-rich arrestin domains. If present, the N-terminal arrestin domain
994 (yellow), the C-terminal arrestin domain (blue), and any potential ubiquitin ligase binding
995 sequences, or PxY sequences (black), are indicated for each arrestin protein. Protein
996 and domain sizes are depicted to scale (aa = amino acids).

997 **FIGURE 2.** Ali1 subcellular localization patterns. A. The WT and Ali1-GFP strains were
998 incubated in YPD medium at 30°C (above) or TC medium at 37°C, and Ali1-GFP was
999 localized by epifluorescence microscopy (Zeiss Axio Imager A1). Ali1-GFP localization
1000 to the septum (arrowheads) and poles (arrows) of budding yeasts is depicted. B. To
1001 determine the relative enrichment of Ali1-GFP in different cellular fractions, WT and
1002 Ali1-GFP total cell lysates (T) were subjected to ultracentrifugation (30,000 \times g) to
1003 isolate the soluble (S) and insoluble (I) cellular fractions. Samples were analyzed by
1004 western blotting using an anti-GFP antibody. The estimated size of Ali1-GFP is
1005 approximately 122 kDa. C. The dependence of Ali1-GFP localization on the Ras1
1006 signaling pathway was determined using galactose-inducible expression of the *RAS1*
1007 transcript. Cells were incubated in YPGal (WT) or YPD (*ras1* Δ) media. Ali1-GFP
1008 localization to the septum (arrowheads) and poles (arrows) of budding yeasts was
1009 observed using epifluorescence microscopy (Zeiss Axio Imager A1). D. The frequency
1010 of Ali1-GFP localization to the septum and poles was quantified in the presence and
1011 absence of Ras1. The percentage of actively budding cells that displayed Ali1-GFP
1012 localization to the septum and/or poles was calculated in both YPGal (WT) and YPD
1013 (*ras1* Δ) conditions. A minimum of 600 cells were analyzed in both YPGal (WT) and YPD
1014 (*ras1* Δ) conditions across three biological replicates (n = 3). Error bars represent the
1015 standard error of the mean (SEM). Log transformation was used to normally distribute
1016 the data for statistical analysis (*Student's *t*-test p < 0.05).

1017 **FIGURE 3.** Cellular morphology of the *ali1Δ* mutant. A. The WT, *ali1Δ* mutant, and *ali1Δ*
1018 + *ALI1* strains were incubated in YPD medium at either 30°C or 39°C and subsequently
1019 imaged by DIC microscopy (Zeiss Axio Imager A1). The *ali1Δ* mutant cells displaying
1020 morphological defects, such as elongated cells (asterisk), wide bud necks (arrowhead),
1021 and cytokinesis failure (arrow), are indicated. B. The percentage of total cells displaying
1022 morphological defects at 39°C was quantified for each strain. A minimum of 600 cells
1023 were analyzed across three biological replicates (n = 3). Error bars represent the SEM.
1024 Log transformation was used to normally distribute the data for statistical analysis
1025 (**One-way ANOVA p < 0.01; ns = not significant). C. The septin protein, Cdc10, was
1026 localized by visualization of the Cdc10-mCherry fusion protein in both the WT and the
1027 *ali1Δ* mutant backgrounds after incubation in YPD medium at 30°C (above) or 37°C.
1028 The Cdc10-mCherry fusion protein was localized using epifluorescence microscopy
1029 (Zeiss Axio Imager A1).

1030 **FIGURE 4.** The effects of lipid supplementation on the *ali1Δ* mutant. Serial dilutions of
1031 the WT, *ali1Δ* mutant, and *ali1Δ* + *ALI1* strains were incubated on YPD medium; YPD
1032 with caffeine (1 mg/mL); YPD with caffeine, ox bile (10 mg/mL), and Tween 60 (1%);
1033 and YPD with caffeine and glycerol (0.4%). These strains were incubated at 30°C (A)
1034 and 37°C (B) and monitored visually for growth.

1035 **FIGURE 5.** Virulence contributions of the *C. neoformans* arrestin family. A. The WT,
1036 *ali1* Δ mutant, and *ali1* Δ + *AL1* strains were co-incubated with J774A.1 murine
1037 macrophages at a multiplicity of infection (MOI) = 1 for 24 hours. Survival of the strains
1038 was assessed by quantitative culture, and the percentage of recovered colony-forming
1039 units (CFU) was normalized to the WT strain. This experiment was performed with six
1040 biological replicates (n = 6). Error bars represent the SEM. Log transformation was used
1041 to normally distribute the data for statistical analysis (One-way ANOVA; ns = not
1042 significant). B. Female C57BL/6 mice (n = 10) were intranasally inoculated with 10⁴ CFU
1043 of the WT, *ali1* Δ mutant, or *ali1* Δ + *AL1* strains. Mouse survival was tracked for 50 days
1044 post-infection (Log-rank test; ns = not significant). C. The WT strain, the *MATa* KN99
1045 strain, and three isogenic but independent arrestin null mutants (all also *MATa*) were
1046 co-incubated with J774A.1 murine macrophages at a MOI = 1 for 24 hours. Survival of
1047 the strains was assessed by quantitative culture, and the percentage of recovered CFU
1048 was normalized to the WT strain. This experiment was performed with four biological
1049 replicates (n = 4). Error bars represent the SEM. Log transformation was used to
1050 normally distribute the data for statistical analysis (*One-way ANOVA p < 0.05; **One-
1051 way ANOVA p < 0.01). D. Female C57BL/6 mice (n = 10) were intranasally inoculated
1052 with 10⁴ CFU of the WT strain and a representative arrestin null mutant,
1053 *ali1* Δ *ali2* Δ *ali3* Δ *ali4* Δ - #2 (CLT57). Mouse survival was tracked for 50 days post-infection
1054 (****Log-rank test p < 0.0001).

1055 **FIGURE 6.** The *C. neoformans* arrestin mutant phenotypes. Serial dilutions of the WT
1056 strain, each individual arrestin mutant, and three independent arrestin null mutants were
1057 incubated on YPD medium with the following growth conditions/additives: 30°C, 39°C,
1058 caffeine (1 mg/mL), SDS (0.03%), high salt (1.5 M NaCl), and alkaline pH (pH 8). Cells
1059 were monitored visually for growth. The *ali1Δ* mutant exhibits modest susceptibility to
1060 caffeine. This phenotype is shared by, but markedly enhanced in, the *ali2Δ* mutant. The
1061 *ali2Δ* mutant also displays sensitivity to high salt. The *ali3Δ* mutant has modest growth
1062 defects at 39°C, as well as resistance to SDS. The *ali4Δ* mutant shares this SDS
1063 resistance phenotype, although it is enhanced compared to the *ali3Δ* mutant. The
1064 arrestin null mutants display reduced growth in the presence of 39°C, caffeine, and salt,
1065 but enhanced growth in the presence of SDS and alkaline pH.

1066 **FIGURE 7.** Working model of *Ali1* adaptor function. We propose that *Ali1* (yellow/blue)
1067 acts as an adaptor protein to aid in the localization of the *Fas1* and *Fas2* fatty acid
1068 synthase complex (red) to the septum and poles of actively dividing cells, possibly in a
1069 ubiquitin-mediated manner through interactions with the E3 ubiquitin ligase *Rsp5*
1070 (green). This process occurs to help meet the increased, stress-induced need for lipid
1071 synthesis and deposition at these sites. In the *ali1Δ* mutant strain, *Fas1* and *Fas2* are
1072 unable to localize, or are delayed in their localization, to the septum and poles during
1073 cell division. As a result, lipid synthesis and deposition at these sites is impaired. This
1074 causes localized cell surface defects at the poles in the resulting cells, likely explaining
1075 the cytokinesis defects and caffeine sensitivity phenotypes of the *ali1Δ* mutant.

1076 **TABLE S1.** Primary amino acid sequence homology between the *C. neoformans*
1077 arrestins and *S. cerevisiae* arrestins^a

1078

1079 ^a The blastp and PSI-BLAST programs were used to identify amino acid sequence
1080 conservation. Alignments with an E value less than 1 were determined to be significant
1081 (N/A = not applicable).

1082 **TABLE S2.** Primary amino acid sequence homology between the *C. neoformans*
1083 arrestins and human arrestins^a

1084

1085 ^a The blastp and PSI-BLAST programs were used to identify amino acid sequence
1086 conservation. Alignments with an E value less than 1 were determined to be significant
1087 (N/A = not applicable).

1088 **TABLE S3.** A total of 1,122 proteins were identified as potential interactors of Ali1-GFP^a

1089

1090 ^aAll identified *C. neoformans* proteins are included, along with the exclusive unique

1091 peptide count for each protein in each replicate.

1092 **TABLE S4.** The 59 biologically-relevant proteins identified as potential interactors of

1093 Ali1-GFP in YPD medium^a

1094

1095 ^a The average peptide count (APC) was calculated by averaging the exclusive unique

1096 peptide counts for each potential interactor across three biological replicates. The

1097 percent of APC identified in the WT immunoprecipitation was calculated by dividing the

1098 APC of each potential interactor by the exclusive unique peptide count found in the WT

1099 immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well

1100 as less than 20% of the APC identified in the WT immunoprecipitation, were considered

1101 to be unique interactors with Ali1-GFP. These potential protein interactors are prioritized

1102 by APC (most to least) and percentage of APC identified in the WT control (lowest to

1103 highest).

1104 **TABLE S5.** The 62 biologically-relevant proteins identified as potential interactors of
1105 Ali1-GFP in TC medium^a

1106

1107 ^a The average peptide count (APC) was calculated by averaging the exclusive unique
1108 peptide counts for each potential interactor across three biological replicates. The
1109 percent of APC identified in the WT immunoprecipitation was calculated by dividing the
1110 APC of each potential interactor by the exclusive unique peptide count found in the WT
1111 immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
1112 as less than 20% of the APC identified in the WT immunoprecipitation, were considered
1113 to be unique interactors with Ali1-GFP. These potential protein interactors are prioritized
1114 by APC (most to least) and percentage of APC identified in the WT control (lowest to
1115 highest).

1116 **FIGURE S1.** Cellular morphology of the *ali1Δ* mutant at 30°C. The WT, *ali1Δ* mutant,
1117 and *ali1Δ* + *ALI1* strains were incubated in YPD medium at 30°C, imaged by DIC
1118 microscopy (Zeiss Axio Imager A1), and quantified for the frequency of cytokinesis
1119 defects. The percentage of total cells displaying morphological defects at 30°C was
1120 quantified for each strain. A minimum of 600 cells were analyzed across three biological
1121 replicates (n = 3). Error bars represent the SEM. Log transformation was used to
1122 normally distribute the data for statistical analysis (One-way ANOVA; ns = not
1123 significant).

1124 **FIGURE S2.** Complementation phenotypes of the individual arrestin mutants. A. Serial
1125 dilutions of the WT, *ali2Δ* mutant, and the *ali2Δ* + *ALI2-GFP* strains were incubated on
1126 YPD medium, YPD with caffeine (1 mg/mL), and YPD with high salt (1.5 M NaCl).
1127 These strains were incubated at 30°C and monitored visually for growth. B. Serial
1128 dilutions of the WT, *ali3Δ* mutant, and the *ali3Δ* + *ALI3* strains were incubated on YPD
1129 medium incubated at 30°C, YPD medium incubated at 39°C, and YPD with SDS
1130 (0.03%) incubated at 30°C. These strains were monitored visually for growth. C. Serial
1131 dilutions of the WT, *ali4Δ* mutant, and the *ali4Δ* + *ALI4* strains were incubated on YPD
1132 medium and YPD with SDS (0.03%). These strains were incubated at 30°C and
1133 monitored visually for growth.

1134 **FIGURE S3.** Virulence contributions of Ali2. The WT, *ali2Δ* mutant, *ali2Δ + ALI2-GFP*,
1135 and *ali1Δali2Δ* mutant strains were co-incubated with J774A.1 murine macrophages at a
1136 MOI = 1 for 24 hours. Survival of the strains was assessed by quantitative culture, and
1137 the percentage of recovered CFU was normalized to the WT strain. This experiment
1138 was performed with five biological replicates (n = 5). Error bars represent the SEM. Log
1139 transformation was used to normally distribute the data for statistical analysis (*One-
1140 way ANOVA p < 0.05; ****One-way ANOVA p < 0.0001; ns = not significant).

1141 **FIGURE S4.** The effects of lipid supplementation on the arrestin null mutants. A. Serial
1142 dilutions of the WT and arrestin null mutant strains were incubated on YPD medium at
1143 30°C; YPD at 39°C; YPD with glycerol (0.4%) at 39°C; and YPD with sorbitol (1M) at
1144 39°C. These strains were monitored visually for growth. B. Serial dilutions of the WT
1145 and arrestin null mutant strains were incubated on YPD medium; YPD with caffeine (1
1146 mg/mL); YPD with caffeine and glycerol (0.4%); and YPD with caffeine and sorbitol
1147 (1M). These strains were incubated at 30°C and monitored visually for growth.

1148 **FILE S1.** Supplementary materials and methods

Figure 1

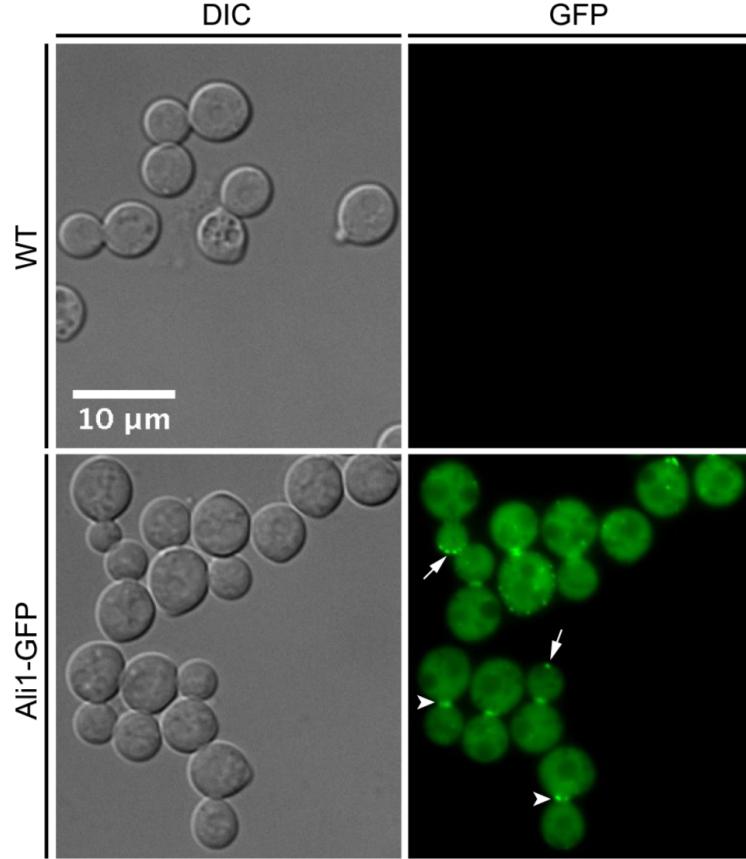
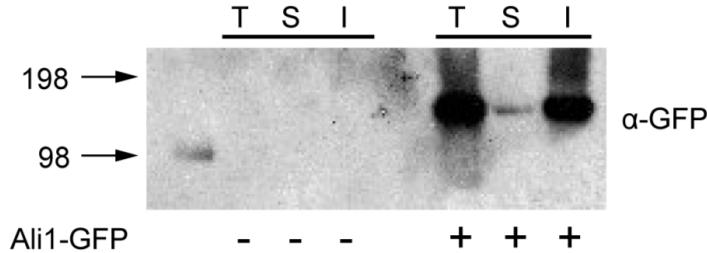
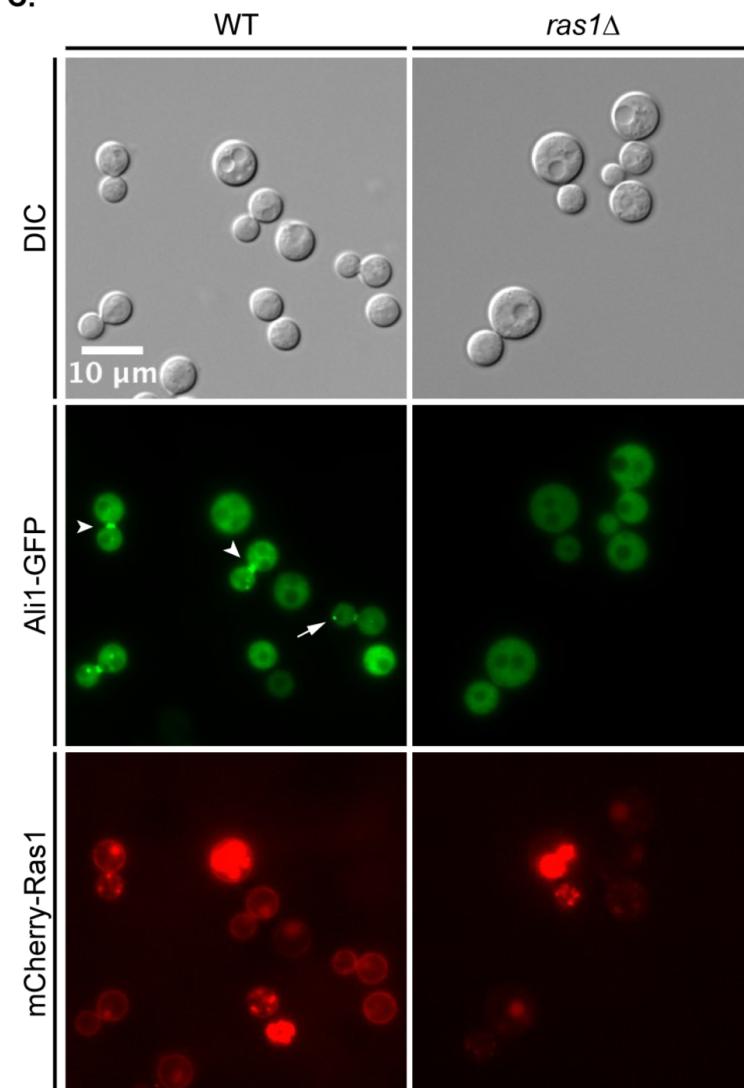
Ali1

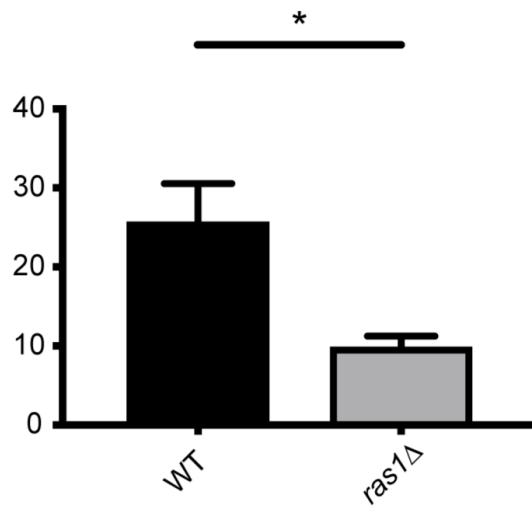
881 aa

Ali2

1205 aa

Ali3




1175 aa


Ali4

1520 aa

A.**B.****C.****D.**

Ali1-GFP localization to
the septum and poles
(% budding cells)

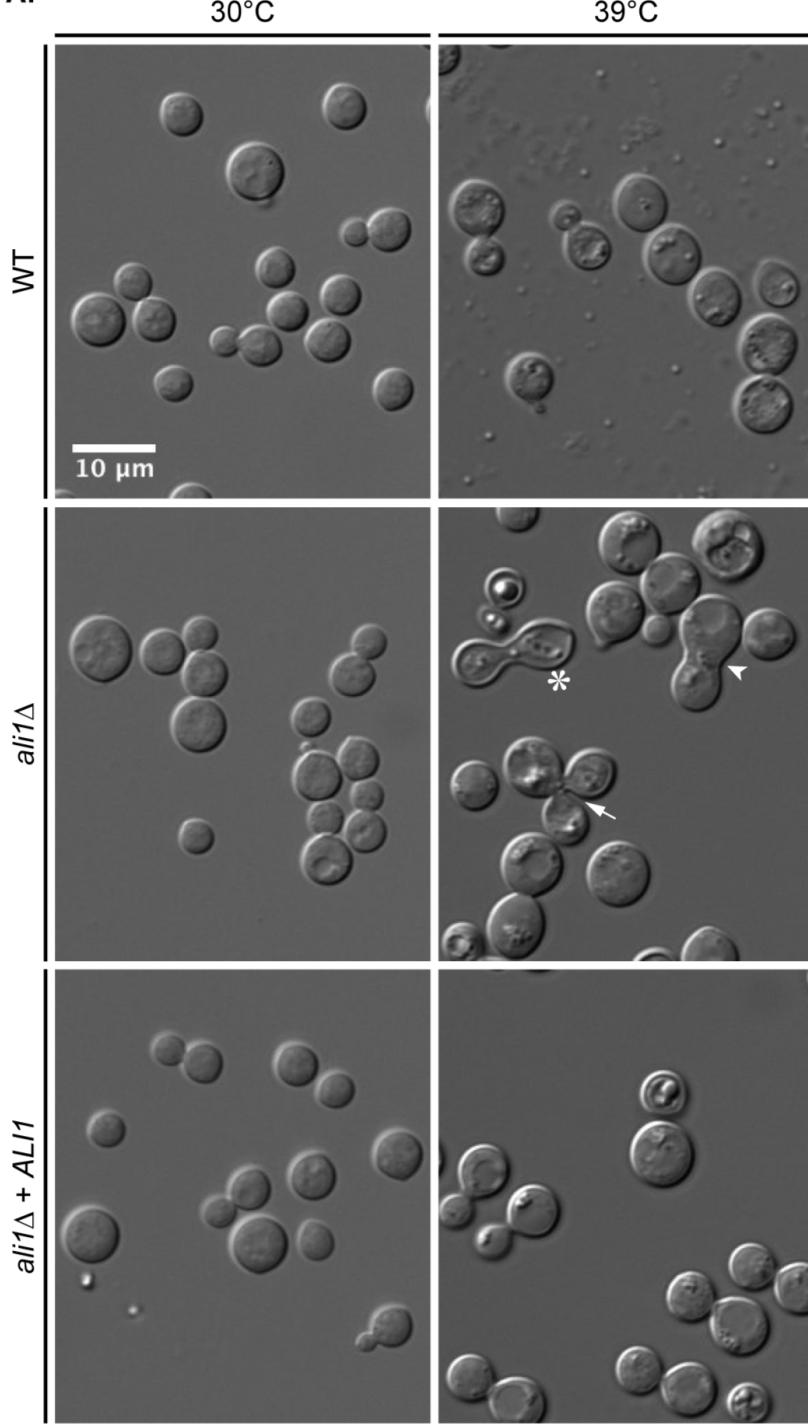
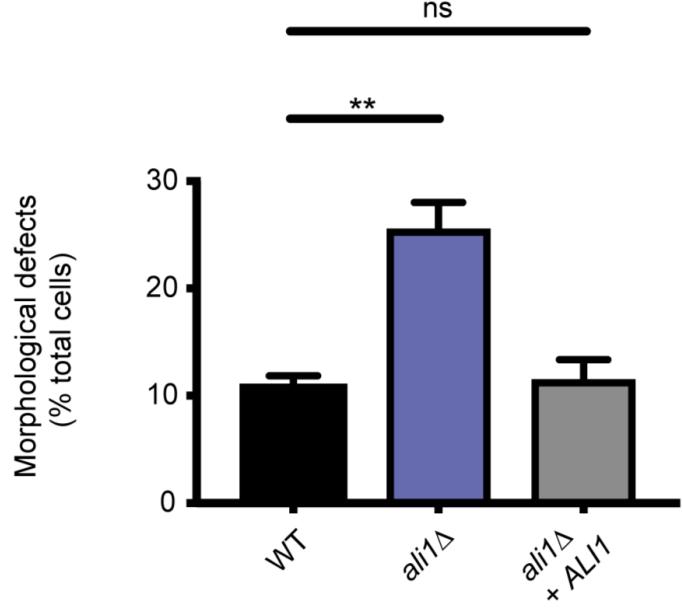
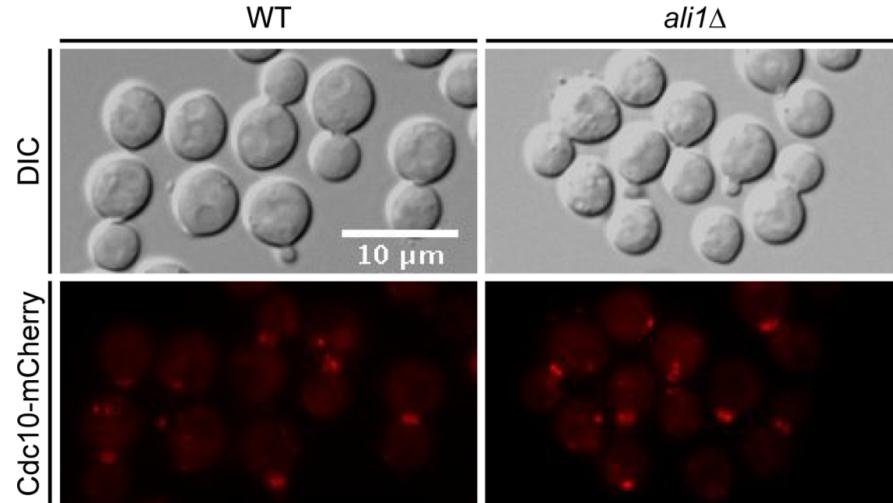
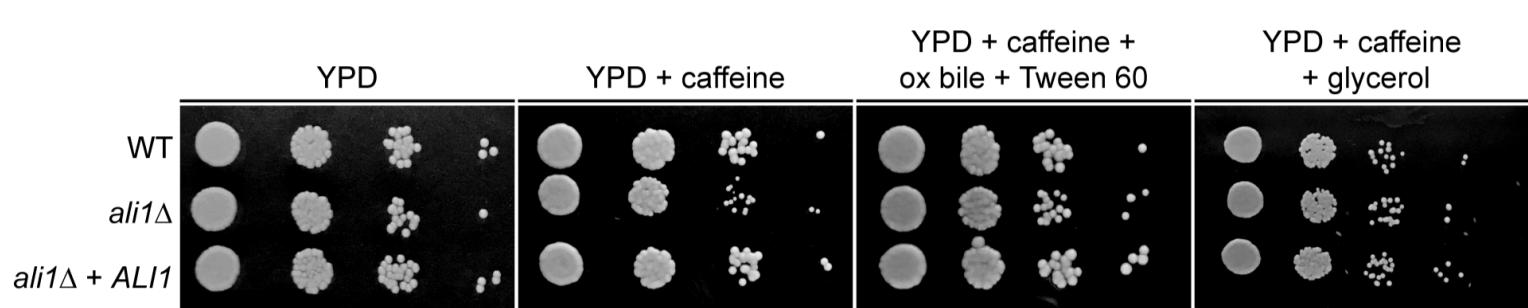




A.**B.****C.**

Figure 4

A.

B.

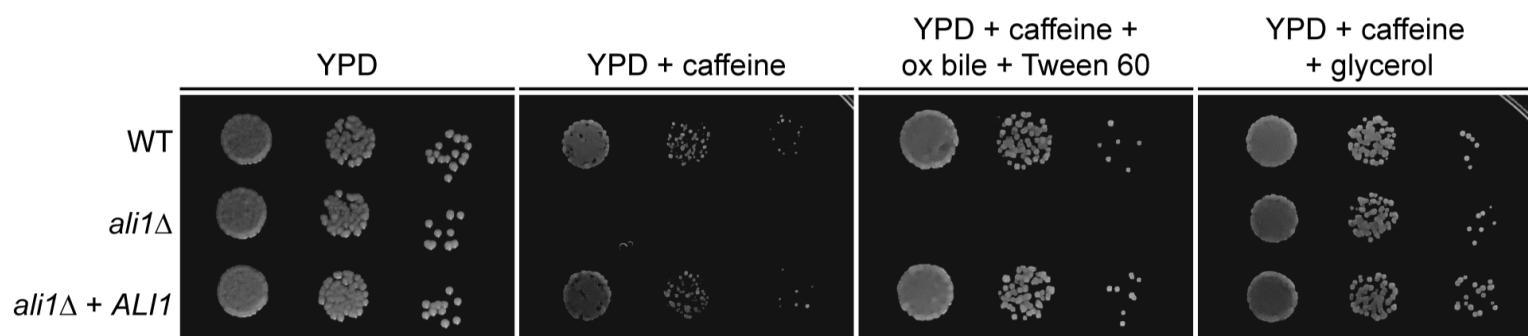
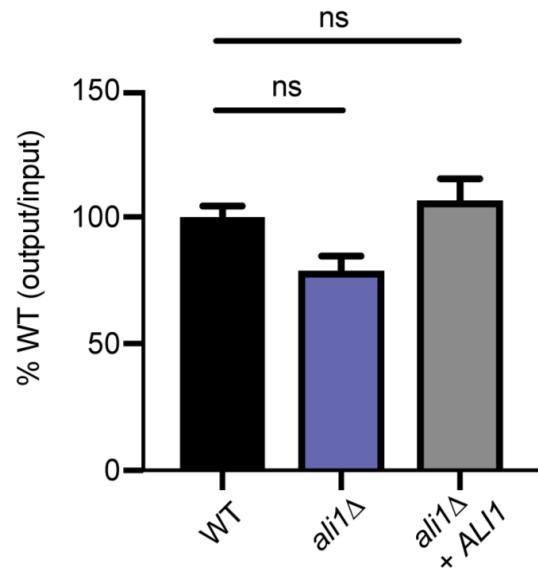
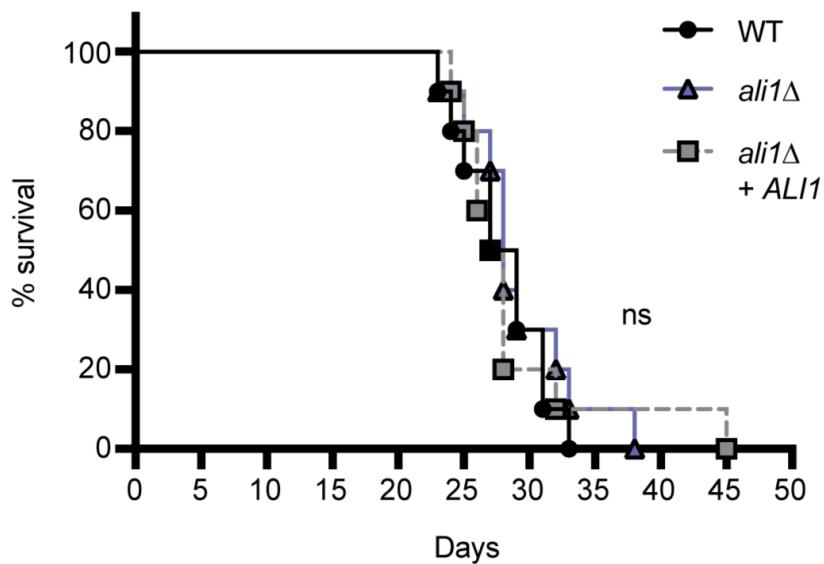
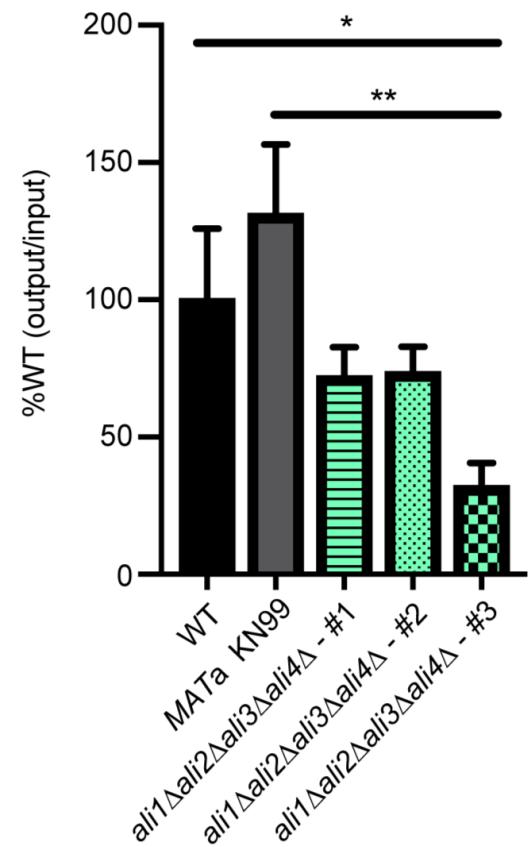




Figure 5


A.

B.

C.

D.

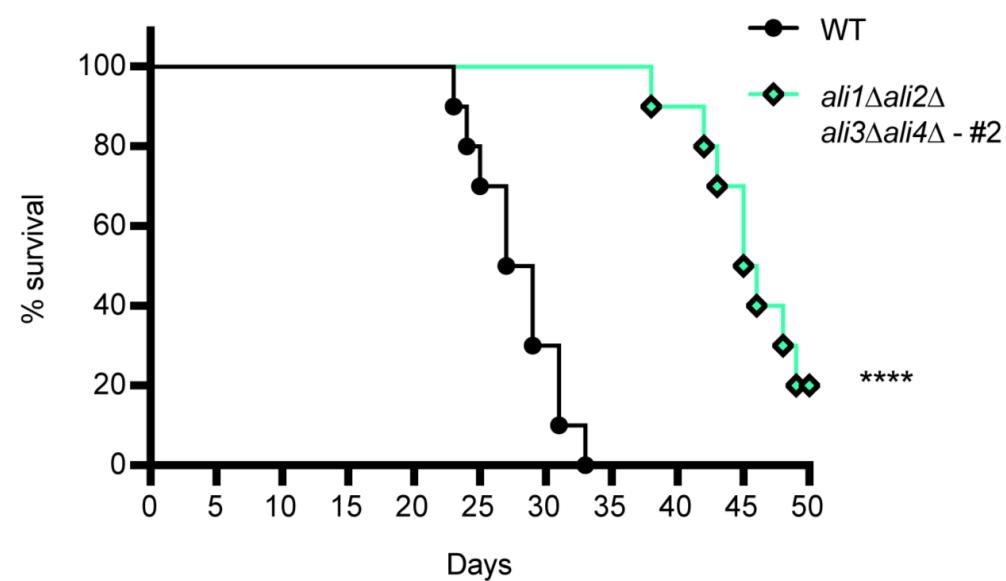


Figure 6

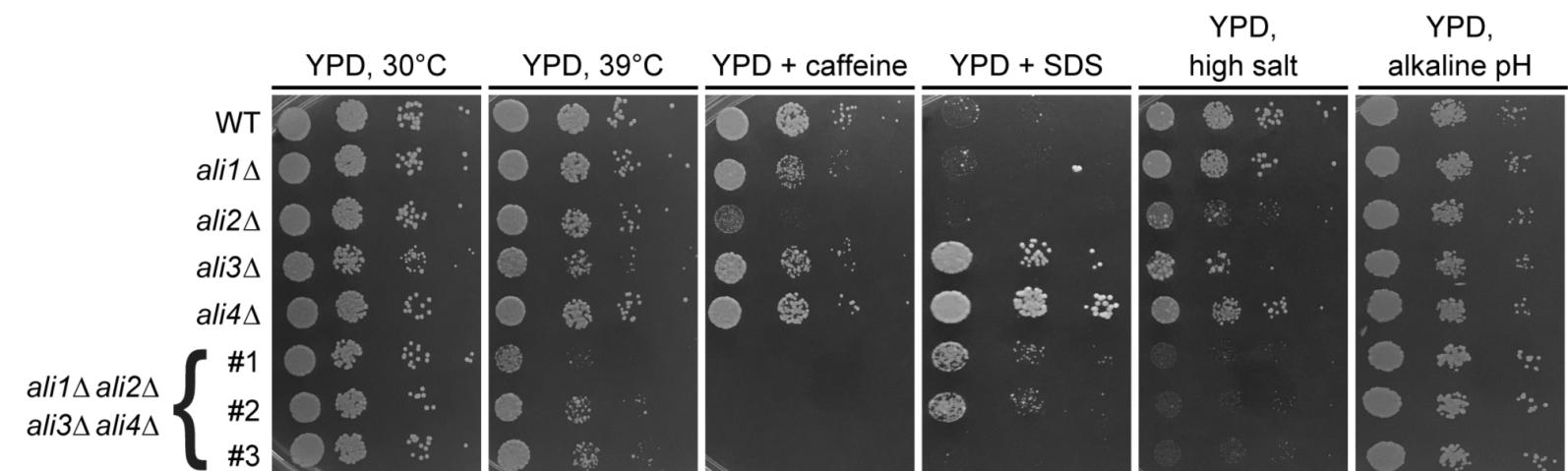
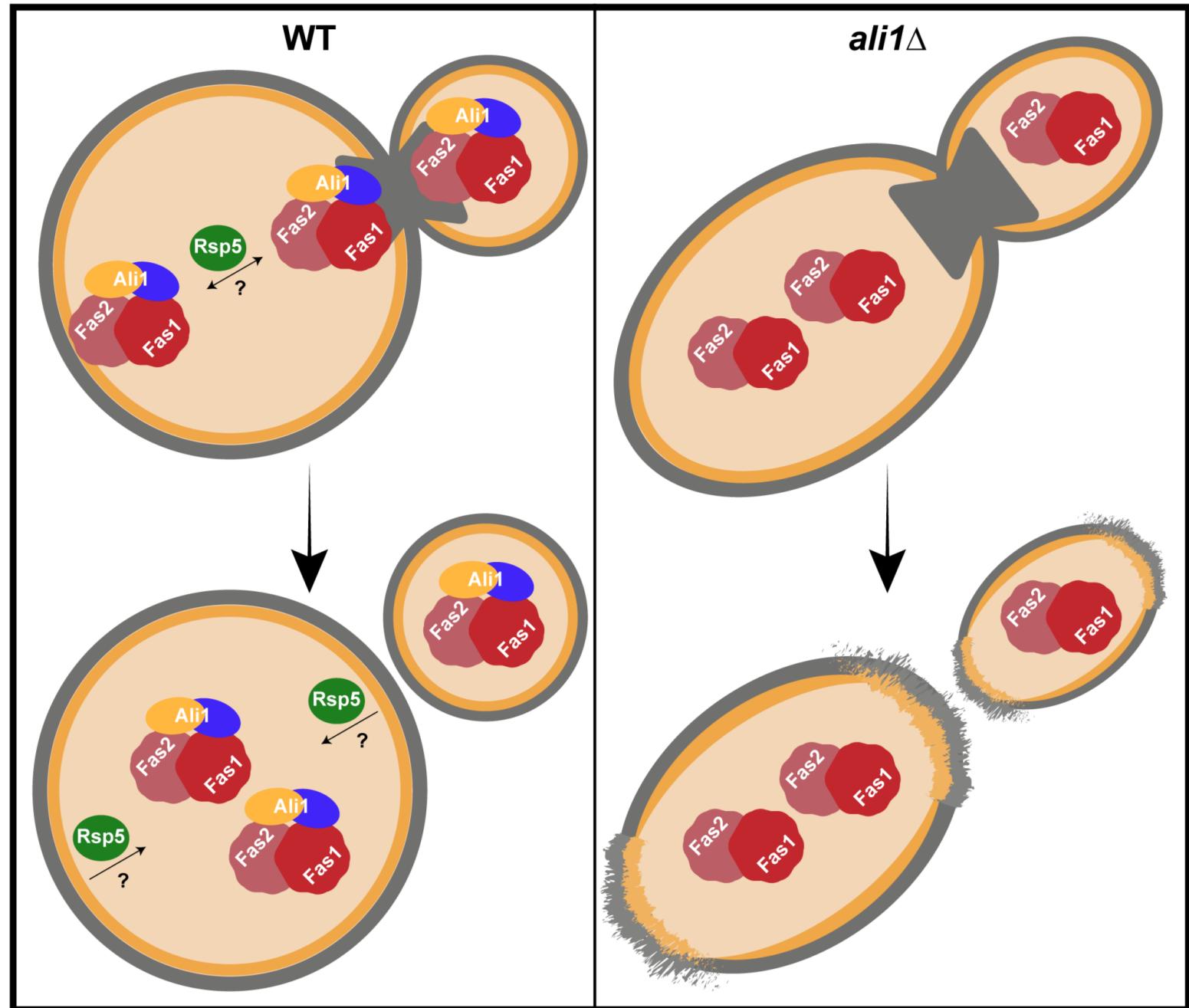
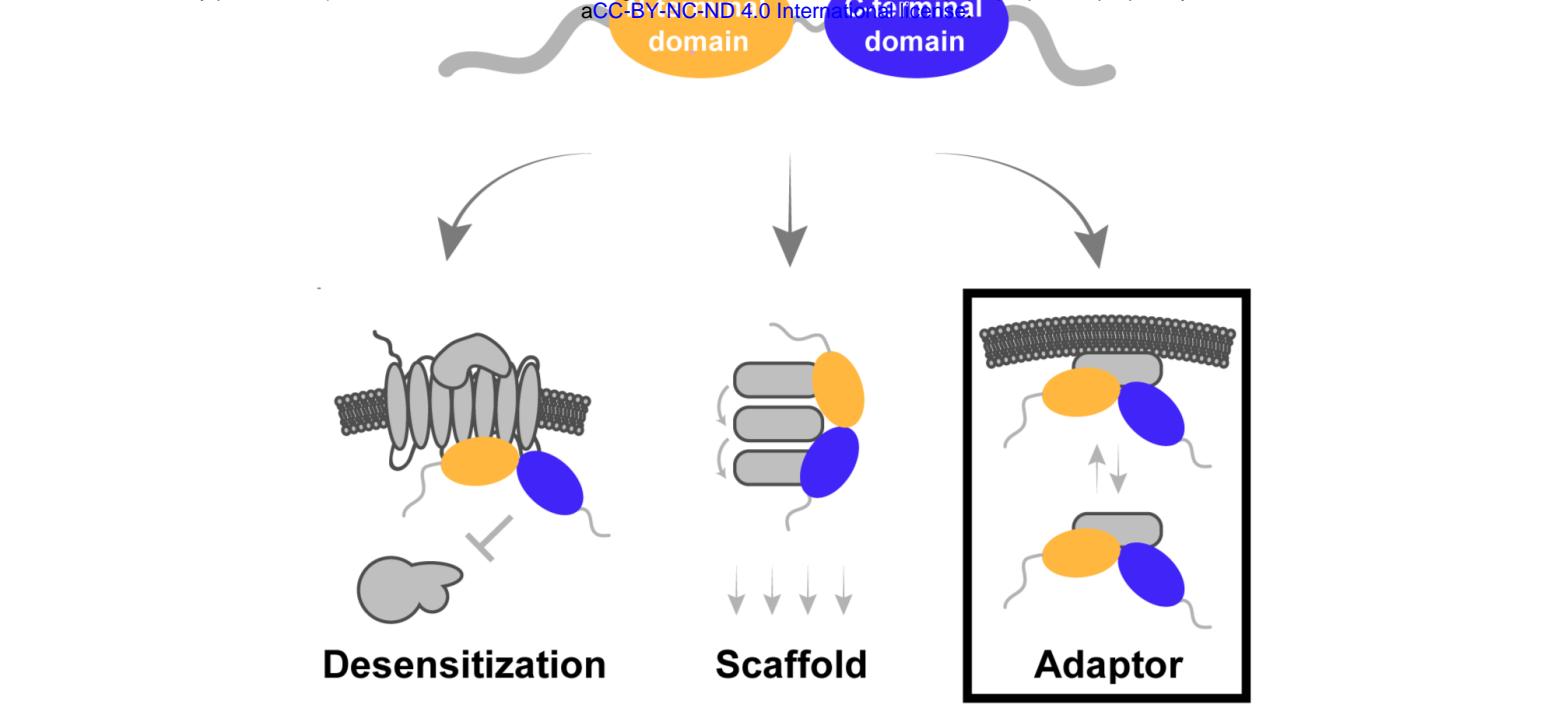




Figure 7

bioRxiv preprint doi: <https://doi.org/10.1101/801829>; this version posted October 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

