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ABSTRACT

Arrestins, a structurally specialized and functionally diverse group of proteins, are
central regulators of adaptive cellular responses in eukaryotes. Previous studies on
fungal arrestins have demonstrated their capacity to modulate diverse cellular
processes through their adaptor functions, facilitating the localization and function of
other proteins. However, the mechanisms by which arrestin-regulated processes are
involved in fungal virulence remain unexplored. We have identified a small family of four
arrestins - Alil, Ali2, Ali3, and Ali4 - in the human fungal pathogen Cryptococcus
neoformans. Using complementary microscopy, proteomic, and reverse genetic
techniques, we have defined a role for Alil as a novel contributor to cytokinesis, a
fundamental cell cycle-associated process. We observed that Alil strongly interacts with
proteins involved in lipid synthesis, and that alilA mutant phenotypes are rescued by
supplementation with lipid precursors that are used to build cellular membranes. From
these data, we hypothesize that Alil contributes to cytokinesis by serving as an adaptor
protein, facilitating the localization of enzymes that modify the plasma membrane during
cell division, specifically the fatty acid synthases, Fasl and Fas2. Finally, we assessed
the contributions of the C. neoformans arrestin family to virulence, to better understand
the mechanisms by which arrestin-regulated adaptive cellular responses influence
fungal infection. We observed that the C. neoformans arrestin family contributes to
virulence, and that the individual arrestin proteins likely fulfill distinct functions that are

important for disease progression.
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IMPORTANCE

To survive in unpredictable conditions, all organisms must adapt to stressors by
regulating adaptive cellular responses. Arrestin proteins are conserved regulators of
adaptive cellular responses in eukaryotes. Studies that have been limited to mammals
and model fungi have demonstrated that disruption of arrestin-regulated pathways is
detrimental for viability. The human fungal pathogen Cryptococcus neoformans causes
more than 180,000 infection-related deaths annually, especially among
immunocompromised patients. In addition to being genetically-tractable, C. neoformans
has a small arrestin family of four members, lending itself to a comprehensive
characterization of its arrestin family. This study serves as a functional analysis of
arrestins in a pathogen, particularly in the context of fungal fithess and virulence. We
investigate the functions of one arrestin protein, Alil, and define its novel contributions
to cytokinesis. We additionally explore the virulence contributions of the C. neoformans

arrestin family and find that they contribute to disease establishment and progression.
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INTRODUCTION

Tight regulation of signal transduction pathways is necessary for appropriate
cellular adaptation to the environment. Arrestins are a group of multifunctional proteins
that modulate the activation and repression of diverse signaling pathways in eukaryotes
(1-4). Structurally, arrestins are defined by protein domains with conserved B-sheet-rich
regions, termed the N-terminal and C-terminal arrestin domains, that provide important
secondary structure guiding protein localization and activity (5, 6). Functionally,
arrestins link plasma membrane-initiated signals to intracellular responses by regulating
signal internalization and intracellular signaling cascades. In doing so, arrestins enable
the eukaryotic cell to fine-tune adaptive cellular responses through three specific
mechanisms: desensitizing G protein-coupled receptors (GPCRSs), scaffolding signaling
cascades, and serving as adaptor proteins (1-4).

Nearly four decades ago, arrestins were first discovered for their unique ability to
“arrest” cellular responses to persistent stimuli, in a classical process termed
desensitization (7). Desensitization has been most commonly reported for and most
extensively explored in visual and p-arrestins, classes of arrestins that are specific to
metazoan cells (7-9). A third class of arrestins, the a-arrestins, are the evolutionary
predecessors of the visual and B-arrestins (3, 5, 10-12). Present in all eukaryotes
except for plants, a-arrestins share the ability to perform desensitization (13, 14).
Beyond desensitization, non-traditional arrestin roles have been recently elucidated in
model fungi. Fungal a-arrestins often act as scaffolds, physically bringing different
components of signaling cascades within functional proximity of each other (10, 15-17).

Additionally, other fungal a-arrestins function as adaptors, facilitating proper localization
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and function of other proteins. They often serve as ubiquitin ligase adaptors by means
of proline-rich ubiquitin ligase binding motifs, or PxY sites, but a-arrestins can also act
as adaptors for cytosolic proteins beyond those involved in ubiquitination (14, 18-21).
Through these mechanisms, arrestins enable eukaryotic cells to terminate, promote,
and modulate diverse adaptive cellular response signaling pathways both at the plasma
membrane and throughout the cytosol.

The regulation of adaptive cellular responses is particularly important for
pathogenic fungi because, in order to cause disease, they must quickly adjust to the
hostile environment of the human host. Our laboratory and others have defined many
fungal adaptive cellular response pathways, such as the Rasl pathway and the Rim
alkaline pH-sensing pathway, that are required for fungal virulence (22-27). However,
the mechanisms by which adaptive cellular responses are regulated in pathogenic fungi
are incompletely understood. The human fungal pathogen Cryptococcus neoformans is
able to transition from its natural reservoir in the soil to establish infection in the host,
resulting in more than 180,000 infection-related deaths annually, especially among
immunocompromised patients (28). In contrast to other fungal model systems that
encode numerous a-arrestin proteins in their genomes, we identified four a-arrestin
proteins in C. neoformans: Alil, Ali2, Ali3, and Ali4. This limited set of arrestin proteins
allows for investigations of individual arrestin protein function, as well as assessment of
arrestins as a collective family. Using Alil as a model, we report that Alil is a novel
regulator of cytokinesis, and that this regulatory role is particularly important in the
presence of stress. Additionally, we determine that Alil regulates cytokinesis through a

typical arrestin role, likely functioning as an adaptor protein. Lastly, we demonstrate
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that, although Alil is not individually required for fatal infection, the a-arrestin family as a
whole contributes to fungal virulence. By using the C. neoformans a-arrestins to explore
the mechanisms by which fungal pathogens regulate their adaptive cellular responses,
we can gain a deeper understanding of the establishment and progression of fungal

infections.
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RESULTS
C. neoformans contains a small family of four arrestin proteins.

Previous work recently reported two putative a-arrestin proteins in the C.
neoformans proteome, Alil (CNAG_02857) and Ali2 (CNAG_02341) (Arrestin-Like 1
and 2) (Fig. 1) (25). These proteins were identified as a-arrestins based on the
presence of the N-terminal and C-terminal arrestin domains. We performed a search of
the C. neoformans proteome to identify all a-arrestin domain-containing proteins (29). In
doing so, we identified two additional a-arrestin proteins, Ali3 (CNAG_ 04137) and Ali4
(CNAG_ 05343), each of which contains a single C-terminal arrestin domain (Fig. 1). In
addition to the arrestin domains, each of the identified C. neoformans a-arrestin proteins
also contains multiple ubiquitin ligase binding sites, or PxY sites, which are common
features of a-arrestins (Fig. 1) (3, 12, 14). For the sake of simplicity, the C. neoformans
a-arrestins will simply be referred to as “arrestins” throughout the remainder of this
manuscript.

To prioritize our studies, we compared the protein sequence of each of the C.
neoformans arrestin proteins with those in Saccharomyces cerevisiae and humans, two
organisms with well-characterized arrestin families. Because there is often limited
protein sequence conservation between arrestins in different species, we used two
different programs within the Basic Local Alignment Search Tool (BLAST) algorithm.
Protein-protein BLAST (blastp) was utilized to detect arrestin proteins in the S.
cerevisiae and human proteomes with moderate to high degrees of homology with the
C. neoformans arrestin proteins (30). We also used Position-Specific Iterated BLAST

(PSI-BLAST) to detect arrestin proteins in the S. cerevisiae and human proteomes with
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low, but potentially relevant, degrees of homology with the C. neoformans arrestin
proteins (31, 32). Alil was the only C. neoformans arrestin protein that shared
significant sequence homology with multiple S. cerevisiae arrestins and a human
arrestin (Tables S1 & S2). In all of these instances, the identified sequence homology
was located within the arrestin domains of both proteins. We therefore elected to focus
our initial studies on Alil.

Alil exhibits cell cycle-regulated localization that is dependent on the Ras
signaling pathway.

We first investigated the subcellular localization of Alil, positing that its
localization would be indicative of function. We C-terminally tagged Alil with green
fluorescent protein (GFP) and validated proper expression, stability, and function of the
Ali1-GFP fusion protein using quantitative real time PCR, western blotting, and mutant
phenotype complementation, respectively (data not shown). Following validation, we
incubated the wild-type (WT) strain and the Alil-GFP strain to mid-logarithmic growth
phase in yeast-peptone-dextrose (YPD) medium at 30°C, a nutrient-rich growth
condition, and tissue culture (TC) medium at 37°C, a stressful condition that more
closely mimics the host environment. Using epifluorescence microscopy, we observed
identical patterns of localization in both conditions: Ali1l-GFP localizes diffusely
throughout the cytoplasm and is excluded from the vacuole in non-budding cells (Fig.
2A). However, in budding cells, Alil-GFP is enriched at the developing septum, and it
also localizes within discrete puncta at the poles (Fig. 2A). To confirm this localization,
we performed subcellular fractionations to measure the relative abundances of Alil-

GFP within the soluble (cytoplasmic) and insoluble (membrane-associated) cellular
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fractions. We observed that Alil-GFP is enriched in the insoluble fraction, indicating that
Ali1-GFP is associated with insoluble cellular components such as the plasma
membrane, intracellular membranes, and cell wall components (Fig. 2B). Together
these observations suggest that Alil may be a novel contributor to cell polarity and/or
cell division.

Previous work in our group identified C. neoformans Rasl as a GTPase that is
required for cytokinesis and polarized growth, particularly in the presence of cell stress
(22, 23, 33). Therefore, we hypothesized that Ras1 might also be required for the cell
cycle-associated localization of Alil-GFP. To test this, we constructed a strain that, in
addition to expressing ALI1-GFP, also expressed mCherry-RAS1 under a galactose-
regulatable promoter (23). When incubated in galactose as the sole carbon source
(YPGal), cells express RAS1 at levels similar to WT cells, which is confirmed by
mCherry-Rasl localization to the plasma membrane. In contrast, RAS1 expression is
repressed when this strain is incubated in glucose as the sole carbon source (YPD).
When incubated in YPGal (WT) conditions, Alil-GFP localizes to the septum and poles
of dividing cells as previously observed (Fig. 2C). However, in YPD (ras1A) conditions,
Ali1-GFP localization to the septum and poles of budding cells is impaired (Fig. 2C). We
guantified the frequency of Alil-GFP localization to the septum and poles specifically
among budding cells and observed that the polarized pattern of Alil-GFP localization is
significantly decreased in YPD (ras1A) conditions compared to YPGal (WT) conditions
(Fig. 2D). These data indicate that Ali1l-GFP localization to sites associated with cell
polarity is dependent on Ras1.

Alilis aregulator of cytokinesis.
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From the distinct, cell cycle-regulated localization pattern of Alil-GFP, we
hypothesized that Alil is involved in the process of cell division. To test this hypothesis,
we constructed a loss-of-function alilA mutant and analyzed this strain for cytokinesis
defects. C. neoformans cells with loss-of-function mutations in septin genes, known
contributors to cytokinesis, exhibit cytokinesis defects when grown at elevated
temperatures (34). We incubated the WT strain, the alilA mutant, and the
complemented (alilA + ALI1) strain at the permissive temperature of 30°C, or the more
stressful temperature of 39°C, and assessed the cells for cytokinesis defects by DIC
microscopy. We observed that the alilA mutant exhibits similar morphology to the WT
strain at 30°C (Fig. 3A). However, at 39°C, we observed that the alilA mutant displays
an increased incidence of cytokinesis defects, specifically elongated cells, wide bud
necks, and cells that fail to complete cytokinesis (Fig. 3A) (23, 34). We quantified this
observation and found that the alilA mutant exhibits a higher frequency of cytokinesis
defects at 39°C than the WT strain, and that this alilA mutant phenotype is rescued by
complementation with the WT ALI1 allele (Fig. 3B & S1). This observation implicates
Alil in the regulation of cytokinesis.

Because the temperature-dependent cytokinesis phenotype of the alilA mutant
mimics that of septin mutants, we next hypothesized that Alil is required for septin
protein complex formation. To do so, we analyzed septin protein localization in the WT
strain compared to the alilA mutant. Using epifluorescence microscopy, we observed
that the septin protein, Cdc10-mCherry, localizes to the septum of budding cells in both
the WT and alilA mutant backgrounds, indicating that Alil is not required for assembly

of septin proteins at the site of septum formation (Fig. 3C). Although Alil is not required

10
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for this particular septin protein localization, we next hypothesized that Alil may be
involved in cytokinesis by modulating the function of other interacting proteins at the
septum and poles.

Alil-GFP interacts with proteins involved in lipid metabolism.

To better understand the mechanism by which Alil regulates cytokinesis, we
performed a proteomic screen to identify potential protein interactors of Alil. To do so,
we incubated the Alil-GFP strain, and the WT strain as a negative control, to mid-
logarithmic growth phase in YPD medium. We subsequently conditioned the cultures in
YPD or TC media at 30°C, in order to capture protein-protein interactions at the most
permissive temperature, for three hours. Following cell lysis, GFP immunoprecipitations
were performed to enrich for Alil-GFP. The immunoprecipitations were then analyzed
by LC/ESI/MS/MS to identify proteins that potentially interact with Alil-GFP in these two
conditions. A total of 1,122 proteins were identified as potential Alil-GFP interactors
using this approach (Table S3). We applied unbiased methods to enrich for proteins in
both YPD and TC conditions that were highly represented in the Alil-GFP
immunoprecipitations and lowly represented, if at all, in the respective WT
immunoprecipitation. This prioritization scheme resulted in 59 and 62 potentially
biologically-relevant protein interactors of Alil-GFP in YPD and TC conditions,
respectively (Tables S4 & S5). Table 1 displays the top 30 hits from this experiment in
YPD medium, organized by decreasing average exclusive unique peptide count (APC)
and increasing APC indentified in the WT immunoprecipitation. Table 2 displays the top
30 hits from this experiment in TC medium, organized by decreasing APC and

increasing APC indentified in the WT immunoprecipitation.

11
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We observed that the Alil-GFP protein interactome, both in YPD and TC
conditions, was enriched in proteins involved in two biological processes: protein
localization/stability and lipid metabolism. Enrichment of proteins involved in protein
localization/stability, such as ubiquitination proteins, has been reported for arrestins in
other organisms, particularly arrestins that perform adaptor functions (1, 11, 12, 35).
Ubiquitination proteins were found in both conditions, but were more highly represented
in TC conditions along with various proteasome subunits (Tables 1 & 2; Tables S4 &
S5). Supporting our Alil-GFP localization observations, the septin proteins Cdc10,
Cdcll, and Cdc12 were also identified at low abundances, indicating potential transient
interactions with Alil-GFP (Table S3). Interestingly, in addition to protein
localization/stability, the interactome of Alil-GFP was highly enriched in proteins
involved in lipid metabolism. Multiple proteins involved in lipid synthesis and
degradation were identified in both YPD and TC conditions. Specifically, the fatty acid
synthase 3 subunit, Fasl, was the overall strongest potential interactor in both
conditions (Tables 1 & 2). The enzymatic partner of Fasl, the fatty acid synthase o
subunit, Fas2, was also identified at very high abundances in both YPD and TC
conditions (Tables 1 & 2). The observation that Fasl and Fas2 were the most abundant
interactors in multiple, independent experiments conducted in both YPD and TC
conditions, as well as the fact that previous proteomic experiments we have conducted
with other proteins of interest did not find enrichment of the fatty acid synthases,
suggest that Fasl and Fas2 are true, specific interactors of Alil (26). These data

indicate that Alil may be involved in the regulation of localized lipid production at the

12
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245 developing septum and poles of budding cells, assisting in efficient cytokinesis,

246  especially in stressful growth conditions.

247 The alilA mutant has impaired cell surface integrity that is rescued by lipid

248  precursor supplementation.

249 Using the data collected from the Alil-GFP proteomic screen, we further

250 explored the mechanism by which Alil regulates cytokinesis. As previously discussed,
251 we identified many potential interactors of Alil-GFP involved in lipid metabolism, a

252  process that is essential for proper synthesis and organization of the cell surface,

253  specifically the cell membrane. Therefore, we assessed the cell surface integrity of the
254  alilA mutant. We incubated the WT strain, the alilA mutant, and the alilA + ALI1 strain
255 at 30°C in the presence of various cell surface stressors: calcofluor white, Congo red,
256 SDS, and caffeine (36—39). The alilA mutant exhibits modest susceptibility to caffeine,
257 acell surface stressor that serves as a marker of cell surface integrity, when incubated
258 at 30°C (Fig. 4A) (40, 41). This phenotype is drastically enhanced when the alilA

259  mutant is incubated at the more stressful temperature of 37°C (Fig. 4B). At both

260 temperatures, this sensitivity is rescued by complementation with the WT ALI1 allele,
261 indicating likely alterations to the alilA mutant cell surface.

262 As well as its role as a cell surface stressor, caffeine is an inhibitor of the target
263  of rapamycin complex 1 (TORC1) (36, 40). To determine if Alil functions in a pathway
264  related to TORC1 function, we assessed the sensitivity of the alilA mutant strain to
265 rapamycin. We observed a two-fold decrease in the rapamycin MIC for the alilA mutant
266 compared to the WT strain at both 30°C (alilA MICso = 1.56 ng/mL; WT MICso = 3.12

267 ng/mL) and 37°C (alilA MICso= 0.78 ng/mL; WT MICso= 1.56 ng/mL). Inhibition of

13
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268 TORCL1 induces autophagy in yeast (42). If caffeine-mediated inhibition of TORCL1 is
269  more effective in the alilA mutant than in the WT strain, causing the alilA mutant to
270 display caffeine sensitivity, the alilA mutant should be more susceptible to inducers of
271 autophagy than the WT strain. Given the minimal change in rapamycin sensitivity of the
272  alilA mutant, we assessed the ability of the alilA mutant strain to survive in nitrogen
273  deprivation, a known inducer of autophagy (43). We incubated the WT strain, the alilA
274  mutant strain, and the alilA + ALI1 strain on synthetic low-ammonium dextrose (SLAD)
275 medium at 30°C and 37°C. We observed that all strains displayed similar growth

276  kinetics (data not shown). These data suggest that the caffeine sensitivity of the alilA
277  mutant is not due to dysregulation of autophagy, and that Alil likely does not directly
278  function in a TORC1-related pathway.

279 In addition to the observation that the two strongest potential interactors of Alil-
280 GFP were Fasl and Fas2, we also found that the fatty acid synthase inhibitor,

281  cerulenin, is slightly more active against the alilA mutant (MICso = 0.15 pg/mL) than the
282  WT strain (MICso = 0.3 ug/mL). From these data, we hypothesized that the caffeine

283  susceptibility of the alilA mutant may be caused by impaired lipid synthesis. We

284  supplemented the caffeine medium with various compounds involved in lipid synthesis
285 and utilization, media additions that are frequently used to support the in vitro growth of
286 lipid auxotrophic fungi such as Malassezia species (44). The addition of ox bile (10

287  mg/mL), which aids in the degradation and absorption of lipids, and Tween 60 (1%),
288  which serves as an emulsifier, rescued the caffeine sensitivity of the alilA mutant at
289  30°C, but not at 37°C (Fig. 4). The addition of glycerol (0.4%), a precursor for

290 phospholipids and triglycerides, completely rescued the caffeine sensitivity of the alilA

14
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291 mutant at both 30°C and 37°C (Fig. 4). In order to eliminate the possibility that glycerol
292  was solely providing osmotic support that allowed for the alilA mutant to overcome its
293 caffeine sensitivity, we also supplemented the caffeine medium with sorbitol (1 M) and
294  observed that it did not rescue the caffeine sensitivity of the alilA mutant at either

295 temperature (data not shown) (45, 46). Collectively, these observations indicate that
296 lipid precursor supplementation is sufficient to suppress the caffeine sensitivity of the
297  alilA mutant, suggesting that the loss of cell surface integrity of the alilA mutant is

298 caused in part by impaired localized lipid synthesis and/or deposition, potentially at the
299  site of cell separation.

300 The C. neoformans arrestin family supports virulence in vitro and in vivo.

301 Because we observed that the alilA mutant exhibits phenotypes that are relevant
302 to pathogenesis, specifically cytokinesis defects at elevated temperature and sensitivity
303 to the cell surface stressor caffeine, we hypothesized that Alil may support fungal

304  virulence. As a preliminary assessment, we evaluated the ability of the alilA mutant to
305 survive and proliferate in an in vitro macrophage co-culture system (26, 47, 48). We co-
306 cultured the WT strain, the alilA mutant, and the alilA + ALI1 strain for 24 hours with
307 J774A.1 murine macrophages. We observed that the alilA mutant displays a moderate,
308 reproducible reduction in its ability to survive in the presence of macrophages compared
309 tothe WT strain, a phenotype that is rescued by complementation with the WT ALI1
310 allele (Fig. 5A). We then performed in vivo studies in a murine inhalation model of

311 cryptococcal infection (38, 48, 49). Following intranasal inoculation of C57BL/6 mice (n
312 = 10) with 10* colony forming units (CFU) of each strain, we observed no differences

313 between the WT strain and the alilA mutant in their abilities to cause lethal infection
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314  (Fig. 5B). From these results, we concluded that Alil has modest contributions to in vitro
315 survival in the presence of macrophages, but does not promote in vivo virulence in a
316  murine inhalation infection model.

317 Because the alilA mutant individually does not exhibit significant virulence

318 defects, we next determined whether the C. neoformans arrestin family, collectively,
319 contributes to virulence. To do so, we utilized the alilAali2Aali3Aali4A mutants, referred
320 to as the “arrestin null” mutants, in which all four known C. neoformans arrestins are
321 ablated. Similar to our studies with the alilA mutant, we evaluated the ability of three
322 independent arrestin null mutants to survive and proliferate in an in vitro macrophage
323  co-culture system (26, 47, 48). To do so, we co-cultured the WT strain, the MATa KN99
324  strain (which was used in genetic crosses to generate the arrestin null mutants), and
325 three arrestin null mutants for 24 hours with J774A.1 murine macrophages. We

326  observed that all three arrestin null mutants exhibit a marked reduction in their abilities
327  to survive in the presence of macrophages, compared to the WT strain and the MATa
328 KN99 strain (Fig. 5C). A representative arrestin null mutant, alilAali2Aali3Aali4A - #2
329 (CLT57), was then assessed for virulence in the murine inhalation model (38, 48, 49).
330  Following intranasal inoculation of C57BL/6 mice (n = 10) with 10 CFU of the WT strain
331 or the arrestin null mutant, we observed that the arrestin null mutant displays a

332 significant attenuation in virulence compared to the WT strain (Fig. 5D). Mice infected
333  with the WT strain exhibited a median survival time of 28 days, while those infected with
334  the arrestin null mutant exhibited a median survival time of 45.5 days (Fig. 5D). These
335 data collectively indicate that the C. neoformans arrestin family contributes to both in

336 vitro and in vivo virulence.
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The C. neoformans arrestins likely serve distinct cellular functions.

In order to identify possible mechanisms by which the C. neoformans arrestin
family contributes to virulence, we created individual alilA, ali2A, ali3A, and ali4A loss-
of-function mutants. Following strain confirmation, we assessed the growth kinetics of
the arrestin mutants in the presence of various cellular stressors. Specifically, we
incubated the WT strain, the individual arrestin mutants, and the arrestin null mutants in
the presence of physiologically-relevant stressors, such as elevated temperature
(39°C), high salt (1.5 M NacCl), and alkaline pH (pH 8), as well as cell surface stressors,
such as caffeine (1 mg/mL) and SDS (0.03%) (25, 39, 40, 50). We observed that the
individual arrestin mutants display distinct, but overlapping, phenotypes in the presence
of these stressors (Fig. 6). All of these individual arrestin mutant phenotypes are
rescued by complementation with the respective WT arrestin allele (Fig. S2).

Because we observed that the ali2A mutant has an enhanced caffeine sensitivity
phenotype compared to the alilA mutant, we hypothesized that the ali2A mutant would
display more severe virulence defects than the alilA mutant. To test this hypothesis, we
co-cultured the WT strain, the ali2A mutant, the ali2A + ALI2-GFP strain, and an
alilAali2A mutant for 24 hours with J774A.1 murine macrophages. The ali2A mutant had
a significant reduction in its ability to survive in the presence of macrophages compared
to the WT strain, a phenotype that is rescued by complementation with the WT ALI2
allele (Fig. S3). The ali2A mutant survival rate (67%) is lower than what was observed
for the alilA mutant (79%) (Fig. 5A). Additionally, the alilAali2A mutant exhibits a more

severe survival impairment (43%) than either the alilA mutant or ali2ZA mutant alone,
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indicating that Alil and Ali2 have additive effects that contribute to survival in the
presence of macrophages.

The arrestin null mutants share many phenotypes with the individual arrestin
mutants, such as sensitivity to high temperature, caffeine, and high salt, as well as
resistance to SDS (Fig. 6). Uniquely, the arrestin null mutants display a slight increase
in growth rate in the presence of alkaline pH (Fig. 6). The most pronounced phenotypes
of the arrestin null mutants, growth defects in the presence of high temperature and
caffeine, were not rescued by glycerol (0.4%) supplementation but were partially
rescued by osmotic support with sorbitol (1M) supplementation (Fig. S4). These data
suggest that the C. neoformans arrestin proteins likely perform distinct, nonredundant
cellular functions that contribute to survival in physiologically-relevant conditions and

cell surface stability.
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DISCUSSION
Arrestins have been well-characterized in model fungi systems.

The model ascomycete fungi, such as S. cerevisiae, Aspergillus nidulans, and
Schizosaccharomyces pombe, all contain relatively large a-arrestin families of nine to
eleven members (29). Based on the presence of the conserved arrestin domains, a-
arrestins are predicted to exist in the other three major fungal groups: the
basidiomycetes, the zygomycetes, and the chytrids (29). We used C. neoformans as a
genetically-tractable basidiomycete, with a relatively small arrestin family of four
members, to more broadly characterize fungal a-arrestin functions, both individually and
collectively. Additionally, because C. neoformans is a major human pathogen, we
interrogated the functional contributions of fungal a-arrestins to virulence. The fact that
the a-arrestins, despite lacking catalytic activity themselves, have remained present
within all major fungal groups indicates that they are likely functionally important
proteins within the fungal kingdom.

Alil is important for cytokinesis in the presence of cellular stress.

Septins are conserved GTP-binding proteins that create the septum in
eukaryotes, often serving as scaffolds for other proteins that direct cell cycle
progression (51-53). In S. cerevisiae, the septin proteins assemble into filaments at the
mother bud neck, creating the hourglass-shaped septum, and are required for normal
cytokinesis (53). The C. neoformans septins have been shown to function similarly. C.
neoformans septin mutants display cytokinesis defects when incubated at elevated
temperatures and also display modest sensitivity to cell surface stressors, such as

caffeine and SDS (34).
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We observed that Alil has cell cycle-associated localization, with enrichment at
the septum and poles of budding cells. Our protein interactome analysis supported this
observation, with multiple septin proteins, Cdc10, Cdcl1, and Cdc12, identified at low
levels in the Alil-GFP immunoprecipitations. Protein-protein interactions with septin
proteins are typically transient, potentially explaining the low APC for the septin proteins
using this experimental approach (54). Additionally, we found that the alilA mutant
displays an increased incidence of cytokinesis defects at elevated temperature and
sensitivity to the cell surface stressor caffeine, thus phenocopying the C. neoformans
septin mutants (34). These data suggest that Alil is a regulator of cytokinesis that is
particularly important in the presence of stress. Whole transcriptome analyses of
synchronized C. neoformans cells have shown that Alil expression is cyclic, or
regulated with the cell cycle, with its peak expression occuring about 15 minutes prior to
bud emergence (55). As a potential regulator of cytokinesis, this expression pattern
would enable the ALI1 transcript to be transcribed, and the Alil protein to be translated
and localize to the septum and poles as cell division is occuring.

In addition to and in collaboration with septins, Ras GTPases are conserved
regulators of cell division in eukaryotes. Our laboratory has shown that the C.
neoformans Rasl protein directs polarized growth and actin polarization, particular in
the presence of stress (22, 23, 33). When Rasl is inhibited, septins are unable to
organize at the septum to perform their scaffolding functions and cells display
morphological and cytokinesis defects (23). We demonstrated that in the absence of
Rasl, Alil localization to the septum and poles is impaired. This observation indicates

that the cell cycle-regulated localization of Alil is dependent on Rasl.
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Alil likely fulfills an adaptor role aiding cytokinesis.

Cytokinesis is a highly organized and regulated process in fungi. In S. cerevisiae,
cell wall enzymes, such as the B(1-3)-glucan synthases and the chitin synthases,
localize to the septum and poles to help build the septum and cell wall during cell
division. (56-58). It is believed that C. neoformans also directs cytokinesis similarly. For
example, C. neoformans cells lacking Chs3, a chitin synthase, or Ags1, the a(1-3)-
glucan synthase, display cytokinesis defects during budding (59, 60). Similar to the cell
wall, the cell membrane must be remodeled to aid in bud growth and cytokinesis in
fungi. To our knowledge, little work has focused on the degradation and rebuilding of
the fungal cell membrane during cytokinesis. However, in the bacterium Mycobacterium
tuberculosis, fatty acid synthase proteins localize to the poles and septum to synthesize
the mycomembrane during cell division (61).

Fungal fatty acid synthases, which belong to the microbial type | fatty acid
synthase family, are cytosolic multi-enzymes that heterodimerize to form hexamers
(06B6) (62—64). Once in this complex, they employ their individual component enzymes
to synthesize de novo a diversity of lipid products that are used for cellular metabolism,
signaling, and biological membranes. In C. neoformans, Fasl and Fas2 are required for
viability in standard laboratory conditions and are targets of the fatty acid synthase
inhibitor cerulenin (65). Through our protein interactome analysis, we found that the two
strongest potential interactors of Alil are Fasl and Fas2. We tested the sensitivity of the
alilA mutant to cerulenin and observed that the alilA mutant strain is slightly more
sensitive to cerulenin than the WT strain. In conjunction with these data, we observed

that the alilA mutant displays sensitivity to the cell surface stressor caffeine, which is
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enhanced in the presence of temperature stress. In addition to its roles as a cell surface
stressor, caffeine is believed to inhibit TORC1 (36, 40). The caffeine sensitivity of the
alilA mutant may be explained by the fact that TORCL1 is an upstream activator of lipid
synthesis genes in eukaryotes, including fatty acid synthases (66—68). Supplementation
with exogenous lipid precursors, but not the osmotic stabilizer sorbitol, may reverse the
caffeine sensitivity of the alilA mutant by compensating for an insufficiency in
substrates used to synthesize cellular membranes. These data collectively suggest that
Alil is required for complete Fasl1 and Fas2 function.

The S. pombe a-arrestin, Artl, regulates cytokinesis through its adaptor function
(69). Artl is required for the localization of Rgf3, the guanine nucleotide exchange factor
for the regulatory subunit of the B-glucan synthase, Rhol, to the septum, likely so that it
can help build the septum. Our data suggest that Alil functions similarly to Artl. We
hypothesize that Alil acts as an adaptor for Fasl and Fas2, aiding in their localization to
the septum and poles, so that they can rebuild the cell membrane during cytokinesis
(Fig. 7). In the absence of Alil, cells are left with small, localized defects in the cell
surface because they are unable to repair the membrane, or are delayed in membrane
repair, compared to WT cells, particularly in the presence of stress. This results in the
cytokinesis and cell surface defects observed in the alilA mutant. Previous work in both
mammals and fungi have demonstrated the importance of fatty acid synthesis for
progression through the cell cycle (70-72). Additionally, the mechanism by which Alil is
able to perform its adaptor function for Fasl and Fas2 may be ubiquitin-mediated,
through interactions with the E3 ubiquitin ligase Rsp5 (Fig. 7). Alil contains four

potential ubiquitin ligase binding sites, or PxXY sites. We also observed that Alil interacts
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with multiple ubiquitination proteins, including E1, E2, and E3 proteins, particularly in TC
conditions (73). Ubiquitination is most often considered in the context of proteasomal
degradation, but it can also direct diverse subcellular localizations (74-76).

Future investigations can explore the interactions between Alil and the fatty acid
synthases, Fasl and Fas2. Additionally, the localizations of Fasl1 and Fas2 in the WT
and the alilA mutant backgrounds can also be assessed. However, it is possible that it
may be difficult to draw conclusions from these experiments. Fasl and Fas2 are
abundant, diffusely cytosolic proteins in S. cerevisiae (77). If this is also the case for C.
neoformans, it may be challenging to observe any transient interactions or enrichments
of these proteins at the septum and poles.

The C. neoformans arrestin family contributes to virulence.

Upon infection, pathogens must regulate their adaptive cellular responses to
acclimate to the stressors of the host environment. Work largely conducted in
ascomycete fungi has demonstrated that disruption of a-arrestin-regulated adaptive
cellular responses is detrimental for fungal survival and pathogenesis. For example, the
a-arrestin Rim8 scaffolds the Rim alkaline pH response pathway in Candida albicans;
the rim8A mutant displays attenuation in a murine model of systemic candidiasis,
indicating that Rim8 is required for adaptation to the host environment (78). Given many
investigations demonstrating that human arrestin proteins regulate cellular processes
that are involved in human disease, we propose that fungal arrestins similarly regulate
fungal adaptive cellular responses important for disease establishment and progression

(79-82).
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This study directly investigates the virulence contributions of fungal a-arrestins.
Implementing a murine inhalation model of cryptococcal infection, we observed that the
individual alilA mutant does not display virulence attenuation, but that the arrestin null
mutant exhibits a significant delay in its ability to cause fatal disease. These data
suggest that the arrestins, collectively, are involved in adaptation to the host
environment in C. neoformans. Since we observed that the ali2A mutant displays more
severe attenuation in its ability to survive in the presence of macrophages than the alilA
mutant, we propose that Ali2 is a compelling subject for future investigations.
Additionally, because the arrestin mutants have distinct phenotypes in the presence of
different cellular stressors, as well as because the C. neoformans arrestin family is very
small, we hypothesize that the C. neoformans arrestins have distinct cellular functions
that contribute to adaptation to the host. Functional redundancy has been observed for
mammalian and fungal arrestins, therefore it is possible that the C. neoformans
arrestins could have some degree of overlapping functions while maintaining protein-
specific activities as well (19, 83).

We have demonstrated that the C. neoformans arrestin family contains four
members that share little primary amino acid sequence conservation with human
arrestins. These fungal-specific proteins likely mediate various cellular functions
including efficient progression through the cell cycle, especially under stressful growth
conditions. Fungal arrestins therefore offer unique insight into mechanisms of stress

response and cellular adaptation in this diverse group of eukaryotes.
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506 MATERIALS AND METHODS

507 Strains, media, and growth conditions

508 All strains used in this study were generated in the C. neoformans var. grubii H99
509 (MATa) or KN99 (MATa) backgrounds and are included in Table 3. Strains were

510 maintained on yeast extract-peptone-dextrose (YPD) medium (1% yeast extract, 2%
511 peptone, 2% dextrose, and 2% agar for solid medium). To regulate RAS1 expression,
512  yeast extract-peptone-galactose (YPGal) medium (1% yeast extract, 2% peptone, and
513 3% galactose) was utilized (23). CO»-independent tissue culture (TC, Gibco) medium
514  was used to mimic an in vivo environment, as described previously (84). To assess
515 mutant strain cell surface phenotypes, NaCl (1.5 M) and Congo red (0.5%) were added
516 to YPD medium before autoclaving, while caffeine (1 mg/mL), calcofluor white (1

517 mg/mL), and SDS (0.03%) were filter sterilized and added to YPD medium after

518 autoclaving (38). Synthetic low-ammonium dextrose (SLAD) medium (0.17% yeast

519 nitrogen base without amino acids and without ammonium sulfate, 50 uM ammonium
520 sulfate, 2% dextrose, and 2% agar) was used as a nitrogen deprivation medium to

521 induce autophagy. Lipid precursor supplementation was achieved by adding ox bile
522  (HiMedia Labs) (10 mg/mL) and Tween 60 (1%) to medium before autoclaving, or by
523 adding sterile glycerol (0.4%) to medium after autoclaving. Sorbitol supplementation
524  was achieved by adding sorbitol (1M) to medium before autoclaving. Alkaline pH plates
525 were made by adding 150 mM HEPES buffer to YPD medium and adjusting the pH to
526  8.15 with NaOH prior to autoclaving (25). Unless otherwise indicated, strains were

527 incubated at 30°C.

528 Molecular biology and strain construction
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All plasmids used in this study are listed in Table 4. All primers utilized in this
study are listed in Table 5. All strains were generated by biolistic transformation, unless
otherwise described (85). Detailed methods for the construction of all strains used in
this study are included in File S1 (86—88).

BLAST analyses

To identify homology between the C. neoformans arrestins and those in S.
cerevisiae and humans, Basic Local Alignment Search Tool (BLAST, NCBI) was used.
The protein sequences of each of the C. neoformans arrestins was searched against
the S. cerevisiae S288C (taxid:559292) and human (taxid:9606) proteomes using the
default parameters for protein-protein BLAST (blastp) and Position-Specific Iterated
BLAST (PSI-BLAST) (30-32). Alignments considered significant, those with E values
less than 1, are included in Tables S1 (S. cerevisiae) and S2 (human).

Fluorescent and light microscopy

All images in this study (differential interference contrast [DIC] and fluorescent)
were captured using a Zeiss Axio Imager Al microscope equipped with an Axio-Cam
MRM digital camera. To assess subcellular localization of Alil-GFP, the WT (H99)
strain and the Alil-GFP (CLT7) strain were incubated for 18 hours with 150 rpm shaking
in YPD medium at 30°C or TC medium at 37°C. Cells were then pelleted, washed with
phosphate-buffered saline (PBS), and imaged.

To measure the frequency of cell cycle-associated localization of Alil-GFP in the
presence and absence of Rasl, the Alil-GFP + mCherry-Ras1 (CBN486) strain was
incubated for 18 hours at 30°C with 150 rpm shaking in YPGal medium. Cells were

pelleted, washed three times with PBS, normalized by spectrophotometry, and then
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resuspended to an ODggo 0f 0.2 in either YPGal medium (to induce RAS1 expression) or
YPD medium (to repress RAS1 expression) for 18 hours at 30°C with 150 rpm shaking
(23). Cells were then pelleted, washed with PBS, and imaged. Results are reported as
the average percentage (+/- standard error of the mean [SEM]) of actively budding cells
that displayed Alil-GFP localization to the septum and/or poles. Statistical significance
was determined using Student’s t-test (GraphPad Software, San Diego, CA). A
minimum of 600 cells were analyzed in both YPGal and YPD conditions across three
biological replicates using ImageJ Software (Fiji) (89, 90).

To analyze the morphology of the alilA mutant cells, the WT (H99), alilA
(KS120), and alilA + ALI1 (CLT®6) strains were incubated for 18 hours at 30°C with 150
rpm shaking in YPD medium. An OD of approximately 0.2 for each strain was
transferred to fresh YPD medium and subsequently incubated at either 30°C or 39°C for
18 hours with 150 rpm shaking. Cells were then pelleted, washed with PBS, and
imaged. Results are reported as the average percentage (+/- SEM) of total cells
displaying morphological defects. Statistical significance was determined using one-way
analysis of variance (ANOVA) and the Tukey-Kramer test (GraphPad Software, San
Diego, CA). A minimum of 600 cells were analyzed across three biological replicates
using ImageJ Software (Fiji) (89, 90).

To assess whether Alil is required for septin protein localization, the Cdc10-
mCherry (LKOO01) strain and the Cdc10-mCherry + alilA (CLT42) strain were incubated
for 18 hours at either 30°C or 37°C with 150 rpm shaking in YPD medium. Cells were
then pelleted, washed with PBS, and imaged.

Protein isolation, membrane fractionation, and western blotting
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For all protein experiments, protein extracts were prepared as previously
described (25, 26). Briefly, the WT (H99) and the Alil-GFP (CLT7) strains were
incubated for 18 hours at 30°C with 150 rpm shaking in YPD medium. Cells were
pelleted, flash frozen on dry ice, and lysed by bead beating. The crude lysate was
cleared by centrifugation at 2,500 x g at 4°C for 5 minutes and the supernatant (total cell
lysate) was transferred to a new tube. Total cell lysate protein concentrations were
measured using bicinchoninic acid assay (BCA).

To determine the relative abundance of Alil in different cellular fractions, WT
(H99) and the Alil-GFP (CLT7) strains were incubated and lysed as above. Total cell
lysates (T) were separated by ultracentrifugation at 30,000 x g for 1 hour at 4°C (27).
The soluble fraction (S) was transferred to a new tube and the insoluble pellet (1) was
resuspended in an equivalent volume of lysis buffer containing 1% Triton X-100. All
samples were normalized by total protein concentration. Western blots were performed
as described previously using an anti-GFP primary antibody (1/5,000 dilution, Roche)
followed by an anti-mouse peroxidase-conjugated secondary antibody (1/25,000
dilution, Jackson Labs). Proteins were detected by enhanced chemiluminescence (ECL
Prime Western blotting detection reagent, GE Healthcare).

Proteomic experiment preparation and analysis

Proteomic analysis was performed with a single replicate for the WT (H99) strain
in both YPD and TC conditions, and in triplicate for the Alil-GFP (CLT7) strain in both
YPD and TC conditions. To prepare total cell lysates for this experiment, the WT (H99)
strain and the Alil-GFP (CLT7) strain were incubated for 18 hours at 30°C with 150 rpm

shaking in YPD medium. Both strains were normalized to an ODgg Of 1, resuspended in
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either YPD or TC media, and then incubated for 3 hours at 30°C with 150 rpm. Cells
were pelleted and lysed as described above to extract total cell lysates.
Immunoprecipitations from total cell lysates were performed by addition of 25 uL GFP-
Trap resin (Chromotek) and inversion at 4°C for 2 hrs. Mass spectrometry analysis was
performed on immunoprecipitations by the Duke Proteomics Core Facility, as described
previously (26). A description of this analysis is included in File S1.

We prioritized hits from this proteomic analysis to enrich for proteins with
stronger potential interactions with Alil-GFP. First, we averaged the exclusive unique
peptide counts (APC) for each potential interactor identified in YPD or TC conditions,
and subsequently selected those that had an APC of 2 or more for further analysis. We
then calculated the percentage of the APC that was identified in the respective WT
immunoprecipitation for each potential protein interactor. Those proteins that had less
than 20% of the APC identified in the respective WT immunoprecipitation were
determined to be unique interactors of Alil-GFP. All proteins identified using this
prioritization scheme in YPD and TC conditions can be found in Tables S4 and S5,
respectively. All 1,122 identified proteins, except for those not belonging to C.
neoformans, are included in Table S3.

Macrophage co-culture experiments

The ability of strains to survive in the presence of macrophages was assessed as
previously described (26). Briefly, 10°> J774.1 macrophages were incubated with 10°
opsonized fungal cells — WT (H99), KN99a, alilA (KS120), alilA + ALI1 (CLT6), ali2A
(KS96-2), ali2A + ALI2-GFP (CLT67), alilAali2A (KS97-2), and the arrestin null (CLT56,

CLT57, and CLT58) mutants. Co-cultures of J774.1 macrophages and phagocytosed
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fungal cells were incubated for 24 hours at 37°C with 5% CO,. Phagocytosed fungal
cells were collected, serially diluted, and plated onto YPD agar to assess the number of
viable C. neoformans cells by quantitative culture. Results are reported as the average
percentage (+/- SEM) of recovered colony-forming units (CFU), normalized to the WT
(H99) strain, generated from at least 4 biological replicates. Statistical significance was
determined using one-way analysis of variance (ANOVA) and the Tukey-Kramer test
(GraphPad Software, San Diego, CA).
Mouse survival experiments

The murine inhalation model of cryptococcosis was used to assess virulence of
the stains in this study (49). C57BL/6 female mice were acquired from Charles Rivers
Laboratories. Mice were anesthetized with 2% isoflurane utilizing a rodent anesthesia
device (Eagle Eye Anesthesia, Jacksonville, FL) and were infected via the intranasal
route with 10* CFU of either the WT (H99) strain, the alilA (KS120) mutant, the alilA +
ALI1 (CLT6) strain, or an arrestin null (CLT57) mutant in 30 pl of sterile PBS. Mice (n =
10) were monitored twice daily and sacrificed if moribund. Survival data were
statistically analyzed using log-rank test (GraphPad Software, San Diego, CA). Animal
experiments were approved by The University of Texas at San Antonio Institutional
Animal Care and Use Committee (IACUC) and mice were handled according to IACUC
guidelines.
Minimum inhibitory concentration (MIC) testing

To measure strain susceptibilities to rapamycin and cerulenin, MIC testing was

performed using species-specific modifications to standard CLSI testing methods for
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643  broth microdilution testing of antifungal susceptibility (91, 92). A detailed description of

644  this method is described in File S1.
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963 TABLE 1. The most abundant 30 proteins identified as potential Alil-GFP interactors in

964  YPD medium?

Average Peptide Count Percent of APC identified

Gene ID Gene Name Gene Product (APC) in WT
CNAG_02099 FAS1 Fatty acid synthase, beta subunit 9.0 0.0
CNAG_02100 | FAS2 Fatty acid synthase, alpha subunit 8.7 115
CNAG_02748 UTP-glucose-1-phosphate uridylyltransferase 8.7 11.5
CNAG_07373 Carbamoyl-phosphate synthase, large subunit 8.0 0.0
CNAG_03944 Chaperone regulator 6.7 15.0
CNAG_03358 Phosphoglycerate kinase 6.0 0.0
CNAG_04441 Polyadenylate-binding protein, cytoplasmic and nuclear 6.0 16.7
CNAG_01464 | FHB1 Flavohemoglobin 5.7 17.6
CNAG_00418 S-adenosylmethionine synthase 5.3 18.8
CNAG_01586 F-type H-transporting ATPase, B subunit 5.0 0.0
CNAG_02545 Inorganic pyrophosphatase 5.0 0.0
CNAG_04659 Pyruvate decarboxylase 4.7 0.0
CNAG_02928 Large subunit ribosomal protein L5e 4.3 0.0
CNAG_05759 Acetyl-CoA carboxylase/biotin carboxylase 4.0 0.0
CNAG_07363 Isocitrate dehydrogenase, NAD-dependent 4.0 0.0
CNAG_02673 NAD dependent epimerase/dehydratase 3.7 0.0
CNAG_02811 Small subunit ribosomal protein S29 3.7 0.0
CNAG_07745 MPD1 Alcohol dehydrogenase, propanol-preferring 3.3 0.0
CNAG_00176 Glutamate carboxypeptidase 3.3 0.0
CNAG_01404 Hsp71-like protein 33 0.0
CNAG_02500 Calnexin 3.0 0.0
CNAG_02991 Cofilin 3.0 0.0
CNAG_02943 Cytoplasmic protein 3.0 0.0
CNAG_03588 LYS2 L-aminoadipate-semialdehyde dehydrogenase 3.0 0.0
CNAG_02736 T-complex protein 1, theta subunit 3.0 0.0
CNAG_03765 | TPS2 Trehalose-phosphatase 3.0 0.0
CNAG_00136 Ubiquitin-activating enzyme E1 3.0 0.0
CNAG_07558 Uncharacterized protein 3.0 0.0
CNAG_06112 Carbamoyl-phosphate synthase arginine-specific, large chain 2.7 0.0
CNAG_00879 Glutamate dehydrogenase 2.7 0.0

965 ? The average peptide count (APC) was calculated by averaging the exclusive unique
966 peptide counts for each potential interactor across three biological replicates. The

967 percent of APC identified in the WT immunoprecipitation was calculated by dividing the
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APC of each potential interactor by the exclusive unique peptide count found in the WT
immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
as less than 20% of the APC identified in the WT immunoprecipitation, were considered
to be unique interactors with Alil-GFP. These potential protein interactors are prioritized
by APC (most to least) and percentage of APC identified in the WT control (lowest to

highest).
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974 TABLE 2. The most abundant 30 proteins identified as potential Alil-GFP interactors in
975 TC medium?
Average Peptide Count Percent of APC identified

Gene ID Gene Name Gene Product (APC) in WT
CNAG_02099 FAS1 Fatty acid synthase, beta subunit 19.3 0.0
CNAG_02100 | FAS2 Fatty acid synthase, alpha subunit 16.7 6.0
CNAG_04327 Uncharacterized protein 10.3 9.7
CNAG_05355 RSP5 E3 ubiquitin-protein ligase 6.0 0.0
CNAG_05978 Glutamate-tRNA ligase 6.0 16.7
CNAG_03588 LYS2 L-aminoadipate-semialdehyde dehydrogenase 6.0 16.7
CNAG_03701 3-phosphoshikimate 1-carboxyvinyltransferase 57 17.6
CNAG_00743 Imidazoleglycerol phosphate synthase, cyclase subunit 5.3 0.0
CNAG_07561 6-phosphogluconate dehydrogenase, decarboxylating | 53 18.8
CNAG_06175 26S proteasome, regulatory subunit N2 4.7 0.0
CNAG_01216 6-phosphogluconolactonase 4.0 0.0
CNAG_00602 Eukaryotic translation initiation factor 3, subunit | 4.0 0.0
CNAG_00136 Ubiquitin-activating enzyme E1 4.0 0.0
CNAG_06666 Alpha-1,4 glucan phosphorylase 3.7 0.0
CNAG_02565 Homoaconitase, mitochondrial 3.7 0.0
CNAG_02035 Triosephosphate isomerase 3.7 0.0
CNAG_05650 | UBP5 Ubiquitin carboxyl-terminal hydrolase 7 3.7 0.0
CNAG_00708 Pre-mRNA-splicing factor Slt11 3.3 0.0
CNAG_01981 Sulfide:quinone oxidoreductase 3.3 0.0
CNAG_03249 THO complex, subunit 4 3.3 0.0
CNAG_00649 Tryptophan synthase, beta subunit 3.3 0.0
CNAG_02858 | ADE12 Adenylosuccinate synthetase 3.0 0.0
CNAG_01189 DNA-directed RNA polymerase |, subunit RPAL 3.0 0.0
CNAG_02545 Inorganic pyrophosphatase 3.0 0.0
CNAG_04976 Zuotin 3.0 0.0
CNAG_04951 3-deoxy-7-phosphoheptulonate synthase 2.7 0.0
CNAG_02500 Calnexin 2.7 0.0
CNAG_06730 GSK3 CMGC/GSK protein kinase 2.7 0.0
CNAG_00700 Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase 2.7 0.0
CNAG_02315 Ubiquinol-cytochrome c reductase, iron-sulfur subunit 2.7 0.0

976 @ The average peptide count (APC) was calculated by averaging the exclusive unique

977  peptide counts for each potential interactor across three biological replicates. The

978 percent of APC identified in the WT immunoprecipitation was calculated by dividing the
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APC of each potential interactor by the exclusive unique peptide count found in the WT
immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
as less than 20% of the APC identified in the WT immunoprecipitation, were considered
to be unique interactors with Alil-GFP. These potential protein interactors are prioritized
by APC (most to least) and percentage of APC identified in the WT control (lowest to

highest).
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985 TABLE 3. Strains used in this study

Strain Genotype Source
H99 MATa (93)
KN99a | MATa (94)
KS120 MATa alilA::NEO (25)

CLT6 MATa alilA::NEO + ALI1-NAT This study
CLT7 MATa alilA::NEO + H-ALI1-GFP-NAT This study
CBN327 | MATa GAL7-mCherry-RAS1-NEO This study
CBN486 | MATa alilA::NEO + H-ALI1-GFP-NAT + GAL7-mCherry-RAS1-NEO This study
LKOO1 MATa CDC10-mCherry-NEO (34)
CLT42 MATa alilA::NAT + CDC10-mCherry-NEO This study
KS96-2 MATa ali2A::NAT (25)
CLT67 MATa ali2A::NAT + ALI2-GFP-NEO This study
CLT8 MATa ali3A::NAT Madhani, 2015
CLT32 MATa ali3A::NAT This study
CLT62 MATa ali3A::NAT + ALI3-NEO This study
CLT9 MATa alidA::NAT Madhani, 2015
CLT63 MATa ali4A::NAT + ALI4-NEO This study
KS97-2 MATa ali1A::NEO + ali2A::NAT (25)
CLT35 MATa aliSA::NAT + alidA::NAT This study
CLT56 MATa alilA::NEO + ali2A::NAT + ali3A::NAT + alidA::NAT #1 This study
CLT57 MATa alilA::NEO + ali2A::NAT + ali3A::NAT + alidA::NAT #2 This study
CLT58 MATa alilA::NEO + ali2A::NAT + ali3A::NAT + ali4A::NAT #3 This study

986
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987 TABLE 4. Plasmids used in this study

Plasmid | ORF Backbone | Source
pJAF Neomycin resistance cassette (NEO) (95)
pCH233 | Nourseothricin resistance cassette (NAT) (96)

pCT1 ALI1 (including promoter and terminator); NAT pCH233 This study
pCN20 Histone H3 promoter; NAT pCH233 (97)
pKS85 Histone H3 promoter; RRA1; GFP; RRA1L (terminator only); NAT pCH233 (26)

pCT3 Histone H3 promoter; ALI1; GFP; RRA1 (terminator only); NAT puUC19 This study
pCT11 ALI2 (including promoter); GFP; FKS1 (terminator only); NEO puC19 This study
pCT8 ALI3 (including promoter and terminator); NEO pJAF This study
pCT10 ALI4 (including promoter and terminator); NEO pJAF This study

988
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TABLE 5. Primers used in this study

Primer name

Primer sequence (5'-3")

Purpose

Deletion constructs

AA3254 GAGGACTACTTGGGCGTCAA alilA primer 1

AA3255 GTCATAGCTGTTTCCTGCTGTCGGACCGTGTTTATCG alilA primer 2

AA3256 CGATAAACACGGTCCGACAGCAGGAAACAGCTATGAC alilA primer 3

AA3257 ATATTATAAGTTAGAGGTTAGGTTTTCCCAGTCACGAC alilA primer 4

AA3258 GTCGTGACTGGGAAAACCTAACCTCTAACTTATAATAT alilA primer 5

AA3259 GGACGGGAGTGTAATGAGGA alilA primer 6

AA3505 CTGAGCGGTGTCCTTTTCTC ali2A primer 1

AA3506 GTCATAGCTGTTTCCTGGGTGTGGGTGTGGTTGTCGTGGT ali2A primer 2

AA3507 ACCACGACAACCACACCCACACCCAGGAAACAGCTATGAC ali2A primer 3

AA3508 GTATATCTAGATTGAACAACTAAGTTTTCCCAGTCACGAC ali2A primer 4

AA3509 GTCGTGACTGGGAAAACTTAGTTGTTCAATCTAGATATAC ali2A primer 5

AA3510 TTTCAGTTCCGAGGTGCTCT ali2A primer 6

AA4096 AAGGTGTTCCCCGACGACGAATCG NAT split marker F
AA4097 AACTCCGTCGCGAGCCCCATCAAC NAT split marker R
AA3934 TCGATGCGATGTTTCGCT NEO split marker F
AA3935 CCTGAATGAACTGCAGGA NEO split marker R
Cloning

AA5124 TACCGAGCTCGGATCCGTGTCGTTAGCGGACTCGGTATCT ALI1 fragment F
AA5125 CGTTACTAGTGGATCCTCCGCTACATAACCACCATCCCTG ALI1 fragment R
AA5192 GAGCTCGGTACCCGGGGATCGGCAGATACGATATGTTGGCGC ALI1-GFP fragment 1 F
AA5185 GAGAGGGCATGGTGATAGATGTGTTGTGGTGTTG ALI1-GFP fragment 1 R
AA5186 ATCTATCACCATGCCCTCTCGTTGGATCCCAAGC ALI1-GFP fragment 2 F
AA5187 TGCTCACCATTGCTCCTGTCGGCGCCCC ALI1-GFP fragment 2 R
AA5188 GACAGGAGCAATGGTGAGCAAGGGCGAGG ALI1-GFP fragment 3 F
AA5204 CAGGTCGACTCTAGAGGATCCTGCGAGGATGTGAGCTGG ALI1-GFP fragment 3 R
AA5518 AATTCGAGCTCGGTACCCGGGGATCGACCATCAACGCCAGCGTATTAAC | ALI2-GFP fragment 1 F
AA5519 CTTGCTCACCATATCTCTGAGCCTGTTGCGG ALI2-GFP fragment 1 R
AA5520 CAGGCTCAGAGATATGGTGAGCAAGGGCGAG ALI2-GFP fragment 2 F
AA5521 GCCTGCAGGTCGACTCTAGAGGATCCTGCGAGGATGTGAGCTG ALI2-GFP fragment 2 R
AA4424 GATCCTCTAGAGTCGACCTG pUC19 F

AA4425 GATCCCCGGGTACCGAGCTC pUC19 R

AA5415 CGTCGCACTAGTATTGTGTAGCGGCGCTATAGTG ALI3 fragment F
AA5416 CGTCGCACTAGTCAAGAATGGTGACACTGCCAAC ALI3 fragment R
AA5417 CGTCGCACTAGTTTCTCCTTGCGGAGGCTTATTAG ALI4 fragment F
AA5418 CGTCGCACTAGTACAACTACAGCTCTGGCATCTAG ALI4 fragment R

53



https://doi.org/10.1101/801829
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/801829; this version posted October 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

991

992

993

994

995

996

aCC-BY-NC-ND 4.0 International license.

FIGURE 1. The C. neoformans arrestin proteins. The arrestin proteins within the C.
neoformans proteome — Alil, Ali2, Ali3, and Ali4 — were identified by the presence of the
conserved B-sheet-rich arrestin domains. If present, the N-terminal arrestin domain
(yellow), the C-terminal arrestin domain (blue), and any potential ubiquitin ligase binding
sequences, or PxY sequences (black), are indicated for each arrestin protein. Protein

and domain sizes are depicted to scale (aa = amino acids).
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FIGURE 2. Alil subcellular localization patterns. A. The WT and Alil-GFP strains were
incubated in YPD medium at 30°C (above) or TC medium at 37°C, and Alil-GFP was
localized by epifluorescence microscopy (Zeiss Axio Imager Al). Alil-GFP localization
to the septum (arrowheads) and poles (arrows) of budding yeasts is depicted. B. To
determine the relative enrichment of Alil-GFP in different cellular fractions, WT and
Ali1-GFP total cell lysates (T) were subjected to ultracentrifugation (30,000 x g) to
isolate the soluble (S) and insoluble (1) cellular fractions. Samples were analyzed by
western blotting using an anti-GFP antibody. The estimated size of Alil-GFP is
approximately 122 kDa. C. The dependence of Alil-GFP localization on the Ras1l
signaling pathway was determined using galactose-inducible expression of the RAS1
transcript. Cells were incubated in YPGal (WT) or YPD (ras1A) media. Alil-GFP
localization to the septum (arrowheads) and poles (arrows) of budding yeasts was
observed using epifluorescence microscopy (Zeiss Axio Imager Al). D. The frequency
of Alil-GFP localization to the septum and poles was quantified in the presence and
absence of Rasl. The percentage of actively budding cells that displayed Alil-GFP
localization to the septum and/or poles was calculated in both YPGal (WT) and YPD
(ras1A) conditions. A minimum of 600 cells were analyzed in both YPGal (WT) and YPD
(ras1A) conditions across three biological replicates (n = 3). Error bars represent the
standard error of the mean (SEM). Log transformation was used to normally distribute

the data for statistical analysis (*Student’s t-test p < 0.05).
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FIGURE 3. Cellular morphology of the alilA mutant. A. The WT, alilA mutant, and alilA
+ ALI1 strains were incubated in YPD medium at either 30°C or 39°C and subsequently
imaged by DIC microscopy (Zeiss Axio Imager Al). The alilA mutant cells displaying
morphological defects, such as elongated cells (asterisk), wide bud necks (arrowhead),
and cytokinesis failure (arrow), are indicated. B. The percentage of total cells displaying
morphological defects at 39°C was quantified for each strain. A minimum of 600 cells
were analyzed across three biological replicates (n = 3). Error bars represent the SEM.
Log transformation was used to normally distribute the data for statistical analysis
(**One-way ANOVA p < 0.01; ns = not significant). C. The septin protein, Cdc10, was
localized by visualization of the Cdc10-mCherry fusion protein in both the WT and the
alilA mutant backgrounds after incubation in YPD medium at 30°C (above) or 37°C.
The Cdc10-mCherry fusion protein was localized using epifluorescence microscopy

(Zeiss Axio Imager Al).
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FIGURE 4. The effects of lipid supplementation on the alilA mutant. Serial dilutions of
the WT, alilA mutant, and alilA + ALI1 strains were incubated on YPD medium; YPD
with caffeine (1 mg/mL); YPD with caffeine, ox bile (10 mg/mL), and Tween 60 (1%);

and YPD with caffeine and glycerol (0.4%). These strains were incubated at 30°C (A)

and 37°C (B) and monitored visually for growth.
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1035 FIGURE 5. Virulence contributions of the C. neoformans arrestin family. A. The WT,
1036  alilA mutant, and alilA + ALI1 strains were co-incubated with J774A.1 murine

1037 macrophages at a multiplicity of infection (MOI) = 1 for 24 hours. Survival of the strains
1038 was assessed by quantitative culture, and the percentage of recovered colony-forming
1039 units (CFU) was normalized to the WT strain. This experiment was performed with six
1040 biological replicates (n = 6). Error bars represent the SEM. Log transformation was used
1041  to normally distribute the data for statistical analysis (One-way ANOVA; ns = not

1042  significant). B. Female C57BL/6 mice (n = 10) were intranasally inoculated with 10* CFU
1043  of the WT, alilA mutant, or alilA + ALI1 strains. Mouse survival was tracked for 50 days
1044  post-infection (Log-rank test; ns = not significant). C. The WT strain, the MATa KN99
1045 strain, and three isogenic but independent arrestin null mutants (all also MATa) were
1046  co-incubated with J774A.1 murine macrophages at a MOI = 1 for 24 hours. Survival of
1047 the strains was assessed by quantitative culture, and the percentage of recovered CFU
1048 was normalized to the WT strain. This experiment was performed with four biological
1049 replicates (n = 4). Error bars represent the SEM. Log transformation was used to

1050 normally distribute the data for statistical analysis (*One-way ANOVA p < 0.05; **One-
1051 way ANOVA p <0.01). D. Female C57BL/6 mice (n = 10) were intranasally inoculated
1052  with 10* CFU of the WT strain and a representative arrestin null mutant,

1053 alilAali2Aali3Aali4A - #2 (CLT57). Mouse survival was tracked for 50 days post-infection

1054  (****Log-rank test p < 0.0001).
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FIGURE 6. The C. neoformans arrestin mutant phenotypes. Serial dilutions of the WT
strain, each individual arrestin mutant, and three independent arrestin null mutants were
incubated on YPD medium with the following growth conditions/additives: 30°C, 39°C,
caffeine (1 mg/mL), SDS (0.03%), high salt (1.5 M NaCl), and alkaline pH (pH 8). Cells
were monitored visually for growth. The alilA mutant exhibits modest susceptibility to
caffeine. This phenotype is shared by, but markedly enhanced in, the ali2A mutant. The
ali2A mutant also displays sensitivity to high salt. The ali3A mutant has modest growth
defects at 39°C, as well as resistance to SDS. The ali4A mutant shares this SDS
resistance phenotype, although it is enhanced compared to the ali3A mutant. The
arrestin null mutants display reduced growth in the presence of 39°C, caffeine, and salt,

but enhanced growth in the presence of SDS and alkaline pH.
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FIGURE 7. Working model of Alil adaptor function. We propose that Alil (yellow/blue)
acts as an adaptor protein to aid in the localization of the Fas1 and Fas2 fatty acid
synthase complex (red) to the septum and poles of actively dividing cells, possibly in a
ubiquitin-mediated manner through interactions with the E3 ubiquitin ligase Rsp5
(green). This process occurs to help meet the increased, stress-induced need for lipid
synthesis and deposition at these sites. In the alilA mutant strain, Fasl and Fas2 are
unable to localize, or are delayed in their localization, to the septum and poles during
cell division. As a result, lipid synthesis and deposition at these sites is impaired. This
causes localized cell surface defects at the poles in the resulting cells, likely explaining

the cytokinesis defects and caffeine sensitivity phenotypes of the alilA mutant.
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TABLE S1. Primary amino acid sequence homology between the C. neoformans

arrestins and S. cerevisiae arrestins?®

& The blastp and PSI-BLAST programs were used to identify amino acid sequence

conservation. Alignments with an E value less than 1 were determined to be significant

(N/A = not applicable).
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TABLE S2. Primary amino acid sequence homology between the C. neoformans

arrestins and human arrestins®

& The blastp and PSI-BLAST programs were used to identify amino acid sequence

conservation. Alignments with an E value less than 1 were determined to be significant

(N/A = not applicable).
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1088 TABLE S3. A total of 1,122 proteins were identified as potential interactors of Alil-GFP?#
1089
1090  2All identified C. neoformans proteins are included, along with the exclusive unique

1091 peptide count for each protein in each replicate.
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1092 TABLE S4. The 59 biologically-relevant proteins identified as potential interactors of
1093  Ali1-GFP in YPD medium?®

1094

1095 2 The average peptide count (APC) was calculated by averaging the exclusive unique
1096 peptide counts for each potential interactor across three biological replicates. The

1097 percent of APC identified in the WT immunoprecipitation was calculated by dividing the
1098 APC of each potential interactor by the exclusive unique peptide count found in the WT
1099 immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
1100 as less than 20% of the APC identified in the WT immunoprecipitation, were considered
1101  to be unique interactors with Alil-GFP. These potential protein interactors are prioritized
1102 by APC (most to least) and percentage of APC identified in the WT control (lowest to

1103  highest).
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1104 TABLE S5. The 62 biologically-relevant proteins identified as potential interactors of
1105  Alil-GFP in TC medium?®

1106

1107  ® The average peptide count (APC) was calculated by averaging the exclusive unique
1108 peptide counts for each potential interactor across three biological replicates. The

1109 percent of APC identified in the WT immunoprecipitation was calculated by dividing the
1110  APC of each potential interactor by the exclusive unique peptide count found in the WT
1111  immunoprecipitation. All potential protein interactors with an APC of 2 or more, as well
1112  as less than 20% of the APC identified in the WT immunoprecipitation, were considered
1113 to be unique interactors with Alil-GFP. These potential protein interactors are prioritized
1114 by APC (most to least) and percentage of APC identified in the WT control (lowest to

1115  highest).
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FIGURE S1. Cellular morphology of the alilA mutant at 30°C. The WT, alilA mutant,
and alilA + ALI1 strains were incubated in YPD medium at 30°C, imaged by DIC
microscopy (Zeiss Axio Imager Al), and quantified for the frequency of cytokinesis
defects. The percentage of total cells displaying morphological defects at 30°C was
guantified for each strain. A minimum of 600 cells were analyzed across three biological
replicates (n = 3). Error bars represent the SEM. Log transformation was used to
normally distribute the data for statistical analysis (One-way ANOVA; ns = not

significant).

66


https://doi.org/10.1101/801829
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/801829; this version posted October 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

aCC-BY-NC-ND 4.0 International license.

FIGURE S2. Complementation phenotypes of the individual arrestin mutants. A. Serial
dilutions of the WT, ali2A mutant, and the ali2A + ALI2-GFP strains were incubated on
YPD medium, YPD with caffeine (1 mg/mL), and YPD with high salt (1.5 M NacCl).
These strains were incubated at 30°C and monitored visually for growth. B. Serial
dilutions of the WT, ali3A mutant, and the ali3A + ALI3 strains were incubated on YPD
medium incubated at 30°C, YPD medium incubated at 39°C, and YPD with SDS
(0.03%) incubated at 30°C. These strains were monitored visually for growth. C. Serial
dilutions of the WT, ali4A mutant, and the ali4A + ALI4 strains were incubated on YPD
medium and YPD with SDS (0.03%). These strains were incubated at 30°C and

monitored visually for growth.
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FIGURE S3. Virulence contributions of Ali2. The WT, ali2A mutant, ali2A + ALI2-GFP,
and alilAali2A mutant strains were co-incubated with J774A.1 murine macrophages at a
MOI = 1 for 24 hours. Survival of the strains was assessed by quantitative culture, and
the percentage of recovered CFU was normalized to the WT strain. This experiment
was performed with five biological replicates (n = 5). Error bars represent the SEM. Log
transformation was used to normally distribute the data for statistical analysis (*One-

way ANOVA p < 0.05; ***One-way ANOVA p < 0.0001; ns = not significant).
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FIGURE S4. The effects of lipid supplementation on the arrestin null mutants. A. Serial
dilutions of the WT and arrestin null mutant strains were incubated on YPD medium at
30°C; YPD at 39°C; YPD with glycerol (0.4%) at 39°C; and YPD with sorbitol (1M) at
39°C. These strains were monitored visually for growth. B. Serial dilutions of the WT
and arrestin null mutant strains were incubated on YPD medium; YPD with caffeine (1
mg/mL); YPD with caffeine and glycerol (0.4%); and YPD with caffeine and sorbitol

(1M). These strains were incubated at 30°C and monitored visually for growth.
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1148 FILE S1. Supplementary materials and methods
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