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Abstract: Admixture graphs represent the genetic relationship between a set of populations through

splits, drift and admixture. In this paper we present the Julia package miqoGraph, which uses mixed-integer

quadratic optimization to fit topology, drift lengths, and admixture proportions simultaneously. Inference of

topology is particularly powerful, with integer optimization automating what is usually an arduous manual

process.
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1 Introduction

The genetic relationship between a set of populations cannot be described precisely by a simple tree because

of the presence of admixture. An admixture graph provides a way to represent the complex relationship

between populations, including their separation, subsequent drift, and possible merging by using distributions

of multiple trees. Several methods exist to build and visualize admixture graphs as well as to infer optimal

parameters of drift lengths and admixture edges, such as TreeMix (Pickrell and Pritchard, 2012), AdmixTools

(Patterson et al., 2012), MixMapper (Lipson et al., 2013), and admixturegraph (Leppälä et al., 2017). Some

of these methods cannot simultaneously infer the optimal topology with the parameters of the graph under

that topology. Rather, they require that the topology of a particular graph be pre-specified, and then infer

the graph parameters. Other methods such as TreeMix (Pickrell and Pritchard, 2012) and MixMapper (Lipson

et al., 2013) search a restricted space of possible admixtures. In Leppälä et al. (2017), all possible topologies

are enumerated using exhaustive searches; however such an approach becomes intractable at larger problem

sizes.

Here, we describe the implementation of the miqoGraph package, which can simultaneously infer the

optimal graph topology, drift lengths, and admixture proportions. We test our algorithm on simulated and

real datasets comprising several populations and show that even as fewer parameters are specified a priori,

running times are sped up over competitive algorithms by orders of magnitude: high-quality and optimal

solutions can be found in seconds.

2 Methods

A typical approach to admixture graph fitting is to first specify a topology, and then compute the graph’s fit

to genetic data. Drift patterns in the data can be summarized by f -statistics (Patterson et al., 2012), and

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/801548doi: bioRxiv preprint 

https://github.com/juliayyan/PhylogeneticTrees.jl
jyyan@mit.edu
https://doi.org/10.1101/801548
http://creativecommons.org/licenses/by-nc-nd/4.0/


for a given topology it is possible to construct a basis set of expected values of f -statistics that define the

graph (Pickrell and Pritchard, 2012). We will refer to the vector of empirical f -statistics as f , and given a

topology x, drift lengths w, and admixture proportions α, we will call the vector of the expected f -statistics

g(w,α;x). Drift lengths and admixture proportions are then selected to maximize the likelihood as follows:

max
w≥0,α∈U

− (f − g(w,α;x))
′
Σ−1 (f − g(w,α;x)) , (1)

where Σ−1 is the covariance matrix of the empirical statistics f , and U represents the set of all valid admixture

proportions. This is the approach of qpGraph, developed by Patterson et al. (2012).

In our approach, which we call miqoGraph , rather than fixing the topology x before solving for drift

lengths w and admixture proportions α, we optimize over all three simultaneously :

max
x∈T ,w≥0,α∈U

− (f − g(w,α;x))
′
Σ−1 (f − g(w,α;x)) , (2)

where T represents the set of all valid topologies. Topologies have previously been explored by enumeration

over small graphs (Leppälä et al., 2017), but this approach is intractable for larger graphs. Here we present

a novel formulation of the problem using mixed-integer quadratic optimization (MIQO), where we model

the problem of determining a best-fit graph topology as assignment of populations to leaf nodes of a binary

tree. Although such problems are difficult in theory, modern optimization solvers such as Gurobi (Gurobi

Optimization, Inc., 2016) and CPLEX (IBM ILOG CPLEX Optimization Studio, 2013) can quickly solve

large-scale MIQO problems in practice. For an overview of integer optimization, see Wolsey and Nemhauser,

2014, and for our formulation, see the supplementary material.

Our approach requires pre-specification of the following parameters:

1. Tree depth D ∈ Z+,

2. Number of admixture events A ∈ {0} ∪ Z+, and

3. Admixture resolution K for K ∈ Z+ (only needed if A > 0).

If there are no admixture events (A = 0), the populations’ relationship can be represented using a single

binary tree. We model admixture (A > 0) by allowing the population assignments to leaf nodes to be between

0 and 100%, and the admixture resolution K allows admixture proportions to be estimated to an accuracy

of 1
K . For example, K = 10 allows values of 0%, 10%, . . . , 90%, 100% (see supplementary materials).

We then solve optimization problem (2) to find the best-fit tree topology, drift lengths, and admixture

proportions under the specified parameters. A major benefit of miqoGraph over prior approaches is the

flexibility of the parameters, with each specification of parameter values representing numerous potential

admixture graphs. As such, although it is computationally intractable to enumerate over the thousands

of potential topologies for several populations, our algorithm quickly finds well-fit topologies using MIQO.

Although it may not be obvious which parameter values are appropriate a priori, multiple optimization

problems can be solved in parallel on a reasonable range of parameter values. In our experiments, we found

that trying one tree depth, several admixture resolutions, and a few admixture events were sufficient to find

the correct admixture graph topologies.

Although it is not required, prior knowledge can reduce the solution space and speed up the solution

time. For example, a user can specify that the path from the root to a particular population does not contain

admixture, which we found to be a particularly useful feature in our simulations.
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3 Computational Results

In Section 3.1, we validate our models on simulated admixture graphs, before turning to real data in Section

3.2. Our methods were implemented using the Julia programming language (Bezanson et al., 2014), using

the optimization modeling package JuMP (Lubin and Dunning, 2015). We used the Gurobi solver version

8.0.1 (Gurobi Optimization, Inc., 2016). Computational experiments were run on a desktop computer with

a 16-core Intel Xeon E5-2650 CPU, 3.40 GHz processor, and 64GB of memory. Our code is available on

GitHub as the package PhylogeneticTrees.jl. Documentation is available in the supplementary materials.

3.1 Simulated Data

We tested miqoGraph on three simulated admixture graphs that represent the possible varieties of admix-

ture events to validate its performance. Parameters for the simulation are described in the supplementary

material.

A summary of our simulated graphs is shown in Figure 1. Figure 1a shows the base graph upon which

the three simulated graphs are built. The first of these, in Figure 1b, involves a single admixture event where

Population 3 is produced from equal mixtures of Populations Slot0 and Slot1. The next graph in Figure 1c

is identical to the first except that the admixture proportions are changed to 10% and 90%. A more complex

graph in Figure 1d has Population 3 produced from a nested admixture event between Populations Slot0,

Slot1, and Slot2. These graphs will be referred to as SimpleMix, UnevenMix, and NestedMix, respectively.

These simulations are by no means exhaustive. Because the underlying optimization model’s size scales

quadratically with the admixture granularity K (see supplementary materials), miqoGraph may not be

appropriate for detecting low admixture proportions; the lowest that we test is 10% in the UnevenMix case.

Furthermore, our formulation models admixture only at the leaf nodes: for example, the NestedMix case

is represented as Population 3 being assigned 25% to Slot0, 25% to Slot1, and 50% to Slot2. Although

the nesting is straightforward in this case, miqoGraph may produce less interpretable results for admixture

graphs with many interdependent nested admixture events. Nonetheless, miqoGraph is a powerful tool on a

variety of use cases, as we will show.

3.1.1 The SimpleMix example

On the SimpleMix dataset, we fitted a tree with a single admixture event (A = 1) at an admixture resolution

of K = 2. Our miqoGraph algorithm found the optimal solution in 94s with an objective value of 18.99,

although it took significantly longer to prove that the topology and parameters were optimal, terminating

in 1,040s. In practice, it is often the case that optimization algorithms find the optimal solution quickly but

take longer to prove optimality. As such, common practice is to terminate the solver early when progress in

the objective slows or halts.

However, if a guarantee of optimality is desired, it can be efficiently obtained through a combination of

optimization and grid search, since the model’s solution time can speed up dramatically if it is known a

priori that certain populations do not have admixture events in their paths to the root. We were able to

perform a grid search in a total of 106s that produced the objective-18.99 tree along with a guarantee of

optimality. Details of this grid search are in the supplementary material.

Most importantly, the optimal solution matched the simulated SimpleMix graph perfectly in topology

and parameters.
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(a) A base graph topology upon which we add admixture
events

(b) SimpleMix:
Population
3 admixed
between pop-
ulations Slot0
and Slot1
equally.

(c) Un-
evenMix:
Population
3 admixed
between Slot0
(10%) and
Slot1 (90%).

(d) NestedMix:
Population 3
as a mixture of
populations Slot0,
Slot1, and Slot2.

Figure 1: Simulated admixture graph topologies.

3.1.2 The UnevenMix example

In the SimpleMix case, the actual graph was admixed at exactly 50% and 50%, allowing for a low admixture

granularity of K = 2 to capture the correct admixture event. A natural question arises when considering

admixture proportions that require a higher level of resolution to capture: what level of resolution is sufficient

to infer the correct admixture graph? To answer this question, we turn to the UnevenMix case of Figure 1c,

where the admixture proportions are 10% and 90%.

As in the SimpleMix case, for the UnevenMix case we began with solving for a tree without admixture.

In this case, miqoGraph terminated in 3s with an objective value of 22.08. We then ran miqoGraph varying

the admixture resolution from K = 2, 3, . . . , 10, specifying that only Population 3 was admixed. At K = 7,

the objective and topologies converged to the correct values and the admixture proportions reached the

approximate values of 14% and 86%. This result indicates that the resolution need not be set exactly to the

level required for the correct graph (K = 10), although it should be reasonably close. A reasonable approach

might be to run miqoGraph at increasingly fine granularities until the topology converges. A continuous

optimization algorithm such as qpGraph can also be run for fine-tuning.

3.1.3 The NestedMix example

Our final simulated case was called NestedMix, and was similar to SimpleMix and UnevenMix except that

it included a second admixture event. Admixed graphs were inferred with two admixture events, and only
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Population 3 was allowed to experience admixture. For both admixture resolutions K = 3 and 4, the inferred

topology once again matched the original topology, albeit with different admixture proportions, and these

trees were proved to be optimal in 33s and 63s respectively.

Table 1 shows a summary of the running times of miqoGraph for each dataset, compared with the running

time of qpGraph (with the topology fixed to the correct topology). Our algorithm, miqoGraph, is able to find

the correct graphs orders of magnitude more quickly than qpGraph, and with the exception of the UnevenMix

case, we prove optimality more quickly as well. Our algorithm accomplishes these improved running times

while also allowing exploration of varied graph topologies, when by comparison, qpGraph requires fixing a

single graph topology a priori.

The three cases SimpleMix, UnevenMix, and NestedMix are toy examples, but they represent a range of

common cases. In the following section, we demonstrate the performance of miqoGraph on real data.

Table 1: A comparison of running times of miqoGraph and qpGraph on three simulated admixture graphs.
The asterix (*) indicates where miqoGraph found the correct topology and parameters, but was unable to
prove optimality within five minutes.

Example Running Time (s)
miqoGraph miqoGraph qpGraph

Correct Soln. Prove Opt.

SimpleMix (K = 2) 2 6 393
UnevenMix (K = 7) 42 *300 392
NestedMix (K = 4) 8 63 407

3.2 Real Data from Eurasia and the Americas

After testing the performance and correctness of miqoGraph on simulated data, we ran it on a six-population

of modern and ancient DNA samples from Eurasia and the Americas to infer the phylogeny of populations

leading to the Karitiana, a South American population from Brazil.

Even without specifying which population should be admixed and at a coarse admixture granularity of

K = 2, miqoGraph found a solution within 8s and verified optimality after 9s. Most importantly, the graph

matched one found using exhaustive searches with qpGraph.

We were able to refine the admixture proportions by running miqoGraph at higher resolutions of K = 3

and 4. By leveraging the knowledge that Karatiana should be admixed, learned from the K = 2 out-

put, miqoGraph inferred the correct topology almost instantaneously (1s and 3s, respectively). At K = 4,

the inferred admixture proportions 25%-75% corresponded closely to the values of 28%-72% estimated by

qpGraph, and the drift lengths were also similar (see supplementary materials). The admixture graph in-

ferred by miqoGraph at K = 4 is shown in Figure 2. In this topology, Karatiana is admixed between an

ancient North Eurasian-related and a present-day East Asian-related source, consistent with previous results

examining the initial peopling of the Americas (Raghavan et al., 2014).

4 Limitations

The main limitation of miqoGraph lies in the restriction of admixture events to the leaf nodes of the graph

and therefore, the interpretation of its output in the presence of multiple nested admixture events. Suppose
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Figure 2: Topology, drift lengths and admixture proportions inferred on a dataset from Eurasia and the
Americas.

a particular population A has admixture from populations B and C, and that B itself is admixed from

D and E. The ordering of these events is not captured in our representation of the graph, and it can be

challenging to reconstruct the correct sequence of events leading to the true admixture graph. To aid

interpretability, our framework allows the user to sequentially add new populations while fixing the topology

for other populations. The positions of these new populations can vary freely, or they can be tentatively

assigned to positions based on the user’s best guess, giving the optimizer a “warm start” to improve upon. A

second issue with our approach is that the proportion of admixture inferred is done in discrete values whose

granularity is specified a priori. It is possible that at low admixture granularities, the best-fit topology may

be incorrect. One possible way to mitigate this effect is to use miqoGraph to explore a possible set of graph

topologies and then to use continuous optimizers such as that implemented in AdmixTools (Patterson et al.,

2012) to fit parameters on these topologies.

5 Conclusion

Our results show that miqoGraph is able to simultaneously infer topologies, drift lengths, and admixture

proportions in seconds to minutes for both simulated and real-world cases. The formulation is primarily

useful in settings with few nested admixture events. Nonetheless, the use of integer optimization to model

what was previously a combination of labor-intensive manual enumeration and continuous optimization

represents a significant step forward in efficient inference of admixture graphs.
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