

Rolfes & Ribeiro *et al*

1 **Platelets fuel the inflammasome activation of innate immune cells**

2 Verena Rolfes^{1#}, Lucas S. Ribeiro^{1#}, Ibrahim Hawwari¹, Lisa Böttcher¹, Nathalia Rosero¹, Salie
3 Maasewerd¹, Marina Lima S. Santos², Susanne V. Schmidt¹, Maximilian Rothe¹, H. James
4 Stunden¹, Luzia H. Carvalho², Cor J. Fontes³, Moshe Arditi⁴, Eicke Latz^{1,5,6}, and Bernardo S.
5 Franklin¹.

6

7 1) Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany

8 2) Laboratório de Malária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte,
9 Minas Gerais, Brazil.

10 3) Departamento de Clínica Médica, Universidade Federal de Mato Grosso, Cuiaba, Mato
11 Grosso, Brazil

12 4) Departments of Pediatrics and Biomedical Sciences, Cedars Sinai Medical Center and
13 UCLA School of Medicine, Los Angeles, CA, USA

14 5) Department of Infectious Diseases and Immunology, University of Massachusetts Medical
15 School, Worcester, MA, USA

16 6) German Center for Neurodegenerative Diseases, Bonn, Germany

17

18 [#]equal contribution

19 ***Corresponding author:** Bernardo S Franklin, PhD, Institute of Innate Immunity, Biomedical
20 Center (1OG 011), University Hospitals, University of Bonn, Venusberg-Campus-1, 53127
21 Bonn, Germany; Phone: +49 (0)228 287 51981; Fax: +49 (0)228 287 51221; E-mail:
22 franklin@uni-bonn.de

23

24 **KEYWORDS:** Inflammasomes, interleukin-1, auto-inflammatory diseases, platelets, malaria,
25 NLRP3.

Rolfs & Ribeiro et al

26 **ABSTRACT**

27 The inflammasomes control the bioactivity of pro-inflammatory cytokines of the interleukin (IL)-
28 1 family. The inflammasome assembled by NLRP3 has been predominantly studied in
29 homogenous cell populations in vitro, neglecting the influence of cellular interactions that occur
30 in vivo. Here, we show that platelets, the second most abundant cells in the blood, boost the
31 inflammasome capacity of human macrophages and neutrophils, and are critical for IL-1
32 production by monocytes. Platelets license NLRP3 transcription, thereby enhancing ASC
33 nucleation, caspase-1 activity, and IL-1 β maturation. Platelet depletion attenuated LPS-
34 induced IL-1 β in vivo, and platelet counts correlate with plasma concentrations of IL-1 β in
35 malaria patients. Furthermore, a platelet gene signature was enriched among the highest
36 expressed transcripts in IL-1 β -driven autoinflammatory diseases. The platelet-mediated
37 enhancement of inflammasome activation was independent of cell-to-cell contacts, platelet-
38 derived lipid mediators, purines, nucleic acids and a host of platelet cytokines, and involved
39 the triggering of calcium sensing receptors on macrophages by a calcium-dependent protein
40 commonly released by platelets and megakaryocytes. Finally, we report that platelets provide
41 an additional layer of regulation of inflammasomes in vivo.

42 **INTRODUCTION**

43 An unbalanced production of the pro-inflammatory cytokines of the Interleukin-1 (IL-1)
44 family underlies the immunopathology of several auto-inflammatory diseases. As nearly all
45 cells express the IL-1 receptor (IL-1R), IL-1 cytokines have the ability to influence both innate
46 and adaptive immune responses and exert broad effects in the body (Dinarello, 2009). IL-1 β
47 is unique in the medical literature: while nearly all human inflammatory diseases are caused
48 by a host of cooperative pro-inflammatory factors, mutations in genes controlling the
49 expression of IL-1 β cause a spectrum of life-threatening auto-inflammatory syndromes
50 (Broderick et al., 2015). Monotherapies blocking IL-1 β activity in patients with auto-
51 inflammatory syndromes result in a rapid and sustained reversal of symptoms and severity
52 (Dinarello et al., 2012), and are currently the first line of intervention against these conditions.
53 A growing bulk of evidence has now added other common inflammatory and metabolic
54 conditions into the list of diseases that are responsive to IL-1 β neutralization (Dinarello, 2018;
55 Dinarello and van der Meer, 2013). This was further validated by the recent results of the
56 Canakinumab Anti-Inflammatory Thrombosis Outcome Study (CANTOS), which showed that
57 Canakinumab, a humanized anti-IL-1 β monoclonal antibody, significantly reduced the risk for
58 recurrent cardiovascular events (Ridker et al., 2017a), and suggested that IL-1 β is associated
59 with increased incidence of fatal lung cancer (Ridker et al., 2017b).

60 The expression of IL-1 cytokines is tightly regulated. For instance, the production of
61 some members of this family (IL-1 β and IL-18) is restricted to immune cells. Furthermore, upon
62 induction, these proteins are synthesized as biologically inactive precursors in the cytosol, and
63 a series of intracellular events are required for their maturation and release into the
64 extracellular space. These events include the assembly of inflammasomes, intracellular
65 multiprotein complexes formed by a sensor, such as NLRP3, the adapter molecule apoptosis-
66 related speck-like protein containing a CARD domain (ASC), and the cysteine protease
67 Caspase-1 (Latz et al., 2013). Upon activation, inflammasome sensors recruit ASC, which
68 oligomerizes to form a micron-sized structure termed an 'ASC speck', which operate as
69 platforms to recruit and activate Caspase-1, which processes pro-IL-1 β and pro-IL-18 into their

Rolfs & Ribeiro *et al*

70 bioactive forms (Latz *et al.*, 2013). Caspase-1 activation also drives an inflammatory lytic cell
71 death termed pyroptosis, mediated through Gasdermin-D-induced membrane pore formation
72 and leakage of cytosolic content (Kayagaki *et al.*, 2015; Liu *et al.*, 2016).

73 The overwhelming majority of the studies on inflammasomes were performed *in vitro*
74 in monocultures of macrophages. Although this approach has led to the discovery of molecular
75 mechanisms controlling inflammasomes, it underestimates the influence of other cell
76 populations on these processes and in the regulation of IL-1 cytokines *in vivo*. For instance, a
77 cooperative role for T cells for the IL-1 β production by dendritic cells (DCs) has only recently
78 been discovered (Jain *et al.* bioRxiv 475517).

79 In the last decade, platelets have been increasingly recognized of their roles in
80 immunity (Allen *et al.*, 2019; Dann *et al.*, 2018; Kral *et al.*, 2016; Passacquale *et al.*, 2011a).
81 Approximately one trillion platelets (150– 450 $\times 10^9/L$) circulate in the blood of a healthy
82 individual, a number that surpasses all other leukocytes in the vasculature by several folds.
83 Platelets have been reported to produce IL-1 cytokines (Allam *et al.*, 2017; Denis *et al.*, 2005;
84 Thornton *et al.*, 2010a), and more recently to assemble an NLRP3 inflammasome (Cornelius
85 *et al.*, 2019; Hottz *et al.*, 2013). They could therefore be relevant cellular sources of IL-1
86 cytokines or extracellular ASC specks *in vivo* or alter the inflammatory responses of other
87 immune cells.

88 Using a series of complementary techniques, human and mouse platelets and
89 megakaryocytes, as well as transgenic (Tzeng *et al.*, 2016b) and *knock in* inflammasome
90 reporter mouse models, we report here that platelets, as well as megakaryocytes, do not
91 express the components of the canonical inflammasome (NLRP3, ASC, and Caspase-1).
92 Nevertheless, co-culture with platelets boosted the inflammasome activation and production
93 of IL-1 α , IL-1 β , and IL-18 from human macrophages and neutrophils. Furthermore, platelets
94 were crucial for the optimal production of IL-1 cytokines by human monocytes. We found that
95 platelets influenced the inflammasome activation of these cells *in trans* through the
96 enhancement of NLRP3 and pro-IL-1 β transcription. The effect of platelets on human
97 macrophages did not require direct cell contact, platelet-derived nucleic acids, or purines, but

Rolfes & Ribeiro et al

98 it could be extinguished by heat inactivation. Using a model of antibody-induced
99 thrombocytopenia, we found that platelet depletion attenuated IL-1 β responses while
100 enhancing the systemic production of TNF α in response to LPS in vivo. Supporting these
101 findings, blood platelet counts correlated positively with plasma levels of IL-1 β in naturally
102 infected malaria patients. Moreover, we observed an enriched platelet signature among the
103 highest expressed genes in a cohort of pediatric patients with mutations in the NLRP3 gene
104 causing Muckle-Wells Syndrome (MWS) and Neonatal-onset multisystem inflammatory
105 disease (NOMID).

106 In summary, we show that platelets fuel inflammasome activation in immune cells and
107 shape IL-1 inflammation. Thus platelet-modifying therapies could have widespread
108 implications for autoinflammatory and thrombotic diseases.

Rolfs & Ribeiro *et al*

109 **RESULTS**

110 **Platelets boost inflammasome-driven IL-1 production in macrophages and neutrophils.**

111 The NLRP3 inflammasome is primarily assembled in myeloid cells. Although activated
112 platelets are known to form aggregates with immune cells and modulate their function (Allen
113 *et al.*, 2019; Dann *et al.*, 2018; Kral *et al.*, 2016; Passacquale *et al.*, 2011b) the effect of
114 platelets on inflammasome activation in innate immune cells remains unexplored. To address
115 this question, we investigated the influence of platelets on the production of IL-1 cytokines
116 elicited by the *bona fide* NLRP3 inflammasome activators Nigericin and ATP in mouse and
117 human immune cells. Mouse bone marrow-derived macrophages (BMDMs) (**Figure 1A**),
118 human monocyte-derived macrophages (hMDMs) (**Figure 1B**), human neutrophils (**Figure**
119 **1C**) and human CD14⁺ monocytes (**Figure 1D**) were cultured alone or in the presence of
120 increasing concentrations of platelets. Co-cultures were then left untreated or primed with LPS,
121 followed by NLRP3 activation with Nigericin or ATP. The levels of IL-1 β and TNF α were
122 measured in cell-free supernatants by homogeneous time-resolved fluorescence (HTRF). A
123 multiplex cytokine assay was used to additionally measure the production of IL-1 α and IL-18,
124 two other members of the IL-1 family, along with several other cytokines and growth factors in
125 hMDMs and human neutrophils (**Figure S1A-B**). Remarkably, co-culture with platelets
126 boosted the production of IL-1 β from both mouse and human inflammasome-activated
127 macrophages, as well as from human neutrophils in a concentration-dependent manner
128 (**Figure 1A-C**). Addition of platelets also boosted the release of IL-18 and IL-1 α from activated
129 hMDMs (**Figure S1A**). Extending these results, we found that the addition of platelets to
130 human neutrophils enhanced their production of IL-8 (**Figure S1B**). Platelets cultured alone
131 produced RANTES (CCL5) and low levels of IL-18, however, those were close to the detection
132 limit of our assays. Platelets lacked expression of most of the other investigated cytokines
133 (**Figure 1** and **S1A-B**), indicating that they do not directly contribute to the cytokines measured
134 in the co-cultures. Notably, the addition of platelets to mouse macrophages, human
135 monocytes, and neutrophils, but not human macrophages, resulted in diminished TNF α
136 production in response to LPS stimulation. These results suggest that despite NF κ B being a

Rolfs & Ribeiro *et al*

137 common transcription factor regulating the production of TNF α and IL-1 cytokines, platelets
138 exert a selective effect on the production of inflammasome-governed cytokines.

139 Next we asked whether platelets also influence the activity of other inflammasomes.
140 To test this, we activated the NLRC4 inflammasome in co-cultures of human platelets and
141 macrophages with a plasmid encoding the T3SS apparatus (rod protein) from *Salmonella*
142 *typhimurium* (PrgI), together with a protective antigen protein (PA) (Zhao *et al.*, 2011).
143 Stimulation of the NLRC4 inflammasome in human macrophages induced robust IL-1 β levels
144 which were further enhanced by the addition of platelets (**Figure S1C**), indicating that the effect
145 of platelets was not specific to the NLRP3 inflammasome. Co-culture with platelets also
146 boosted IL-1 β production from human macrophages that were primed with TLR2 or TLR7/8
147 agonists (Pam3cysk4 and R848, respectively) (**Figure S1D**), indicating that the platelet effect
148 is not exclusively mediated through TLR4. However, blockade of TLR4 signaling on hMDMs
149 with Resatorvid (TAK242), a small-molecule inhibitor of TLR4 (Matsunaga *et al.*, 2011),
150 partially prevented the effect of platelets (**Figure S1E**), indicating that the platelet effect on
151 hMDMs is in part orchestrated by TLR4. Together these data show that platelets boost the
152 production of IL-1 cytokines in inflammasome-activated innate immune cells.

153

154 **Platelets are critical for the optimal production of IL-1 cytokines by human monocytes**

155 Notably, the addition of platelets did not influence the production of IL-1 β by
156 inflammasome-activated human monocytes (**Figure 1D**). To determine whether this was due
157 to the steady-state presence of contaminating platelets, we performed platelet depletion
158 experiments. CD14 $^{+}$ monocytes were isolated from fresh peripheral blood using commercially
159 available monocyte isolation kits, with or without the addition of a platelet removal antibody
160 cocktail, and purity was assessed by flow cytometry (**Figure 2A**). The addition of the platelet
161 removal component efficiently reduced the number of contaminating free platelets (CD41 $^{+}$,
162 CD14 $^{-}$), as well as the frequency of platelet-monocyte aggregates (CD41 $^{+}$, CD14 $^{+}$), while
163 enriching the frequency of platelet-free monocytes (CD14 $^{+}$, CD41 $^{-}$) (**Figure 2A and 2B**).
164 Importantly, the platelet removal component mainly comprises antibodies in PBS, which did

Rolfs & Ribeiro *et al*

165 not affect lactate dehydrogenase (LDH) release, a marker for cellular toxicity and cytolysis
166 (**Figure S2A**). Removal of platelets from isolated CD14⁺ monocytes impaired their ability to
167 release most IL-1 cytokines upon inflammasome activation, and this could be ameliorated by
168 re-addition of freshly isolated autologous platelets (**Figure 2C** and **Figure S2B**). These data
169 indicate that platelets are crucial for monocytes to trigger a maximal inflammasome response.

170 Human monocytes have recently been described to activate an alternative
171 inflammasome in which LPS alone is sufficient to trigger caspase-1-dependent IL-1 β
172 maturation and secretion (Gaidt *et al.*, 2016). To test the effect of platelet removal in
173 alternatively-activated human primary monocytes, we stimulated standard or platelet-depleted
174 CD14⁺ monocytes with LPS (1 μ g ml⁻¹) for 16 hours. Similar to the effect on the canonical
175 inflammasome (**Figure 2C**), platelet removal also extinguished the IL-1 β response from
176 alternatively activated cells (**Figure 2D**). Furthermore, re-addition of autologous platelets
177 rescued IL-1 β production in alternatively-activated monocytes (**Figure 2D**).

178 We next asked whether co-culture with platelets could also enhance inflammasome
179 activation in the surrogate monocytic cell line THP-1, which have been used extensively to
180 characterize the biology of the inflammasome. As expected (Gaidt *et al.*, 2016, 2017),
181 inflammasome-activated THP-1s were able to produce IL-1 β irrespective of the presence of
182 platelets. Nevertheless, co-culture boosted the production of IL-1 β by THP-1 cells to a level
183 comparable to that produced by primary human monocytes (from~3 to ~10 ng ml⁻¹) (**Figure**
184 **2E**). No IL-1 β was detected on platelets cultivated alone. Taken together, these findings reveal
185 that platelets are critical for optimal inflammasome-driven IL-1 cytokine production by human
186 monocytes.

187

188 **The influence of platelets on IL-1 responses *in vivo* and in human disease**

189 As monocytes and macrophages are relevant tissue sources of IL-1 cytokines, we
190 reasoned that platelets might influence IL-1 β responses *in vivo*. To investigate this hypothesis,
191 we induced thrombocytopenia in C57BL/6j mice by i.v. injection of 2 μ g/g of body weight of a
192 rat anti-mouse GPIba monoclonal antibody (aCD42b). After 2 hours, treatment with aCD42b

Rolfs & Ribeiro et al

193 resulted in a drop in blood platelet counts (**Figure 3A**). Upon LPS challenge, platelet-depleted
194 mice exhibited a non-significant trend toward decreased IL-1 β (**Figure 3B**). Corroborating
195 previous observations (Xiang et al., 2013) and our *in vitro* findings, thrombocytopenic LPS-
196 challenged mice had increased serum concentrations of TNF α ($P= 0.043$) and IL-6 ($P= 0.001$)
197 (**Figure 3B**). Sera IL-18 levels remained unaffected by platelet-depletion in this model. These
198 findings support a role for platelets in modulating cytokine levels *in vivo*.

199 Supporting this hypothesis, a positive correlation between blood platelet counts and
200 plasma IL-1 β concentrations was recently reported in a cohort of 500 Caucasian healthy
201 volunteers (Netea et al., 2016; Tunjungputri et al., 2018). However, blood leukocyte counts
202 were equally correlated with plasma levels of IL-1 β in that cohort, hindering the precise
203 contribution of platelets for the plasma IL-1 β concentrations described (Tunjungputri et al.,
204 2018). To investigate the relationship platelet count and IL-1 β concentrations in the context of
205 disease, we studied a cohort of human subjects naturally infected with *Plasmodium vivax*, the
206 predominant cause of malaria in the Brazilian Amazon basin. Infections with *P. vivax* are
207 known to cause a strong pro-inflammatory cytokine imbalance (Andrade et al., 2010; Clark et
208 al., 2006) with thrombocytopenia and anemia being the most commonly associated
209 complications. We found that platelet counts were positively correlated with plasma IL-1 β
210 concentrations (Spearman's $R = 0.504$, $P = 0.0028$). Despite a positive trend, no correlations
211 were found between platelet count and IL-1 α ($R= 0.15$, $P = 0.37$) or TNF α ($R= 0.014$, $P =$
212 0.917) (**Figure 3C**). Unexpectedly, plasma levels of IL-18 were negatively correlated with
213 platelet counts ($R=-0.45$, $P < 0.0001$), which may suggest that different mechanisms regulate
214 the production of this cytokine *in vivo*. Indeed, both IL-18 ($R= -0.32$, $p = 0.005$) and TNF α ($R=$
215 -0.29 , $p = 0.003$) correlated with hemoglobin levels (**Figure 3C**), suggesting that anemia may
216 be a contributing factor for the regulation of these cytokines, but not for the associations
217 between platelet counts and IL-1 β . Importantly, none of the investigated cytokines correlated
218 with leukocyte counts (**Figure 3C**) in the malaria cohort. As leukocytes are a relevant source
219 in IL-1 cytokines in the blood, these data support that platelets are major contributors in the
220 regulation of IL-1 cytokines levels in this context.

Rolfs & Ribeiro *et al*

221 We next asked whether there is a relationship between platelets and inflammation in
222 exclusively IL-1 β -driven human autoinflammatory syndromes (Broderick *et al.*, 2015). We
223 generated a platelet gene-signature comprising 45 transcripts known to be either platelet-
224 specific or strongly associated with platelet activity from direct comparisons of publicly
225 available gene expression analyses of purified human platelets (Eicher *et al.*, 2016; Rowley *et*
226 *al.*, 2011). Remarkably, 42 out of 45 platelet signature genes were upregulated in the whole
227 blood of pediatric patients harboring mutations in NLRP3 (*NLRP3mut*) associated with the IL-
228 1-driven autoinflammatory disorders Muckle-Wells Syndrome (MWS) and NOMID (Balow *et*
229 *al.*, 2013) compared to healthy children (**Figure 3D**). For several of these genes, more than
230 one transcript variant was upregulated. Collectively, these findings support a role for platelets
231 in shaping IL-1-driven inflammation in human disease.

232

233 **Platelet effect on immune cells is independent of platelet-derived IL-1 cytokines or**
234 **inflammasome components.**

235 Previous reports have indicated that platelets express IL-1 cytokines, including IL-1 α
236 (Thornton *et al.*, 2010b), IL-1 β (Boillard *et al.*, 2010; Denis *et al.*, 2005) and IL-18 (Allam *et al.*,
237 2017). However, as shown in **Figure 1** and **Figure S1A-B**, IL-1 α and IL-1 β were not detected
238 in monocultures of platelets in our experimental settings. To exclude the possibility that
239 platelets directly contribute to the IL-1 cytokines measured in co-cultures with hMDMs, we
240 performed co-culture experiments using platelets from mice with genetic deficiency in IL-1
241 gene or macrophages from mice with genetic deficiency of their receptors. Firstly, we activated
242 the NLRP3 inflammasome in wild-type BMDMs co-cultured with platelets from either wild-type
243 or IL-1 β deficient (*Il1b*^{-/-}) mice. We found that *Il1b*^{-/-} platelets were equally able to boost IL-1 β
244 production in inflammasome-activated wild-type macrophages as wild-type platelets (**Figure**
245 **4A**). Similarly, *Il1r*-deficient (*Il1r*^{-/-}) macrophages exhibited the expected IL-1 β production in
246 response to platelets (**Figure 4B**), thus also excluding a role for platelet-derived IL-1 α in
247 mediating the response. Finally, addition of platelets to macrophages deficient in the IL-18
248 receptor (*Il-18r*^{-/-}) equally boosted IL-1 β production in response to LPS + Nigericin (**Figure**

Rolfes & Ribeiro *et al*

249 **4C**), indicating that neither platelet-derived IL-1 α / β nor IL-18 are responsible for their effects
250 of platelets on macrophage cytokine production.

251 Recent studies reported that the NLRP3 inflammasome is assembled in human
252 platelets and that inflammasomes in platelets are involved in the pathogenesis of dengue
253 (Hottz *et al.*, 2014), and sickle cell disease (Vogel *et al.*, 2018). To determine whether the
254 simultaneous activation of platelet-NLRP3 could contribute to the production of IL-1 cytokines
255 in co-cultures, we investigated whether addition of wild-type platelets could compensate for
256 macrophages deficient for inflammasome components NLRP3 (*Nlrp3*^{-/-}) or ASC (*Pycard*^{-/-}).
257 We stimulated LPS-primed *Nlrp3*^{-/-}, or *Pycard*^{-/-} BMDMs that were cultured alone, or in the
258 presence of platelets, with nigericin or ATP. As expected, macrophages from both *Nlrp3*^{-/-} and
259 *Pycard*^{-/-} mice failed to produce IL-1 β in response to inflammasome activation (**Figure S2C**).
260 Addition of wild-type platelets to *Nlrp3*^{-/-} or *Pycard*^{-/-} macrophages had no effect on the IL-1 β
261 production by these cells (**Figure S2C**), indicating that activation of inflammasomes in platelets
262 is not involved in the amplification of macrophage IL-1 β responses. To determine whether the
263 NLRP3/ASC inflammasome is expressed and assembled in platelets we imaged
264 inflammasome assembly in total bone marrow (BM) cells from transgenic (Tg) ASC-mCitrine
265 mice (Tzeng *et al.*, 2016a). ASC-mCitrine⁺ BM cells were stained for leukocytes (CD45),
266 neutrophils (Ly6G), and platelets (CD41), and assessed by flow cytometry and confocal
267 microscopy. Whilst ASC was clearly visualized and assembled into fluorescent specks in
268 inflammasome-activated leukocytes (CD45 $^{+}$), macrophages (CD45, F4/80 $^{+}$) and neutrophils
269 (CD45 $^{+}$, Ly6G $^{+}$), and extracellular inflammasomes were visible as previously described
270 (Baroja-Mazo *et al.*, 2014; Franklin *et al.*, 2014a) ASC was not observed in platelets and
271 megakaryocytes (CD41 $^{+}$ cells) (**Figure S3A-B**). Similar results were observed from the imaging
272 of total BM cells from ASC-mCherry *knock in* mice (**Figure S3C**).

273 We next evaluated the expression of the canonical inflammasome components in
274 platelets and PBMCs from healthy volunteers. The purity of platelet preparations was assessed
275 by flow cytometry, microscopy, and qPCR using platelet (PF4), or leukocyte markers
276 (CD45 and CD14) (**Figure S4A-E**). Importantly, both freshly isolated human and mouse

Rolfs & Ribeiro et al

277 platelets remained viable after purification and responded to thrombin stimulation by up-
278 regulating P-selectin (CD62P) (**Figure S3D** and **S4D**). Nevertheless, purified human platelets
279 did not express the inflammasome molecules NLRP3, ASC (PYCARD) and Caspase-1, or IL-
280 1 β either at the mRNA (**Figure S4E**) or the protein level (**Figure S4F-G**), although these
281 molecules were promptly detected in PBMCs from the same donors, and increased upon LPS
282 stimulation. Likewise, unlike the human monocytic cell line THP-1, no expression of IL-1 β and
283 inflammasome molecules were detected in the MEG-01 human megakaryocytic cell line
284 (**Figure S3E**), which, compared to THP-1, failed to secrete mature IL-1 β upon inflammasome
285 activation (**Figure S3F**).

286 Finally, we assessed and analyzed publicly available transcription profiles of purified
287 platelets from five independent studies (Devignot et al., 2010; Gnatenko et al., 2005; Londin
288 et al., 2014; Raghavachari et al., 2007; Spivak et al., 2014), including the gene expression
289 profiles of platelets from patients with Dengue (Devignot et al., 2010) and sickle cell disease
290 (Raghavachari et al., 2007) (**Figure S5**). In all these studies we re-assessed the expression of
291 IL-1 β and the inflammasome components NLRP3, ASC and Caspase-1. The expression of
292 platelet markers PF4 (CXCL4) or PDGFA were used as comparisons (**Figure S5**). None of the
293 NLRP3, ASC, Caspase-1 and IL-1 β transcript variants were detected in human platelets in
294 these studies (Devignot et al., 2010; Gnatenko et al., 2005; Londin et al., 2014; Raghavachari
295 et al., 2007; Spivak et al., 2014) (**Figure S5**). Together with our previous findings, these
296 observations support the conclusion that both human and mouse platelets do not express the
297 components of the canonical NLRP3 inflammasome, and are therefore not able to assemble
298 inflammasomes.

299
300 **Amplification of inflammasome activity is mediated by a soluble and ubiquitously
301 produced platelet and megakaryocyte-derived factor.**

302 Phagocytosis of activated platelets has been shown to regulate platelet and neutrophil
303 function, survival and differentiation (Badrnya et al., 2014; Chatterjee et al., 2015; Lang et al.,
304 2002; Senzel and Chang, 2013). To determine whether phagocytosis is responsible for the

Rolfs & Ribeiro et al

305 effect of platelets on inflammasome activation, we performed confocal imaging of hMDMs
306 (**Figure 4D**) and purified blood neutrophils (**Figure S2D**) incubated with freshly isolated
307 platelets. Co-cultures were stimulated with LPS followed by inflammasome activation with
308 nigericin. Both human macrophages (**Figure 4D**) and neutrophils (**Figure S2D**) phagocytosed
309 platelets; however, pretreatment with the phagocytosis inhibitor Cytochalasin D did not prevent
310 the platelet-mediated boost of IL-1 β production by hMDMs (**Figure 4E**). Furthermore, platelets
311 were able to boost the IL-1 β responses of hMDMs in both direct and trans-well co-cultures
312 (**Figure 4F**), and cell-free supernatant from resting, LPS-stimulated, or Thrombin-activated
313 platelets also enhanced IL-1 β production from hMDMs (**Figure 4G**). To exclude a direct effect
314 of thrombin on macrophages, we stimulated BMDMs or hMDMs with thrombin in the absence
315 of platelets (**Figure S2E**) and observed no change in IL-1 β production.

316 Thus, the platelet influence on IL-1 β production by inflammasome-activated
317 macrophages is independent of cell contact. In contrast, the transfer of platelet supernatants
318 to cultures of human neutrophils or monocytes did not influence the production of IL-1 β (**Figure**
319 **S2f**, and data not shown), suggesting that cell contact may be required for the platelet boosting
320 effects in some cell types.

321 We observed that supernatants from quiescent and activated platelets had similar
322 effects on hMDM inflammasome activation (**Figure 4G**). To determine whether this capacity
323 of quiescent platelets was due to undetectable activation during isolation, we transferred cell-
324 free supernatants from unstimulated human megakaryocytes to cultures of hMDMs. Similar to
325 resting platelets, supernatants from unstimulated megakaryocytes boosted the inflammasome
326 activity in hMDMs (**Figure 4H**). This finding points towards the presence of a soluble and
327 ubiquitously expressed factor secreted by both platelets and megakaryocytes, which
328 modulates the inflammasome activity of macrophages.

329

330 **Platelets license inflammasome activation on human macrophages through**
331 **transcriptional regulation of NLRP3 and pro-IL-1 β**

Rolfs & Ribeiro *et al*

332 In most immune cells, the activation of NLRP3 requires a "priming" stimulus, such as
333 the engagement of pattern recognition receptors (PRRs) which initiate the transcription of
334 *NLRP3*. The amount of NLRP3 available in the cytosol is a key limiting factor regulating its
335 activation. We therefore investigated if the platelet effect on macrophages occurs at the
336 transcriptional level during priming, or afterward during activation of the NLRP3 inflammasome.
337 To this end, we co-cultured NLRP3-overexpressing immortalized mouse macrophages
338 (NLRP3FiMøs) with platelets and directly stimulated these cells with Nigericin. As the LPS-
339 priming signal is also required for the upregulation of pro-IL-1 β , we assessed caspase-1
340 activity using a specific caspase-1 fluorescent substrate as a readout. Addition of platelets to
341 NLRP3FiMøs did not enhance their caspase-1 activity (**Figure 5A**). These data indicate that
342 platelets might influence the inflammasome activation of human macrophages by enhancing
343 the transcription of NLRP3 and licensing its activation. To determine whether platelets
344 modulate the expression of other inflammasome molecules we evaluated human
345 macrophages cultivated alone or in the presence of platelet supernatants, which were used to
346 minimize the detection of transcripts arising from platelets. The addition of supernatants from
347 unstimulated platelets to macrophages boosted their expression of IL-1 β (**Figure 5B**).
348 Surprisingly, platelet supernatant was as effective as LPS at inducing the expression of NLRP3
349 and pro-IL-1 β protein (**Figure S2B**, compare lanes 2 and 4). However, platelet supernatant did
350 not alter the expression of pro-caspase-1 or ASC (**Figure 5B**). Importantly, exposure to
351 platelets resulted in a 50% increase in formation of ASC specks hMDMs (**Figure 5C**), while
352 hMDMs stained with isotype-matched IgG controls as well as platelets cultured alone did not
353 show any ASC specks (**Figure 5C** and **S6A**). Co-culture with platelets or exposure to platelet
354 supernatants resulted in increased cleaved caspase-1 and maturation of IL-1 β (**Figure 5D-F**)
355 in cell-free supernatants of activated hMDMs (**Figure 5D-F**), proteins that were not present in
356 the isolated platelets (**Figure 5D-E**, PTLs alone). We also detected pro-IL-1 β in cell-free
357 supernatants of LPS-primed hMDMs, likely due to cell death caused by the high LPS dose
358 (200ng/mL) used for priming. Furthermore, despite lacking pro-IL-1 β transcripts (**Figure S4D**)
359 and protein (**Figure 5D**, lane 11 and **Figure S5G**), platelets and their supernatants increased

Rolfs & Ribeiro *et al*

360 the concentrations of pro-IL-1 β even on unstimulated hMDMs (**Figure 5D**, lanes 3-4).
361 Altogether, these findings indicate that platelets boost inflammasome activation by enhancing
362 the transcription of pro-IL-1 β and NLRP3 in human macrophages.

363

364 **The platelet-mediated amplification of inflammasome activity requires calcium and can**
365 **be prevented by heat-inactivation.**

366 We next sought to identify the platelet-derived factor that promotes macrophage
367 inflammasome activity. Platelets are rich sources of inflammatory lipid mediators (Hinz *et al.*,
368 2016). Among them, prostaglandins—COX1/2 derived mediators—have been shown to
369 regulate LPS-induced pro-IL-1 β transcription (Zasłona *et al.*, 2017), and to inhibit TNF α in
370 macrophages (Chandra *et al.*, 1995; Xiang *et al.*, 2013; Zasłona *et al.*, 2017). We thus tested
371 the requirement of COX1/2-derived lipid mediators for the platelet effect by inhibiting COX1/2
372 with Aspirin (Xiang *et al.*, 2013). Aspirin pre-treatment of platelets did not influence on their
373 effects on macrophage IL-1 β production (**Figure 6A**). Similarly, pre-treatment of platelets with
374 zileuton (Zt), an inhibitor of the 5-lipoxygenase enzyme involved in leukotriene synthesis, did
375 not prevent the platelet effect. Furthermore, neither Aspirin nor Zileuton affected macrophage
376 IL-1 β production hMDMs when added directly in the absence of platelets (**Figure 6A**). These
377 experiments indicate that the effect of platelets on the macrophage inflammasomes is
378 independent of COX1/2-derived lipid mediators and 5-LOX-induced leukotrienes.

379 Activated platelets can also release nucleic acids and nucleosides which display
380 inflammatory properties (Qin *et al.*, 2016). However, degradation of free nucleic acids by
381 addition of BenzonazeR did not prevent the effect of platelet co-culture on IL-1 β production,
382 indicating the effect is not mediated by platelet-derived nucleic acids (**Figure 6B**). As platelets
383 are rich stores of other purines including ADP and ATP, a *bona fide* activator of NLRP3, we
384 speculated that platelet-released ATP could boost macrophage inflammasome activity. To
385 address this, we added apyrase, which hydrolyzes both ATP and ADP, to the co-culture of
386 hMDMs with platelets. Apyrase addition did not alter the effect of platelets on hMDM
387 inflammasome activity (**Figure 6C**). Furthermore, direct addition of extracellular ADP to

Rolfs & Ribeiro et al

388 inflammasome-activated hMDMs cultivated alone or together with platelets did not affect IL-1 β
389 production (**Figure 6D**), indicating that platelet-derived ATP and ADP do not play a role in this
390 context. This is in line with our findings that platelets boost macrophage IL-1 β production
391 through transcriptional regulation during the priming phase of inflammasome activation
392 (**Figure 5A-B**).

393 Therefore, we speculated that the platelet-derived factor may be a protein. In line with
394 this hypothesis, both heat inactivation and crosslinking of platelets (**Figure 6E**) and platelet
395 supernatants (**Figure 6F**) extinguished the effect on inflammasome activation in human
396 macrophages. Multiple cytokines were detectable in cell-free supernatants of resting and
397 activated platelets in our Luminex assays (**Figure S1A**). Those included: CCL5 (RANTES),
398 CXCL12 (SDF1 α), IL-18, and PDGF-BB. Additional literature reported that platelets are cellular
399 sources of CD40L, PF4, BDNF, P-selectin, and CXCL7 (Kral et al., 2016; Semple et al., 2011).
400 To evaluate the potential roles of these factors in boosting macrophage inflammasome activity,
401 we employed several experimental approaches. Those included: i) direct addition of human
402 recombinant proteins to hMDMs (**Figure 6G**, **Figure S6B-C**); ii) addition of inhibitors or
403 blocking antibodies against human platelet-derived cytokines to co-cultures of hMDMs and
404 platelets (**Figure S6D-E**); and iii) experimental co-cultures involving cells from animals
405 deficient for chemokine receptors (**Figure S6F**). Altogether, these experiments excluded a role
406 for CXCL1, CCL5, CXCL12, CXCL7, PDGF-BB, EGF, VEGFA, CD40L, PF4, BDNF and P-
407 selectin as contributors to the platelet effect.

408 The failure of the above mentioned α -granule-derived proteins to boost the IL-1 β
409 production of human macrophages suggested that molecules contained in the dense granules
410 of platelets could play a role in the platelet-mediated regulation of IL-1 β in macrophages.
411 Platelet dense granules are rich stores of ADP, ATP, serotonin (5-HT), and Ca $^{2+}$. We therefore
412 tested whether platelet-derived 5-HT could influence IL-1 β production in macrophages. We
413 found that neither the addition of recombinant 5-HT (**Figure S6G**) nor the blockade of its uptake
414 by macrophages with the selective 5-HT reuptake inhibitor fluoxetine (Du et al., 2016;

Rolfs & Ribeiro *et al*

415 Marcinkiewcz *et al.*, 2016) (**Figure S6H**) altered IL-1 β production by inflammasome-activated
416 hMDMs.

417 Next, we examined the effect of chelating extracellular and intracellular calcium with
418 BAPTA and BAPTA-AM, respectively. Notably, treatment of co-cultures with BAPTA, but not
419 with the membrane permeable BAPTA-AM, prevented the platelet effect without interfering
420 with the standard response of hMDMs to LPS + Nigericin (**Figure 6H-I**). However, when added
421 directly to hMDMs cultured without platelets, calcium chloride (CaCl₂) did not evoke additional
422 IL-1 β secretion from inflammasome-activated hMDMs (**Figure S6**), suggesting that Ca²⁺ is
423 required but not sufficient for the platelet effect.

424 Cells sense extracellular Ca²⁺ through two G-protein-coupled receptors (GPCRs),
425 CaSR and GPRC6A. The requirement of Calcium for the platelet effect on human
426 macrophages suggests that a calcium sensing receptor (CaSR) or G-coupled receptors might
427 be involved. To test this hypothesis, we pre-treated hMDMs with two selective inhibitors of
428 CaSR, NPS2143 and Calhex231. We found that inhibition of CaSR with NPS2143 (**Figure 6J**)
429 but not with Calhex231 (data not shown), blocked the platelet-mediated effect on hMDMs. Of
430 note, similar to platelets, allosteric activation of CaSR with R-568 boosted the IL-1 β response
431 of inflammasome-activated human macrophages (**Figure 6L**). These findings indicate that
432 extracellular Ca²⁺ is involved on the platelet-mediated boosting of IL-1 β of inflammasome-
433 activated human macrophages. Extracellular Ca²⁺ has been previously proposed to activate
434 the NLRP3 inflammasome (Rossol *et al.*, 1AD). Taken together, these findings indicate that a
435 heat-sensitive protein that induces calcium signaling is involved in the regulation of the
436 inflammasome activity of human macrophages.

437

438 **A combination of platelet-derived proteins might boost inflammasome activation of**
439 **innate immune cells.**

440 Next, we employed a proteomics approach to assess the secretome of platelets and
441 megakaryocytes to identify additional proteins similarly secreted by these cells that could
442 mediate the IL-1 boosting effect (**Figure 7A-B**, and **Figure S7A-B**). For this, cell-free

Rolfs & Ribeiro *et al*

443 supernatants from quiescent, or LPS-treated human platelets (**Figure. 7A**, n = 4) as well as
444 from the human megakaryocytic cell line MEG-01 (**Figure 7B**, n = 3) were assessed by Mass
445 Spec proteomics, using the label-free quantification (LFQ) method. As our findings on **Figure**
446 **4G-H** indicated the presence of a factor ubiquitously present in the supernatants of resting and
447 activated platelets, we directed further analysis to proteins that remained unchanged by LPS
448 stimulation in both cell types (fold change >-1.5 and < 1.5). Among the proteins similarly
449 secreted by platelet and megakaryocytes, we identified several members of the TGF- β family
450 of proteins, S100 proteins and thrombospondin-1 (THBS1), which Figure d as the highest
451 abundant protein in platelet supernatants (**Figure 7A-B**). These findings were in line with the
452 platelet-induced transcriptional changes on hMDMs. Notably, TGF- β , S100 and THSB1 require
453 calcium for their activity (Bertheloot and Latz, 2017a; Cailotto *et al.*, 2011; Misenheimer and
454 Mosher, 1995). Additionally, THBS1 was also shown to activate TLR4 (Li *et al.*, 2013) and
455 regulate IL-1 β of macrophages (Stein *et al.*, 2016), and to be necessary for the full activity of
456 TGF- β in vivo (Crawford *et al.*, 1998).

457 We therefore tested the effects of these proteins on the platelet-mediated boosting of
458 inflammasomes. To evaluate the role of TGF- β , we tested the addition of recombinant human
459 TGF- β 1 to inflammasome-activated hMDMs. Consistent with previous reports of an
460 antagonistic effect of TGF- β on TNF α signaling (Vaday *et al.*, 2001; Verrecchia and Mauviel,
461 2004; Yamane *et al.*, 2003), addition of recombinant human TGF- β 1 (rhTGF- β) to hMDMs
462 inhibited their production of TNF α triggered by LPS (**Figure S7C**). However, rhTGF- β did not
463 influence the IL-1 β response (**Figure 7C**). Likewise, selective inhibition of the TGF- β receptor
464 by pre-treating hMDMs with the small molecule SB431542 (Matsuyama *et al.*, 2003) did not
465 prevent the platelet effect (**Figure 7D**), despite preventing down-regulation of TNF α (**Figure**
466 **S7C**). These data indicate that, TGF- β is likely not the platelet-derived factor enhancing the
467 inflammasome activity of human macrophages, but might underlie the regulation of TNF α .

468 S100 proteins are important regulators of calcium homeostasis, and platelet-derived
469 S100A8/9 has been shown to induce inflammation in several inflammatory diseases (Lood *et*
470 *al.*, 2016; Wang *et al.*, 2014). S100A8/9 is enriched in platelets and binds to various membrane

Rolfs & Ribeiro *et al*

471 receptors such as TLR4, RAGE, and CD36 (Bertheloot and Latz, 2017b). TLR4 and CD36 are
472 also known receptors for THBS1 (Li *et al.*, 2013; Stein *et al.*, 2016). However, we found that
473 neither addition of recombinant human rhTHBS1 (**Figure 7G**) nor rhS100A8/9 (**Figure 7E**) to
474 human macrophages influenced their basal response to LPS + Nigericin. Similarly, cell-free
475 supernatants from platelets from *Thbs1*^{-/-} mice were as efficient as WT platelets in boosting
476 IL-1 β release, caspase-1 activity from inflammasome-activated BMDMs (**Figure 7H**). Of note
477 rhS100A8/9 induced TNF α secretion from hMDMs (**Figure S7D**). Similarly, inhibition of RAGE
478 using a specific anti-RAGE antibody revealed no effect on the platelet boosting of IL-1 β release
479 (**Figure 7F** and **S7G**). These findings led us to conclude that platelet-derived THBS1, though
480 abundantly secreted by platelets and megakaryocytes, is not responsible for the platelet effect
481 on macrophages.

482 As THBS1 and S100 proteins bind to CD36, we tested the effect of CD36 inhibition
483 using Sulfosuccinimidyl oleate (SSO) (Kuda *et al.*, 2013). SSO interfered with IL-1 β and TNF α
484 release (**Figure 7I**) and Caspase-1 activity (**Figure S7F**) both in the presence and absence
485 of platelets. Nevertheless, even in the presence of SSO, platelets increased both the release
486 of IL-1 β and the activity of Caspase-1 from macrophages compared to SSO pre-treated
487 macrophages in monoculture.

488 As single inhibition of TLR4, RAGE, and CD36 did not completely extinguish the
489 platelet effect, we speculated that a combined activity of platelet-derived S100 and THBS1
490 could mediate the boosting of IL-1 β on hMDMs. An experimental strategy to block TLR4/RAGE
491 and CD36 resulted in complete inhibition of IL-1 β , TNF α and Caspase-1 activity of human
492 macrophages (**Figure S7G**) thus precluding us to conclude whether these proteins are
493 synergistically involved in the platelet-mediated enhancement of IL-1 β response of human
494 macrophages. Hence, additional work will be required to precisely delineate mechanisms by
495 which platelets affect the inflammasome activation of human macrophages.

496

Rolfs & Ribeiro *et al*

497 **DISCUSSION**

498 In summary, we report that interaction with platelets licenses NLRP3 and potentiates
499 inflammasome activation and production of IL-1 cytokines by innate immune cells. We show
500 that the platelet effect is mediated by a soluble protein factor that engages CaSR on
501 macrophages. Our findings reveal a novel role for platelets in governing the production of IL-1
502 cytokines and emphasize that the regulation of the inflammasome *in vivo* is too complex to be
503 modeled by *in vitro* monocultures.

504 Our work highlights the previously underappreciated function of platelets in modulating
505 immunity, adding to the growing evidence that platelet parameters, such as counts and
506 activation, are causes of variation in the concentrations of circulating cytokines (Hu *et al.*, 2018;
507 Schirmer *et al.*, 2018; Tunjungputri *et al.*, 2018). Although best known for their role in
508 thrombosis, platelets secrete a host of proteins (Coppinger, 2004; Maynard *et al.*, 2007), and
509 can modulate the function of leukocytes by forming heterotypic aggregates (Kral *et al.*, 2016).
510 The interaction of platelets with macrophages has been less explored, in part due to the
511 assumption that platelets have limited access to tissues, where most macrophages reside. We
512 show here that the effects of platelets on macrophages, but not on neutrophils, is independent
513 of cell contacts, which could overcome the tissue barriers separating these cells. However,
514 recent discoveries have shown that platelets can reach deeply into areas of tissue that are not
515 readily accessible by other immune cells, such as the core of a tumor (Best *et al.*, 2015, 2017).
516 Platelets were found in the inflammatory tissue site, in where their exert critical functions in
517 bacterial clearance, hours before the arrival of the first neutrophils (Wong *et al.*, 2013).
518 Moreover, platelets guide neutrophils and promote their extravasation from blood into tissue
519 (Alard *et al.*, 2015; Asaduzzaman *et al.*, 2009; Sreeramkumar *et al.*, 2014; 2017; Zuchtriegel
520 *et al.*, 2016).

521 Our work also challenges the role of inflammasomes on platelets. Although a few
522 reports describe the assembly of inflammasomes on platelets from patients with Dengue fever
523 (Hottz *et al.*, 2013), sickle cell disease (Vogel *et al.*, 2018), and sepsis (Cornelius *et al.*, 2019),
524 we used multiple complementary techniques to demonstrate that platelets lack expression of

Rolfs & Ribeiro *et al*

525 NLRP3, ASC, and Caspase-1, and are therefore incapable of assembling inflammasomes.
526 This conclusion was further supported by a meta-analysis of publicly available human platelet
527 transcriptome data from 5 independent studies. The discrepancy with previous results may be
528 because other studies relied on antibody-based fluorescence assessment of inflammasome
529 components on platelets, without quantitative measurement of the relevant proteins in platelet
530 lysates. Furthermore, most of the previous studies employed antibodies with weak specificity,
531 which have been shown to react with ASC-deficient cells (Beilharz *et al.*, 2016).

532 Although the expression of IL-1 cytokines in platelets has also been reported, the
533 results are conflicting, with some studies describing expression of IL-1 in activated platelets
534 (Denis *et al.*, 2005; Lindemann *et al.*, 2001; Thornton *et al.*, 2010b), and others finding IL-1
535 activity in bioassays (Hawrylowicz *et al.*, 1989; Kaplanski *et al.*, 1993), without evidence of the
536 cytokine itself. Platelets have been reported to amplify IL-1 β -mediated inflammation in a
537 rheumatoid arthritis (RA) model (Boillard *et al.*, 2010), however, it was not possible in that study
538 to distinguish whether the enhanced IL-1 β response was caused by platelet-derived IL-1 β or
539 their influence on other immune cells as we demonstrated here. Importantly, the expression of
540 IL-1 β on platelets has been closely correlated to the presence of contaminating leukocytes in
541 platelet preparations (Pillitteri *et al.*, 2007). We observed that platelets are poor producers of
542 IL-1 β in all the experimental conditions tested (priming with TLR2, TLR4, TLR7/8 ligands
543 followed by inflammasome activation with Nigericin, ATP, or PrgI). Notably, IL-1 β expression
544 in platelets has been demonstrated after 18 hours of thrombin stimulation *in vitro*, (in the range
545 of 150 pg. ml $^{-1}$) (Brown and McIntyre, 2011), however, we detected robust IL-1 β production in
546 macrophage-platelet co-culture experiments at values greater than >6000 pg. ml $^{-1}$ in 4.5
547 hours, indicating that the possible contribution of platelet-derived IL-1 β was minimal. Finally,
548 our experiments in cells from mice deficient in IL-1 β , IL-1R, or inflammasome components
549 exclude a role for platelet-derived inflammasomes or IL-1 β in the platelet effect.

550 Our data suggest a role for platelets in regulating the production of inflammasome-derived IL-
551 1 cytokines that may be relevant to human physiology and disease. In mice, we found that
552 platelet depletion decreased serum levels of IL-1 β , though not significantly. The regulation of

Rolfes & Ribeiro *et al*

553 IL-1 β *in vivo* is complex; although it is induced within 15 minutes following LPS stimulation, it
554 rapidly declines due to a short mRNA half-life and other mechanisms (Dinarello, 2009), which
555 could underlie our difficulty in capturing the effect. However, multiple studies support a role for
556 platelets in modulating human inflammatory diseases. High blood platelet counts are found in
557 patients (Ciccarelli *et al.*, 2014) and mouse models of IL-1-driven auto-inflammatory disorders
558 (Bonar *et al.*, 2012). In Kawasaki Disease (KD), an acute systemic vasculitis in children for
559 which thrombocytosis is a common feature, recent human and experimental mouse models
560 have determined a critical role of IL-1 β in the cardiovascular pathogenesis (Burns *et al.*, 2017;
561 Lee *et al.*, 2012b). Indeed, the degrees of thrombocytosis and platelet activation are predictive
562 of the development of coronary aneurysm in KD.

563 As both IL-1 α and IL-1 β induce thrombocytosis in mice (Kimura *et al.*, 1990; Nishimura *et al.*,
564 2015; Trinh *et al.*, 2015), our findings raise the possibility that platelets could help feed an
565 inflammatory loop by potentiating and sustaining IL-1 signaling, which in turn stimulates
566 platelet biogenesis. However, whether thrombocytosis is a marker of disease or a contributor
567 to pathogenesis, remains to be investigated.

568 Platelet counts have also been correlated with the concentrations of other cytokines
569 that affect platelet production. For example, low platelet counts are associated with lower levels
570 of CD40L, CXCL5, CCL5, and EGF in the plasma of patients with aplastic anemia and immune
571 thrombocytopenic purpura (Feng *et al.*, 2012), two diseases characterized by lower blood
572 platelet counts. Another study reported higher levels of VEGF, GM-CSF, IFN γ , MCP-1, IL-8,
573 and PDGF-BB strongly associated with higher platelet counts in patients with essential
574 thrombocythemia, compared to polycythemia vera (Pourcelot *et al.*, 2014). Thus, the
575 contribution of platelets to cytokine production in human biology warrants further investigation.

576 Notably, our results also highlight a role for platelets in modulating TNF α production
577 from macrophages. In agreement with this finding, a recent study reported a protective role of
578 platelets in sepsis through the regulation of TNF α and IL-6, via the secretion of a
579 COX1/PGE2/EP4 dependent lipid mediator (Xiang *et al.*, 2013). We observed that TNF α is
580 regulated via a platelet-derived COX1-dependent lipid mediator, and related to TGF β signaling.

Rolfs & Ribeiro et al

581 Despite our efforts, we were not able to identify a unique platelet-derived factor that
582 drives the effect of platelets on innate immune cell inflammasomes. However, we show that
583 the regulation of IL-1 β production is likely mediated through a constitutively expressed protein
584 factor that is sensitive to calcium. We also observed that platelets trigger calcium sensing
585 receptors (CaSR) on macrophages, consistent previous report of a role for CaSR on
586 inflammasome activation(Lee et al., 2012a). However, these findings will need further
587 validation in genetic deficiency of these receptors. Because a combination of factors acting in
588 synergy and affecting different pathways may underlie the effects we observed, refined
589 experimentation will be necessary to elucidate and validate the molecular mechanisms.

590 Our findings also add to recent new discoveries demonstrating direct links between the
591 mammalian immune and coagulation system (Burzynski et al., 2019; Wu et al., 2019; Zhang
592 et al., 2019). For instance, it was found that pro-IL-1 α is cleaved and processed by thrombin
593 at a perfectly conserved site across disparate species (Burzynski et al., 2019) and that
594 coagulation mediates both host defense(Zhang et al., 2019) and lethality caused by
595 overactivation of inflammasomes (Wu et al., 2019). Our study strengthens this link by showing
596 a direct participation of platelets in the inflammasome potential of innate immune cells.

597

Rolfes & Ribeiro et al

598 **Acknowledgments:** We thank Feng Shao (National Institute of Biological Sciences, Beijing
599 102206, China), for the plasmid encoding the PrgI-protective antigen conjugate protein, as well
600 as Matthias Geyer and David Fußhöller for the purified PrgI protein used here to activate the
601 NLRC4 inflammasome. We are grateful to Damien Bertheloot for critically reading our
602 manuscript, and to Matthew S. Mangan, as well as members of the Institute of Innate Immunity
603 for helpful discussions. This study was supported by a grant from the European Research
604 Council (PLAT-IL-1). B.S. Franklin is supported by grants from the German Research
605 Foundation (DFG, SFBTRR57). B.S. Franklin and E. Latz are members of the
606 ImmunoSensation cluster of Excellence in Bonn. E. Latz is supported by grants from the DFG
607 (SFB645,704, 670, 1123, TRR57, 83) and the European Research Council (InflammAct). V.
608 Rolfes is supported by a fellowship from Bayer.

609

610 **Author contributions:** Conceptualization, B.S.F.; Investigation, B.S.F., V.R., I.H., L.S.R.,
611 L.B., N.R., S.M., M.L.S.S., M.R., & H.J.S.; Data Analysis, B.S.F., & S.V.S.; Resources, B.S.F.,
612 M.A., C.J.F. and E.L.; Software, B.S.F. and S.V.S.; Writing – Original Draft, B.S.F.; Revisions,
613 M.A., V.R. and L.S.R.; Visualization, A.M, V.R., L.S.R., and I.H.; Supervision, B.S.F., L.H.C.;
614 Project Administration, B.S.F.; Funding Acquisition, B.S.F.

615

616 **Declaration of Interests**

617 "The authors declare no competing interests."

Rolfs & Ribeiro *et al*

618 **FIGURE LEGENDS**

619 **Figure 1. Platelets amplify inflammasome activation of innate immune cells** (a) IL-1 β and
620 TNF α levels in cell-free supernatants of unstimulated (Unstim), or LPS-primed (200ng/mL, 3
621 hours), and nigericin (10 μ M, 90 min), or ATP (5mM, 90 min)-activated wild-type BMDMs. Cells
622 were cultivated alone (–) or in the presence of platelets (+PTLs) in the indicated ratios
623 (platelets: macrophage). Each symbol represents the average of triplicate cell cultures of
624 individual mice (n = 3 independent experiments). (B) IL-1 β and TNF α levels in cell-free
625 supernatants of human monocyte-derived macrophages (hMDMs, n = 3), (C) human
626 neutrophils (n = 3), or (D) human CD14 $^+$ isolated monocytes (n = 4) stimulated as in a. Floating
627 bars (with mean and minimum to maximum values) are shown from pooled data from
628 independent experiments with cells and platelets from different donors. Each symbol
629 represents the average from technical triplicates per donor, or mice. (See also **Figure S1**).
630

631 **Figure 2. Platelets are critical for the production of IL-1 cytokines by human primary**
632 **monocytes.** (a) Representative flow cytometry scatter characteristics of human PBMCs, or
633 CD14 $^+$ monocytes that were isolated with standard magnetic separation kits (Standard
634 Monocytes, Std-Mo), in the presence or absence of a commercially available platelet depletion
635 cocktail during isolation (Platelet-depleted Monocytes, PTL-depl-Mo). Expression of CD41
636 (platelet marker) and CD14, as well as staining with Isotype IgG controls was assessed in all
637 cell populations. (B) Flow cytometric-based quantification of PBMCs and isolated CD14 $^+$
638 monocytes, showing the frequency of contaminating platelets (CD41 $^+$, CD14 $^+$), platelet-
639 monocyte aggregates (CD41 $^+$, CD14 $^+$), and monocytes (CD41 $^-$, CD14 $^+$) before vs. after the
640 removal of platelets. (C) IL-1 β , IL-1 α and IL-18 levels in cell-free supernatants of Std-Mo vs
641 PTL-depl-Mo, or from PTL-depth-Mo that were co-cultured with freshly isolated autologous
642 platelets in a 50:1 ratio (platelet: monocyte, PTL-depl-Mo + PLTs 50:1) and stimulated, as
643 indicated, with LPS and Nigericin. (D) IL-1 β levels in cell-free supernatants of non-canonically
644 activated standard, platelet-depleted, or PTL-depl monocytes that were added with freshly
645 isolated autologous platelets. Cells were left unstimulated (Unstim), or primed with LPS (1 μ g/ml

Rolfs & Ribeiro *et al*

646 ¹, for 16 hours). Graph shows mean \pm SD from technical triplicates from one experiment. (E)
647 IL-1 β levels in cell-free supernatants of inflammasome-activated THP-1s cultured alone or in
648 the presence of growing concentrations of human platelets. Graphs (A-C, and E) show floating
649 bars (with mean and minimum to maximum values) from pooled data from several independent
650 experiments. Each symbol represents the average of technical triplicates from different donors.
651 See also **Figure S2**.

652
653 **Figure 3. The platelet influence on cytokines levels *in vivo*.** (a) Representative flow
654 cytometry scatter plots and quantification of platelets in whole blood of C57BL/6 mice that were
655 injected i.v. with 2 μ g/g of body weight of a rat anti-mouse GPIba monoclonal antibody
656 (aCD42b, n = 5) or control rat IgG (IgG, n = 5). (B) Assessment of IL-1 β , IL-18, TNF α , and IL-
657 6 levels in sera from IgG- or anti-CD42b-treated mice 2h after i.v. injection of 100 μ g of LPS.
658 Values are means \pm S.E.M. Each symbol represents one mouse. (C) Correlation between
659 circulating levels of IL-1 α , IL-1 β , IL-18 and TNF α and blood platelet, hemoglobin levels, and
660 leukocyte counts in the plasma of naturally infected malaria patients (n= 78). Dots are
661 semitransparent, with darker symbols indicating overlapping points. Shaded areas are based
662 on univariate linear regressions with 95% confidence bands of the best-fit line and show
663 positive (red) correlations. Two-tail Spearman correlation coefficient (R) and significance (P)
664 are shown. Squared symbols represent patients that scored positive as outliers based on the
665 ROUT method, and were excluded from the statistical analysis. (D) Volcano Plot of the
666 expression (Log2 fold change) vs. significance (log2p value) showing the frequency of Platelet
667 Signature Genes in a genome-wide expression profile of whole blood from healthy (n= 14) vs
668 pediatric patients (n= 22) with mutations in the NLRP3 gene (NLRP3mut) that cause Muckle-
669 Wells Syndrome and Neonatal-onset multisystem inflammatory disease (NOMID) from a
670 publicly available dataset (Jr *et al.*, 2013). The platelet gene signature was generated from
671 direct comparisons of publicly available gene expression datasets from purified human
672 platelets (Eicher *et al.*, 2016; Rowley *et al.*, 2011).

673

Rolfs & Ribeiro *et al*

674 **Figure 4. The platelet-mediated inflammasome boosting is independent of platelet-
675 derived IL-1 cytokines, or inflammasomes.** (a) HTRF measurements of mouse IL-1 β in cell-
676 free supernatants of wild-type BMDMs cultivated alone (—), or in the presence of platelets
677 (+PTLs, 5:1 platelet-to-BMDM ratio) from wild-type, or IL-1-deficient ($Il1b^{-/-}$) mice. Mean + SD
678 from 3 technical replicates from one experiment. (B) HTRF measurements of mouse IL-1 β in
679 cell-free supernatants of wild-type, or IL-1R deficient ($Il1r^{-/-}$), or (C) $Il18r^{-/-}$ BMDMs cultivated
680 alone, or in the presence of platelets (5:1 ratio) from wild-type mice. (D) HTRF measurements
681 of mouse IL-1 β in cell-free supernatants of wild-type, or $Nlrp3^{-/-}$, or Pycard $^{-/-}$ BMDMs cultivated
682 alone, or in the presence of platelets (5:1 ratio) from wild-type mice. **B-D** Floating bars (with
683 mean and minimum to maximum values) are shown from pooled data from three independent
684 experiments. Each symbol represents the average of technical triplicate cultures from each
685 mouse. (D) Confocal imaging of human monocyte-derived macrophages (hMDMs) that were
686 co-cultured with platelets (50:1 ratio). Cells were pre-treated or not with Cytochalasin D (50 μ M,
687 30 min) before being added with platelets. Co-cultures were primed with LPS (200ng/mL, 3
688 hours) and activated with nigericin (10 μ M, 90 min). Blue (Draq5, nuclei), Red (WGA, plasma
689 membrane), Green (anti-CD41, platelets). Scale bars are indicated. (E) HTRF measurements
690 of IL-1 β in cell-free supernatants of hMDMs treated as in d. (F) Schematics of a trans-well
691 system and HTRF measurements of IL-1 β levels in cell-free supernatants of co-cultures of
692 hMDMs and platelets seeded in single cultures, direct co-cultures (Well), or trans-well cultures
693 (Insert), separated by a 0.4 μ m pore membrane. (G) HTRF measurements of IL-1 β levels in
694 cell-free supernatants of hMDMs cultured alone, or in the presence of platelets, or
695 supernatants of resting, or LPS, or thrombin-activated platelets, as well as supernatants of
696 resting, or LPS-activated megakaryocytes (H) Graphs show floating bars (with mean and
697 minimum to maximum values) from pooled data from four independent experiments. Each
698 symbol represents the average of technical triplicates from different donors.

699

700 **Figure 5. Platelets enhance NLRP3 and pro-IL-1 transcription in human macrophages.**

701 (a) Caspase-1 reporter luciferase activity of the luminogenic caspase-1 specific substrate, Z-

Rolfs & Ribeiro et al

702 WEHD-amino luciferin in cell-free supernatants of NLRP3-overexpressing immortalized mouse
703 macrophages. Cells were left unstimulated (Unstim) or activated with nigericin (10 μ M, 90 min)
704 without LPS priming. Cells were cultivated alone (–) or in the presence of platelets (50:1 ratio).
705 (B) Real time PCR analysis of the expression of the indicated genes in human macrophages
706 that were cultured alone, or in the presence of platelet supernatants (50:1 ratio). Cells were
707 left untreated or stimulated with LPS. Floating bars (with mean and minimum to maximum
708 values). Each symbol represents the average of technical triplicates from different donors (n=3). (C) Representative confocal microscopy images and image-based quantification of ASC
709 specks in LPS-primed and Nigericin-activated hMDMs that were either cultured alone (—) or
710 in the presence of platelets (50:1 ratio). (D) Caspase-1 reporter luciferase activity of hMDMs
711 treated as in c. (E) Immunoblotting for IL-1 β , Caspase-1 in cell-free supernatants, as well as
712 β -actin in whole cell lysates of unstimulated (Unstim), or LPS-primed hMDMs cultured alone,
713 or in the presence of platelets, or conditioned medium from unstimulated platelets. Data from
714 2 - 3 different donors are shown. (F) Caspase-1 reporter luciferase activity in cell-free
715 supernatants of hMDMs treated as in c. Data in B, C and E is represented as floating bars
716 (with mean and minimum to maximum values) from pooled data from 3 - 4 independent
717 experiments. Each symbol represents the mean of technical triplicates from different donors.
718

719
720 **Figure 6 – A platelet-derived calcium-dependent protein boost the inflammasome**
721 **activity of human macrophages.**

722 (a) IL-1 β levels in cell-free supernatants of unstimulated (Unstim), or LPS-primed (200 ng/mL,
723 3 hours), and nigericin-activated (10 μ M, 90 min) human monocyte-derived macrophages
724 (hMDMs). Cells were cultivated alone (–), or in the presence of platelets (+PTLs, 50:1 ratio)
725 that were pre-treated with Aspirin (100 μ M), or Zileuton (Zt, 100 μ M) for 1 hour before being
726 added to macrophages (n. = 4). (B) IL-1 β levels measured in cell-free supernatants of
727 unstimulated, or LPS-primed hMDMs that were added with platelets. Co-cultures were
728 incubated with BenzonaseR (B) or Apyrase 0.5 U/ml (C) before LPS priming and
729 inflammasome activation with nigericin (n. = 4). (D) IL-1 β levels in cell-free supernatants of co-

Rolfs & Ribeiro *et al*

730 cultures of platelets and hMDMs added with the indicated concentrations of ADP or equivalent
731 dilutions in water (n. = 4). (E-F) IL-1 β levels in cell-free supernatants of hMDMs stimulated as
732 in A, and cultured alone or in the presence of heat-inactivated (HI, 80°C for 40 min), of cross-
733 linked (4% paraformaldehyde) platelets (n = 2), or (D) platelet supernatants (n = 3). (G) IL-1 β
734 levels in cell-free supernatants of hMDMs activated as in a, and added with the indicated
735 recombinant human proteins (n. = 3-4). (H) IL-1 β levels in cell-free supernatants of co-cultures
736 of platelets and hMDMs added with BAPTA (0.5 mM) in calcium-free medium or (I) BAPTA AM
737 (5 μ M) in normal RPMI medium before nigericin stimulation (n. = 4). (J) IL-1 β levels in cell-free
738 supernatants of inflammasome-activated hMDMs incubated with the indicated concentrations
739 of calcium chloride (CaCl_2) in Ca^{2+} -free medium (n. = 3). Data is represented as floating bars
740 (with mean and minimum to maximum values) from pooled data from 2 - 4 independent
741 experiments. Each symbol represents the mean of technical triplicates from different donors.
742 (See also **Figure S6**).

743

744

745 **Figure 7 – Platelets have broad effects on macrophages that may contribute to boosting**
746 **of inflammasome activation.** (A - B) Label-free quantification (LFQ) proteomic assessment
747 of the proteins in cell-free supernatants from unstimulated (Unstim) or LPS-treated (A) human
748 platelets (n = 4), or (B) the human megakaryocytic cell line MEG-01 (n = 3). Dark-blue points
749 show proteins with Log2 fold higher or lower than 1.5 between LPS and unstimulated
750 conditions. (C - E) IL-1 β levels in cell-free supernatants of unstimulated or inflammasome-
751 activated hMDMs that were (C) added with recombinant human TGFb1 in the indicated
752 concentrations (n = 3), or (D) pre-treated with SB-431542 (10 μ M, for 1 hours) (n = 3). (E - F)
753 IL-1 β levels in cell-free supernatants of unstimulated or inflammasome-activated hMDMs that
754 were (E) added with recombinant human S100A8/9 (n = 4), or (F) pre-treated with TAK242
755 (0.5 μ g ml $^{-1}$), and an Anti-RAGE mAb (10 μ g ml $^{-1}$), n = 2. (G) IL-1 β levels in cell-free
756 supernatants of unstimulated or inflammasome-activated hMDMs that were added with the
757 indicated concentrations of recombinant human Thrombospondin-1 (n = 2). (H) Levels of IL-

Rolfs & Ribeiro et al

758 1 β in cell-free supernatants inflammasome-activated mouse BMDMs cultured alone or in the
759 presence of supernatants isolated from wild-type or *Thbs1*^{-/-} platelets. (I) IL-1 β and TNF α
760 levels in cell-free supernatants of unstimulated or R848-primed and Nigericin-activated
761 hMDMs cultured alone or in the presence of platelets (50:1). hMDMs were pre-treated with the
762 CD36 inhibitor Sulfosuccinimidyl oleate (SSO, n = 2).
763 **C –I** Floating bars (with mean and minimum to maximum values) from pooled data from 2-4
764 independent experiments. Each symbol represents different donors, or mice. (See also **Figure**
765 **S7**).

766 **REFERENCES**

767

768 Alard, J.-E., Ortega-Gomez, A., Wichapong, K., Bongiovanni, D., Horckmans, M., Megens,
769 R.T.A., Leoni, G., Ferraro, B., Rossaint, J., Paulin, N., et al. (2015). Recruitment of classical
770 monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5.
771 *Sci. Transl. Med.* 7, 317ra196-317ra196.

772 Allam, O., Samarani, S., Jenabian, M.-A., Routy, J.-P., Tremblay, C., Amre, D., and Ahmad,
773 A. (2017). Differential synthesis and release of IL-18 and IL-18 Binding Protein from human
774 platelets and their implications for HIV infection. *Cytokine* 90, 144–154.

775 Allen, N., Barrett, T.J., Guo, Y., Nardi, M., Ramkhelawon, B., Rockman, C.B., Hochman, J.S.,
776 and Berger, J.S. (2019). Circulating monocyte-platelet aggregates are a robust marker of
777 platelet activity in cardiovascular disease. *Atherosclerosis* 282, 11–18.

778 Andrade, B.B., Reis-Filho, A., Souza-Neto, S.M., Clarêncio, J., Camargo, L.M.A., Barral, A.,
779 and Barral-Netto, M. (2010). Severe *Plasmodium vivax* malaria exhibits marked inflammatory
780 imbalance. *Malar. J.* 9, 13.

781 Asaduzzaman, M., Lavasani, S., Rahman, M., Zhang, S., Braun, O.O., Jeppsson, B., and
782 Thorlacius, H. (2009). Platelets support pulmonary recruitment of neutrophils in abdominal
783 sepsis*. *Crit. Care Med.* 37, 1389–1396.

784 Badrya, S., Schrottmaier, W.C., Kral, J.B., Yaiw, K.-C., Volf, I., Schabbauer, G., Söderberg-
785 Nauclér, C., and Assinger, A. (2014). Platelets mediate oxidized low-density lipoprotein-
786 induced monocyte extravasation and foam cell formation. *Arterioscler. Thromb. Vasc. Biol.*
787 34, 571–580.

788 Balow, J.E.J., Ryan, J.G., Chae, J.J., Booty, M.G., Bulua, A., Stone, D., Sun, H.-W., Greene,
789 J., Barham, B., Goldbach-Mansky, R., et al. (2013). Microarray-based gene expression
790 profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related
791 signature and IL-1-responsive transcripts. *Ann. Rheum. Dis.* 72, 1064–1070.

792 Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A.I., Martínez, C.M., Amores-Iniesta, J.,
793 Compan, V., Barberà-Cremades, M., Yagüe, J., Ruiz-Ortiz, E., Antón, J., et al. (2014). The

Rolfs & Ribeiro *et al*

794 NLRP3 inflammasome is released as a particulate danger signal that amplifies the
795 inflammatory response. *Nat. Publ. Gr.* **15**, 738–748.

796 Beilharz, M., De Nardo, D., Latz, E., and Franklin, B.S. (2016). Measuring NLR
797 Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and
798 Immunofluorescence. *Methods Mol. Biol.* (Clifton, NJ) **1417**, 145–158.

799 Bertheloot, D., and Latz, E. (2017a). HMGB1, IL-1 α , IL-33 and S100 proteins: dual-function
800 alarmins. *Cell. & Mol. Immunol.* **14**, 43–64.

801 Bertheloot, D., and Latz, E. (2017b). HMGB1, IL-1 α , IL-33 and S100 proteins: dual-
802 function alarmins. *Cell. Mol. Immunol.* **14**, 43–64.

803 Best, M.G., Sol, N., Kooi, I., Tannous, J., Westerman, B.A., Rustenburg, F., Schellen, P.,
804 Verschueren, H., Post, E., Koster, J., et al. (2015). RNA-Seq of Tumor-Educated Platelets
805 Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics.
806 *Cancer Cell* **28**, 666–676.

807 Best, M.G., Sol, N., In 't Veld, S.G.J.G., Vancura, A., Muller, M., Niemeijer, A.-L.N.,
808 Fejes, A. V, Tjon Kon Fat, L.-A., Huis In 't Veld, A.E., Leurs, C., et al. (2017). Swarm
809 Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated
810 Platelets. *Cancer Cell* **32**, 238–252.e9.

811 Boilard, E., Nigrovic, P.A., Larabee, K., Watts, G.F.M., Coblyn, J.S., Weinblatt, M.E.,
812 Massarotti, E.M., Remold-O'Donnell, E., Farndale, R.W., Ware, J., et al. (2010).
813 Platelets amplify inflammation in arthritis via collagen-dependent microparticle production.
814 *Sci. (New York, NY)* **327**, 580–583.

815 Bonar, S.L., Brydges, S.D., Mueller, J.L., McGeough, M.D., Pena, C., Chen, D., Grimston,
816 S.K., Hickman-Brecks, C.L., Ravindran, S., McAlinden, A., et al. (2012). Constitutively
817 Activated NLRP3 Inflammasome Causes Inflammation and Abnormal Skeletal Development
818 in Mice. *PLoS One* **7**.

819 Broderick, L., De Nardo, D., Franklin, B.S., Hoffman, H.M., and Latz, E. (2015). The
820 Inflammasomes and Autoinflammatory Syndromes. *Annu. Rev. Pathol. Mech. Dis.* **10**, 395–
821 424.

Rolfs & Ribeiro *et al*

822 Brown, G.T., and McIntyre, T.M. (2011). Lipopolysaccharide Signaling without a Nucleus:
823 Kinase Cascades Stimulate Platelet Shedding of Proinflammatory IL-1 -Rich Microparticles.
824 *J. Immunol.* 186, 5489–5496.

825 Burns, J.C., Kon, I., Kuijpers, T., Shimizu, C., Tremoulet, A., and Arditi, M. (2017). Found in
826 Translation International Initiatives Pursuing Interleukin-1 Blockade for Treatment of Acute
827 Kawasaki Disease. 69, 268–276.

828 Burzynski, L.C., Humphry, M., Pyrillou, K., Wiggins, K.A., Chan, J.N.E., Figg, N., Kitt, L.L.,
829 Summers, C., Tatham, K.C., Martin, P.B., et al. (2019). The Coagulation and Immune
830 Systems Are Directly Linked through the Activation of Interleukin-1α by Thrombin.
831 *Immunity* 1–27.

832 Cailotto, F., Reboul, P., Sebillaud, S., Netter, P., Jouzeau, J., and Bianchi, A. (2011).
833 Calcium Input Potentiates the Transforming Growth Factor (TGF) - α 1-dependent Signaling
834 to Promote the Export of Inorganic Pyrophosphate by Articular Chondrocyte *. 286, 19215–
835 19228.

836 Chandra, G., Cogswell, J.P., Miller, L.R., Godlevski, M.M., Stinnett, S.W., Noel, S.L.,
837 Kadwell, S.H., Kost, T.A., and Gray, J.G. (1995). Cyclic AMP signaling pathways are
838 important in IL-1 beta transcriptional regulation. *J. Immunol.* 155, 4535–4543.

839 Chatterjee, M., von Ungern-Sternberg, S.N.I., Seizer, P., Schlegel, F., Büttcher, M., Sindhu,
840 N.A., Müller, S., Mack, A., and Gawaz, M. (2015). Platelet-derived CXCL12 regulates
841 monocyte function, survival, differentiation into macrophages and foam cells through
842 differential involvement of CXCR4–CXCR7. *Cell Death Dis.* 6, e1989–e1989.

843 Ciccarelli, F., De Martinis, M., and Ginaldi, L. (2014). An update on autoinflammatory
844 diseases. *Curr. Med. Chem.* 21, 261–269.

845 Clark, I.A., Budd, A.C., Alleva, L.M., and Cowden, W.B. (2006). Human malarial disease: a
846 consequence of inflammatory cytokine release. *Malar. J.* 5, 85.

847 Coppinger, J.A. (2004). Characterization of the proteins released from activated platelets
848 leads to localization of novel platelet proteins in human atherosclerotic lesions. *Blood* 103,
849 2096–2104.

Rolfes & Ribeiro *et al*

850 Cornelius, D.C., Baik, C.H., Travis, O.K., White, D.L., Young, C.M., Austin Pierce, W.,
851 Shields, C.A., Poudel, B., and Williams, J.M. (2019). NLRP3 inflammasome activation in
852 platelets in response to sepsis. *Physiol. Rep.* 7, e14073.

853 Crawford, S.E., Stellmach, V., Murphy-Ullrich, J.E., Ribeiro, S.M.F., Lawler, J., Hynes, R.O.,
854 Boivin, G.P., and Bouck, N. (1998). Thrombospondin-1 is a major activator of TGF-beta 1 in
855 vivo. *Cell* 93, 1159–1170.

856 Dann, R., Hadi, T., Montenont, E., Boytard, L., Alebrahim, D., Feinstein, J., Allen, N., Simon,
857 R., Barone, K., Uryu, K., et al. (2018). Platelet-Derived MRP-14 Induces Monocyte Activation
858 in Patients With Symptomatic Peripheral Artery Disease. *J. Am. Coll. Cardiol.* 71, 53–65.

859 Denis, M.M., Tolley, N.D., Bunting, M., Schwertz, H., Jiang, H., Lindemann, S., Yost, C.C.,
860 Rubner, F.J., Albertine, K.H., Swoboda, K.J., et al. (2005). Escaping the nuclear confines:
861 signal-dependent pre-mRNA splicing in anucleate platelets. *Cell* 122, 379–391.

862 Devignot, S., Sapet, C., Duong, V., Bergon, A., Rihet, P., Ong, S., Lorn, P.T., Chroeung, N.,
863 Ngeav, S., Tolou, H.J., et al. (2010). Genome-wide expression profiling deciphers host
864 responses altered during dengue shock syndrome and reveals the role of innate immunity in
865 severe dengue. *PLoS One* 5, e11671.

866 Dinarello, C.A. (2009). Immunological and inflammatory functions of the interleukin-1 family.
867 *Annu. Rev. Immunol.* 27, 519–550.

868 Dinarello, C.A. (2018). Review article Interleukin-1 in the pathogenesis and treatment of
869 inflammatory diseases. *117*, 3720–3733.

870 Dinarello, C.A., and van der Meer, J.W.M. (2013). Treating inflammation by blocking
871 interleukin-1 in humans. *Semin. Immunol.* 25, 469–484.

872 Dinarello, C.A., Simon, A., and van der Meer, J.W.M. (2012). Treating inflammation by
873 blocking interleukin-1 in a broad spectrum of diseases. *Nat. Rev. Drug Discov.* 11, 633–652.

874 Du, R.-H., Tan, J., Sun, X.-Y., Lu, M., Ding, J.-H., and Hu, G. (2016). Fluoxetine Inhibits
875 NLRP3 Inflammasome Activation: Implication in Depression. *Int. J. Neuropsychopharmacol.*
876 19, pyw037.

877 Eicher, J.D., Wakabayashi, Y., Vitseva, O., Esa, N., Yang, Y., Zhu, J., Freedman, J.E.,

Rolfs & Ribeiro *et al*

878 McManus, D.D., and Johnson, A.D. (2016). Characterization of the platelet transcriptome by
879 RNA sequencing in patients with acute myocardial infarction. *Platelets* 27, 230–239.

880 Feng, X., Scheinberg, P., Samsel, L., Rios, O., Chen, J., McCOY JR, J.P., Ghanima, W.,
881 Bussel, J.B., and Young, N.S. (2012). Decreased plasma cytokines are associated with low
882 platelet counts in aplastic anemia and immune thrombocytopenic purpura. *J. Thromb.*
883 *Haemost.* 10, 1616–1623.

884 Franklin, B.S., Bossaller, L., De Nardo, D., Ratter, J.M., Stutz, A., Engels, G., Brenker, C.,
885 Nordhoff, M., Mirandola, S.R., Al-Amoudi, A., et al. (2014a). The adaptor ASC has
886 extracellular and 'prionoid' activities that propagate inflammation. *Nat. Immunol.*
887 15, 727–737.

888 Franklin, B.S., Bossaller, L., Nardo, D. De, Ratter, J.M., Stutz, A., Engels, G., Brenker, C.,
889 Nordhoff, M., Mirandola, S.R., Al-amoudi, A., et al. (2014b). The adaptor ASC has
890 extracellular and 'prionoid' activities that propagate inflammation. 15.

891 Gaidt, M.M., Ebert, T.S., Chauhan, D., Schmidt, T., Schmid-Burgk, J.L., Rapino, F.,
892 Robertson, A.A.B., Cooper, M.A., Graf, T., and Hornung, V. (2016). Human Monocytes
893 Engage an Alternative Inflammasome Pathway. *Immunity* 44, 833–846.

894 Gaidt, M.M., Ebert, T.S., Chauhan, D., Ramshorn, K., Pinci, F., Zuber, S., O'Duill, F.,
895 Schmid-Burgk, J.L., Hoss, F., Buhmann, R., et al. (2017). The DNA Inflammasome in Human
896 Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3. *Cell* 171,
897 1110-1124.e18.

898 Gnatenko, D. V, Cupit, L.D., Huang, E.C., Dhundale, A., Perrotta, P.L., and Bahou, W.F.
899 (2005). Platelets express steroidogenic 17beta-hydroxysteroid dehydrogenases. Distinct
900 profiles predict the essential thrombocythemic phenotype. *Thromb. Haemost.* 94, 412–421.

901 Hawrylowicz, C.M., Santoro, S.A., Platt, F.M., and Unanue, E.R. (1989). Activated platelets
902 express IL-1 activity. *J. Immunol.* 143, 4015–4018.

903 Hinz, C., Aldrovandi, M., Uhlson, C., Marnett, L.J., Longhurst, H.J., Warner, T.D., Alam, S.,
904 Slatter, D.A., Lauder, S.N., Allen-Redpath, K., et al. (2016). Human Platelets Utilize
905 Cyclooxygenase-1 to Generate Dioxolane A3, a Neutrophil-activating Eicosanoid. *J. Biol.*

Rolfs & Ribeiro *et al*

906 Chem. 291, 13448–13464.

907 Hottz, E.D., Lopes, J.F., Freitas, C., Valls-de-Souza, R., Oliveira, M.F., Bozza, M.T., Da

908 Poian, A.T., Weyrich, A.S., Zimmerman, G.A., Bozza, F.A., et al. (2013). Platelets mediate

909 increased endothelium permeability in dengue through NLRP3-inflammasome activation.

910 Blood 122, 3405–3414.

911 Hottz, E.D., Lopes, J.F., Freitas, C., Valls-de-souza, R., Oliveira, M.F., Bozza, M.T., Poian,

912 A.T. Da, Weyrich, A.S., Zimmerman, G.A., Bozza, F.A., et al. (2014). Platelets mediate

913 increased endothelium permeability in dengue through NLRP3-inflammasome activation

914 Platelets mediate increased endothelium permeability in dengue through NLRP3-in fl

915 ammasome activation. 3405–3414.

916 Hu, L.-F., Wu, T., Wang, B., Wei, Y.-Y., Kong, Q.-X., Ye, Y., Yin, H.-F., and Li, J.-B. (2018).

917 The Regulation of Seventeen Inflammatory Mediators are Associated with Patient Outcomes

918 in Severe Fever with Thrombocytopenia Syndrome. Sci. Rep. 8, 159.

919 Jr, J.E.B., Ryan, J.G., Chae, J.J., Booty, M.G., Bulua, A., Stone, D., Sun, H., Greene, J.,

920 Barham, B., Goldbach-mansky, R., et al. (2013). Microarray-based gene expression pro fi

921 ling in patients with cryopyrin-associated periodic syndromes de fi nes a disease-related

922 signature and IL-1-responsive transcripts. 1064–1070.

923 Kaplanski, G., Porat, R., Aiura, K., Erban, J.K., Gelfand, J.A., and Dinarello, C.A. (1993).

924 Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-

925 mediated event. Blood 81, 2492–2495.

926 Kayagaki, N., Stowe, I.B., Lee, B.L., O'Rourke, K., Anderson, K., Warming, S., Cuellar,

927 T., Haley, B., Roose-Girma, M., Phung, Q.T., et al. (2015). Caspase-11 cleaves gasdermin D

928 for non-canonical inflammasome signalling. Nature 526, 666–671.

929 Kimura, H., Ishibashi, T., Shikama, Y., Okano, A., Akiyama, Y., Uchida, T., and Maruyama,

930 Y. (1990). Interleukin-1 beta (IL-1 beta) induces thrombocytosis in mice: possible implication

931 of IL-6. Blood 76, 2493–2500.

932 Kral, J.B., Schrottmaier, W.C., Salzmann, M., and Assinger, A. (2016). Platelet Interaction

933 with Innate Immune Cells. Transfus. Med. Hemotherapy 43, 78–88.

Rolfs & Ribeiro *et al*

934 Kuda, O., Pietka, T.A., Demianova, Z., Kudova, E., Cvacka, J., Kopecky, J., and Abumrad,
935 N.A. (2013). Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for
936 intracellular calcium via binding CD36 lysine 164: SSO also inhibits oxidized low density
937 lipoprotein uptake by macrophages. *J. Biol. Chem.* 288, 15547–15555.

938 Lang, D., Dohle, F., Terstesse, M., Bangen, P., August, C., Pauels, H.-G., and Heidenreich,
939 S. (2002). Down-regulation of monocyte apoptosis by phagocytosis of platelets: involvement
940 of a caspase-9, caspase-3, and heat shock protein 70-dependent pathway. *J. Immunol.* 168,
941 6152–6158.

942 Latz, E., Xiao, T.S., and Stutz, A. (2013). Activation and regulation of the inflammasomes.
943 *Nat. Rev. Immunol.* 13, 397–411.

944 Lee, G.-S., Subramanian, N., Kim, A.I., Aksentijevich, I., Goldbach-Mansky, R., Sacks, D.B.,
945 Germain, R.N., Kastner, D.L., and Chae, J.J. (2012a). The calcium-sensing receptor
946 regulates the NLRP3 inflammasome through Ca²⁺ and cAMP. *Nature* 492, 123–127.

947 Lee, Y., Schulte, D.J., Shimada, K., Chen, S., Crother, T.R., Chiba, N., Fishbein, M.C.,
948 Lehman, T.J.A., and Arditi, M. (2012b). Interleukin-1 β Is Crucial for the Induction of
949 Coronary Artery Inflammation in a Mouse Model of Kawasaki Disease. 1542–1550.

950 Li, Y., Qi, X., Tong, X., and Wang, S. (2013). Thrombospondin 1 activates the macrophage
951 Toll-like receptor 4 pathway. *Cell. & Mol. Immunol.* 10, 506–512.

952 Lindemann, S., Tolley, N.D., Dixon, D.A., McIntyre, T.M., Prescott, S.M., Zimmerman, G.A.,
953 and Weyrich, A.S. (2001). Activated platelets mediate inflammatory signaling by regulated
954 interleukin 1 β synthesis. *J. Cell Biol.* 154, 485–490.

955 Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V.G., Wu, H., and Lieberman, J. (2016).
956 Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores.
957 *Nature* 535, 153–158.

958 Londin, E.R., Hatzimichael, E., Loher, P., Edelstein, L., Shaw, C., Delgrossio, K., Fortina, P.,
959 Bray, P.F., McKenzie, S.E., and Rigoutsos, I. (2014). The human platelet: strong
960 transcriptome correlations among individuals associate weakly with the platelet proteome.
961 *Biol. Direct* 9, 3.

Rolfs & Ribeiro et al

962 Lood, C., Tydén, H., Gullstrand, B., Jönsen, A., Källberg, E., Mörgelin, M., Kahn, R.,
963 Gunnarsson, I., Leanderson, T., Ivars, F., et al. (2016). Platelet-Derived S100A8/A9 and
964 Cardiovascular Disease in Systemic Lupus Erythematosus. *Arthritis & Rheumatol.* 68,
965 1970–1980.

966 Marcinkiewcz, C.A., Mazzone, C.M., Agostino, G.D., Halladay, L.R., Hardaway, J.A., Diberto,
967 J.F., Burnham, N., Cristiano, C., Dorrier, C.E., Tipton, G.J., et al. (2016). circuit in the
968 extended amygdala. *Nat. Publ. Gr.* 537, 97–101.

969 Matsunaga, N., Tsuchimori, N., Matsumoto, T., and Ii, M. (2011). TAK-242 (resatorvid), a
970 small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and
971 interferes with interactions between TLR4 and its adaptor molecules. *Mol. Pharmacol.* 79,
972 34–41.

973 Matsuyama, S., Iwadate, M., Kondo, M., Saitoh, M., Hanyu, A., Shimizu, K., Aburatani, H.,
974 Mishima, H.K., Imamura, T., Miyazono, K., et al. (2003). SB-431542 and Gleevec inhibit
975 transforming growth factor-beta-induced proliferation of human osteosarcoma cells. *Cancer*
976 *Res.* 63, 7791–7798.

977 Maynard, D.M., Heijnen, H.F.G., Horne, M.K., White, J.G., and Gahl, W.A. (2007). Proteomic
978 analysis of platelet alpha-granules using mass spectrometry. *J. Thromb. Haemost.* 5, 1945–
979 1955.

980 Misenheimer, T.M., and Mosher, D.F. (1995). Calcium ion binding to thrombospondin 1. *J.*
981 *Biol. Chem.* 270, 1729–1733.

982 Netea, M.G., Joosten, L.A.B., Li, Y., Kumar, V., Oosting, M., Smeekens, S., Jaeger, M., ter
983 Horst, R., Schirmer, M., Vlamakis, H., et al. (2016). Understanding human immune function
984 using the resources from the Human Functional Genomics Project. *Nat. Med.* 22, 831–833.

985 Nishimura, S., Nagasaki, M., Kunishima, S., Sawaguchi, A., Sakata, A., Sakaguchi, H.,
986 Ohmori, T., Manabe, I., Italiano, J.E., Ryu, T., et al. (2015). IL-1 α induces thrombopoiesis
987 through megakaryocyte rupture in response to acute platelet needs. *J. Cell Biol.* 209, 453–
988 466.

989 Passacquale, G., Vamadevan, P., Pereira, L., Hamid, C., Corrigall, V., and Ferro, A. (2011a).

Rolfs & Ribeiro *et al*

990 Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating
991 monocytes. PLoS One 6, e25595.

992 Passacquale, G., Vamadevan, P., Pereira, L., Hamid, C., and Corrigall, V. (2011b).

993 Monocyte-Platelet Interaction Induces a Pro- Inflammatory Phenotype in Circulating
994 Monocytes. 6.

995 Pillitteri, D., Bassus, S., Boller, K., Scholz, T., Westrup, D., Wegert, W., and Kirchmaier, C.M.
996 (2007). Thrombin-induced interleukin 1 b synthesis in platelet suspensions : Impact of
997 contaminating leukocytes. 18, 119–127.

998 Pourcelot, E., Trocme, C., Mondet, J., Bailly, S., Toussaint, B., and Mossuz, P. (2014).
999 Cytokine profiles in polycythemia vera and essential thrombocythemia patients: Clinical
1000 implications. Exp. Hematol. 42, 360–368.

1001 Qin, C., Gu, J., Hu, J., Qian, H., Fei, X., Li, Y., Liu, R., and Meng, W. (2016). Platelets
1002 activation is associated with elevated plasma mitochondrial DNA during cardiopulmonary
1003 bypass. J. Cardiothorac. Surg. 11, 90.

1004 Raghavachari, N., Xu, X., Harris, A., Villagra, J., Logun, C., Barb, J., Solomon, M.A.,
1005 Suffredini, A.F., Danner, R.L., Kato, G., et al. (2007). Amplified expression profiling of platelet
1006 transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell
1007 disease. Circulation 115, 1551–1562.

1008 Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C.,
1009 Fonseca, F., Nicolau, J., Koenig, W., Anker, S.D., et al. (2017a). Antiinflammatory Therapy
1010 with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 377, 1119–1131.

1011 Ridker, P.M., MacFadyen, J.G., Everett, B.M., Ridker, P., Lorenzatti, A., Krum, H., Varigos,
1012 J., Siostrzonek, P., Sinnaeve, P., Fonseca, F., et al. (2017b). Effect of interleukin-1 β
1013 inhibition with canakinumab on incident lung cancer in patients with atherosclerosis:
1014 exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390,
1015 1833–1842.

1016 Rossol, M., Pierer, M., Raulien, N., Quandt, D., Meusch, U., Rothe, K., Schubert, K., neberg,
1017 T.S. Schaefer, M., gel, U.K. uuml, et al. (1AD). Extracellular Ca2+ is a

Rolfs & Ribeiro *et al*

1018 danger signal activating the NLRP3 inflammasome through G protein-coupled calcium
1019 sensing receptors. *Nat. Commun.* 3, 1329.

1020 Rowley, J.W., Oler, A.J., Tolley, N.D., Hunter, B.N., Low, E.N., Nix, D.A., Yost, C.C.,
1021 Zimmerman, G.A., and Weyrich, A.S. (2011). Genome-wide RNA-seq analysis of human and
1022 mouse platelet transcriptomes. *Blood* 118, e101-11.

1023 Schirmer, M., Kumar, V., Netea, M.G., and Xavier, R.J. (2018). ScienceDirect The causes
1024 and consequences of variation in human cytokine production in health. *Curr. Opin. Immunol.*
1025 54, 50–58.

1026 Semple, J.W., Italiano, J.E., and Freedman, J. (2011). Platelets and the immune continuum.
1027 *Nat. Rev. Immunol.* 11, 264–274.

1028 Senzel, L., and Chang, C. (2013). Platelet phagocytosis by neutrophils. *Blood* 122, 1543.

1029 Spivak, J.L., Considine, M., Williams, D.M., Talbot Jr., C.C., Rogers, O., Moliterno, A.R., Jie,
1030 C., and Ochs, M.F. (2014). Two Clinical Phenotypes in Polycythemia Vera. *N. Engl. J. Med.*
1031 371, 808–817.

1032 Sreeramkumar, V., Adrover, J.M., Ballesteros, I., Cuartero, M.I., Rossaint, J., Bilbao, I.,
1033 Nacher, M., Pitaval, C., Radovanovic, I., Fukui, Y., et al. (2014). Neutrophils scan for
1034 activated platelets to initiate inflammation. *Sci. (New York, NY)* 346, 1234–1238.

1035 Stein, E. V., Miller, T.W., Ivins-O'Keefe, K., Kaur, S., and Roberts, D.D. (2016).
1036 Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1 β Production and
1037 Activation through CD47. *Sci. Rep.* 6, 19684.

1038 Stutz, A., Horvath, G.L., Monks, B.G., and Latz, E. (2013). ASC Speck Formation as a
1039 Readout for Inflammasome Activation. In *The Inflammasome*, (Totowa, NJ: Humana Press),
1040 pp. 91–101.

1041 Thornton, P., McColl, B.W., Greenhalgh, A., Denes, A., Allan, S.M., and Rothwell, N.J.
1042 (2010a). Platelet interleukin-1~ drives cerebrovascular inflammation. *Blood* 115, 3632–3639.

1043 Thornton, P., McColl, B.W., Greenhalgh, A., Denes, A., Allan, S.M., and Rothwell, N.J.
1044 (2010b). Platelet interleukin-1alpha drives cerebrovascular inflammation. *Blood* 115, 3632–
1045 3639.

Rolfs & Ribeiro *et al*

1046 Trinh, B.Q., Barengo, N., Kim, S.B., Lee, J.-S., Zweidler-McKay, P.A., and Naora, H. (2015).
1047 The homeobox gene DLX4 regulates erythro-megakaryocytic differentiation by stimulating IL-
1048 1 β and NF- κ B signaling. *J. Cell Sci.* 128, 3055–3067.

1049 Tunjungputri, R.N., Li, Y., de Groot, P.G., Dinarello, C.A., Smeekens, S.P., Jaeger, M.,
1050 Doppenberg-Oosting, M., Cruijsen, M., Lemmers, H., Toenhake-Dijkstra, H., et al. (2018).
1051 The Inter-Relationship of Platelets with Interleukin-1 β -Mediated Inflammation in Humans.
1052 *Thromb. Haemost.*

1053 Tzeng, T.-C., Schattgen, S., Monks, B., Wang, D., Cerny, A., Latz, E., Fitzgerald, K., and
1054 Golenbock, D.T. (2016a). A Fluorescent Reporter Mouse for Inflammasome Assembly
1055 Demonstrates an Important Role for Cell-Bound and Free ASC Specks during In Vivo
1056 Infection. *Cell Reports* 16, 571–582.

1057 Tzeng, T.J., Schattgen, S., Monks, B., Latz, E., Fitzgerald, K., Golenbock, D.T., Tzeng, T.J.,
1058 Schattgen, S., Monks, B., Wang, D., et al. (2016b). Article A Fluorescent Reporter Mouse for
1059 Inflammasome Assembly Demonstrates an Important Role for Cell- Bound and Free ASC
1060 Specks during In Vivo Infection Article A Fluorescent Reporter Mouse for Inflammasome
1061 Assembly Demonstrates an Important Role for Ce. *Cell Reports* 1–12.

1062 Vaday, G.G., Schor, H., Rahat, M.A., Lahat, N., and Lider, O. (2001). Transforming growth
1063 factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9
1064 expression in monocytes. *J. Leukoc. Biol.* 69, 613–621.

1065 Verrecchia, F., and Mauviel, A. (2004). TGF-beta and TNF-alpha: antagonistic cytokines
1066 controlling type I collagen gene expression. *Cell. Signal.* 16, 873–880.

1067 Vogel, S., Arora, T., Wang, X., Mendelsohn, L., Nichols, J., Allen, D., Shet, A.S., Combs,
1068 C.A., Quezado, Z.M.N., and Thein, S.L. (2018). The platelet NLRP3 inflammasome is
1069 upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. *Blood Adv.*
1070 2, 2672–2680.

1071 Wang, Y., Fang, C., Gao, H., Bilodeau, M.L., Zhang, Z., Croce, K., Liu, S., Morooka, T.,
1072 Sakuma, M., Nakajima, K., et al. (2014). Platelet-derived S100 family member myeloid-
1073 related protein-14 regulates thrombosis. *J. Clin. Invest.* 124, 2160–2171.

Rolfs & Ribeiro *et al*

1074 Wong, C.H.Y., Jenne, C.N., Petri, B., Chrobok, N.L., and Kubes, P. (2013). Nucleation of
1075 platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and
1076 contributes to bacterial clearance. *Nat. Immunol.* **14**, 785–792.

1077 Wu, C., Lu, W., Zhang, Y., Zhang, G., Shi, X., Hisada, Y., Grover, S.P., Zhang, X., Li, L.,
1078 Xiang, B., et al. (2019). Inflammasome Activation Triggers Blood Clotting and Host Death
1079 through Pyroptosis. *Immunity* **1**–16.

1080 Xiang, B., Zhang, G., Guo, L., Li, X.-A., Morris, A.J., Daugherty, A., Whiteheart, S.W., Smyth,
1081 S.S., and Li, Z. (2013). Platelets protect from septic shock by inhibiting macrophage-
1082 dependent inflammation via the cyclooxygenase 1 signalling pathway. *Nat. Commun.* **4**, 264.

1083 Yamane, K., Ihn, H., Asano, Y., Jinnin, M., and Tamaki, K. (2003). Antagonistic effects of
1084 TNF-alpha on TGF-beta signaling through down-regulation of TGF-beta receptor type II in
1085 human dermal fibroblasts. *J. Immunol.* **171**, 3855–3862.

1086 Zasłona, Z., Pålsson-McDermott, E.M., Menon, D., Haneklaus, M., Flis, E., Prendeville, H.,
1087 Corcoran, S.E., Peters-Golden, M., and O'Neill, L.A.J. (2017). The Induction of
1088 Pro-IL-1 β by Lipopolysaccharide Requires Endogenous Prostaglandin E
1089 2Production. *J. Immunol.* **198**, 3558–3564.

1090 Zhang, N., Czepielewski, R.S., Jarjour, N.N., Erlich, E.C., Esaulova, E., Saunders, B.T.,
1091 Grover, S.P., Cleuren, A.C., Broze, G.J., Edelson, B.T., et al. (2019). Expression of factor V
1092 by resident macrophages boosts host defense in the peritoneal cavity. **1**–10.

1093 Zhao, Y., Yang, J., Shi, J., Gong, Y.-N., Lu, Q., Xu, H., Liu, L., and Shao, F. (2011). The
1094 NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus.
1095 *Nature* **477**, 596–600.

1096 Zuchtriegel, G., Uhl, B., Puhr-Westerheide, D., Pörnbacher, M., Lauber, K., Krombach, F.,
1097 and Reichel, C.A. (2016). Platelets Guide Leukocytes to Their Sites of Extravasation. *PLoS*
1098 *Biol.* **14**, e1002459.

1099 (2017). The NLR Adaptor ASC/PYCARD Regulates DUSP10, Mitogen-activated Protein
1100 Kinase (MAPK), and Chemokine Induction Independent of the Inflammasome. **1**–12.

1101

Rolfs & Ribeiro et al

1102 **METHODS**

1103 **Patients and human volunteers**

1104 Malaria patients naturally infected with *Plasmodium vivax* in the Amazon area of Cuiaba (Mato
1105 Grosso, Brazil) were invited to participate in the study. Seventy-eight individuals (aged 18 - 78
1106 years old) who sought care at the Julio Muller Hospital, whose thick blood smear was positive
1107 for *P. vivax* were included. Another 9 healthy volunteers from the same endemic area who
1108 tested negative for Plasmodium infection were recruited and served as healthy donor controls.
1109 Exclusion criteria included: (i) refuse or inability to sign the informed consent; (ii) age < 18
1110 years; (ii) pregnant women; (ii) mixed infection with *P. falciparum* or *P. malaria*, tested by both
1111 microscopic examination and a nested-PCR; (iv) any other co-morbidity that could be traced.
1112 Clinical and demographical data were acquired through a standardized questionnaire, and the
1113 hematological profiles were assessed by automated complete blood count carried out at the
1114 site hematology facility. Plasma samples were isolated immediately after blood sampling and
1115 stored at -80°C until use. The study was approved by the Ethical Review Board of the René
1116 Rachou Research Center, FIOCRUZ, Brazilian Ministry of Health (Reporter CEPSH/CPqRR
1117 N. 05/2008 and N. 01/2018).

1118 All participants were instructed about the objectives of the study and signed an informed
1119 consent in accordance with guidelines for human research, as specified by the Brazilian
1120 National Council of Health (Resolution 196/96). Patients diagnosed with *P. vivax* malaria were
1121 treated according to the standard protocols recommended by the National Malaria Control
1122 Program (chloroquine + primaquine).

1123

1124 **Generation of human primary macrophages (hMDMs)**

1125 Buffy coats from healthy donors were obtained according to protocols accepted by the
1126 institutional review board at the University of Bonn (local ethics votes Lfd. Nr. 075/14). Primary
1127 human macrophages were obtained through differentiation of CD14+ monocytes in a medium
1128 complemented with 500 U/mL rhGM-CSF (Immunotools) for 3 days. In brief, human peripheral
1129 blood mononuclear cells (PBMCs) were obtained from buffy coats of healthy donors by density

Rolfes & Ribeiro et al

1130 gradient centrifugation in Ficoll-Paque PLUS (Healthcare). PBMCs were incubated at 4°C with
1131 magnetic microbeads conjugated to monoclonal anti-human CD14 antibodies according to the
1132 manufacturer's instructions (Miltenyi Biotech). CD14+ monocytes were thereby magnetically
1133 labeled and isolated using a MACS column placed in a magnetic field. CD14+monocytes were
1134 cultivated in complete medium (RPMI1640 medium with 10% FBS, 1% Penicillin-Streptomycin,
1135 1% GlutaMAX and 1% Sodium Pyruvate) complemented with 500 U/mL rhGM-CSF at a
1136 concentration of 2×10^6 /mL in 6-well plates to generate monocyte-derived macrophages. Cells
1137 were harvested at day 3, counted using a hemocytometer and seeded at a concentration of
1138 1×10^5 /well in complete medium complemented with 125 U/mL rhGM-CSF in 96-well flat-bottom
1139 plates and incubated overnight for experiments on the next day.

1140

1141 **Generation of murine bone marrow-derived macrophages (BMDMs)**

1142 Mice were anaesthetized with isoflurane and sacrificed by cervical dislocation. Femur and tibia
1143 from hind limbs were removed and the bones were briefly disinfected with 70% ethanol. The
1144 bone marrow cavity was flushed with PBS and the cell suspension was filtered through a 70
1145 μm cell strainer before centrifugation at 400 x g for 5 minutes. Cells were resuspended in
1146 DMEM supplemented with 20% L929 supernatant and cultured for 6 days to differentiate into
1147 macrophages (BMDMs). On day six, cells were harvested using cold PBS containing 5 mM
1148 EDTA and 2% FBS and scraping. After centrifugation at 350 x g for 5 minutes, the BMDM were
1149 seeded at 1×10^5 /well in DMEM with 20% L929 supernatants in flat-bottom 96-well plates and
1150 incubated overnight for experiments on the next day.

1151

1152 **Human and mouse cell isolations**

1153 Peripheral blood was obtained by venipuncture of healthy volunteers after signature of
1154 informed consent, and approval of the study by the Ethics Committee of the University of Bonn
1155 (Protocol#282/17), and in accordance with the Declaration of Helsinki.

1156

1157 **Neutrophil isolation from human blood**

Rolfes & Ribeiro et al

1158 Venous blood was collected in S-Monovette® K3EDTA tubes and neutrophils were
1159 isolated using the EasySep™ Direct Human Neutrophil Isolation Kit according to the
1160 manufacturer instructions (STEMCELL Technologies™). Whole blood was incubated with the
1161 Neutrophil Isolation Cocktail and RapidSpheres™ for 5 minutes and diluted with neutrophil
1162 isolation buffer (1mMEDTA in PBS). After 5 minutes of incubation in the EasySep™ Magnet,
1163 the enriched cell suspension was poured into a new tube and incubated again with
1164 RapidSpheres™ for another 5 minutes, followed by a second, and third round of magnetic
1165 separation. The obtained neutrophils were counted using a hemocytometer and pelleted by
1166 centrifugation at 350 x g for 5 minutes. Cells were resuspended in RPMI-1640 medium
1167 supplemented with 10% FBS, 1% GlutaMAX and 1% Penicillin-Streptomycin. Neutrophil
1168 suspension was adjusted to 1×10^6 /mL and 100 μ L (1×10^5 cells/well) were seeded in a 96-well
1169 round-bottom plate. The purity of the purified neutrophils was assessed by flow cytometry
1170 using CD66b (neutrophil marker) and CD41 (platelet marker).

1171

1172 Platelet isolation from human blood

1173 Human platelets were isolated as previously described (Alard et al., 2015) with slight
1174 modifications. In brief, venous blood was drawn into S-Monovette® 9NC collection tubes. The
1175 blood was centrifuged for 5 minutes at 330 x g without brake to obtain platelet-rich plasma
1176 (PRP). All following centrifugation steps were performed without brake and in the presence of
1177 200 nM PGE1 to inhibit platelet activation. PRP was transferred to a new tube and diluted 1:1
1178 with phosphate-buffered saline (PBS) to reduce leukocyte contamination and centrifuged for
1179 10 minutes at 240 x g. Platelets were pelleted by centrifugation at 430 x g for 15 minutes and
1180 washed once with PBS. Total platelets were counted using a hemocytometer and resuspended
1181 in RPMI medium to a concentration of 1x10⁸/mL unless otherwise indicated. The purity of the
1182 purified platelets was assessed by flow cytometry using CD45 (leukocyte) and CD41 (platelet)
1183 markers.

1184 Generation of Platelet and megakariocyte supernatants

1185

Rolfs & Ribeiro et al

1186 After platelet isolation, the cell suspension was adjusted to 5×10^7 platelets ml^{-1} (for human
1187 experiments) or 5×10^6 platelets ml^{-1} (for mouse BMDM experiments), in order to fit the
1188 macrophage:platelets proportion of 1:50 (human) or 1:5 (mouse). Next, platelets were left
1189 unstimulated (Unstim) or incubated at 37°C with LPS (200 ng ml^{-1}) or thrombin (0.5 or 1.0 U
1190 ml^{-1}) for 3 hours. After stimulation, the cell suspension was centrifuged for 10 minutes at
1191 $3000 \times g$ for the generation of the cell-free supernatants. The absence of cells was confirmed
1192 by microscopic visualization in a hemocytometer. The supernatants were immediately used to
1193 stimulate hMDMs in RPMI, or immediately frozen at -80°C until use.

1194

1195 **Monocyte isolation from human blood**

1196 Venous blood was collected in S-Monovette® K3EDTA tubes and PBMCs were
1197 obtained by density gradient centrifugation in Ficoll-Paque PLUS. Monocytes were isolated
1198 from PBMCs using the EasySep™ Human Monocyte Isolation Kit according to the
1199 manufacturer instructions (STEMCELL Technologies™). PBMCs were washed twice with PBS
1200 complemented with 2% FBS and 1mM EDTA before incubated with the supplied monocyte
1201 isolation cocktail and the platelet removal cocktail for 5 minutes. Magnetic beads were added
1202 to this suspension for another 5 minutes before magnetic separation in an EasySep™
1203 Magnet. After 2.5 minutes of incubation, the enriched suspension was poured into a new tube.
1204 The isolated monocytes were counted using a hemocytometer and resuspended in RPMI
1205 medium at a concentration of $1 \times 10^6/\text{mL}$. The purity of the purified monocytes was assessed
1206 by flow cytometry using CD14 (monocyte) and CD41 (platelet) markers.

1207

1208 **Animals**

1209 Mice were housed under standard conditions at 22°C and a 12 h light-dark cycle with free
1210 access to food and water. Animal care and handling was performed according to the
1211 Declaration of Helsinki and approved by the local ethical committees (LANUVNRW # 84-
1212 02.04.2016.A487).

1213

Rolfes & Ribeiro et al

1214 **Platelet isolation from murine blood**

1215 Blood was drawn by puncturing the vena facialis of anaesthetized mice. Blood from mice of
1216 the same genotype were pooled in a sterile 5 mL polystyrene tube containing one-sixth blood
1217 volume of pre-warmed citrate-dextrose solution (ACD). PRP was prepared by centrifugation at
1218 330 x g for 5 minutes without brake. All following centrifugation steps were performed without
1219 brake. PRP was transferred to a new tube and diluted in twice as much volume of
1220 PIPES/saline/glucose (PSG)buffer with the final concentration of 1.5 μ M PGE1. The
1221 suspension was centrifuged at 240 x g for 10 minutes to reduce leukocyte and erythrocyte
1222 contamination. The supernatant was transferred into a tube with PGE1 in a final concentration
1223 of 0.7 μ M in PSG buffer. The platelets were pelleted by centrifugation at 1000 x g for 5 min,
1224 washed with 1.5 μ M PGE1 in PSG buffer. The washed platelets were resuspended in DMEM,
1225 counted in a hemocytometer, and the platelet suspension was adjusted to 5×10^6 /mL unless
1226 otherwise indicated. Purity and viability of the prepared platelets were assessed by flow
1227 cytometry.

1228

1229 **Purity assessment of the isolated cells by flow cytometry**

1230 Samples of isolated neutrophils and platelets were analyzed for purity, platelet pre-activation
1231 and platelet viability after each experiment. Isolated murine and human platelets were
1232 activated with 0.5 or 1 U/mL thrombin respectively for 30 min. Cells were blocked with 1:10
1233 mouse or human Fc blocking reagent for 10 minutes at room temperature (RT). The samples
1234 were stained with fluorochrome-conjugated monoclonal anti-mouse or anti-human Ig
1235 antibodies against CD41/CD41, CD62p, CD14, CD45 or CD66b as indicated for 30 minutes in
1236 the dark. Cells were washed and resuspended in flow cytometry buffer (1% FBS in PBS) for
1237 analysis. Compensation beads (OneComp Beads) and isotype controls were prepared in the
1238 same way. Flow cytometry was performed with a Macs Quant[®] Analyzer10 (Miltenyi Biotech)
1239 and analyzed using the Flowtop software (Tree Star). The applied gating strategy was based
1240 on doublet discrimination and isotype-matched control antibodies.

1241

Rolfs & Ribeiro *et al*

1242 **Generation of Platelet and megakaryocyte cell-free supernatants**

1243 After platelet isolation, the cell suspension was adjusted to 5×10^7 platelets ml^{-1} (for human
1244 experiments) or 5×10^6 platelets ml^{-1} (for mouse BMDM experiments), in order to fit the
1245 macrophage:platelets proportion of 1:50 (human) or 1:5 (mouse). For the generation of
1246 supernatants from the megakaryocytic cell line MEG-01, 1×10^6 cells ml^{-1} were used. Next,
1247 platelets or MEG-01 were left unstimulated (Unstim) or incubated at 37°C with LPS (200 ng
1248 ml^{-1}) or thrombin (1.0 U ml^{-1}) for 3 hours. After stimulation, the platelet cell suspension was
1249 centrifuged for 10 minutes at $3000 \times g$ for the generation of the cell-free supernatants. MEG-
1250 01 cells were first centrifuged for 7 minutes at $170 \times g$ and the obtained supernatants were
1251 centrifuged again for 10 minutes at $3000 \times g$. The absence of cells was confirmed by
1252 microscopic visualization in a hemocytometer. The supernatants were immediately used to
1253 stimulate hMDMs in RPMI, or immediately frozen at -80°C until further use.

1254

1255 **Stimulation assays**

1256 Seeded BMDMs, human macrophages or neutrophils were centrifuged at $350 \times g$ for 5 minutes
1257 prior to replacing the supernatant by fresh, serum-free DMEM (for BMDMs) or RPMI (for
1258 human neutrophils and macrophages) as control or platelet suspension. For NLRP3
1259 stimulation, cells were primed with 200 ng ml^{-1} LPS for 3 hours and activated with 10 μM
1260 Nigericin or 5 mM ATP for 90 minutes unless otherwise indicated. Human monocytes were
1261 primed with 2 ng ml^{-1} before being activated with Nigericin (10 μM , 90 min). For NLRC4
1262 stimulation, human macrophages were primed with 200 ng/mL LPS for 3 hours before 2 μg ml^{-1}
1263 PrgI and 0.5 μg ml^{-1} PA were added to the culture medium for 2 hours. R848 and Pam3cysk4
1264 were also used for priming in some experiments at 10 μM and 1 μg ml^{-1} respectively. After
1265 stimulation, cells were centrifuged and supernatants were collected to measure cytokine levels
1266 by HTRF. In experiments where the activity of COX1/2 and LOX was inhibited, platelets were
1267 incubated with Aspirin, or Zileuton (both at 100 μM) for 60 min at 37°C , before their addition to
1268 hMDMs. The drugs were diluted in RPMI 1640, without supplements.

1269

1270 **Real time PCR**

1271 Total RNA containing small RNAs from purified human platelets, or PBMCs was purified using
1272 the miRNeasy kit (Qiagen), DNA was digested with DNase I (Qiagen), and cDNA was

Rolfs & Ribeiro et al

1273 generated by using 500ng RNA with SuperScript III Reverse Transcriptase kit (Thermo Fisher)
1274 following the manufacturer's instructions. cDNA was diluted (1:10 for PBMCs, and 1:3 for
1275 platelets) and qPCR was performed with Maxima SYBR Green on a Quant Studio 6 Flex RT
1276 PCR machine (Thermo Fisher) for 40 cycles and followed by a melt curve analysis for off-
1277 target products. The primers used were ACTB-fwd-ccaccatgtaccctggcatt, ACTB-rev-
1278 cgaggacttgcgctcagga, NLRP3-fwd-tcgagacaaggatcaaa, NLRP3-rev-
1279 agcagcagtgtgacgtgagg, CD14-fwd-gagctcagaggttcggaga, CD14-rev-cttcatcgccagctcaca,
1280 PYCARD-fwd-gagctcaccgctaacgtgct, PYCARD-rev-actgaggagggccctggat, PF4-fwd-
1281 ctgaagaagatggggacctg, PF4-rev-gtggctatcagttggcagt, CASP1-fwd-acaacccagctatgcccaca,
1282 CASP1-rev-gtgcggcttgacttgccat, GP1BA-fwd-ctgctttgcctctgtgg, GP1BA-rev-
1283 ctccagggtgtggtttg, IL1B-fwd-tggcagactcaaattccagct, IL1B-rev-ctgtaccgtcctgcgtgtga.
1284

1285 **Cytokine measurements**

1286 Levels of human, or murine IL-1 β , IL-6, and TNF α in cell culture supernatants were quantified
1287 using commercially available HTRF® (homogeneous time-resolved fluorescence) kits. The
1288 HTRF was performed according to manufacturer instructions (CIS bio). Multiplex Cytokine
1289 array was used for the detection of human IL-18, IL-1 α and MCP1 according to the
1290 manufacturer's instructions (Thermo Fisher).

1291

1292 **Caspase-1 activity**

1293 Caspase-Glo® 1 Inflammasome Assay (Promega) provides a luminogenic caspase-1
1294 substrate, Z-WEHD-amino luciferin, in a lytic reagent optimized for caspase-1 activity and
1295 luciferase activity.

1296

1297 **Confocal laser scanning microscopy**

1298 Platelets and immune cells were imaged in a Leica TCS SP5 SMD confocal system (Leica
1299 Microsystems, Wetzlar, Germany). Images were acquired using a 63X objective, with a

Rolfs & Ribeiro et al

1300 numerical aperture of 1.2, and analyzed using the Volocity 6.01 software (PerkinElmer,
1301 Waltham, Massachusetts, U.S.A.).

1302

1303 **Meta-analysis of microarray data**

1304 Pre-processed microarray data of platelets and whole peripheral blood cells under
1305 steady state and certain disease states (GSE2006, GSE11524, GSE10361, GSE50858,
1306 GSE47018, GSE17924) were down-loaded from the Gene Expression Omnibus (GEO) data
1307 base (<https://www.ncbi.nlm.nih.gov/geo/>). Expression values for the house-keeping gene
1308 GAPDH and platelet- as well as inflammasome-associated genes (CXCL4/PFA4, PDGFA,
1309 IL1B, PYCARD, NLRP3, TIMP1 CASP1, ARG2, TP2A, SELENB1) were extracted for each
1310 data set. In case multiple probe sets for GAPDH were present on the microarray chip, a mean
1311 expression value for GAPDH was calculated. The expression values for probe sets of platelet
1312 and inflammasome-associated genes were normalized for each data set according the
1313 respective GAPDH mean expression value. Log2 transformed normalized expression data
1314 were plotted as bar charts by the Tidyverse package in R (v3.4.2).

1315

1316 **Proteomics - Mass spectrometry coupled with liquid chromatography**

1317 Suspensions of freshly isolated human platelets were adjusted to a concentration of
1318 5×10^7 /ml in RPMI. Platelets were left untreated, or stimulated with 200 ng/ml LPS, 1 U/ml
1319 Thrombin for 3 hours. Platelets were pelleted by centrifugation (3000 x g, 10 minutes) and the
1320 cell-free supernatants were harvested. Cell-free supernatants were added with 1x complete
1321 protease inhibitor cocktail prior to freezing at -80°C. Proteomics analysis was carried out at the
1322 CECAD/CMMC Proteomics Core Facility (University Cologne, Germany) on a Q Exactive Plus
1323 Orbitrap (Thermo Scientific) mass spectrometer that was coupled to an EASY-nLC (Thermo
1324 Scientific). Briefly, peptides were loaded in 0.1% formic acid in water onto an in-house packed
1325 analytical column (50 cm \times 75 μ m I.D., filled with 2.7 μ m Poroshell EC120 C18, Agilent) and
1326 were chromatographically separated at a constant flow rate of 250 nl/minute with the following
1327 gradient: 3-4% solvent B (0.1% formic acid in 80 % acetonitrile) within 1 minute, 4-27% solvent

Rolfs & Ribeiro et al

1328 B within 119 minute, 27-50% solvent B within 19 minutes, 50-95% solvent B within 1 minutes,
1329 followed by washing and equilibration of the columns. The mass spectrometer was operated
1330 in data-dependent acquisition mode.

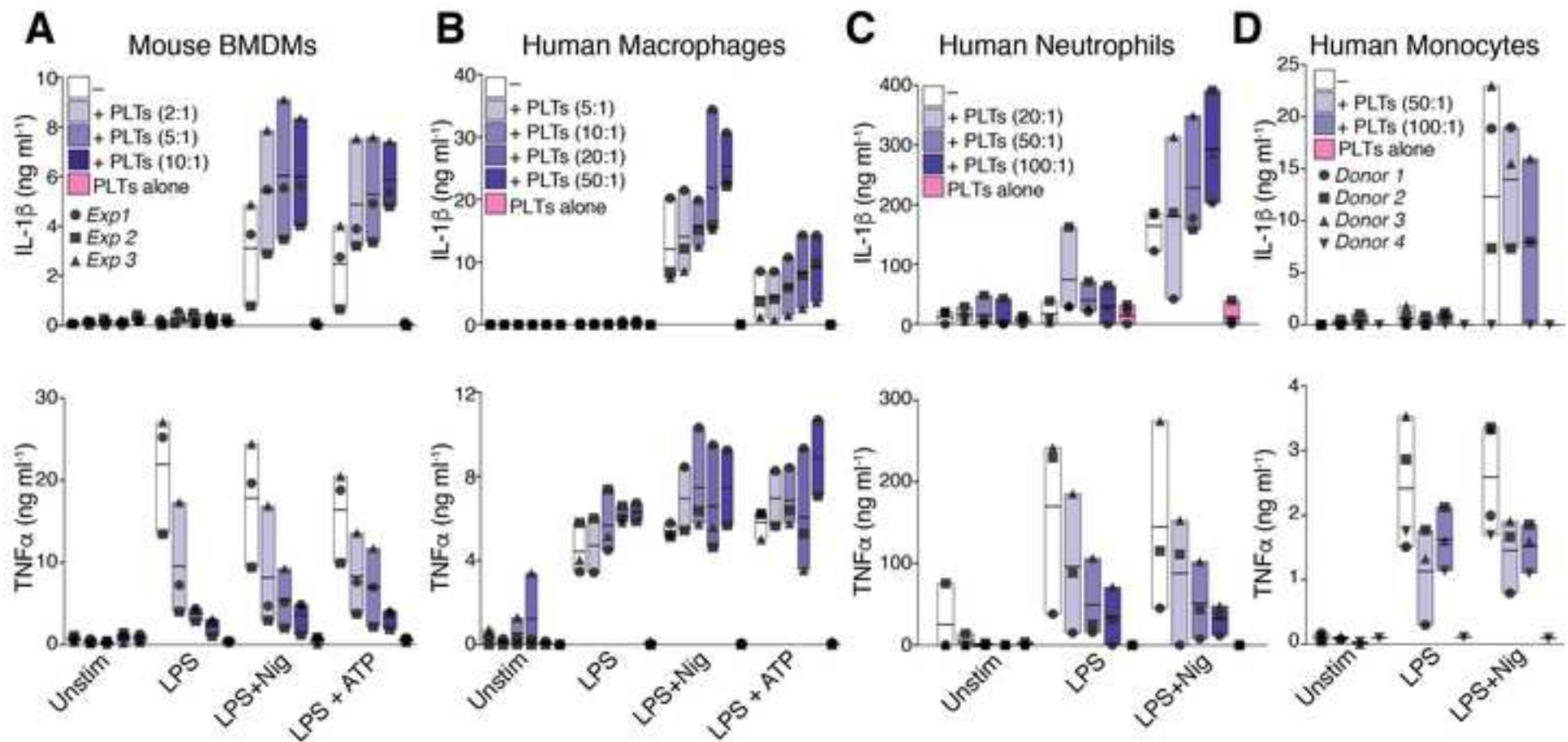
1331

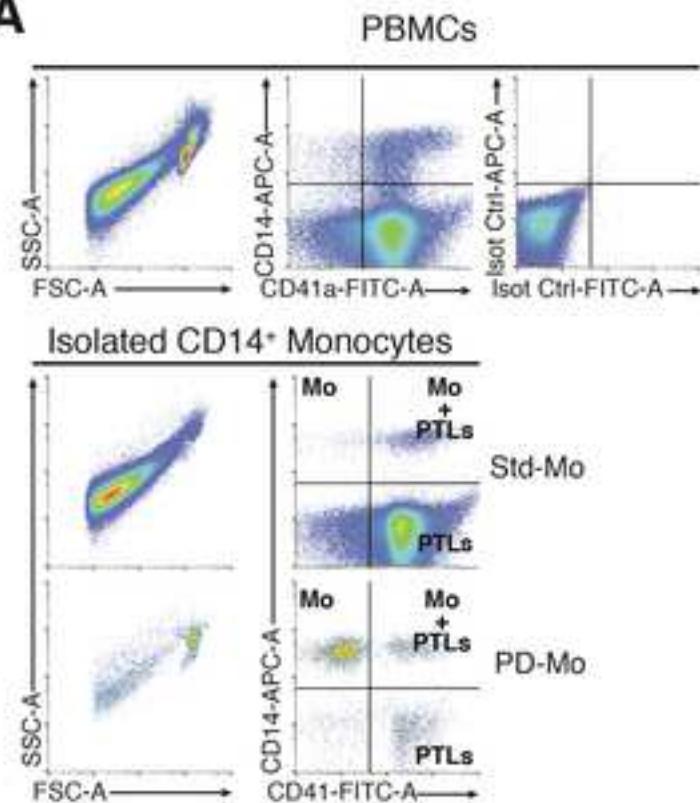
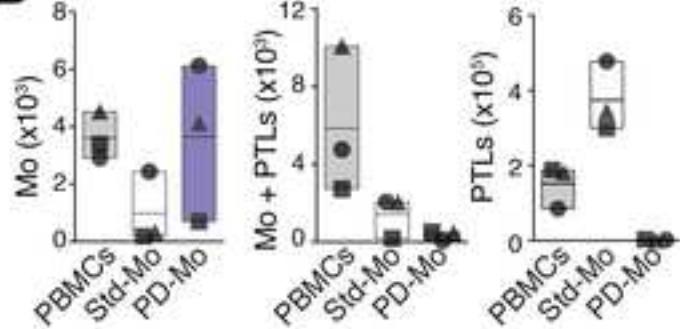
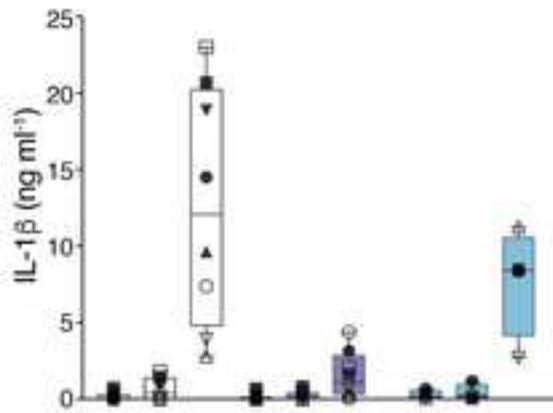
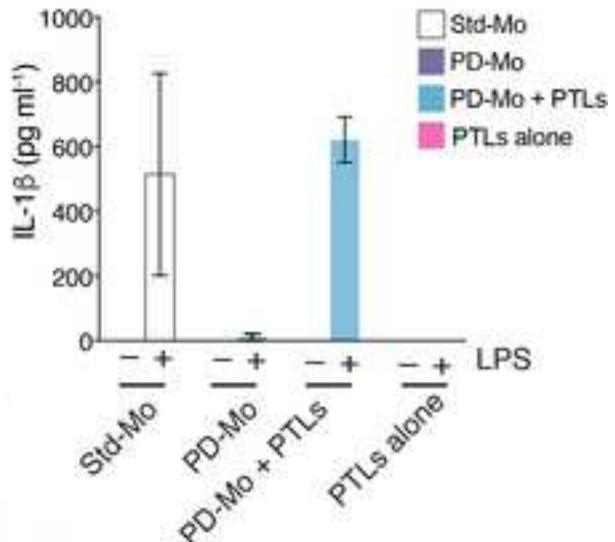
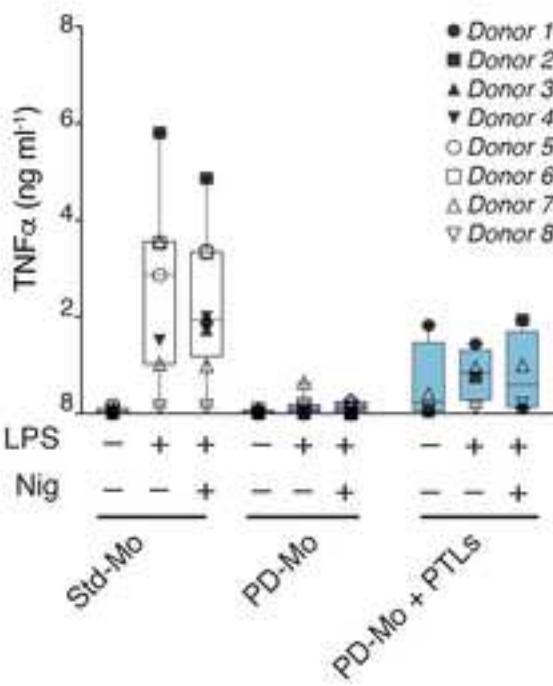
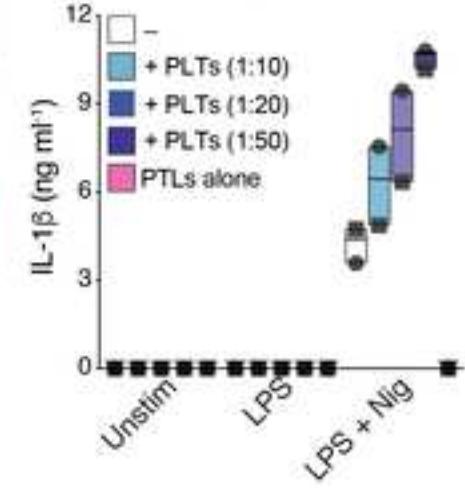
1332 **Data processing and statistical analysis**

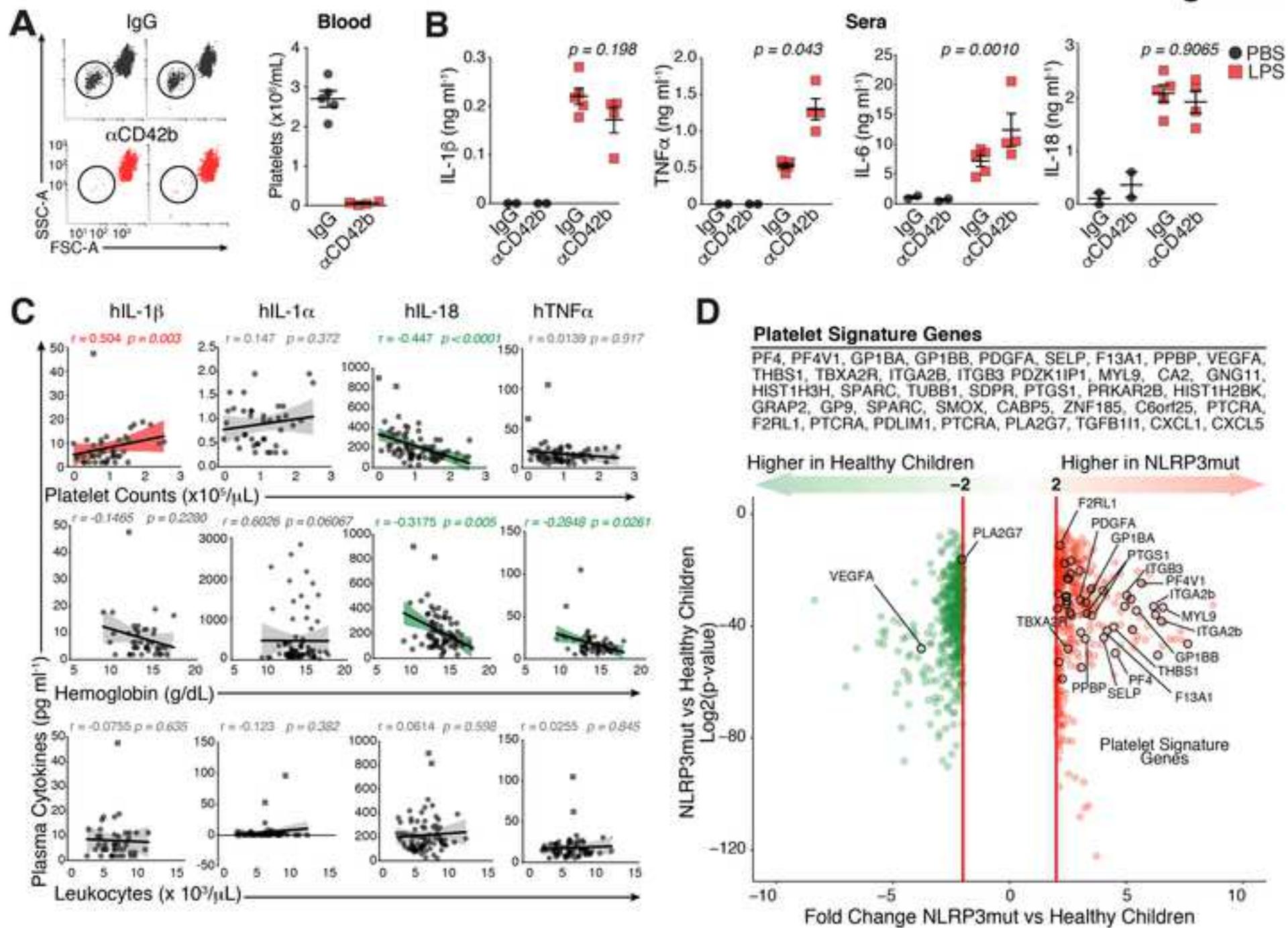
1333 All mass spectrometric raw data were processed by the CECAD/CMMC Proteomics Core
1334 Facility using Maxquant (version 1.5.3.8) with default parameters. Briefly, MS2 spectra were
1335 analyzed against the Uniprot HUMAN. fasta (downloaded at: 16.6.2017) database, including
1336 a list of common contaminants. False discovery rates on protein and PSM level were estimated
1337 by the target-decoy approach to 1% FDR for both. The minimal peptide length was determined
1338 to be 7 amino acids and carbamidomethylation at cysteine residues was considered as a fixed
1339 modification. Oxidation and acetylation were included as variable modifications. For the
1340 analysis, the match-between runs option was enabled. Label-free quantification (LFQ) was
1341 activated using default settings. Figures were assembled using the R Tidyverse package.

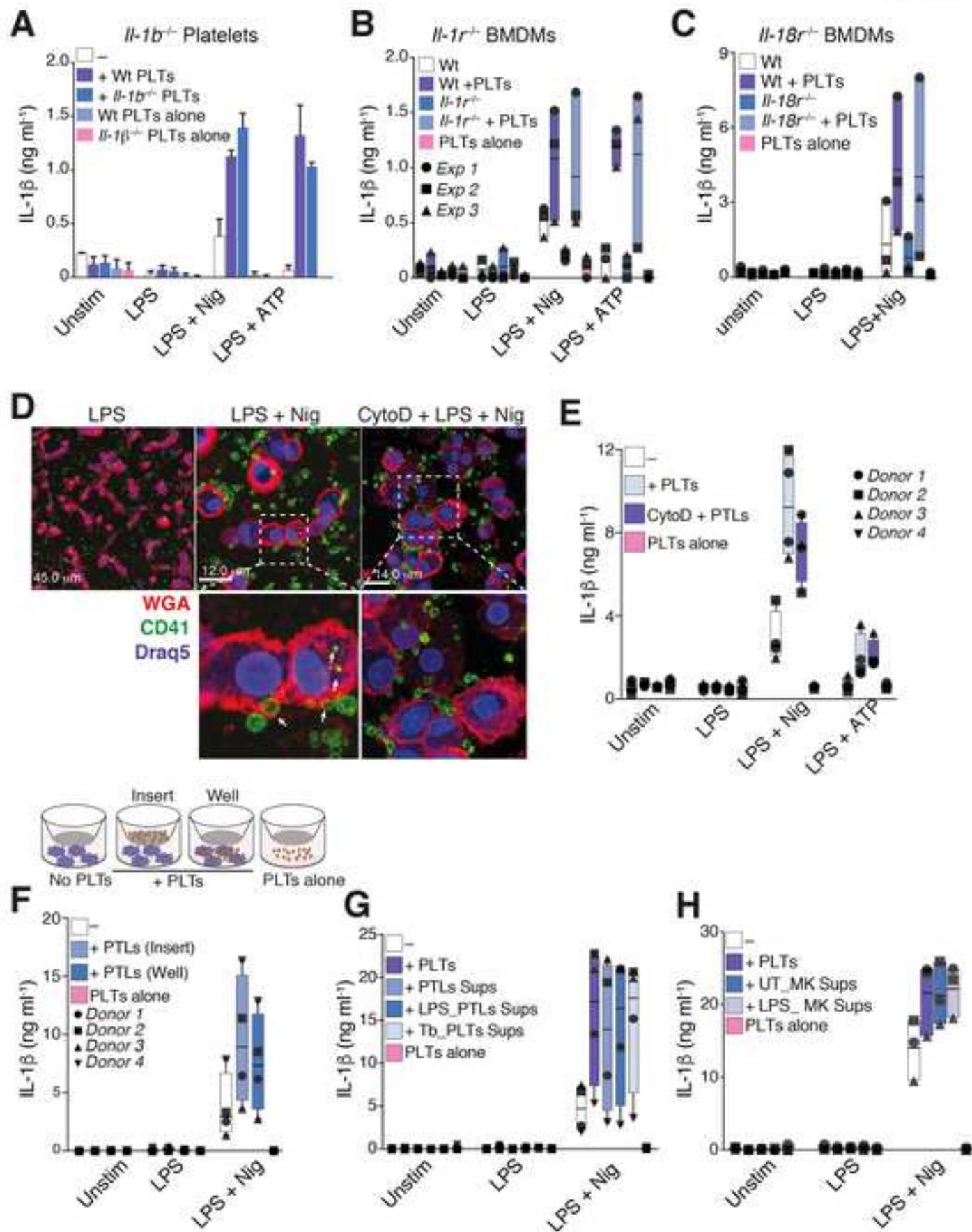
1342

1343 **Statistical Analysis**

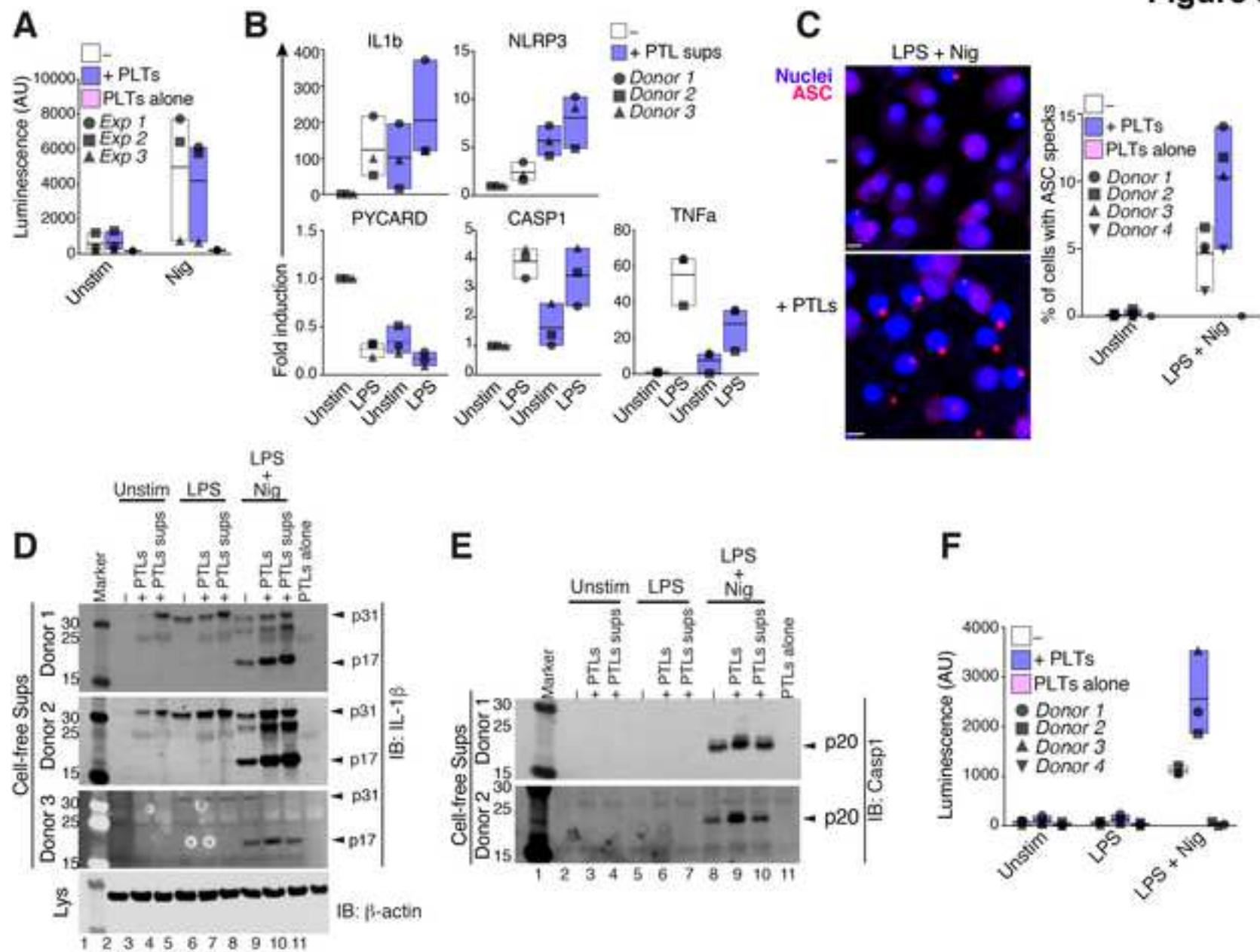

1344 Statistical analyses were performed with GraphPad Prism Version 7.0f. Unless indicated
1345 otherwise, all graphs are built from pooled data from a minimum of two independent
1346 experiments (biological replicates), performed in triplicates (technical replicates). Data are
1347 presented as bars and symbols, each symbol representing the average of technical triplicates
1348 from individual donors, or mice. The mean and standard deviation (SD) are shown when less
1349 than 3, or mean and standard error (SEM) when three or more biological replicates are
1350 represented. Additional statistical details are given in the respective figure legends, when
1351 appropriate.

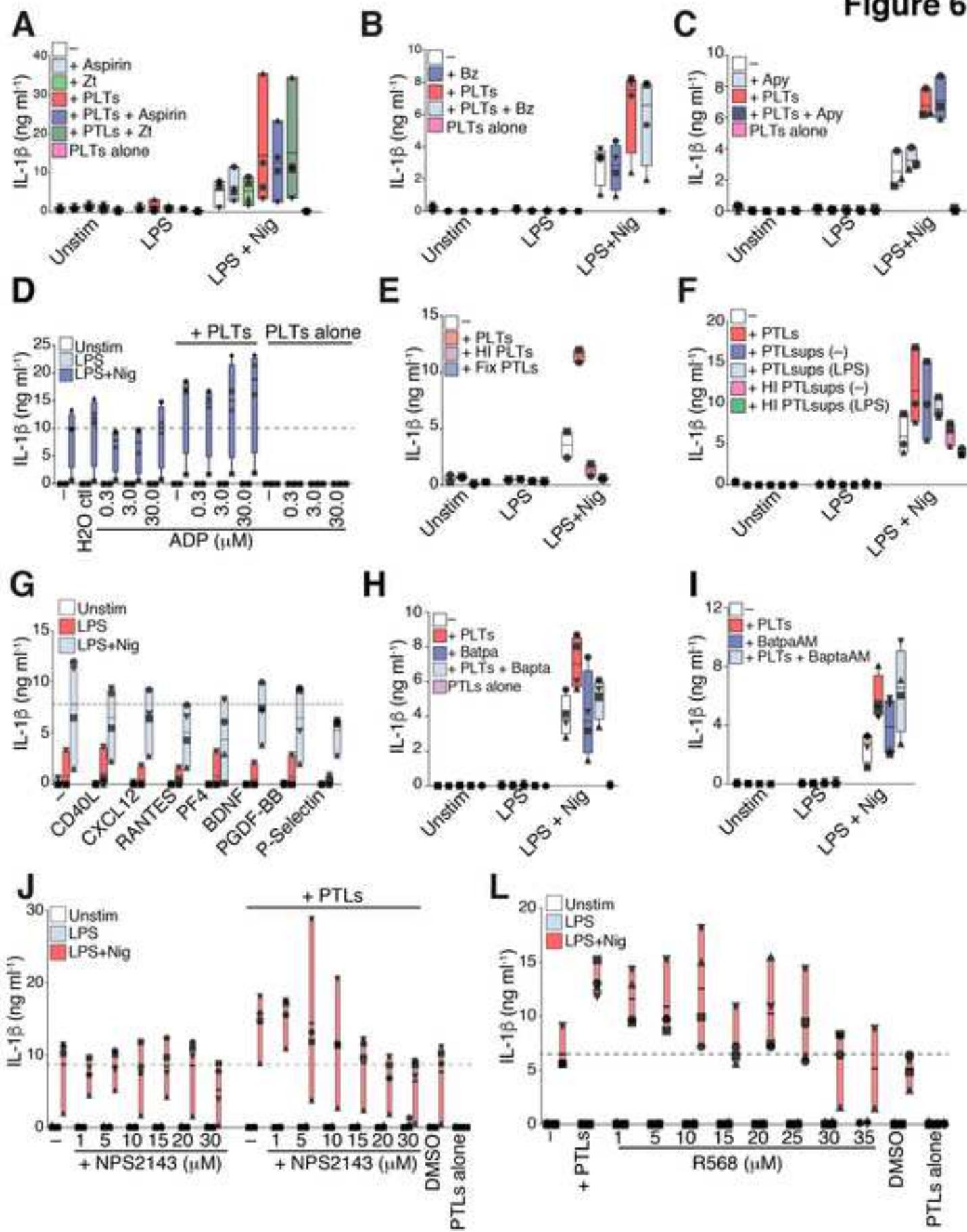






1352


1353 **Data availability**


1354 A supplementary table containing the source data for all the figure panels will be provided.

1355


Figure 1


Figure 2**A****B****C****Isolated CD14⁺ Monocytes****D****Isolated CD14⁺ Monocytes****E****THP-1****E****THP-1**

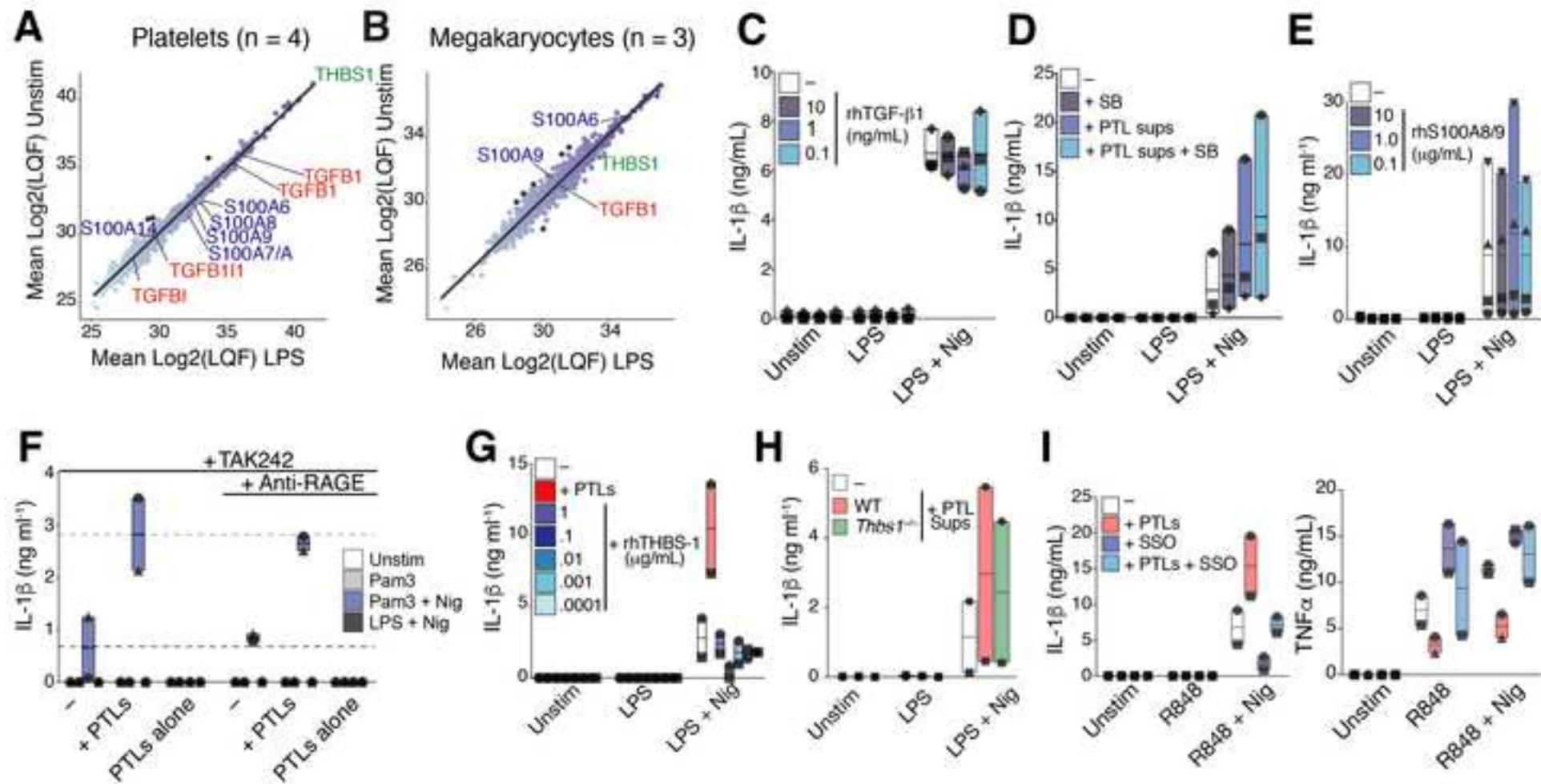

Figure 3

Figure 4

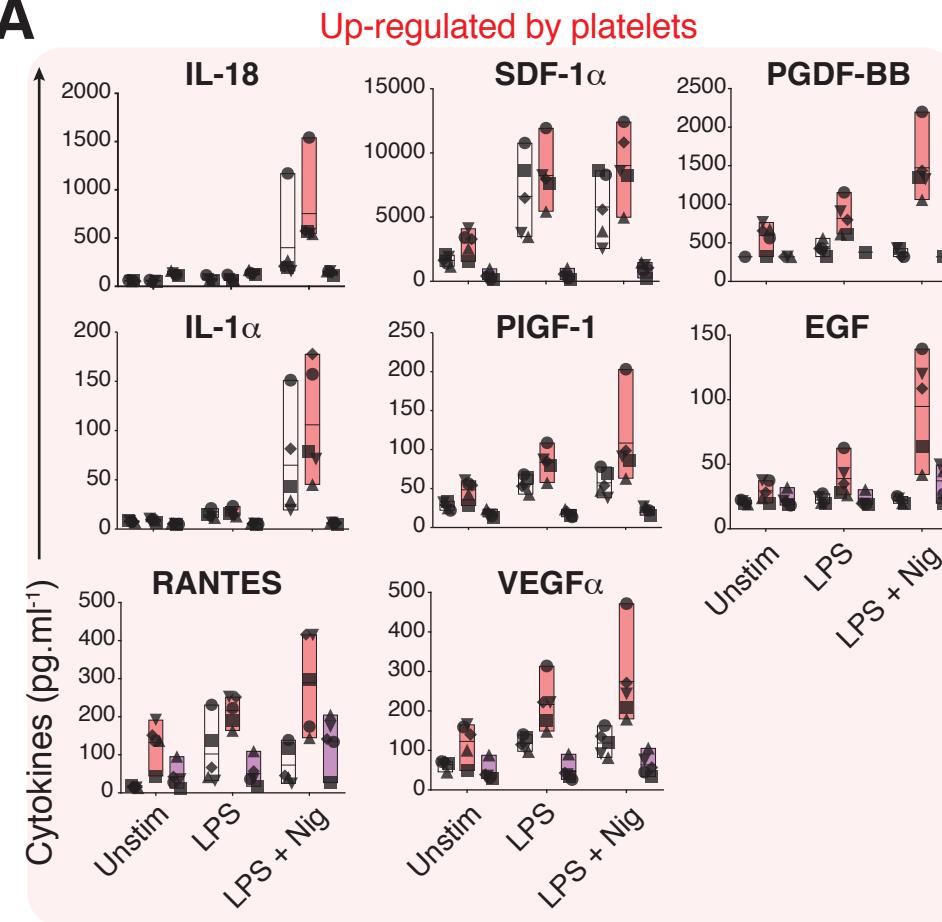
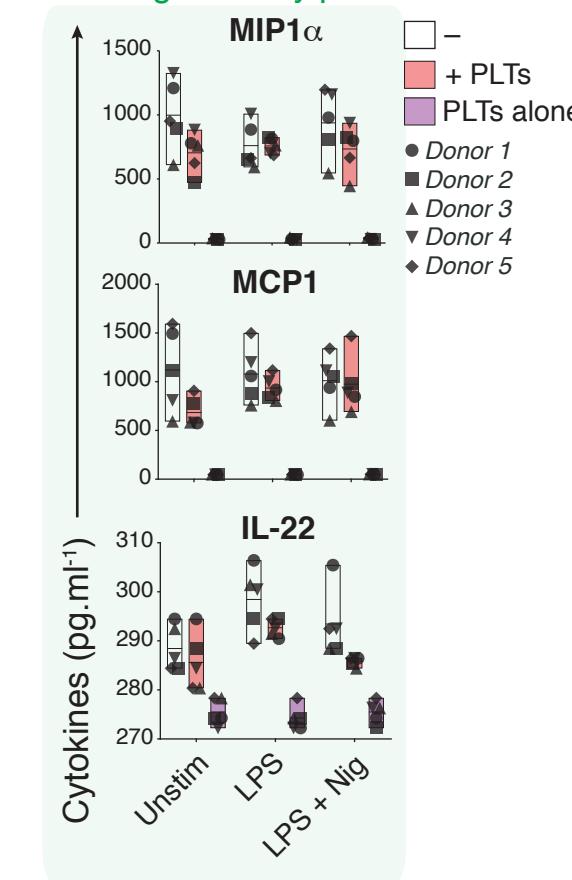
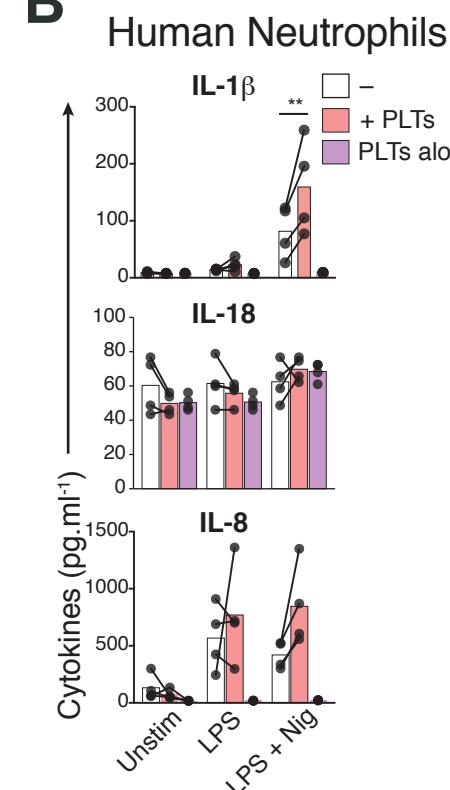
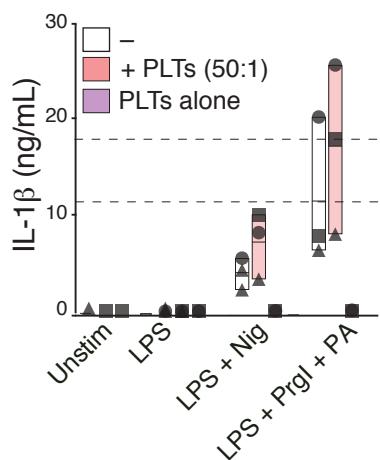
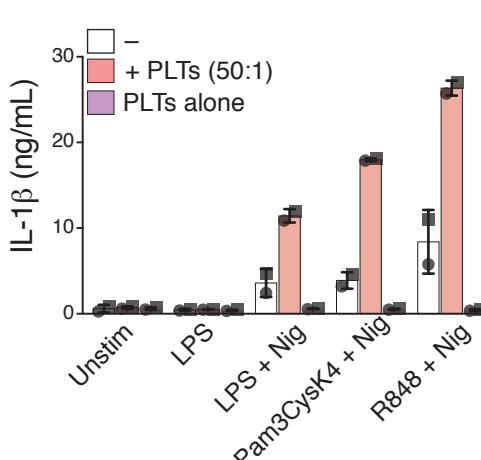
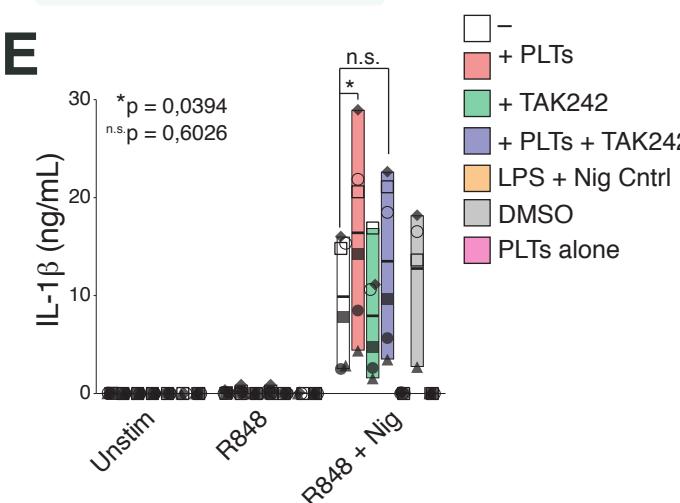
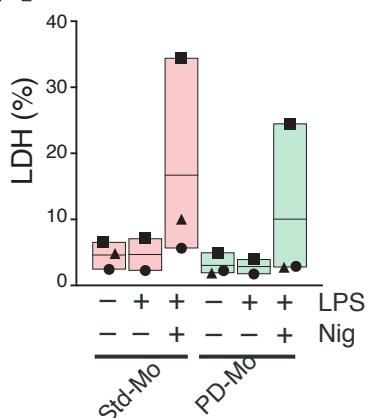
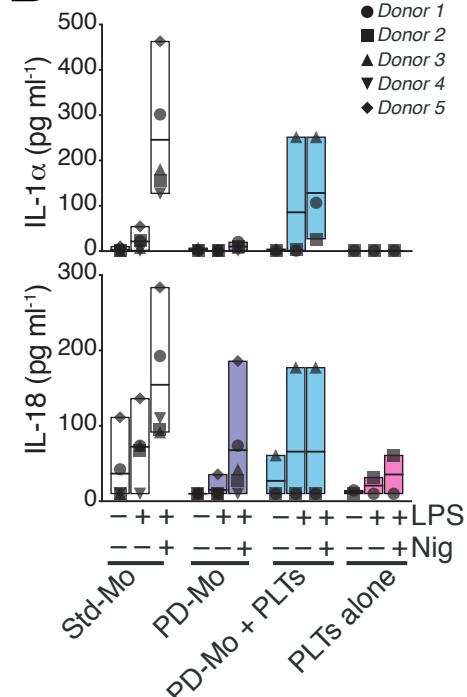
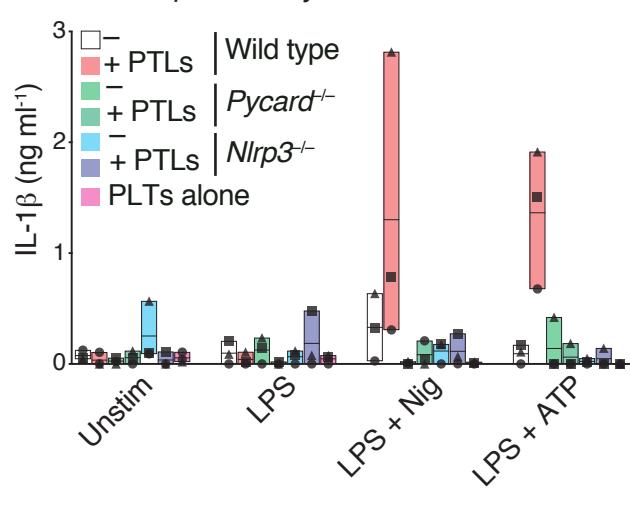
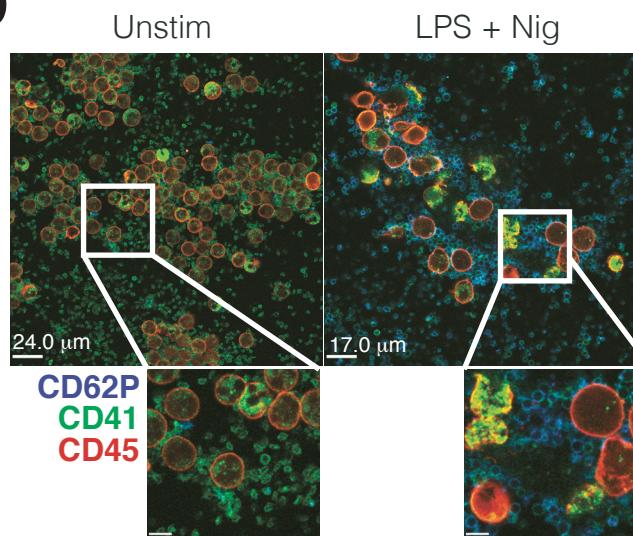
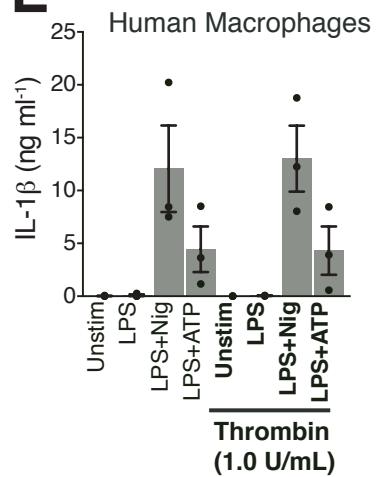
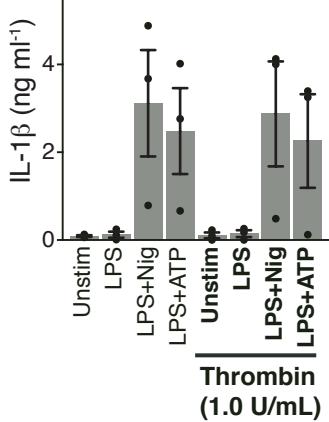






Figure 5

Figure 6

Figure 7






Human Macrophages

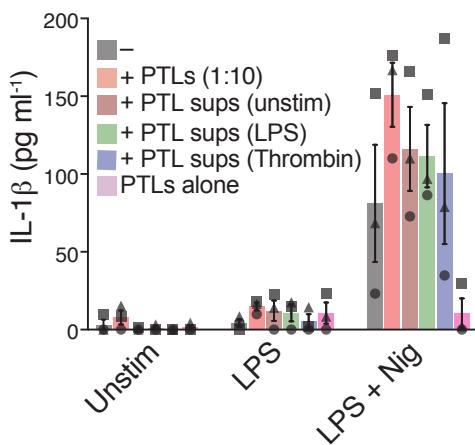
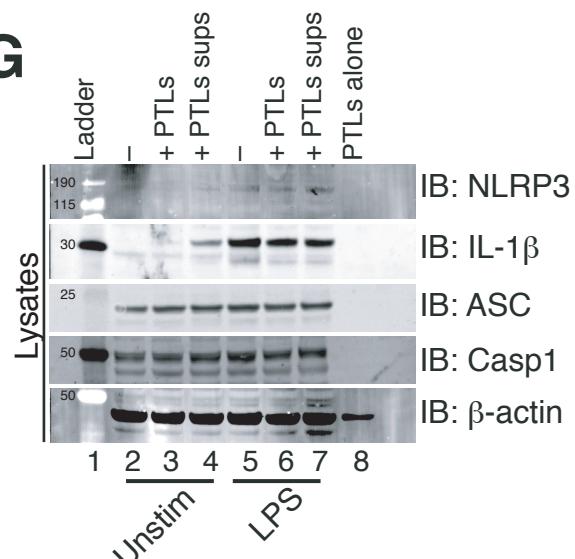
A**Down-regulated by platelets****B****C****D****E**


Figure S1

Multiplex measurement of cytokines in cell-free supernatants of unstimulated (Unstim), or LPS-primed (200 ng ml^{-1} , 3 hours), and nigericin-activated ($10 \mu\text{M}$, 90 min) human macrophages (**A**), or human neutrophils (**B**). Cells were cultivated alone (—), or in the presence of platelets (+ PTLs 50:1). (**C**) HTRF measurements of IL-1 β in cell-free supernatants of unstimulated (Unstim), or LPS-primed, and PrgI ($2 \mu\text{g ml}^{-1}$) + PA ($0.5 \mu\text{g ml}^{-1}$) stimulated human macrophages that were cultured alone, or in the presence of platelets. (**D**) HTRF measurements of IL-1 β in cell-free supernatants of hMDMs primed with LPS, Pam3CysK4 ($1 \mu\text{g ml}^{-1}$), or R848 ($10 \mu\text{M}$) for 3 hours, followed by activation with nigericin. (**E**) HTRF measurements of IL-1 β in cell-free supernatants of hMDMs cultured as in **A**. Cells were pre-treated with TAK242 ($0.5 \mu\text{g ml}^{-1}$) before priming with R848 ($10 \mu\text{M}$, 3 hours) and activation with nigericin ($10 \mu\text{M}$, 90 minutes).

A, C and E - Floating bars (with mean and minimum to maximum values) from pooled data from several independent experiments. **B** - Means of one experiment with 4 donors. **D** - Mean \pm SD pooled from two independent experiments with platelets and hMDMs from different donors. Each symbol represents the average of technical triplicates of cultures from one donor.

A Isolated CD14⁺ Monocytes**B** Isolated CD14⁺ Monocytes**C***Nlrp3*^{-/-} and *Pycard*^{-/-} BMDMs**D****E**



Human Macrophages

Mouse BMDMs

F

Human Neutrophils

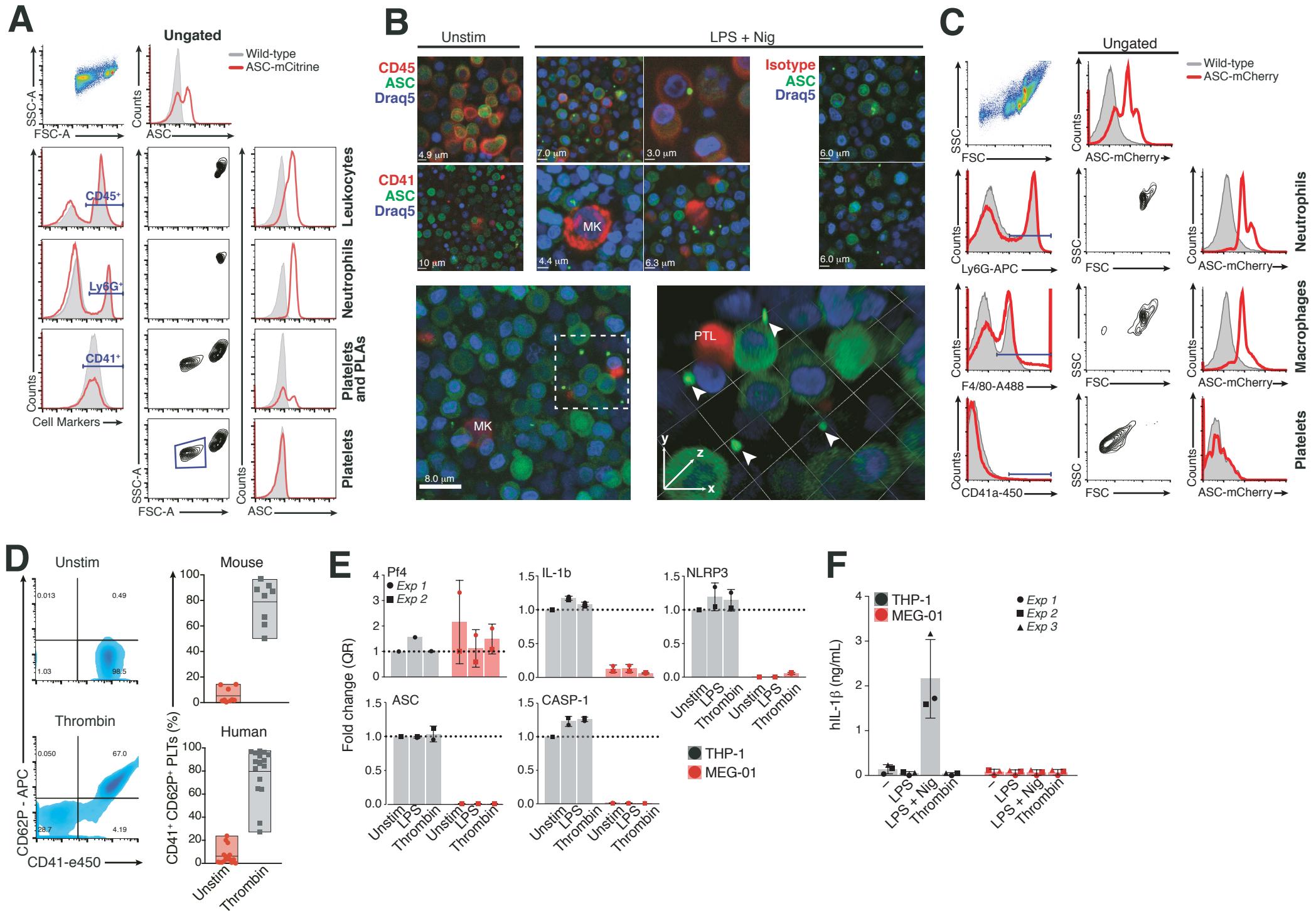
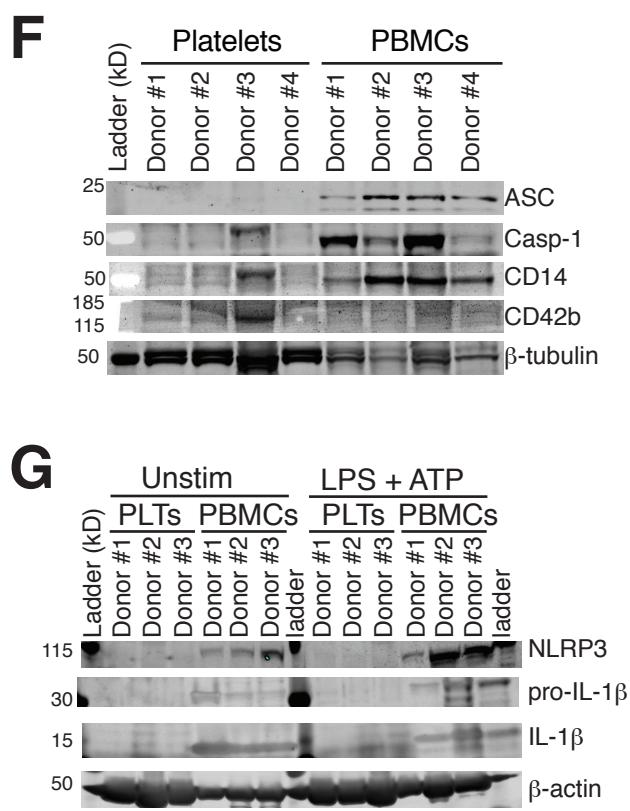
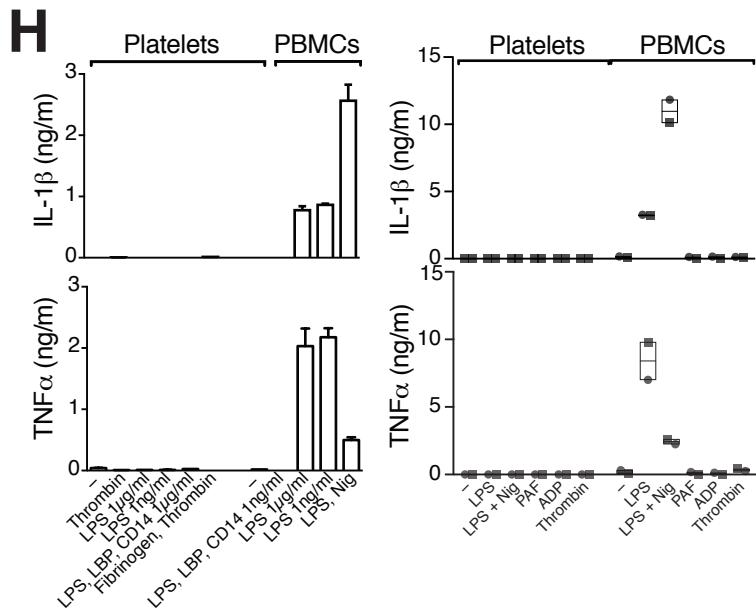
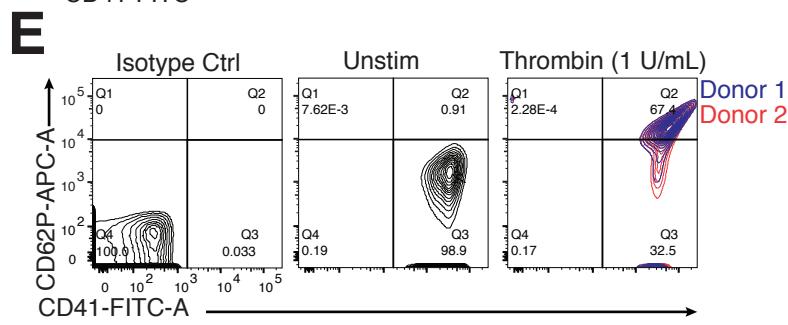
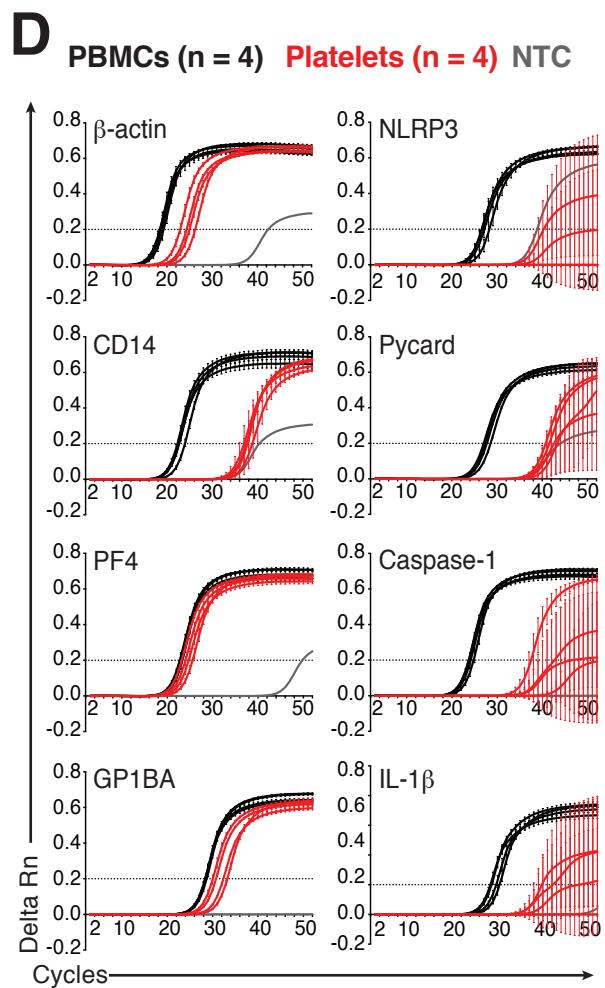
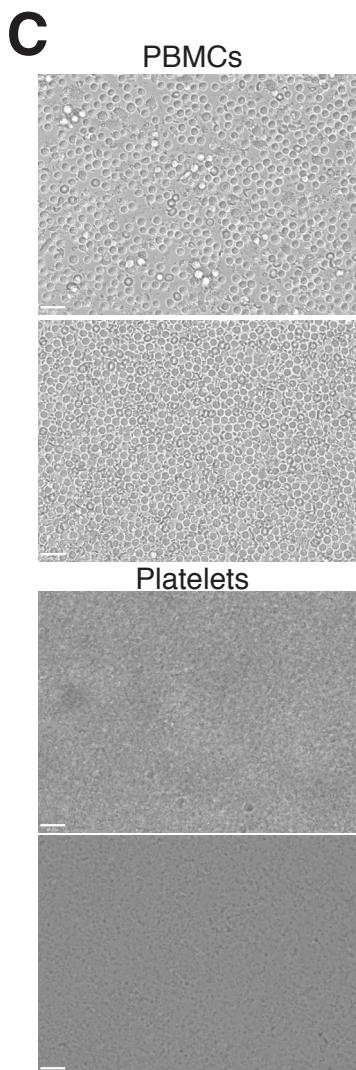
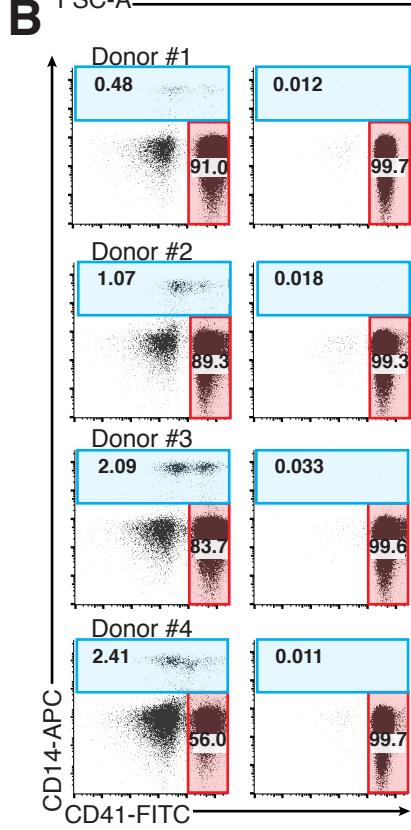
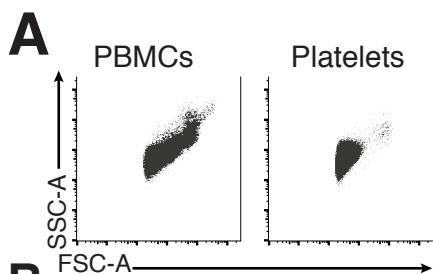

G

Figure S2

(A) LDH release in cell-free supernatants of standard (Std-Mo) or platelet-depleted (PD-Mo) human monocytes. Cells were primed with LPS (2 ng ml⁻¹, 3 hours) followed by activation with nigericin (10 μ M, 90 min). **(B)** Multiplex Cytokine measurement of IL-1 α and IL-18 in cell-free supernatants of Std-Mo, PD-Mo, or PD-Mo that were added with freshly isolated autologous platelets (PD-Mo + PLTs) on a 50:1 platelet-to-monocyte ratio, and platelets cultivated alone. **(C)** IL-1 β levels in cell-free supernatants of wild-type, *Nlrp3*^{-/-}, or *Pycard*^{-/-} BMDMs cultivated alone (—), or in the presence of wild-type platelets (+ PTs, 5:1 platelet-to-BMDM ratio). **(D)** Confocal imaging of unstimulated (Unstim), or LPS-primed (200 ng ml⁻¹, 3 hours), and nigericin-activated human neutrophils incubated with platelets (50:1 platelet-to-neutrophil ratio). Platelet marker (CD41), platelet activation marker (CD62P), leukocyte marker (CD45). Scale bars are indicated. **(E)** HTRF measurements of IL-1 β levels in cell-free supernatants of LPS-primed and nigericin-, or ATP-activated hMDMs (top), or mouse BMDMs (bottom), in the presence or absence of thrombin (1 U ml⁻¹). **(F)** IL-1 β levels in cell-free supernatants of unstimulated (Unstim), or LPS-primed, and nigericin-activated human neutrophils (10 μ M, 90 min) incubated with platelets (10:1 platelet-to-neutrophil ratio) or platelet supernatants from unstimulated, LPS (200 ng ml⁻¹, 3 hours) or thrombin (1 U ml⁻¹) stimulated platelets. **(G)** Immunoblot of NLRP3, IL-1 β , ASC, Caspase-1 and β -actin on whole cell lysates of resting, or LPS-primed human macrophages cultivated alone or in the presence of platelets, or platelet-supernatants.

A - C, F Floating bars (with mean and minimum to maximum values) from pooled data from 3 - 4 independent experiments. **D** - Representative of two independent experiments. **E** - Mean + SEM from pooled data from three independent experiments. **G** - Representative of 2 independent experiments. Each symbol represents the average of technical triplicates from different donors, or mice.

Figure S3








Figure S3

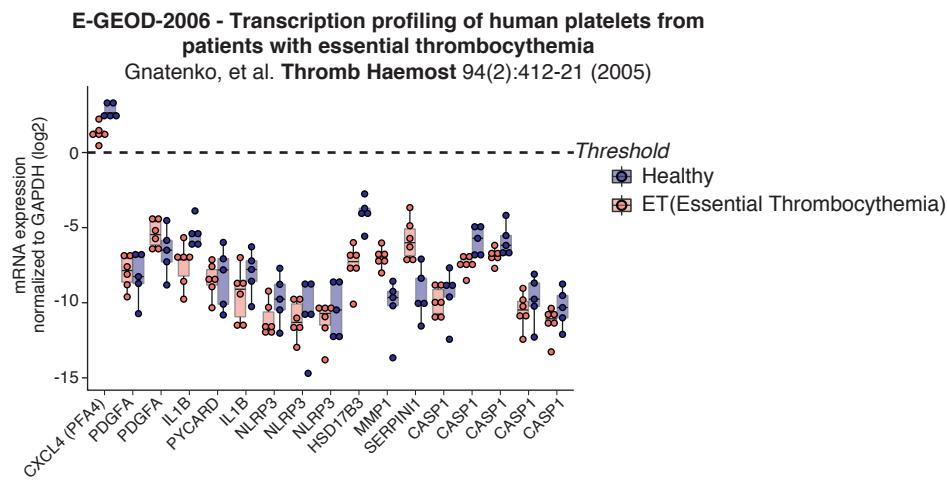
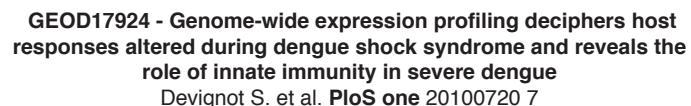
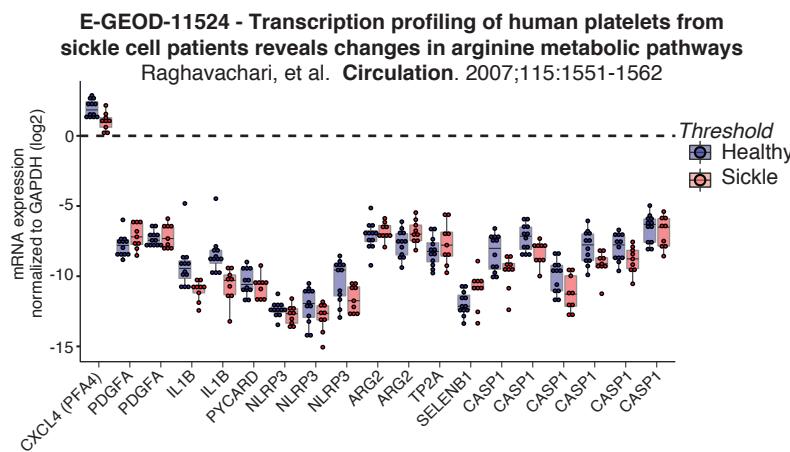
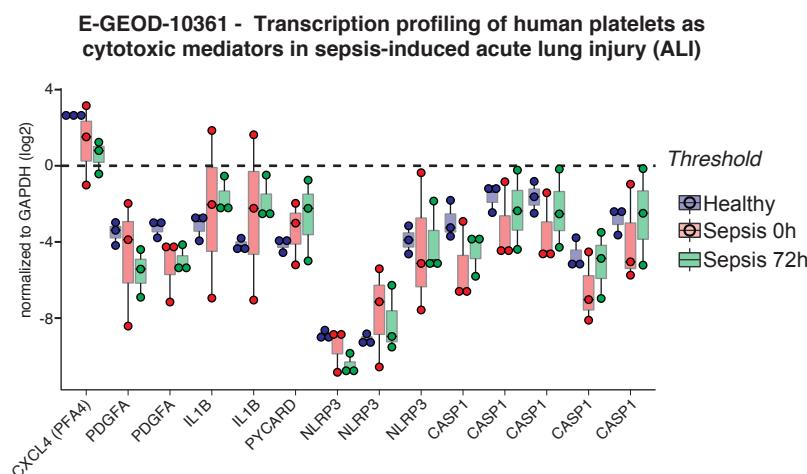
(A) Flow cytometric analysis of total bone marrow cells from Wild-type (gray histograms), ASC-mCitrine transgenic, or **(C)** ASC-*knock in* reporter mice (red lines). Gating strategy to identify different cell populations based on surface marker staining and scatter characteristics: CD45 (Leukocytes), F4/80 (Macrophages), Ly6G (neutrophils) and CD41 (platelets and platelet-leukocytes aggregates, PLAs). **(B)** Confocal microscopy of total bone marrow cells from ASC-mCitrine mice, comparing leukocytes (CD45⁺), and platelets (CD41⁺). Megakaryocytes (MKs), platelets (PTL) and ASC specks (arrows). Scale bars are indicated. **(D)** Representative flow cytometric assessment of purity (CD41) and activation (CD62P) of resting, or thrombin (0.5 U ml⁻¹) stimulated platelets purified from wild-type mice (n = 8) or human blood donors (n = 18). **(E)** Real time PCR analysis of PF4, IL-1B, NLRP3, ASC and Caspase-1 (CASP-1) expression and **(F)** HTRF measurements of IL-1 β in cell-free supernatants on PMA-differentiated THP-1s or the human megakaryocytic cell MEG-01. Cells were left unstimulated, or treated with LPS (1 μ g ml⁻¹) or Thrombin (1 U ml⁻¹).

B - Representative of two independent experiments.

D - Floating bars (with mean and minimum to maximum values) from pooled data from several independent experiments, each symbol represents the measurements from platelets of individual mice, or donors.

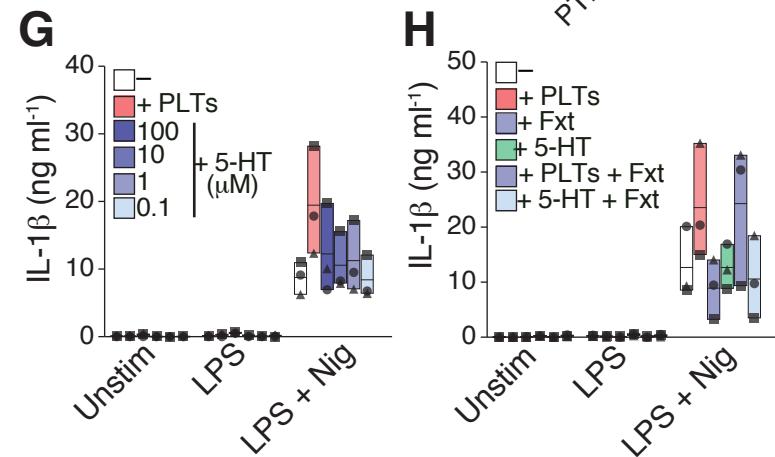
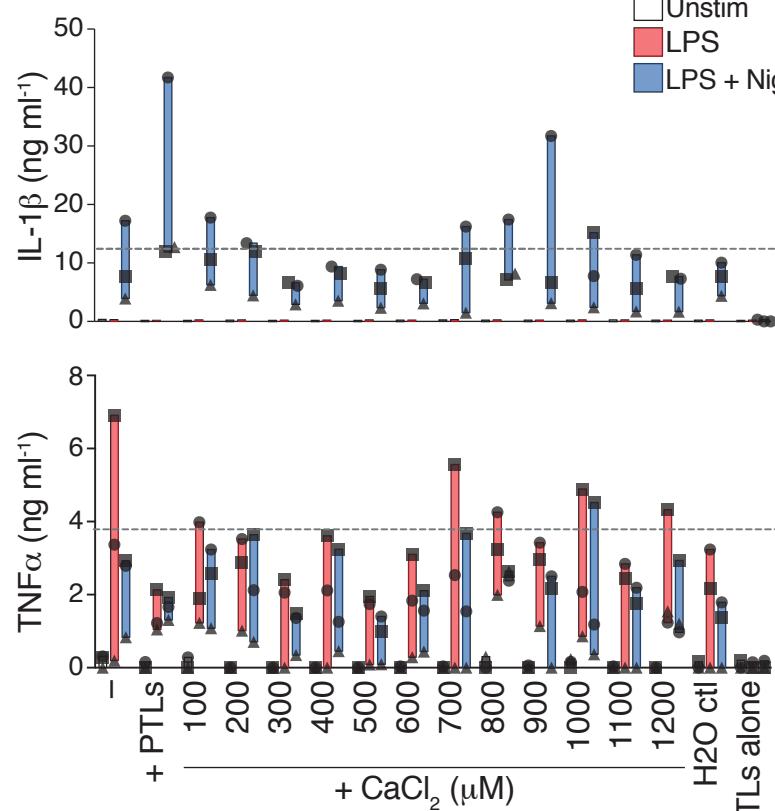
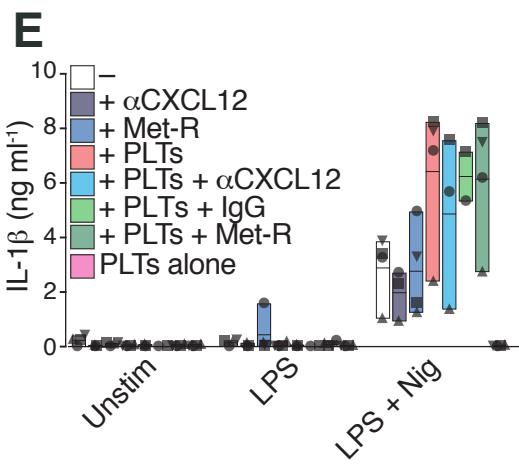
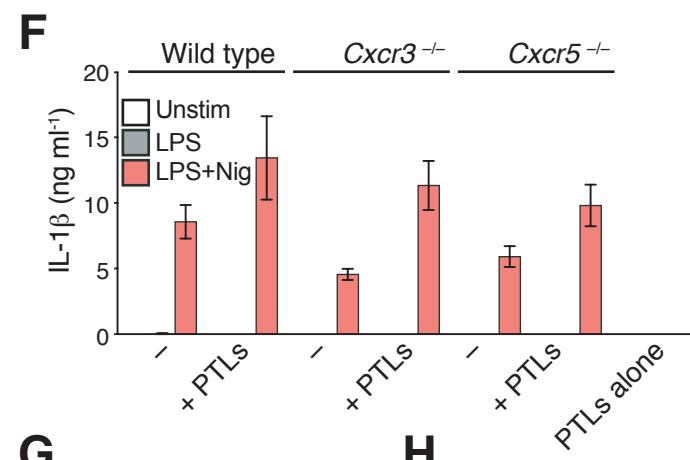
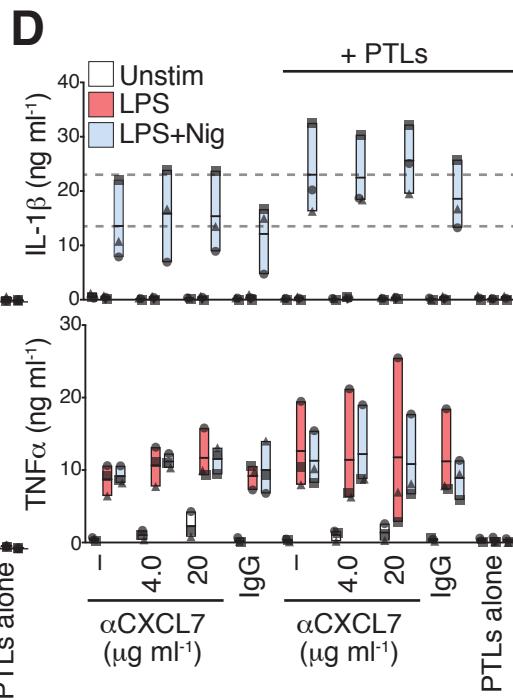
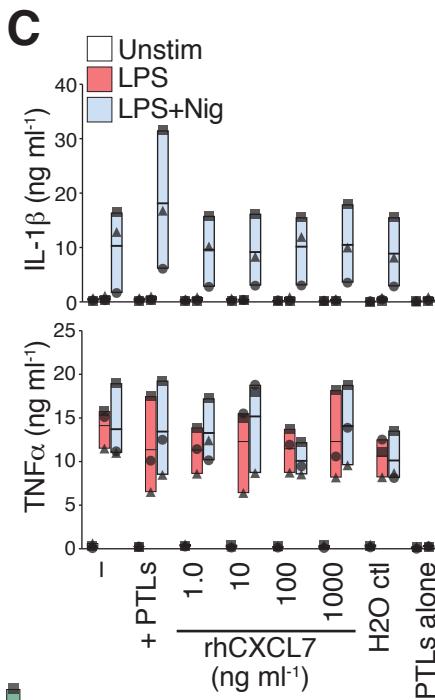
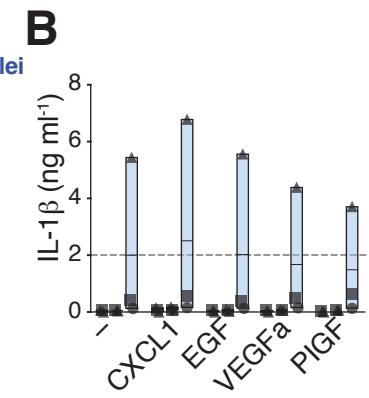
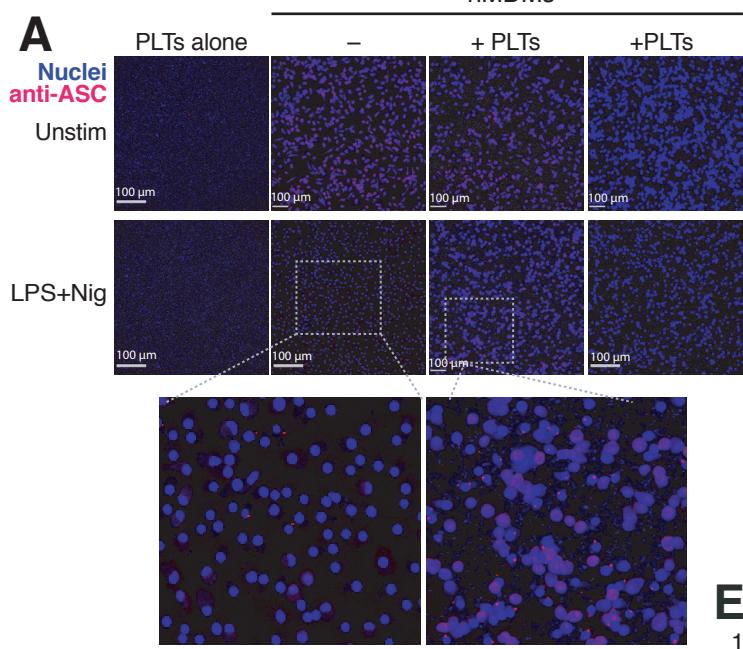
E - Mean + SD of pooled data from 2 independent experiments performed in triplicates.

Extended Data Fig. 4





(A-B) Representative flow cytometric analysis of PBMCs, or platelets purified from peripheral blood of healthy donors ($n = 4$) showing the purity of platelet preparations with CD14 (monocyte) or CD41 (platelets) surface markers. **(C)** Light microscopy of PBMCs, or isolated platelets. Scale bars: 100 μm . **(D)** Amplification plots of the expression of NLRP3, PYCARD, Caspase-1, and IL-1 β , in comparison to Monocyte marker (CD14) and platelet markers (PF4 and GP1BA) from a qPCR performed on total RNA isolated from PBMCs or platelets ($n = 4$). **(E)** Flow cytometric assessment of purity (CD41) and activation (CD62P) of resting, or thrombin (1 U ml^{-1}) stimulated platelets purified from healthy donors ($n = 2$). **(F)** Immunoblotting of ASC, Caspase-1, CD14, CD42 and β -tubulin in resting platelets, or PBMCs from healthy donors ($n = 4$). **(G)** Immunoblotting of NLRP3, or β -actin in resting, or activated platelets, or PBMCs from healthy donors ($n = 3$). **(H)** IL-1 β levels in cell-free supernatants of human isolated Platelets or PBMCs that were stimulated as indicated for 3h (left), or 18h (right) ($n = 2$).

A - D, F - Representative of two independent experiments performed with 4 healthy blood donors.

E - Representative of several experiments. Two donors are shown.

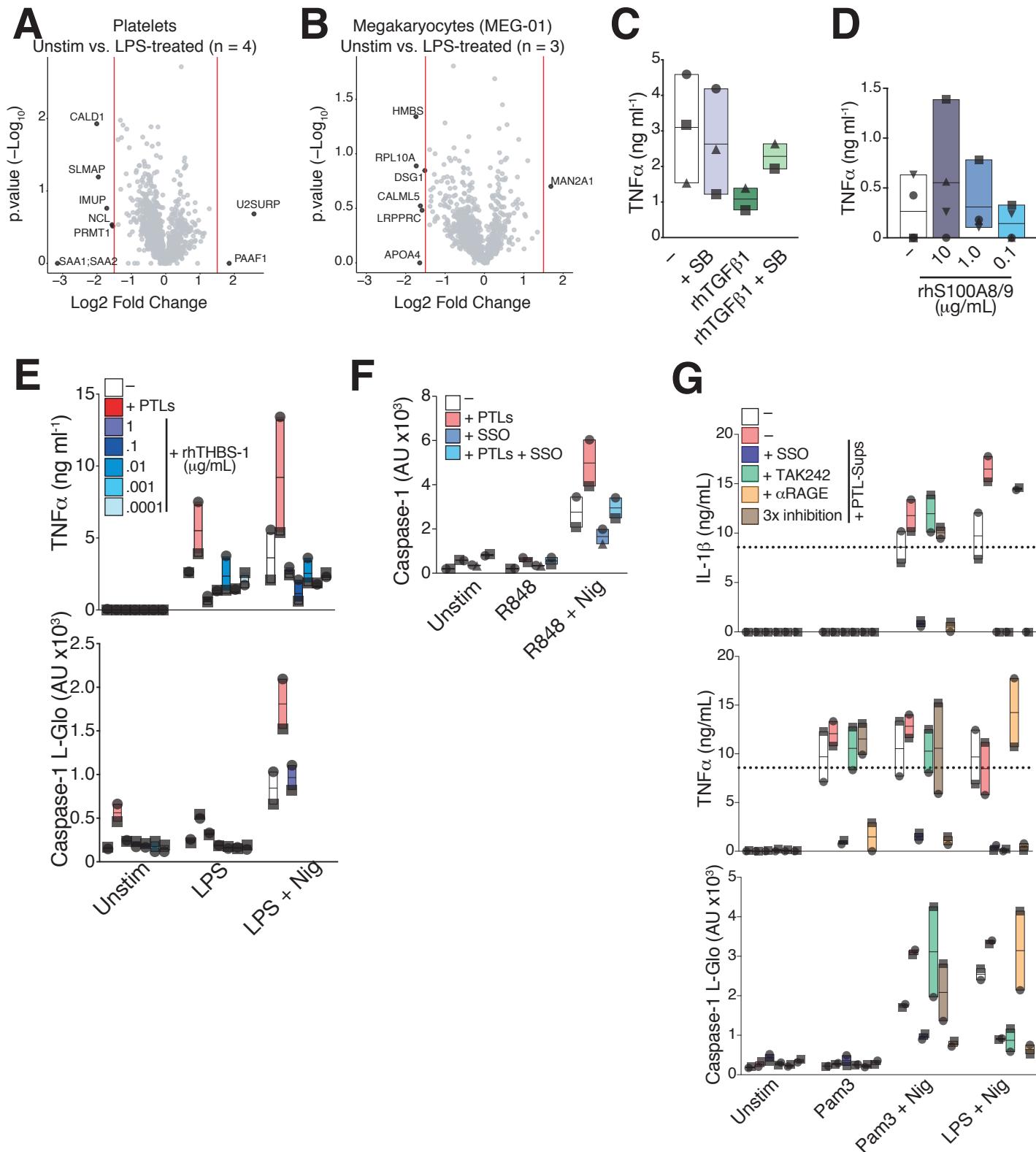








G - Data from one experiment with 3 different donors.

H – Mean + SD of technical triplicates. Representative of 2 independent experiments.

A**D****B****E****C**

Figure S5

A – E Microarray Meta-analysis of transcriptomics of isolated human platelets. Gene expression data from five independent studies that addressed the transcriptomics of platelets isolated from the peripheral blood of healthy donors, or patients with a variety of diseases. Bar charts represent the Log_2 transformed data for platelet marker (CXCL4, and PDGFA) as well as inflammasome-associated genes (PYCARD, NLRP3, TIMP1 CASP1, ARG2, TP2A, SELENB1). Expression values were normalized against the expression of the constitutive gene GAPDH.


Figure S6

(A) Confocal microscopy of ASC specks in LPS primed (200 ng ml⁻¹, 3 hours) and nigericin activated (10 μ M, 45 min) human macrophages. Cells were either cultured alone (–) or in the presence of platelets (+PLTs, 50:1 platelet-to-macrophage ratio). **(B - e)** IL-1 β and TNF α levels in cell-free supernatants of unstimulated (–), LPS stimulated, and nigericin-activated (10 μ M, 90 min) human macrophages, either cultivated alone (–), or in the presence of platelets (+ PTLs, 50:1 platelet-to-macrophage ratio) as indicated. **(B)** Addition of the following recombinant human proteins to human macrophages: CXCL1 (100 pg ml⁻¹), EGF (200 pg ml⁻¹), VEGFa (200 pg ml⁻¹), PIGF (80 pg ml⁻¹) or **(C)** the indicated concentrations of CXCL7. **(D)** Blocking antibodies against CXCL7 (4 or 20 μ g ml⁻¹) or **(E)** against CXCL12 (10 μ g ml⁻¹) added to macrophages before the start of the assay. To block CCR5, human macrophages were pre-incubated with met-RANTES (10 ng ml⁻¹, 90 minutes) before the start of the assay. Matching IgG isotype controls were added at the same concentrations as the respective blocking antibodies. **(F)** IL-1 β levels in cell-free supernatants of unstimulated (–), LPS stimulated, and nigericin-activated wild-type, *Cxcr3*^{-/-}, or *Ccr5*^{-/-} BMDMs cultivated alone (–), or in the presence of wild-type platelets (+ PTLs, 5:1 platelet-to-BMDM ratio). **(G - H)** IL-1 β levels in cell-free supernatants of hMDMs stimulated as in B, and added with recombinant human serotonin (5-HT) at the indicated concentrations **(G)**, or pre-incubated with fluoxetine (10 μ M) for 30 min before the addition of platelets. **(I)** IL-1 β and TNF α levels in cell-free supernatants of unstimulated (–), LPS stimulated, and nigericin-activated hMDMs cultivated alone (–), or in the presence of platelets (+ PTLs, 50:1 platelet-to-macrophage ratio), added with the indicated concentrations of calcium chloride (CaCl₂) in Ca²⁺-free medium before the start of the assay.

A - Representative of three independent experiments

B – E, G - I Floating bars (with mean and minimum to maximum values) from pooled data from independent experiments. Each symbol represents the average of technical triplicates from different donors. Representative of three - four independent experiments.

F - Mean + SD of technical triplicates from one experiment.

Figure S7

(A - B) Volcano plots showing the Log2-fold change and -Log10 of the p values of secretome of **(A)** human platelets ($n = 4$) and **(B)** megakaryocytes ($n = 3$). Proteins with Log2 fold ≥ 2 or ≤ -2 are labeled. **(C)** TNF α levels in cell-free supernatants of hMDMs that were left untreated or pre-treated with the TGFb-inhibitor SB-431542 (10 μ M, for 1 hours), followed by stimulation with recombinant human TGF-b1. **(D)** TNF α levels in cell-free supernatants of hMDMs that were left untreated or stimulated with recombinant human S100A8/9 at the indicated concentrations. **(E)** TNF α levels and caspase-1 activity in cell-free supernatants of unstimulated, or LPS-primed hMDMs that were co-incubated with platelets, or the indicated concentrations of rhTHBS1. **(F)** Caspase-1 activity measured in cell-free supernatants of unstimulated, or R848-primed hMDMs pre-treated or not with the CD36 inhibitor SSO. **(G)** IL-1 β , TNF α levels and caspase-1 activity in cell-free supernatants of unstimulated, or LPS- or Pam3Cys-K4-primed hMDMs that were activated with nigericin in the presence of SSO (50 μ M), TAK242 (0.5 μ g ml $^{-1}$), anti-Rage (10 μ g ml $^{-1}$), or all those inhibiting strategies combined (3X inhibition).

C - G - Floating bars (with mean and minimum to maximum values) from pooled data from a minimum of 2 independent experiments. Each symbol represents the average of technical replicates from different donors.