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Abstract

The Steinernema carpocapsae-Xenorhabdus nematophila association is a nematobacterial complex (NBC)
used in biological control of insect crop pests. The ability of this dual pathogen to infest and kill an insect
strongly depends on the dialogue between the host’s immune system and each partner of the complex. Even
though this dialogue has been extensively studied from the two partners’ points of view in several insect
models, still little is known about the structure and the molecular aspects of the insects' immune response
to the dual infection. Here, we used the lepidopteran pest Spodoptera frugiperda as a model to analyze the
respective impact of each NBC partner in the spatiotemporal immune responses that are induced after
infestation. To this aim, we first analyzed the expression variations of the insect’s immune genes in the fat
bodies and hemocytes of infested larvae by using previously obtained RNAseq data. We then selected
representative immune genes for RT-qPCR investigations of the temporal variations of their expressions
after infestation and of their induction levels after independent injections of each partner. We found that
the fat body and the hemocytes both produce potent and stable immune responses to the infestation by the
NBC, which correspond to combinations of bacterium- and nematode-induced ones. Consistent with the
nature of each pathogen, we showed that X. nematophila mainly induces genes classically involved in
antibacterial responses, whereas S. carpocapsae is responsible for the induction of lectins and of genes
expected to be involved in melanization and cellular encapsulation. In addition, we found that two clusters
of unknown genes dramatically induced by the NBC also present partner-specific induction profiles, which
paves the way for their functional characterization. Finally, we discuss putative relationships between the

variations of the expression of some immune genes and the NBC’s immunosuppressive strategies.
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Author summary

Entomopathogenic nematodes (EPNs) are living in the soil and prey upon insect larvae. They enter the
insect by the natural orifices, and reach the hemocoel through the intestinal epithelium. There, they release
their symbiotic bacteria that will develop within the insect and eventually kill it. Nematodes can then feed
and reproduce on the insect cadaver. By using transcriptomic approaches, we previously showed that
Lepidoptera larvae (caterpillars of the fall armyworm Spodoptera frugiperda) produce a strong immune
response in reaction to infestation by EPNs. However, we do not know if this immune reaction is triggered
by the nematode itself -Steinernema carpacapsae - or its symbiotic bacteria - Xenorhabdus nematophila.
To answer this question, we present in this work a careful annotation of immunity genes in S. frugiperda
and surveyed their activation by quantitative PCR in reaction to an injection of the bacteria alone, the axenic
nematode or the associated complex. We found that the immune genes are selectively activated by either
the bacteria or the nematode and we discuss the implication of which pathway are involved in the defense
against various pathogens. We also show that a cluster of newly discovered genes, present only in

Lepidoptera, is activated by the nematode only and could represent nematicide genes.
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Introduction

The Steinernema-Xenorhabdus nematobacterial complexes (NBCs) are natural symbiotic associations
between nematodes and enterobacteria that are pathogenic for insects. The soil-living nematodes infest
insects through the respiratory and/or the intestinal tract (1) and reach the hemocoel, the internal body
cavity, where they release their intestinal symbionts. The bacteria then grow extracellularly in the
hemolymph, the insect equivalent of blood, and improve the nematodes’ pathogenicity as well as their
ability to reproduce in the host dead body (2). Until now, about 90 species of Steinernema have been
identified, among which several are usable as biological control agents against diverse insect crop pests (3,
4). In consequence, their interactions with insects have been extensively studied for about 50 years (5).
These studies have shown that in addition to ecological and morphological parameters (3), the NBCs’
interactions with the host’s immune system is one of the most crucial factors influencing their ability to
infest and kill a given insect (6-8).

Insects possess an elaborate immune system, which is able to respond by adapted ways to diverse types of
pathogens and of infections. This system firstly relies on protective external barriers such as the cuticle, or
the peritrophic matrix in the midgut (9, 10). It then relies on local defenses of the surface epitheliums,
which repair efficiently (11-13) and produce toxic factors such as antimicrobial peptides (AMPs) (14-17)
and reactive oxygen species (18). The third line of defense of insects is provided by the hemocytes, which
are the circulating immune cells. They can produce diverse types of immune responses, including AMP
synthesis, phagocytosis, nodulation, encapsulation, coagulation and melanization (19). Nodulation and
encapsulation are cellular immune responses respectively consisting in the engulfment of bacterial
aggregates and of large invaders via hemocytes aggregation (19). Together with coagulation, these
responses are coupled with a melanization process consisting in series of phenolic compounds oxidations
resulting in synthesis of reactive molecules and melanin that participate of pathogens trapping and killing
(20, 21). Finally, the fat body, a functional equivalent of the mammalian liver, produces potent systemic
humoral immune responses involving a massive secretion of AMP cocktails in the hemolymph. These
responses can be induced by two major signaling pathways of insect immunity; the Imd pathway, which is
mainly activated by Gram negative bacteria, and/or the Toll pathway, which is mainly activated by Gram
positive bacteria, fungal organisms and by proteases released by pathogens (22, 23).

The Steinernema-Xenorhabdus NBC whose interactions with the immune system have been the most
extensively studied is the S. carpocapsae-X. nematophila association. These interactions have firstly been
studied from the NBC point of view, which allowed the identification of a multitude of immunoevasive
and immunosuppressive strategies. For instance, studies in Rhynchophorus ferrugineus and Galleria
mellonella have respectively shown that the cuticle of S. carpocapsae is not recognized by the host's
immune system (24, 25) and that the nematode secretes protease inhibitors impairing the coagulation

responses (26, 27). Studies in diverse insect models have also shown that both partners produce factors
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impairing melanization (28-31), hemocyte's viability (32-36) and the production of cellular immune
responses by several ways (27-29, 31, 37, 38). Finally, both X. nematophila and S. carpocapsae secrete
proteolytic factors degrading cecropin AMPs (39, 40) and the bacterium has also been shown to reduce
more globally the hemolymph antimicrobial activity, as well as AMP transcription in lepidopteran models
(24, 39, 41, 42).

On the other hand, the description of these interactions from the hosts’ points of view is at its beginning.
This aspect has mainly been studied in the Drosophila melanogaster model, with a first transcriptomic
analysis of the whole larva responses to infestations by entire NBCs and by axenic nematodes (43). This
analysis has shown that several immune processes are induced by both pathogens at the transcriptional
level. For instance, the authors found in each case an overexpression of genes related to the Imd and Toll
pathways that was accompanied by the induction of a few AMP genes. They also found an upregulation of
genes related to melanization, coagulation, or involved in the regulation of cellular immune responses (43).
Complementary gene knockout experiments in this model demonstrated an involvement of the Imd
pathway in the response against X. nematophila (44) and revealed a possible involvement of the Imaginal
Disc Growth Factor-2, the intestinal serine protease Jonah 66Ci (45) as well as TGF-B and JNK pathways
members in the regulation of anti-nematode immunity (46, 47).

In order to improve our understanding of the dialogue that takes place between this NBC and its host, we
recently published a topologic transcriptomic analysis of the response of the lepidopteran model
Spodoptera frugiperda to the infestation (48). This analysis was focused on the three main
immunocompetent tissues that are confronted to the NBC, which are the midgut (the main entry site in the
hemocoel), the hemocytes and the fat body. The RNAseq experiment showed that there was no potent or
well-defined transcriptional response in the midgut. However, we observed dramatic transcriptional
responses in the fat body and the hemocytes at 15 h post-infestation, which is a middle time point of the
infection. In agreement with the results obtained in D. melanogaster whole larvae (43), global analysis of
these responses showed they are dominated by immune processes. The objective of the present study is to
go further in the analysis of these induced immune responses. In order to describe them with high accuracy,
we first examine the expression variations of all the immune genes that have been identified in the insect’s
genome. We then use tissue RT-qPCR experiments to analyze the temporal dynamics and the relative
contribution of each NBC partner in the identified immune responses. Our results show that a large number
of immune genes are responsive in either one or the two tissues during the infestation, with activation of
antimicrobial and cellular immunities, of melanization, coagulation and of metalloprotease inhibition.
These responses were found to be stable over the time post-infestation and to consist in combinations of X.
nematophila-induced and S. carpocapsae-induced responses in each tissue. The X. nematophila-induced
responses mainly correspond to genes that are classically involved in antibacterial immunity, whereas the
S. carpocapsae-induced ones mainly include lectins and genes potentially involved in melanization and

encapsulation. In addition, our RT-qPCR experiments show that two previously identified candidate
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clusters of uncharacterized genes (48) also present partner-specific induction profiles. Our hypothesis is
that they may correspond to new types of anti-nematode and antibacterial immune factors found in

Spodoptera genus and lepidopteran species, respectively.

Results & Discussion

Hemocytes’ and fat body’s immune responses

In order to get an accurate picture of the S. frugiperda transcriptional immune responses to the NBC
infestation, we first used a previously published list of immune genes identified by sequence homology in
the S. frugiperda genome (49). We then looked at their expression variations in the fat body and in the
hemocytes (S1A Table) and we completed the repertoire with additional putative immune genes that we
directly identified from our RNAseq data (S1B Table). In total, we present the annotation of 226 immune
or putative immune genes of which 132 were significantly modulated at 15 h post-infestation (hpi) (Sleuth,
p-value < 0.01; [Beta] > 1; all count values > 5 in at least one condition) in one or both tissues (Fig 1).
Among them, 62 were involved in antimicrobial responses (Fig 1A), 18 were related to melanization (Fig
1B), 23 were involved in cellular responses (Fig 1C) and the 29 remaining genes were grouped in a category

called “diverse” due to pleiotropic or poorly characterized functions (Fig 1D).

Antimicrobial responses. In the antimicrobial response category, 58 genes were found to be
upregulated in at least one of the two tissues (Fig 1A). The signaling genes encoded 3 and 8§ members of
the Imd and Toll pathways, respectively, as well as 5 short catalytic peptidoglycan recognition proteins
(PGRP-S), which are probably involved in the regulation of these pathways by peptidoglycan degradation
(50, 51) (Fig 1A). Four other genes were considered as involved in recognition. They encoded Gram
negative binding proteins (GNBPs), which have been reported to recognize peptidoglycans or -glucans
and participate in the further activation of the Toll pathway (22) (Fig 1A). Finally, the effector genes
encoded 33 antimicrobial peptides (AMPs) belonging to all the S. frugiperda’s AMP families (49) plus 4
lysozymes and lysozyme-like proteins (LLPs) (Fig 1A). Depending on their families and on the insect
species, AMPs can present varied activity spectra, ranging from antiviral or antibacterial activities to anti-
fungal and anti-parasitic ones (52). Varied activity spectra have also been found for several insects’
lysozymes and LLPs (53-57). Interestingly, all of the categories and subcategories cited above were
represented in the two tissues, indicating that their antimicrobial responses are diversified and that the
factors responsible for their disappearance in the hemolymph (24, 41) probably act at a post-transcriptional
level. About a half of the genes presented similar and significant induction profiles in the hemocytes and
in the fat body. This is for instance the case of the usually anti-Gram negative bacteria attacin, cecropin and
gloverin AMPs (52), which were all highly induced in the two tissues (Fig 1A), suggesting they both
respond to the bacterial partner X. nematophila. On the other hand, all the induced GNBP, lysozyme and
LLP genes were found to be either significantly induced in the hemocytes or in the fat body, and in the
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AMP category, tissue-specificities were observed for diapausin, defensin-like and most moricin genes (Fig
1A).

Only 8 antimicrobial response genes were found to be significantly downregulated (Fig 1A). Interestingly,
4 were involved in the Imd pathway whereas the 4 remaining ones were dispersed between the AMP, GNBP
and lysozyme categories (Fig 1A). The Imd pathway downregulated factors included sickie and the akirin
in the hemocytes and SMARCC2 and BAP60 in the fat body (Fig 1A). In D. melanogaster, Sickie
participates in the activation of Relish, the transcription factor of the Imd pathway (58) and the akirin acts
together with the Brahma chromatin-remodeling complex, containing BAP60 and SMARCC?2, as cofactor
of Relish to induce the expression of AMP genes (59). Given the potent induction of anti-Gram negative
bacteria immune responses in the two tissues, the down-regulation of these genes could be attributed to
immune regulations. However, it has been shown that in the close species S. exigua, live X. nematophila
reduces the expression of several AMP genes, including attacin, cecropin and gloverin (42, 60, 61). It would
thus be of particular interest to determine whether the observed down-regulations are related to this
immunosuppressive effect.

To summarize, the antimicrobial responses are potent and diversified in the two tissues, with a common
induction of genes that probably respond to X. nematophila. Y et unexplained tissue-specific responses were
observed and the results show a down-regulation of Imd pathway members that could be related to a
previously described transcriptional immunosuppressive effect of the NBC. However, this effect would not
be potent enough to suppress the humoral responses at this time point, suggesting that the NBC probably

uses other immunosuppressive strategies in this model.

Melanization. In the melanization category, 16 genes were found to be upregulated in at least one of the
two tissues (Fig 1B). These genes firstly encoded 6 serine proteases (Fig 1B) that were considered as
members of the prophenoloxidase (proPO) system. The proPO system is an extracellular proteolytic
cascade ending in the maturation of the proPO zymogen into PO, which initiates the melanization process
(62). Among the upregulated serine proteases, PPAE2 is the only one that is known to take part in proPO
processing whereas the other proteases were included in this category because of their characteristic CLIP
domains and of their low homology with the serine proteases acting upstream of the Toll pathway in D.
melanogaster (63). The other upregulated genes in this category included 3 serpins, which are known to
regulate the proPO system in several model insects (62), 3 melanization enzymes, DDC, Yellow-like 1 and
Punch-like (64, 65) as well as 4 genes, Reeler-1 and 3 Hdd23 homologs, that are involved in melanization
and nodule formation in other models (66, 67) (Fig 1B). Despite of tissue-specific induction patterns, serine
proteases and serpins were found in the two tissues (Fig 1B), suggesting that both participate in the
stimulation of the proPO system, which is consistent with results obtained in other interaction models (68-

70). However, with the exception of the DDC, all the melanization enzymes as well as the nodulation-
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related genes were specifically induced in the hemocytes (Fig 1B), which is consistent with the very
localized nature of this immune response (65) that is mainly mediated by hemocyte subtypes.

Finally, only 2 genes, PPAE1 and Yellow-like 2, were found to be significantly down-regulated in this
category (Fig 1B). Both were specifically repressed in the hemocytes, which could be due to functional
interferences with their upregulated homologs (PPAE2 and Yellow-like 1).

In summary, our results suggest that both the hemocytes and the fat body participate in induction and
regulation of melanization in response to the NBC and no sign of transcriptional immunosuppression is
detected for this response. These results are in agreement with the previous identification of diverse PO

inhibitors in both S. carpocapsae (28, 29) and X. nematophila (30, 31).

Cellular responses. In the hemocytes, 19 upregulated genes were placed in the cellular responses
category (Fig 1C). The signaling ones encoded 3 homologs of the transcription factor Kriippel (Kr) (Fig
1C). In D. melanogaster, Kr and Kr homologs are involved in several developmental processes such as
embryo patterning (71), organogenesis (72-74), and cell differentiation (75). More specifically in the
hemocytes, Kr has been shown to take part in hemocytes’ differentiation and/or activation (76), a crucial
step for the induction of cellular immune responses. The recognition genes encoded 3 cellular receptors of
the Scavenger (SR) and Integrin families plus the hemolin, a secreted immunoglobulin-containing protein
(Fig 1C). Both Scavenger receptors and integrins are known to act as membrane receptors in phagocytosis
of bacteria and apoptotic cells (77). In addition, integrins are involved in diverse processes, including cell
motility and adhesion, and encapsulation (78, 79). The hemolin is known to act as an opsonin by increasing
phagocytosis and nodulation of bacteria in Manduca sexta (80). Among the effector genes, we first
identified 5 upregulated genes corresponding to conserved intracellular phagocytosis-related proteins. They
included Ced-6, the Rabenosyn-5 (Rbsn-5-like), a V-ATPase subunit (ATP6V0A2-like) and 2 small
GTPase Activating Proteins (Rabex-5-like, CdGAPr-like) (77) (Fig 1C).We also found genes encoding
membrane proteins, such as the immunoglobulin-containing hemicentin (HMCN-like) (81) and 4
tetraspanin-like (Tsp-like) proteins (82) (Fig 1C), that could participate in cell-cell adhesion and cellular
immune responses. Interestingly, one of the upregulated tetraspanins (Tsp-like 3) presented 79.5% identity
with the Manduca sexta (Lepidoptera : Noctuidae) tetraspanin D76, which takes part in hemocytes
aggregation during capsule formation by trans-interacting with a specific integrin (83). Finally, 2 genes
encoding proteins similar to the D. melanogaster clotting factors GP150 (84) and a transglutaminase (Tg-
like) (85) were also found upregulated (Fig 1C). Only 2 genes (Ced-6-like, Rbsn-5-like) of the cellular
responses category were found to be upregulated in the fat body (Fig 1C) and both encoded intracellular
proteins that are probably not related to immunity in this tissue.

All the 4 down-regulated putative cellular immunity-related genes were specifically modulated in the
hemocytes (Fig 1C). They encoded 2 Rho GTPase Activating Proteins (RhoGAP-like), a scavenger

receptor similar to the D. melanogaster Croquemort receptor (SR-B3) and a homolog of the D.
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melanogaster integrin a-PS1. In D. melanogaster, Croquemort has been shown to take part in phagocytosis
of apoptotic cells and of the Gram positive bacterium Staphylococcus aureus but not of the Gram negative
bacterium Escherichia coli (79, 86). Integrin a-PS1 is a ligand of the extracellular matrix protein laminin
(87). It is involved in migration and differentiation of several cell types during development (88-90) but
does not seem to be required for any immune process. Their down-regulations are thus probably due to
their uselessness in the context of the response to the NBC.

Overall, the results suggest that all types of cellular responses are transcriptionally induced at 15 hpi,
including phagocytosis and nodulation, as well as encapsulation that would be adapted to the bacterial
partner or the nematode, respectively. In addition, the induction of coagulation responses is particularly
interesting, since many clotting factors participate in D. melanogaster resistance to infestation by another
type of NBC, the Heterorhabiditis bacteriophora-Photorhabdus luminescens association (91-94).
Moreover, despite S. carpocapsae does not pierce the insects’ cuticles as H. bacteriophora (1), it has been
shown to express at least two secreted proteases with inhibitory activities towards the formation of clot
fibers and coagulation-associated pathogen trapping (26, 27). Once again, the induction of such immune
responses is consistent with the previous identification of several virulence factors of the NBC targeting

cellular immunity (26, 28, 29, 31-38).

Diverse immunity-related genes. A total of 29 modulated genes were involved in other diverse
immune processes. They included 10 up- or down-regulated signaling genes, 7 upregulated recognition
genes, 8 upregulated effector genes and 5 upregulated genes of unknown functions that are known to be
modulated after immune challenge (Fig 1D).

The signaling genes firstly encoded 2 insulin-like growth factor (IGF-II-like) and 2 insulin receptor
substrate homologs (IRS1-like) (Fig 1D). Insulin signaling is known to have a deleterious impact on the
induction of systemic immune responses in the fat body of D. melanogaster (95) whereas insulin increases
hemocyte proliferation in the hemolymph of mosquitoes (96) as well as in the hematopoietic organs of the
lepidopteran model Bombyx mori (97). In agreement with these assertions, we found that 2 of these genes
were down-regulated in the fat body, but all 4 genes were upregulated in the hemocytes (Fig 1D). Two
other signaling genes were found to be specifically overexpressed in the hemocytes. The first one is a
homolog of the Litopenaeus vannamei (Decapoda: Penaeidae) leucine-rich repeat flightless-I-interacting
protein 2 (LRRFIP2-like) (Fig 1D), which has been shown to upregulate AMP expression in L. vannemei
as well as in D. melanogaster (98). On the other hand, 3 signaling genes were found to be strictly down-
regulated (Fig 1D). Interestingly, these genes included a member of the TGF-3 pathway (BAMBI-like) in
the hemocytes and a member of the JNK pathway in the fat body (Basket), two pleiotropic pathways that
are currently suspected to take a part in the D. melanogaster immune response to nematodes after NBC
infestation (47, 99-101). The third down-regulated gene was found in the fat body and encoded MASK, an
inducer of the Jak/Stat pathway (102). In the fat body, the Jak-Stat pathway has mainly been shown to
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induce the expression of cytokines (103) and of a putative opsonin belonging to the TEP family (104).
Remarkably, several Tep genes have been shown to participate in antibacterial immunity after NBC
infestation in D. melanogaster (91, 105-107). All of these down-regulations could thus impair the insect’s
immune response to the NBC. However, more detailed analyses of their functions and modulations would
be required to hypothesize immunosuppressive effects of the NBCs.

All 7 upregulated recognition genes encoded lectins (Fig 1D). Five of them encoded C-type lectins
(CLECT), which are known to be involved in binding of diverse pathogens (108), including bacteria and
nematodes (109). This binding can then stimulate several immune responses, such as bacterial aggregation,
melanization, phagocytosis, nodulation and encapsulation (108). The 2 others encoded galectins, which are
involved in diverse aspects of mammalian immunity, including pathogens binding (110), and are
considered as relevant candidate immune proteins in insects (111). Despite a larger set of upregulated
lectins was identified in the fat body, members of these protein families were found upregulated in the two
tissues.

In the hemocytes, the upregulated effector genes firstly encoded a homolog of the superoxide dismutase
(SOD-like), a conserved detoxifying enzyme involved in responses to reactive oxygen species (112) (Fig
1D). The 7 remaining genes encoded proteins with similarity to insect metalloproteinase inhibitors (IMPI-
like) (Fig 1D), whose functions have only been studied in the lepidopteran model Galleria mellonella. The
only characterized IMPI encodes two proteins of which one is probably involved in the regulation of
extracellular matrix remodeling and the second specifically targets metalloproteinases from pathogens
(113, 114). S. carpocasape and X. nematophila both express several secreted serine proteases as well as
metalloproteinases during the infectious process (39, 115-120). The induction of such immune responses
could interfere with some of these proteinases to impair the NBC’s virulence and/or survival. Interestingly,
all but one of these IMPI homologs were found to be specifically upregulated in the hemocytes, a tissue-
specificity that had not been highlighted in previous reports (121, 122).

Finally, the remaining genes of unknown function encoded Spod-x-tox, a protein without antimicrobial
activity which contains tandem repeats of defensin-like motifs (123), 3 REPAT genes, which are known to
be induced in the midgut after exposure to toxins, viruses and intestinal microbiota perturbations in the
close species S. exigua (124-126), and Hdd1, which is induced in response to bacteria and peptidoglycan
in the lepidopteran models Hyphantria cunea and Bombyx mori (127, 128) (Fig 1D).

In summary, we found an important additional mobilization of several relevant candidate immune genes,
including mainly insulin signaling factors and IMPIs in the hemocytes and lectins in the fat body. In
addition, these results suggest that the candidate immune pathways TGF-, JNK and Jak/Stat could be
down-regulated. Such down-regulations are in disagreement with the results of Yadav and colleagues (43)

in D. melanogaster and thus would require further investigation.
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Temporal analysis of the induced immune responses

In order to put the S. frugiperda immune responses in relation with the infectious process, we then described
their temporal dynamics in each analyzed immunocompetent tissue. To this aim, we monitored with RT-
qPCR experiments the induction levels of selected representative immune genes from 5 hpi, the mean time
at which nematodes release X. nematophila in the hemocoel, to 20 hpi, which is about 9 hours before the
first insect deaths (S1 Fig).

In the hemocytes, the selected genes included 15 genes of the antimicrobial response, 2 genes involved in
melanization, 5 cellular response genes, 2 lectins and one IMPI-like gene. At 5 hpi, only 2 genes, encoding
a lebocin antibacterial (52) AMP (Lebocin 2) and the negative regulator Pirk of the Imd pathway (129),
were found to be significantly upregulated. However, most of the selected genes that are strongly induced
at later time points also presented positive log2 fold changes at this time point (Fig 2A). From 10 to 20 hpi,
all selected genes but few exceptions (cecropin D, Tg-like and Integrin B-like) due to biological variability
were significantly upregulated at each time point (Fig 2A). Clustering analyses based on Pearson
coefficients however revealed 3 distinct clusters of covariations. The first one contained 13 genes belonging
to all the categories cited above and corresponded to very stable induction patterns (Fig 2A). The second
one, which contained 8 genes involved antimicrobial and cellular responses plus the selected C-type lectin
(CLECT (ccBV)), corresponded to slightly increasing patterns (Fig 2A). Finally, the third one, which
contained the Relish and Pelle members of the Imd and Toll pathways (22), an integrin and the DDC
melanization enzyme (130) genes, corresponded to slightly decreasing patterns (Fig 2A).

In the fat body, the selected genes included 15 genes of the antimicrobial response, 2 genes involved in
melanization, one galectin gene (Galectin 1) and an IMPI-like gene (IMPI-like 3). At 5 hpi, all 7 selected
AMPs, PGRP-S1 and Galectin 1 were found to be upregulated (Fig 2B). All these genes were among the
most strongly overexpressed at later time points. Such as in the hemocytes, most of the selected genes were
then significantly upregulated from 10 to 20 hpi (Fig 2B). In this tissue, the genes only subdivided into two
main covariation clusters: a cluster of genes with stable induction patterns and a cluster of genes with
increasing induction patterns. The first cluster contained 10 genes of which 8 were involved in antimicrobial
responses, one encoded a melanization-related serine protease (Snake-like 2) and one encoded the Galectin
1 (Fig 2B). The second cluster contained 9 genes, of which 7 were involved in antimicrobial responses, one
encoded the DDC melanization enzyme (130) and the last one encoded the IMPI-like 3 (Fig 2B).
Altogether, the results obtained for the two tissues show that most of the transcriptional immune responses
induced at 15 hpi take place between 0 and 10 hpi, which is comparable to timings observed in other
interaction models (131-133). The results also indicate that these responses are globally stable across the
time post-infestation despite some distinct gene induction patterns in each category of response.
Interestingly, while we were hoping to discriminate between an early response, probably activated by the

nematode presence, and a later response, probably reacting to bacterial growth, we did not find any clear
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link between the gene inductions’ dynamics and the different immune processes and pathways that were

represented in our selection.
Evaluation of each NBC partner’s part in the induced immune responses

In order to identify each NBC partner’s relative participation in the fat body’s and hemocytes’ immune
responses, we used RT-qPCR to compare the induction levels of the selected immune genes after
independent infections by the whole NBC, the axenic nematode or the bacterial symbiont. To this aim, we
decided to use a more standardized protocol of direct injection of the pathogens into the hemocoel, thereby
limiting putative side effects such as early hemocoel colonization by intestinal microorganisms.
Importantly, we previously compared the kinetics of X. nematophila growth and of S. frugiperda survival
after injection of the entire NBC and of 200 X. nematophila (S2A and S2B Fig). This comparison showed
that both kinetics are very similar and thus that any difference of induction level between the 2 conditions
would not reflect differences in bacterial load or physiological state. However, the putative impact of
axenization on the nematode’s physiology could not be assessed by the same way due to technical
limitations and to its avirulence in absence of its bacterial symbiont (S2B and S2C Fig).

In the hemocytes, 14 genes presented higher induction levels in response to X. nematophila than in response
to the axenic nematode (Fig 3). In the antimicrobial category, they included the negative regulator Pirk of
the Imd pathway (129), all the selected attacin, cecropin, gloverin, lebocin and gallerimycin AMPs, the 2
selected PGRP-S, and also probably the Imd pathway transcription factor Relish (22) (Fig 3A). As indicated
above, the Imd pathway, as well as the attacin, cecropin and gloverin AMP families, are known to take part
in anti-Gram negative bacteria immune responses (11, 52). Their induction patterns thus indicate that the
antimicrobial X. nematophila-induced responses are well adapted to the nature of the pathogen. Moreover,
these results are in agreement with the study of Aymeric and colleagues (44) showing that the Imd pathway
functions in the D. melanogaster immune response to X. nematophila. In the other categories, the X.
nematophila-induced genes encoded the DDC melanization enzyme (130), the hemolin antibacterial
opsonin (80), the IMPI-like 3, and also probably the selected integrin (Integrin B-like) (Fig 3B, 3C and 3D).
Once again, all of these genes are susceptible to play a part in an immune response to a pathogenic
bacterium even though most of them could act on diverse types of invaders. Surprisingly, we found that X
nematophila strongly over-induces the transglutaminase (Tg-like) putative clotting factor (85) (Fig 3C).
This result could suggest that the bacterium is actually the main responsible for tissue damages at this time
point and/or that Tg-like expression is induced in response to bacteria. Importantly, this result is in
agreement with the study of Yadav and colleagues (43), who showed that the D. melanogaster Fondue
clotting factor was induced after infestation by the NBC but not after infestation by axenic nematodes.
Remarkably, most of the genes that were mostly induced by X. nematophila presented higher induction
values in response to the bacterium alone than in response to the whole NBC. However, this observation

cannot be directly interpreted as an antagonistic effect of the nematode partner since it could be due to
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changes in the relative proportions of each hemocyte subtype, which would not necessarily reflect absolute
variations in their numbers. In addition, the nematode partner specifically induced the overexpression of
the selected C-type lectin (CLECT (ccBV)) and was probably the main inducer of the Galectin 1, the
tetraspanin D76 homolog (Tsp-like 3) and the selected diapausin AMP (Diapausin 5) (Fig 3A, 3C and 3D).
As mentioned before, the M. sexta tetraspanin D76 is known to take part in encapsulation (83) and some
lectins can bind nematodes and participate in melanization (109) as well as in all types of cellular immune
responses. Once again, their induction patterns are consistent with the nature of the pathogen, since both
types of molecules could be involved in classical anti-nematode immune responses, such as cellular or
melanotic encapsulation (134). Finally, 5 genes, encoding the Toll pathway members Pelle and Cactus (22),
the selected moricin AMP (Moricin 2), the melanization-related PPAE2 and the Kriippel-like transcription
factor (Kr-like factor 1), were similarly induced by each of the three pathogens (Fig 3A, 3B and 3C),
suggesting that these responses are induced by the 2 partners without any additive effect.

In the fat body, statistical analysis of the results firstly revealed that the induction levels of Pirk as well as
of the selected cecropin and gloverin AMPs were significantly lower in response to the axenic nematode
than in response to the NBC and to X. nematophila (Fig 4A), suggesting the bacterial partner is the main
responsible for their inductions. In addition, despite non-significant statistics, the results for the selected
attacin AMP, PGRP-S6 and GNBP3 showed similar induction patterns (Fig 4A). As for the hemocytes, the
induction patterns of Pirk and of the attacin, cecropin and gloverin AMPs suggest that the fat body’s
antimicrobial response to X. nematophila is well adapted to the type of pathogen that is met. On the
contrary, the induction levels of the melanization-related serine protease (Snake-like 2) was significantly
lower in response to X. nematophila than in response to the NBC and to the axenic nematode (Fig 4B),
suggesting that the nematode partner is the main responsible for its induction. Similar induction patterns
were obtained for the Toll pathway members Toll and Cactus (22) as well as for Galectin 1 (Fig 4A and
4C). As mentioned for the hemocytes, the induction of lectins and melanization-related genes in response
to the nematode is consistent with the nature of the pathogen since both could participate in classical anti-
nematode immune responses (134). The induction of Toll pathway members is more difficult to relate with
known anti-nematode immune responses and Yadav and colleagues (47) found that the inactivation of this
pathway does not impact the D. melanogaster survival to infestation by the whole NBC or by axenic S.
carpocapsae. Therefore, the involvement of this immune pathway in anti-nematode immune responses may
depend on the downstream effectors and thus be variable between insect species. Finally, the other genes
did not show any clear difference of induction level after injection of the 3 pathogens, except for the
gallerimycin AMP, PGRP-S1 and the DDC melanization enzyme, which presented a lesser induction when
each NBC partner was injected alone (Fig 4A and 4B). These results suggest synergistic effects of the
nematode and of the bacterium on the induction of these genes.

In summary, we found in the 2 tissues that most of the selected genes presented partner-specific induction

patterns, suggesting that the immune response to the NBC corresponds to combinations of responses
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induced by each partner. The detailed analysis of these genes indicates that X. nematophila is the main
inducer of most of the selected genes, and especially of the well-known antibacterial ones. On the other
hand, S. carpocapsae is the main inducer of some melanization and encapsulation-related genes and of the
selected lectins, which could all take part in classical anti-nematode immune responses. The results thus
globally suggest that the hemocytes and the fat body both respond by adapted ways to each NBC partner
despite some yet unexplained results, such as an induction of Toll pathway members in the fat body by the

nematode partner.

Expression patterns of two new clusters of candidate immune genes

During our first analysis of the RNAseq data, we identified 2 new clusters of candidate immune genes (48).
The first one, named the Unknown (Unk) cluster, was localized close to Tamozhennic, a gene encoding a
nuclear porin involved in the nucleation of Dorsal, the transcription factor of the Toll pathway (135). It
contained 5 genes predicted to encode secreted peptides and short proteins that were all highly
overexpressed in the midgut, fat body and hemocytes at 15 hpi and of which 4 were the unique mobilized
genes at 8 hpi in the fat body. The second cluster, named the Genes with Bacterial Homology (GBH)
cluster, contained 3 genes located inside a defensin-like AMP cluster in the S. frugiperda genome. The 3
genes were predicted to encode secreted proteins similar to each other and one of them was also found
highly induced at 15 hpi in the 3 tissues. The particularity of these genes is that homologs are found only
in lepidopteran species as well as, intriguingly, in Gram positive bacteria. Here, we reexamined the
expression patterns of the Unk and GBH genes and found that the 5 Unk genes were mainly expressed in
the fat body whereas 2 of the 3 GBH genes were mainly expressed and induced in the hemocytes (S2 Table).
In order to learn more about their putative functions, we decided to analyse, as we did for the known
immune genes, their induction patterns across the time post-infestation and in response to each NBC partner
in the corresponding tissues. In both cases, we found that the induction dynamics of the genes were very
similar to those of immune genes, with an upregulation that becomes significant at 5 or 10 hpi and with
globally stable induction patterns from 10 to 20 hpi (Fig 5SA and 5B).

In the case of the GBH cluster, the results that we got for the 2 NBC-responsive genes (GBH1 and GBH3)
in the hemocytes indicate that they are significantly less induced after axenic nematode injection than after
NBC and X. nematophila injections, suggesting that the bacterium is the main responsible for their up-
regulation (Fig 5C). We could hypothesize an acquisition by horizontal gene transfer from bacteria of the
GBH genes. In this case, their putative involvement in the antibacterial immune response would be
particularly interesting, since bacterial genes hijacking for immune purpose has only been reported once in
metazoans, in the tick Ixodes scapularis (136). Such a hypothesis however requires functional confirmation.
In the case of the Unk cluster, we found that the 4 most induced genes in the fat body (Unk2 to 5) are all
strongly and similarly induced by the NBC and by the axenic nematode whereas they are not induced by
X. nematophila (Fig 5D). The results are very similar for the least expressed Unk gene (Unk1), for which

14


https://doi.org/10.1101/800656
http://creativecommons.org/licenses/by/4.0/

431
432
433
434
435
436
437
438
439
440

441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

bioRxiv preprint doi: https://doi.org/10.1101/800656; this version posted October 10, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

we only found a significant induction for the injection of axenic nematodes (Fig 5D). This partner-specific
induction pattern suggests the Unk genes are involved in specific aspects of the insect responses to the
infestation. In addition, the putative involvement of the Unk genes in the response towards the nematode
partner seems to be in agreement with their early mobilization during the infectious process and with their
overexpression in the midgut, which is the entry site of the nematode. In our previous study, we had
hypothesized the Unk may encode new types of immune effectors (48). However, given their low levels of
conservation in species as close as S. littura or S. littoralis (S4 Fig) another hypothesis would be that they
correspond to regulatory long non-coding RNAs (137, 138). In both cases, the further functional
characterization of these genes could be very promising given our current lack of knowledge of the immune

pathways and molecular effectors of insect anti-nematode immunity.

Conclusion

Here, we provide a very deep and contextualized analysis of the S. frugiperda’s hemocytes’ and fat body’s
transcriptional immune responses to infestation by the S. carpocapsae-X. nematophila NBC. Our topologic
analysis of these responses at 15 hpi firstly confirmed the induction of very potent and diversified immune
responses towards the pathogen, such as suggested by our previous analysis of the transcriptomic data (48)
as well as by the study of Yadav and colleagues (43) in the D. melanogaster model. The present work
establishes that these responses are very stable across the post-infestation time and that they correspond to
combinations of X. nematophila- and S. carpocapsae-induced responses that seem to be well adapted to the
nature of each partner (Fig 6).

The pieces of information collected during these analyses are of great interest for the study of the dialogue
that takes place between each NBC partner and their hosts’ immune systems. First, our results strongly
suggest that the NBC immunosuppressive strategies globally have a low impact on the induction of immune
responses at the transcriptional level. They also indicate that the nematode and/or its effects on the host are
detected by the insect’s immune system that in return seems to induce adapted immune responses towards
the pathogen. Such observations could help to identify the limits of previously described
immunosuppressive and immunoevasive strategies of the NBC. For example, they suggest that the
suppressive effect of X. nematophila on the expression of AMP genes (42, 60, 61) as well as the camouflage
strategy of S. carpocapsae (24, 25) are probably far from sufficient to explain their success towards the
immune system in the case of S. frugiperda. Nevertheless, we found several unexplained down-regulations
of signaling genes, such as of members of the Imd, JNK, TGF-B and Jak-Stat pathways, that represent
interesting working trails for the study of the molecular basis of the NBC’s immunosuppressive strategies.
Finally, this study allowed the identification of very large panels of candidate immune genes involved in
all the main components of insect immunity as well as of some yet uncharacterized genes that could encode

new immune factors involved in the response to the complex.
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Continuing this work with more functional and mechanistic approaches is now required to get an accurate
picture of the molecular dialogue between the NBC and the immune system. In the longer term, such
approaches could help to identify the precise causes of the immune system’s failure against this NBC and

thus the conditions that are required for an adequate use of this NBC against insect pests.

Materials and Methods

Insect rearing

Corn variant Spodoptera frugiperda (Lepidoptera : Noctuidae) were fed on corn-based artificial diet (139).
They were reared at 23°C +/- 1°C with a photoperiod of 16 h/8 h (light / dark) and a relative humidity of
40 % +/- 5 %. Galleria mellonella (Lepidoptera : Pyralidae) were reared on honey and pollen at 28°C in
dark.

Production and storage of nematobacterial complexes

Steinernema carpocapsae-Xenorhabdus nematophila complexes (strain SK27 isolated from Plougastel,
France) were renewed by infestation of one month-old Galleria mellonella larvae. They were collected on
White traps (140) and stored at 8°C in aerated Ringer sterile solution with 0.1 % formaldehyde. The

maximal time of storage was limited to 4 weeks to avoid pathogenicity losses.

Production of axenic nematodes

Gravid S. carpocapsae temales were extracted from G. mellonella dead bodies at day 4 to 6 after infestation
by nematobacterial complexes. After 5 washing steps in Ringer sterile solution, the females were surface-
sterilized by 20 min incubation in 0.48% (wt/vol) sodium hypochlorite and 3 h incubation in Ringer sterile
solution supplemented with antibiotics (150 pg/mL polymyxin, 50 pg/mL colistin, 50 pg/mL nalidixic
acid). The eggs were extracted by female crushing with sterile glass pestles and then washed by
centrifugation (2 min, 16000 g) in Ringer sterile solution, disinfected by incubation in 0.48% sodium
hypochlorite for 5 min, and washed again twice. After microcopic observation, the intact eggs were placed
on liver-agar (40 g/L Tryptycase Soja Agar [BioM¢érieux], 5 g/L Yeast Extract [Difco], 100 g/L porc liver)
plates supplemented with antibiotics (150 pg/mL polymyxin, 50 pg/mL colistin and 50 pg/mL nalidixic
acid). The plates were maintained inside a dark humid chamber for 1 month to allow nematodes
development. The nematodes were then suspended in Ringer sterile solution and infective juvenile stages
(IJs) were sorted by pipetting under a microscope (Leica). The IJs were rinsed twice by centrifugation (2
min, 3000 g) in I mL Ringer sterile solution and used within minutes for experimental infection.

Nematodes’ axenicity was verified a posteriori by DNA extraction and PCR amplification. Nematodes
were suspended in 200 pL milliQ water supplemented with 200 pL glass beads (@ < 106 um) (Sigma).
They were grinded for 2 x 40 sec at 4.5 ms speed with a FastPrep homogenizer (MP Biomedicals). The

debris were discarded by centrifugation (2 min, 16000 g) and 150 pL supernatant were mixed with 200 uLL
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lysis buffer (Quick extract kit, Epi-centre) for a second grinding. To ensure bacterial cell lysis, the samples
were incubated at room temperature for 48 h with 2 pL Ready-Lyse Lysozyme solution at 30000 U/uL.
(Epi-centre). Protein denaturation was then performed by 10 min incubation at 90°C, and RNA was
removed by 10 min incubation at 37°C with 20 uL RNase A (20 mg/mL) (Invitrogen). DNA was extracted
by successive addition of 500 pL phenol-chloroform-isoamyl alcohol and 500 pL chloroform, followed by
centrifugations (10 min, 16000 g) and aqueous phase collections. DNA was precipitated with 500 uL. 100%
ethanol supplemented with 20 uL sodium acetate and by freezing at -80°C for 2 h. After defrosting, DNA
was concentrated by centrifugation (30 min, 16000 g) and the precipitates were washed twice by
centrifugation (15 min, 16000 g) in 500 uL 70% ethanol. DNA was finally suspended in 50 pL sterile
milliQ water and left at room temperature for a few hours to ensure precipitate dissolution. After DNA
quantification with a Qubit fluorometer (Invitrogen), X. nematophila presence was assessed by PCR
amplification with Xenorhabdus-specific primers (Xeno F: 5'-ATG GCG CCA ATA ACC GCA ACT A-
3’; Xeno R:5-TGG TTT CCA CTT TGG TAT TGA TGC C-3"), which target a region of the XNC1_0073
gene encoding a putative TonB-dependent heme-receptor. The presence of other bacteria was assessed by
16S rRNA gene amplification with universal primers (141). Thirty cycles of PCR were performed using
Taq polymerase (Invitrogen) in a Biorad thermocycler (Biorad), with hybridization temperatures of 55°C

and 50°C respectively. PCR products were then analyzed by agarose gel electrophoresis.
Experimental infections

Experimental infestations with nematobacterial complex were carried out on individual 2" day 6% instar S.
frugiperda larvae according to (48). Larvae were kept at 23°C in 12-well plates with an articial diet (139).
Briefly, each well was coated with a piece of filter paper (Whatman) and 150 +/- 20 NBCs in 150 puL Ringer
solution were poured in each larva-containing well. 150 uL Ringer sterile solution were used for control
larvae.

For intra-hemocoelic injection experiments, pathogens were injected in larvae’s abdomens after local
application of 70% ethanol with a paintbrush. Injections were performed using a syringe pump (Delta labo)
with 1 mL syringes (Terumo) and 25G needles (Terumo). X. nematophila suspensions were prepared as
described in Sicard et al (2004)(142). Bacterial culture was diluted in PBS and 20 pL containing 200 +/-
50 bacterial cells were injected in the hemocoel at a rate of 1.67 mL/min. 20 pL sterile PBS was used for
control larvae. The purity and number of injected X. nematophila were verified by plating 20 puL of the
bacterial suspension on NBTA (143). For NBC and axenic nematode injections, 10 +/- 3 nematodes in 20
pL solution at 70% Ringer and 30% glycerol were injected at a rate of 2.23 mL/min. Syringes were
frequently renewed in order to limit nematodes’ concentration and sedimentation and the number of
injected nematodes was verified by 10 simulations of injection in Petri dishes followed by nematode
counting under a microscope (Zeiss). Sterile solutions at 70% Ringer and 30% glycerol were used for

control larvae. To avoid accidental per os infections, the injected larvae were then briefly washed in sterile
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PBS and dried on paper towel before being placed in 12-well plates. The pathogens efficacies were checked

by monitoring 12 control and 12 infected larvae’s survival for 72 h after infestation or after injection.
Production and storage of bacterial symbionts

X. nematophila strain F1 isolated from nematobacterial complexes strain SK27 was conserved at -80°C.
Within 3 weeks before each experiment, they were grown for 48 h at 28°C on NBTA with erythromycin
(15 pg/mL). The colonies were then conserved at 15°C and used for overnight culture at 28°C in 5 mL

Luria-Bertani broth (LB) before experiments.
RNA extraction

RNAs were prepared as described in Huot et al (2019) (48). Briefly, nine larvae per technical replicate were
bled in anti-coagulant buffer (144). Hemocytes were recovered by centrifugation (1 min, 800 g) at 4°C and
the pellet was immediately flash-frozen with liquid nitrogen. The larvae were then dissected for fat body
and midgut sampling and the tissues were flash-frozen in eppendorf tubes with liquid nitrogen. After
storage at -80°C for at least 24 h, 1 mL Trizol (Life technologies) was added to the pooled tissues. The
tissues were then grounded by using a TissueLyzer 85210 Rotator (Qiagen) with one stainless steel bead
(9 : 3 mm) at 30 Hz for 3 min. For optimal cell lyses, grounded tissues were left at room temperature for 5
min. To extract nucleic acids, 200 uL chloroform (Interchim) were added and the preparations were left at
room temperature for 2 min with frequent vortex homogenization. After centrifugation (15 min, 15,000 g)
at 4°C, the aqueous phases were transferred in new tubes and 400 uL 70% ethanol were added. RNA
purifications were immediately performed with the RNeasy mini kit (Qiagen) and contaminant DNA was
removed with the Turbo DNA-free™ kit (Life Technologies).

RNA yield and preparation purity were analyzed by measuring the ratios Ajeo/Azso and Asgp/Assp With a
Nanodrop 2000 spectrophotometer (Thermo Scientific). RNA integrity was verified by agarose gel

electrophoresis and RNA preparations were conserved at - 80 °C.

RNAseq experiments

RNAseq raw data originate from Huot et al (2019) (48). In brief, libraries were prepared by MGX GenomiX
(IGF, Montpellier, France) with the TruSeq Stranded mRNA Sample preparation kit (Illumina). The
libraries were then validated on Fragment Analyzer with a Standard Sensitivity NGS kit (Advanced
Analytical Technologies, Inc) and quantified by qPCR with a Light Cycler 480 thermal cycler (Roche
Molecular diagnostics). cDNAs were then multiplexed by 6 and sequenced on 50 base pairs in a HiSeq
2500 system (Illumina) with a single-end protocol. Image analysis and base calling were performed with
the HiSeq Control and the RTA softwares (Illumina). After demultiplexing, the sequences quality and the
absence of contaminant were checked with the FastQC and the FastQQ Screen softwares. Data were then

submitted to a Purity Filter (Illumina) to remove overlapping clusters.
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For each sample, the reads were pseudoaligned on the S. frugiperda reference transcriptome version
0GS2.2 (49) using the Kallisto software (145). Differential expression between infested and control
conditions were then assessed for each time point and tissue with the Sleuth software (146). Wald tests
were used with a g-value (equivalent of the adjusted p-value) threshold of 0.01 and a beta value (biased
equivalent of the log2 fold change) threshold of 1. Only transcripts with normalized counts over 5 in all
three replicates of the infested and/or of the control condition were considered as reliably differentially
expressed.

Previously annotated immune transcripts (49) were then checked for significant expression changes and
not annotated differentially expressed ones were researched with the Blast2GO software by blastx on the
NCBI nr and drosophila databases (147). To avoid mistakes related to genome fragmentation, the immune
transcripts were gathered by unique gene after careful examination of their sequences and of the available
genomic data (49). The induction levels of the transcripts were then averaged by unique gene before

graphical representation of the results.

RT-gPCR experiments

cDNAs were synthesized from 1 pg of RNA with the SuperScript II Reverse Transcriptase (Invitrogen),
according to the manufacturer’s protocol.

The primers (S3 Table) were designed with the Primer3Web tool (148). Their efficiency was estimated by
using serial dilutions of pooled cDNA samples and their specificity was verified with melting curves
analyses. Amplification and melting curves were analyzed with the LightCycler 480 software (Roche
Molecular diagnostics).

RT-qPCR were carried out in triplicate for each biological sample, with the LightCycler 480 SYBR Green
I Master kit (Roche). For each sample and primer pair, 1.25 pL of sample containing 50 ng/uL of cDNA
and 1.75 pL of Master mix containing 0.85 uM of primers were distributed in multiwell plates by an Echo
525 liquid handler (Labcyte). The amplification reactions were then performed in a LightCycler 480
thermal cycler (Roche) with an enzyme activation step of 15 min at 95°C, and 45 cycles of denaturation at
95°C for 5 sec, hybridization at 60°C for 10 sec and elongation at 72°C for 15 sec.

Crossing points were determined using the Second Derivative Maximum method with the LightCycler 480
software (Roche) and relative expression ratios between control and infected conditions were manually
calculated according to the method of Ganger et al (2017)(149). The ratios were normalized to RpL32
housekeeping gene relative levels and the EF1 gene was used as an internal control.

Statistical analyses of the data were all performed with the R software (150). Differential expression
significance between the control and infected conditions was assessed by paired one-tailed t-tests on ACq
values. Multiple comparisons of fold changes were assessed by one-way ANOV A on AACq values followed

by post hoc Tukey tests. P-values under 0.05 were considered as significant for all the above tests. The
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gplots package was used to draw the heatmaps and the clusters were built from a dissimilarity matrix based

on Pearson correlation coefficients.

Quantification of nematodes in the midgut lumen

NBCs in the midgut lumen were quantified at several times after infestation by nematode counting in the
alimentary bolus. For 3 independent experiments, 3 infested larvae were dissected and the midguts
alimentary bolus were extracted. Each alimentary bolus was then dissolved in 3 mL sterile PBS in a Petri

dish (@ : 35 mm) and motile nematodes were counted with a microscope (Leica).
Quantification of X. nematophila in the hemolymph

The concentration of X. nematophila in the hemolymph was estimated by CFU counting. For 3 independent
infection experiments and 3 technical replicates, hemolymph was collected by bleeding of 3 caterpillars in
200 uL PBS supplemented with phenylthiourea (Sigma). The volumes of hemolymph were then estimated
by pipetting and serial dilutions of the samples were plated on NBTA with 15 pg/mL erythromycin. CFU
were counted after 48 h incubation at 28°C and the counts were reported to the estimated hemolymph
volumes in order to calculate the bacterial concentrations. Hemolymph of naive larvae was also plated for

control.

Insect survival kinetics

Survival kinetics were performed in triplicate on pools of 20 infested or injected larvae. Survival was
monitored from 0 to 72 hours after contact or injection. Naive larvae were used as control for infestations
whereas larvae injected with PBS were used for controls of X. nematophila injections and larvae injected
with 70% Ringer - 30% glycerol solutions were used for controls of nematobacterial complexes and

nematodes injections.
Parasitic success measurement

Parasitic success was measured in triplicate on pools of 20 nematobacterial complexes or axenic
nematodes-injected larvae. Dead larvae were individually placed on white traps (140) approximately 2 days
after their deaths. The emergence of nematodes was assessed at day 40 after injection by observation of the
collection liquid with a microscope (Leica). Parasitic success was then calculated as the percentage of

larvae with nematode emergence among the infected larvae.
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Figure Legends

Figure 1. Expression variations of the differentially expressed immune genes after infestation by the
nematobacterial complex. Heatmaps showing the expression variations of the differentially expressed
immune genes in the hemocytes and in the fat body at a middle time point of 15 h post-infestation.
Infestation experiments were performed in triplicate with N=9 larvae per sample. RNAseq data were
analyzed with the Kallisto/Sleuth softwares using statistical thresholds of 0.01 for p-values, -1 and +1 for
Beta value (biased equivalent of log2 fold change) and 5 for pseudocount means. The immune genes were
identified by homology and classified as (A) antimicrobial immunity-related, (B) melanization-related, (C)
cellular immunity-related and (D) diverse immune responses. Black dots indicate genes with statistically

non-significant variations to the controls in the corresponding tissue; HC : Hemocytes, FB : Fat body.

Figure 2. Temporal dynamics of the identified immune responses after infestation by the nematobacterial
complex. Heatmaps showing the temporal evolution of the induction levels of representative immune genes
in the hemocytes (A) and in the fat body (B) after infestation by the nematobacterial complex. RT-qPCR
relative quantifications were performed on triplicate samples of N=9 larvae par sample with the RpL32
housekeeping gene as reference. Differential expression was assessed with Student t tests on ACq (149)
and black dots indicate genes with statistically non-significant variations to the controls in the
corresponding tissue (p-value > 0.05). The dendrograms represent clustering analyses based on Pearson

correlation coefficients.

Figure 3. Relative participations of S. carpocapsae and X. nematophila in the hemocytes’ immune
responses. Histograms showing the induction levels (+/- SEM) of representative immune genes in the
hemocytes at 13 h after independent injections of either 10 nematobacterial complexes (NBC), 10 axenic
S. carpocapsae (S.c.) or 200 X. nematophila symbionts (X.n.). RT-qPCR relative quantifications were
performed on triplicate samples of N=9 larvae per sample with the RpL.32 housekeeping gene as reference
and buffer-injected control larvae. Letters show statistical differences between treatments from one-way
ANOVA and Tukey tests on AACq (149). The genes were gathered by type of immune response with (A)
antimicrobial immunity-related, (B) melanization-related, (C) cellular immunity-related and (D) diverse

immune responses.

Figure 4. Relative participations of S. carpocapsae and X. nematophila in the fat body’s immune responses.
Histograms showing the induction levels (+/- SEM) of representative immune genes in the fat body at 13
h after independent injections of either 10 nematobacterial complexes (NBC), 10 axenic S. carpocapsae
(S.c.) or 200 X. nematophila symbionts (X.n.). RT-qPCR relative quantifications were performed on
triplicate samples of N=9 larvae per sample with the RpL32 housekeeping gene as reference and buffer-

injected control larvae. Letters show statistical differences between treatments from one-way ANOVA and
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Tukey tests on AACq (149). The genes were gathered by type of immune response with (A) antimicrobial

immunity-related, (B) melanization-related and (C) diverse immune responses.

Figure 5. Transcriptional induction patterns of putative new immune genes. (A, C) Histograms showing
the induction levels (+/- SEM) of 2 GBH genes in the hemocytes (A) and of the 5 Unk genes in the fat body
(C) at several times after infestation by the nematobacterial complex . RT-qPCR relative quantifications
were performed on triplicate samples of N=9 larvae per sample with the RpL32 housekeeping gene as
reference. Differential expression was assessed with Student t tests on ACq (149) and black dots indicate
genes with statistically non-significant variations to the controls (p-value > 0.05). (B, D) Histograms
showing the induction levels (+/-SEM) of 2 GBO genes in the hemocytes (B) and of the 5 Unk genes in the
fat body (D) at 13 h after independent injections either 10 nematobacterial complexes (NBC), 10 axenic S.
carpocapsae (S.c.) or 200 X. nematophila (X.n.). RT-qPCR relative quantifications were performed on
triplicate samples of N=9 larvae per sample with the RpL32 housekeeping gene as reference and buffer-
injected control larvae. Letters show statistical differences between treatments from one-way ANOVA and

Tukey tests on AACq (149).

Figure 6. Hypothetical structure of the S. frugiperda larva’s immune response to the nematobacterial
complex. Graphical abstract illustrating the main hypotheses we can emit from the present RNAseq and
RT-gPCR data and from our current knowledge of S. frugiperda immunity. Dark green letters, lines and
arrows indicate responses that seem to be mainly induced by the nematode partner S. carpocapsae whereas
orange ones indicate responses that seem to be mainly induced by the bacterial symbiont X. nematophila.
The arrows’ thicknesses and the letter sizes refer to the relative strengths of the induced transcriptional

responses. AMP: AntiMicrobial Peptides, IMPI: Induced MetalloProteinase Inhibitors.

Supporting Information Legends

S1 Table. Hemocytes and fat body RNAseq results for S. frugiperda’s immune genes. (A) Results for
the previously annotated S. frugiperda's immune genes, (B) Results for the newly identified S. frugiperda's
immune genes. The statistics of the transcripts that were considered as significantly (Sleuth : |[Beta|>1; qval
<0.01; pseudocounts > 5 in all the samples of at least one condition) up- or down-regulated are highlighted
in red and blue, respectively. The Beta value gives a biased estimate of the log2 fold change. The qvalue
(qval) is an equivalent of the adjusted p-value. The following columns give the normalized pseudocounts
(Kallisto) for each individual sample, with HCn15 and FBnl15 corresponding to control larvae and HCil5
and FBil5 corresponding to infested larvae. Blast hits on the Drosophila and nr NCBI databases were

obtained by blastx with the Blast2GO sofware.
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S2 Table. Hemocytes and fat body RNAseq results for the Unk and GBH putative new immune genes.
The statistics of the transcripts that were considered as significantly upregulated (Sleuth : Beta>1; qval <
0.01; pseudocounts > 5 in all the samples of at least one condition) are highlighted in red. The Beta value
gives a biased estimate of the log2 fold change. The qvalue (qval) is an equivalent of the adjusted p-value.
The following columns give the normalized pseudocounts (Kallisto) for each individual sample, with

HCn15 and FBn15 corresponding to control larvae and HCi15 and FBil15 corresponding to infested larvae.

S3 Table. Primers sequences and genes used in this study.

S1 Fig. Temporal monitoring of nematobacterial infestation parameters. (A) Dotplot showing the
number of S. carpocapsae detected in the midgut alimentary bolus at several times after infestation by the
nematobacterial complex. Infestations were performed by putting in contact individual larvae with 150
nematobacterial complexes (at time 0) in cell culture plates. Dot colors correspond to 3 independent
experiments on N=3 larvae per time point. (B) Curve showing the temporal evolution of X. nematophila
concentration (+/-SEM) in the hemolymph across the time post-infestation. Infestation experiments were
performed in triplicate with 3 pools of 3 larvae per time point. X. nematophila were quantified by CFU
counting on selective culture medium. (C) Curve showing the temporal evolution of S. frugiperda larvae’s
survival percentage (+/- SEM) across the time post-infestation. Infestation experiments were performed in

triplicate on N=20 larvae per experiment.

S2 Fig. Comparison of the main infection parameters after independent injections of the
nematobacterial complex, of axenic S. carpocapsae and of X. nematophila. (A) Curves showing the
temporal evolution of X. nematophila concentration (+/-SEM) after independent injections of either 10
nematobacterial complexes (NBC) or 200 X. nematophila (X.n.). Injection experiments were performed in
triplicate with 3 pools of 3 larvae per time point and X. nematophila were quantified by CFU counting on
selective culture medium. (B) Curves showing the temporal evolution of S. frugiperda larvae’s survival
percentage (+/- SEM) after independent injections of either 10 nematobacterial complexes (NBC), 10
axenic S. carpocapsae (S.c.) or 200 X. nematophila (X.n.). Injection experiments were performed in

triplicate on N=20 larvae per experiment. No insect death was reported for control buffer-injected larvae.
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(C) Histogram showing the parasitic success (+/- SEM) (i.e.: number of larvae with nematobacterial
complex emergence on total number of infested larvae) after independent injections of either 10
nematobacterial complexes (NBC) or 10 axenic S. carpocapsae (S.c.). Injection experiments were

performed in triplicate on N=20 larvae per experiment.

S3 Fig. Verification of S. carpocapsae axenicity. Electrophoresis gel showing the absence of bacterial
contaminants in the axenized nematodes. Total DNAs from grinded infective stage nematodes (axenic S.c.)
were extracted and the absence of bacterial contaminants was verified by PCR amplification of the 16S
rRNA gene with universal primers and of the Xenorhabdus-specific gene (see Materials and Methods).
Whole nematobacterial complexes (NBC) and a pure suspension of X. nematophila (X.n.) were used as
positive controls. A pure suspension of P. protegens (P.p.) was used as negative control for putative TonB-

dependent heme-receptor amplification.

S4 Fig. Alignment of deduced amino acid sequences of Unks from S. frugiperda with those of S. litura

and S. littoralis. Nucleotide sequences were retrieved by blastn on S. litura and S. littoralis genomes.
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