bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Spectral Jaccard Similarity:
A new approach to estimating pairwise sequence alignments

Tavor Baharav* !, Govinda M. Kamath* 2, David N. Tse!, and Ilan Shomorony?
! Department of Electrical Engineering, Stanford University.
2 Microsoft Research New England, Cambridge, Massachusetts.
3 Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign.
tavorb@stanford.edu, gokamath@microsoft.com,
dntse@stanford.edu, ilans@illinois.edu

10 October 2019

Abstract

A key step in many genomic analysis pipelines is the identification of regions of similarity between
pairs of DNA sequencing reads. This task, known as pairwise sequence alignment, is a heavy computa-
tional burden, particularly in the context of third-generation long-read sequencing technologies, which
produce noisy reads. This issue is commonly addressed via a two-step approach: first, we filter pairs of
reads which are likely to have a large alignment, and then we perform computationally intensive alignment
algorithms only on the selected pairs. The Jaccard similarity between the set of k-mers of each read
can be shown to be a proxy for the alignment size, and is usually used as the filter. This strategy has the
added benefit that the Jaccard similarities don’t need to be computed exactly, and can instead be efficiently
estimated through the use of min-hashes. This is done by hashing all k-mers of a read and computing the
minimum hash value (the min-hash) for each read. For a randomly chosen hash function, the probability
that the min-hashes are the same for two distinct reads is precisely their k-mer Jaccard similarity. Hence,
one can estimate the Jaccard similarity by computing the fraction of min-hash collisions out of the set of
hash functions considered.

However, when the k-mer distribution of the reads being considered is significantly non-uniform,
Jaccard similarity is no longer a good proxy for the alignment size. In particular, genome-wide GC biases
and the presence of common k-mers increase the probability of a min-hash collision, thus biasing the
estimate of alignment size provided by the Jaccard similarity. In this work, we introduce a min-hash-based
approach for estimating alignment sizes called Spectral Jaccard Similarity which naturally accounts for
an uneven k-mer distribution in the reads being compared. The Spectral Jaccard Similarity is computed by
considering a min-hash collision matrix (where rows correspond to pairs of reads and columns correspond
to different hash functions), removing an offset, and performing a singular value decomposition. The
leading left singular vector provides the Spectral Jaccard Similarity for each pair of reads. In addition,
we develop an approximation to the Spectral Jaccard Similarity that can be computed with a single
matrix-vector product, instead of a full singular value decomposition.

We demonstrate improvements in AUC of the Spectral Jaccard Similarity based filters over Jaccard
Similarity based filters on 40 datasets of PacBio reads from the NCTC collection. The code is available at
https://github.com/TavorB/spectral_jaccard_similarity.

*Contributed equally and listed alphabetically

https://github.com/TavorB/spectral_jaccard_similarity
https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1 Introduction

The advent of long-read sequencers such as PacBio and Oxford Nanopore have made the goal of obtaining
gold-standard genome assemblies a reality. Unlike short read technologies, which provide reads of length
100-200 bp with an error rate of 1%, chiefly substitution errors, long read technologies provide reads of
lengths in the tens of thousands with a nominal error rate of 13-15%, consisting mostly of insertions and
deletions [Weirather et al.l 2017]]. While the long reads make resolving repeated sequences easier, the higher
error rates make the computational tasks required for assembly significantly more challenging.

Genome assembly is usually performed based on one of two main approaches: de-novo assembly, where
one attempts to assemble a new genome “from scratch” using only the reads obtained, and reference-based
assembly, where one assembles the reads using a pre-assembled genome of a related organism. Alignment is
an integral part of most pipelines in either approach, and is often the most time consuming step (see Fig. [I§).
In both settings naive dynamic programming based alignment [[Needleman and Wunsch, 1970, |Smith and
Waterman), [1981], Myers|, [1986] is impractical due to its quadratic time complexity.

In reference-based assembly pipelines [[Vaser et al., 2017, Wick, |2019], where one has a reference of a
related organism, the first step usually consists of aligning all reads to the reference; i.e., read-to-reference
alignment. For n reads each of length L and a reference of length G, the time complexity of aligning all
reads to the reference via dynamic programming is O(nLG), which is impractical in settings where there are
n ~ 10° reads, each of length L ~ 10%, with G on the order of 107-10'! depending on the organism.

Similarly, the first step in most de-novo assembly pipelines [[Chin et al., 2013| Berlin et al., 2015/} |Li,
2016, |Chin et al.,[2016| |[Koren et al., 2017} [Kamath et al., 2017] is the pairwise alignment of all reads, which
is computationally very costly. For n reads each of length L, the time complexity of aligning all pairs of reads
would be O(n?L?). Even for bacterial genome datasets where the number of reads obtained is on the order
of n ~ 10°, with L ~ 10%, this is impractical. For most of the sequel, we discuss alignment in the context of
pairwise read alignment. However, our ideas can be adapted to the read-to-reference alignment paradigm.

One key observation that helps alleviate this computational burden is that in practice one only cares about
alignment between reads when there is a significant overlap. Further, as shown in Figure[I] in a typical
dataset, more than 99.99% of pairs of reads do not have a significant overlap. Hence, most practical read
aligners follow a seed-and-extend paradigm. The “seeding” step typically involves identifying pairs of reads
that share many k-mers (length-k contiguous substrings). This step can be understood as a way to “filter” the
set of read pairs in order to select those that share a reasonable number of k-mers and are thus likely to have
a significant overlap [Myers, 2014, Berlin et al., 2015||Li, 2016, [2018|]. Once these “candidate pairs” (which
are generally many orders of magnitude smaller than the number of read pairs) are obtained, computationally
expensive dynamic-programming-based algorithms are used to obtain detailed alignment maps.

The idea of using the number of shared k-mers as a metric for filtering pairs of reads is equivalent to
viewing the Jaccard similarity between the set of k-mers of each read as a proxy for the alignment size. Under
standard implementations where computing set unions and set intersections has a linear time complexity in
the sizes of the sets, this filtering step has a time complexity of O(n?L) for pairwise read alignment. Recently
Jaccard similarity has been used in a variety of applications such as genome skimming [Denver et al., 2016],
and in new methods to compare whole genomes and study taxonomic diversity in the microbiome [Ondov
et al.,[2016, [Sarmashghi et al., 2019].

One very attractive property of Jaccard Similarity in the context of filtering pairs of reads is that this
metric is amenable to efficient estimation through the use of min-hashes. This is done by hashing all k-mers
on a read (the total number of k-mers in a length-L read is L — k + 1) and computing the minimum hash
value (the min-hash) for each read. For a randomly chosen hash function, the collision probability for the
min-hashes of two reads is precisely their Jaccard similarity. Hence, one can estimate the Jaccard similarity
by computing the fraction of min-hash collisions out of the set of hash functions considered. For pairwise
read alignment, if one uses H hashes to estimate the Jaccard similarity, this requires O(nLH) to compute the

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

—
o
>

H
2

1072 4

Fraction of alignments
(log scale)
B oo B
S % 9 9

,_.
2
4

0 0i2 0?4 076 0i8 1
Alignment Size (normalised)

Figure 1: A histogram of fraction of shared sequence detected by Daligner [Myers|[2014]] in reads of E. coli
K-12 dataset of |Pacific Biosciences Inc.[[2013]]. We note that more than 99.9% of pairs of reads have no
alignment between them. We also note that practical aligners are not able to capture small overlaps, which
are hard to distinguish from spurious alignments generated by noise, creating the “notch” in the histogram.

min-hashes and O(n?H) to compute the collisions giving us a time complexity of O(n?H) for the filtering
step as generally, for regimes of interest, n > L.

This approach provides significant computational savings and is particularly effective when the genome
where the reads come from is close to a random genome; i.e., a genome where every k-mer is equally likely
to appear on a read. However, when the k-mer distribution of the reads being considered is significantly non-
uniform, the Jaccard similarity is no longer a good proxy for the alignment size. In particular, genome-wide
GC biases and the presence of common k-mers increase the probability of a min-hash collision, thus biasing
the estimate of alignment size provided by the Jaccard similarity. In this work, we introduce a min-hash-based
approach for estimating alignment sizes called Spectral Jaccard Similarity, which naturally accounts for
an uneven k-mer distribution in the reads being compared. The Spectral Jaccard Similarity is computed by
considering a min-hash collision matrix (where rows correspond to pairs of reads and columns correspond to
different hash functions), removing an offset and performing a singular value decomposition. The leading
left singular vector provides the Spectral Jaccard Similarity for each pair of reads, while the corresponding
right singular vector can be understood as a measure of the “unreliability”” of each hash function. Intuitively,
a hash function that assigns low values to common k-mers is more unreliable for estimating alignment sizes,
since it is more likely to create spurious min-hash collisions. Implicitly, this approach leads to a kind of
weighted Jaccard similarity, where the weight of different hash functions is learned from the dataset.

Experiments on PacBio long-read sequencing data from several bacterial genomes, spanning a variety of
k-mer distributions, show that the Spectral Jaccard Similarity is significantly more correlated with alignment
size than the standard Jaccard Similarity. When used as a metric to filter out pairs of reads that are unlikely to
have a large alignment, Spectral Jaccard Similarity outperforms Jaccard Similarity on standard classification
performance metrics. As an example, when applied to filtering pairs of reads which have an overlap of at least
30%, the area under the ROC curve (AUC) obtained by Spectral Jaccard Similarity filtering was consistently
higher than the AUC obtained for Jaccard similarity on 40 datasets of the NCTC collection of |Parkhill et al|
as shown in Figure[2] These results are obtained using k = 7, which as an appropriate choice for the PacBio
error rates [Myers,, 2014]].

This manuscript is organized as follows: in Section[2] we present a brief review of Jaccard similarity and
its application to seed-and-extend algorithms for pairwise read alignment; in Section [3] we present the basis
for Spectral Jaccard similarity and in Section] we show results on real and simulated datasets. We then
conclude with a discussion in Section

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

g
=}
S
-
o
1<)

o0

ou®® e

LYRO) 7’

.

< L] 2

0.95 R L 4
.

o
©
«
o
2o
.
N

eve ’
. L]

o
©
S
N

o
1
«

\

o
©
S

~

Spectral Jaccard Similarity
Spectral Jaccard Similarity

0.50 0.55 0.50 0.'95 1.00 o.éo 0.255 0.'90 0.'95 1.00
Jaccard Similarity Jaccard Similarity

(@) (b)

Figure 2: SJS has uniformly higher area under the ROC curve for experiments on 40 Pacbio bacterial
datasets from the NCTC library [Parkhill et al]. In these experiments, Spectral Jaccard Similarity and
Jaccard Similarity were used to filter pairs of reads with an overlap of at least 30%. SJS used was with 1000
hash functions, whil Jaccard similarity was computed exactly. (a) shows the AUC values using Daligner
alignments as ground truth. (b) shows the same results using Minimap?2 alignments as ground truth.

2 Jaccard Similarity

In general terms, the Jaccard similarity (JS) is a similarity metric between sets. For two sets A and B, the
Jaccard similarity between them, JS(A, B), is defined as the size of their intersection divided by the size of
their union. This is a very convenient measure as it is bounded between 0 and 1, JS(A, B) = 0 if and only if
ANB ={,and JS(A, B) = 1if and only if A = B. It has gained recent interest in its applications to finding
documents (or web-pages) that are very similar but not the same as each other and in plagiarism detection.
We refer the interested reader to Leskovec et al.|[2014) Chapter 3] for a detailed review of the topic.

The Jaccard Similarity was applied to the problem of pairwise read alignment in Berlin et al.|[2015]], by
considering the sets of k-mers of each read. For a fixed parameter &, the k-mer Jaccard similarity between
reads Sy and S, is given by

_[0(S0) NT(Sy)|
[T(S0) UT(S1)]

where I'(.S;) is defined as the set of k-mers for read .S;. This is the same as k-shingle Jaccard similarity in the
data mining literature [Manber et al., |1994, |Broder, |1997]]. In this case, JS can be viewed as a proxy for the
size of the overlap (if any) between reads Sy and 5.

For instance, consider length-L reads Sy and 57 with an overlap of size o 1L, for 0 < a1 < 1, as
illustrated in Fig. E], and let po 1 be the fraction of overlap; i.e.,

JSk (S0, S1) (1)

@0,1
2— 04071 '

2

Po,1 =

If not many k-mers are shared by the non-overlapping parts of Sy and S, we have that JS;(So, S1) =~ po.1
making this a useful metric to filter pairs of reads with a high overlap. Notice that this approach is in a sense
robust to errors in the reads. If we assume that each base is independently corrupted by noise (substitution,
insertion or deletion) with probability z, then a k-mer is not corrupted with probability (1 — z)*. Ignoring the
unlikely event of collision of an erroneous k-mer with some other k-mer, JSi(.Sy, S1) is approximated as

agi(l—2)" agi(l—2)"
2 —ap (1 —2)k 2 ’

JSk(S0, S1) = 3)

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Figure 3: The k-mer Jaccard Similarity can be seen as a proxy for the alignment size.

where the last approximation holds when (1 — z)* is small. Therefore, the k-mer Jaccard Similarity is

intuitively still a good proxy for the overlap size in the presence of errors. The parameter k£ should be large
enough to guarantee that not too many spurious k-mer collisions occur, but small enough so that a reasonable
number of k-mers per read are not corrupted by noise [Myers, 2014, Berlin et al., 2015} [Li, [2016]. For a
relative noise rate of 30% (which results from both reads having error rates of around 15%), Myers|[2014]]
argues that k = 7 achieves the optimal trade off. In the remainder of the manuscript, we utilize k = 7.

Computing the Jaccard Similarity between two reads of length L would take O(L) time. Hence computing
this metric for all pairs of reads would take O(n?L) time, which is quite expensive. An attractive feature of
the JS metric is that it can be efficiently estimated. A probabilistic approach for estimating JS through the use
of min-hashes was proposed in Broder et al.[[2000]. In essence, one takes a random hash function h, hashes
all k-mers in a read .S; and picks the minimum hash value. Define

h(I'(S;)) := min{h(z) : z € ['(S;)},
for some hash function A and read S;. Then we observe that, for a randomly chosen hash function h,
Pr [A(T'(So)) = M(I'(51))] = ISk (S0, S1), “4)

since h is equally likely to have any of the k-mers on both reads as its minimizer. This means that we can
use a random hash function to get an unbiased estimate of the Jaccard similarity between two strings. More
precisely, if we sample random hash functions h1, hs, ..., h, we can estimate the Jaccard Similarity as

]. H a 1 _ k
=31 (T(S0) = ha(T(51))) % I5k(So, 51) % 0‘0(2))
=1

Hence, by choosing H moderately large, one should be able to accurately estimate JSj(Sy, S1), which
provides a proxy for the alignment size. With H hashes, one would take O(nLH) time to compute the hashes
and O(n?H) time to compute collisions, which is O(n? H) time in regimes of interest where n > L.

2.1 Drawbacks of Jaccard Similarity

The key assumption that drives the approximation in equation (5p) is that that all k-mers are roughly equally
likely to occur in the reads. On real datasets however, k-mer distributions are far from uniform, as illustrated
in Fig. An uneven distribution of the k-mers throughout a genome increases the likelihood that the
non-overlapping parts of two reads Sy and S share k-mers. In this case, for a randomly drawn hash function
h, still holds, but Eq. (5b) no longer holds. In particular, if the hash function A is such that common
k-mers are given low hash values, the min-hash collision probability, given by Pr [A(I'(Sp)) = h(I'(S1))],

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1.0

0.8

0.6

0.4

0.2

—— 7-mer distribution E. coli
—— 7-mer distribution Malaria
0.0 7-mer distribution Random genome

0 2500 5000 7500 10000 12500 15000

Figure 4: Cumulative distribution function (CDF) of the k-mer distributions for various genomes. For each
genome, we sort the k-mers in decreasing order of frequency to help with visualization. We see that the
distributions deviate significantly from a uniform distribution (dark yellow line).

can be significantly higher than the right-most expression in equation (3)). For this reason, when the k-mer
distribution throughout a genome is uneven, (3) yields a poor estimate for the read overlap size. This is
illustrated in Fig. [6(a)|for E. coli reads from [[Pacific Biosciences Inc.,2013]], where we show that Jaccard
similarity is a poor predictor of alignment sizes.

One simple way to address this issue is to “mask” common k-mers [Myers|, [2014, [Koren et al., 2017]],
and then compute the Jaccard similarity on the remaining k-mers. However, these approaches are arbitrary
and require the tuning of parameters that can in general depend on the distribution. Intuitively, they can
be thought of as applying a hard threshold to determine which k-mer matches are due to noise, and which
are actual signal. Our approach can be thought of as soft version of this thresholding, where we weight the
importance of each min-hash collision differently.

3 Spectral Jaccard Similarity

We propose a new Jaccard-similarity-inspired approach to estimate the overlap between reads that avoids
the need for hard thresholds for determining “common k-mers” or “bad hashes” and instead assigns soft
penalties to individual hash functions according to how biased an estimator they are for alignment size.

Suppose reads Sy and S; of length L have an overlap of size oL for some 0 < « < 1, and no other
significant repeats across them. If there were no shared k-mers in the non-overlapping part of the reads, we
would model the min-hash collision event for a random hash function A, as

1{r(T'(So)) = h(T'(S1))} ~ Ber(po,), (6)

where pp 1 = ﬁ (this expression can be modified to account for errors as in). However, when the
distribution of k-mers is uneven, the min-hash collision probability is larger than pg ;. Moreover, some hash
functions are worse than others: if & assigns lower values to common k-mers, it is more likely to overestimate
po,1. We model this effect by rewriting (6) as

1{A(T(So)) = A(I'(51))} ~ Ber(po1) V Ber(qn),)

where V is the boolean “or” operator and g5, € [0, 1] is a hash-specific parameter that can be intuitively
understood as how unreliable h is due to common k-mers. Notice that the hash-specific noise term always
leads to overestimation of pg 1. We also emphasize that the g;’s are unknown. Therefore, we cannot directly
estimate the p; ; and instead we need to jointly estimate all model parameters.

In order to perform this joint estimation, we define the min-hash collision matrix as follows. For a fixed
reference read Sy, a list of target reads S, Sa, ..., Sy, and a list of hash functions Ay, ..., hy, the (7, j)th entry

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

of the min-hash collision matrix is the binary indicator variable for whether there is a min-hash collision
between .Sy and S; when using hash function h;; i.e., 1{h;(I'(Sp)) = h;(I'(S;))}. Notice that JS;(.So, S;)
can be directly estimated from the min-hash collision matrix by computing the fraction of 1s in the ¢th row.

As it turns out, if we assume that the entries in the min-hash collision matrix were generated according to
, we can jointly estimate the po;’s and the gy, ’s by performing a singular value decomposition (SVD) on
an offset version of the min-hash collision matrix. This allows us to use efficient algorithms for computing
the SVD in order to obtain estimates for the parameters py ;.

We refer to the parameters po; as the Spectral Jaccard Similarity (SJS) between Sy and .S;. Intuitively,
this value can be understood as a “discounted” version of JS; (.S, S;), where we discount the contribution
of common k-mers. It is important to point out, however, that p;’s are only implicitly defined as model
parameters that are learned from the data, and no explicit formula for them exists. Next we describe the
computation of the SJS in more detail.

3.1 Computing the Spectral Jaccard similarity

}n><H

For a reference read Sy, we define the min-hash collision matrix as A € {0, 1 where

Aoli, j] = 1{h;(T'(S0)) = h;(T'(5:))} ~ Ber(po,i) V Ber(gn,)- ®)

For cleanliness of notation, we will write po; = p; and g5, = ¢;. Notice that both the p;’s and the ¢;’s depend
on the choice of .Sy, but we do not make that dependence explicit in the notation.

The key observation about our model is that, in expectation, the matrix Aq defined in (§)) is rank one after
accounting for offset. More precisely, since EAg[7, j| = pi + ¢j — pig; = (1 — pi)(g; — 1) + 1 we have

EAy—11"=(1-p)(q—-1)".)

We illustrate this point by comparing the sorted singular values of A; — 11T for the PacBio E. coli K-12
dataset. There is an order of magnitude gap in the difference between the first and second singular values,
supporting the hypothesis that the min-hash collision matrix can be approximately modeled as a rank-one
matrix, as shown in Figure Focusing on read 0, we note that the fact that Ay — 117 is in expectation
a rank-one matrix, allows us to estimate p and q through an SVD on Ay — 11T. More precisely, if we let
u and v be respectively the leading left and right singular vectors of Ag — 117, then we expect u to be
approximately proportional to (1 — p) and v to be approximately proportional to (q — 1), up to flipping
signs. We then normalize g;’s to be between 0 and 1, assuming that min; g; = 0. For p;’s, we require a
slightly more sophisticated normalization method, which we discuss in Section

To illustrate the comparison between SJ and SJS we consider the example shown in Figure [5] The
standard min-hash JS approach would estimate JSy(.So, S;) to be the fraction of 1s in the ith row. We see that
while rows 1 and 3 have the same estimated JS, they have different SJS values. This is because columns 2
and 5 are found to be noisier (i.e., worse hash functions), and so while rows 1 and 3 have two collisions each,
a collision on column 1 is deemed more indicative of alignment, and thus row 3 has a higher SJS than row 1.

As it turns out, the estimates of p; obtained via SVD are a much better proxy for the size of the alignment
between reads Sy and .S; than the standard Jaccard similarity, particularly when the k-mer distribution is
uneven. To illustrate this point, we computed the SJS values p; (from a min-hash collision matrix with
n = 1004 and H = 1000) and the exact Jaccard Similarity JSi (S, S;) for the corresponding pairs of reads,
for the E. coli PacBio dataset. As illustrated in Fig. @ while the R? coefficient between (exact) JS and overlap
size is only 0.18, for SJS the R? coefficient is 0.48.

While p; parameters, or the SJS values, track the alignment between pairs of reads, we have not given a
precise meaning to the g;s we recover. Intuitively, a large ¢; means that the corresponding hash function is
more likely to create a spurious min-hash collision, thus being a less reliable estimator for the alignment size;

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

by hy hs hs hs JS SJS @ @ ¢ 4 s
S, 01 0 0 1 04 0.198 0.187 0504 0054 0 0813
S, 0.0 0 0 0 0.0 0.0
S 1.0 0 0 1 04 0291
S5 01 0 0 1 04 0.198
Ss 0 0 0 0 1 02 0.054
S 1 1 1 0 1 08 0.709
S; 01 0 0 1 04 0.198

Figure 5: Example of comparison between JS and SJS on a small matrix. While the standard JS approach
would assign the same value to rows 1 and 3, SJS takes into account the fact that columns 2 and 5 are seen as
less reliable indicators of alignment.

we give a more in depth interpretation in Section[5.3] In Figures [[0(a)]and[I0(b)} we plot the frequency of the
argmin k-mer for different hash functions, and and verify that large ¢;s correspond to hash functions whose
argmin k-mers are common k-mers.

We conclude this section by noticing that, whenever most of the (S, .S;) pairs have no overlap, most of
the p;’s are expected to be close to zero. When this holds true, a full SVD doesn’t need to be computed. As
we discuss in Section [5.2] in this case, the SVD can be approximated using a single matrix-vector product,
allowing our method to be sped up significantly.

4 Results

To compare the performance of JS and SJS at estimating alignment sizes we focus on two PacBio datasets
(an E. coli dataset [Pacific Biosciences Inc.,[2013]] and a K. pneumoniae (NCTC5047) dataset [Parkhill et alf])
and consider the problem of identifying pairs of reads with an overlap of size at least . We compute exact
JS values and compare them with SJS values computed based on 1000 hash functions (see Section [5.4]for
results with different numbers of hash functions). We utilize Daligner [Myers, |2014] alignments as ground
truth for the alignment sizes. In Figure|7, we plot ROC curves for different values of §. We point out that
using the Daligner outputs as ground truth is not ideal, since the tool itself utilizes an empirical Jaccard
Similarity based filter to align reads; this choice of ground truth biases the result in favor of the conventional
Jaccard similarity. Despite this we note that SIS performs significantly better than JS on all data sets tested.
In addition, we obtain similar results when we use Minimap2 instead of Daligner to define the ground truth

1.0 1
0] 2 r2.0.48
= r?.0.18 c e
qc.) 0.8 g 0.8
£ c
D06 D6
= <
<
“ 0.4 E
(0] c 0.4
5 S
= 0.2 -
fDU 8 0.2
0.0
T T T T T T T T 0.0 T T T T T T T
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Jaccard Similarity Spectral Jaccard Similarity
(2) (b)

Figure 6: Linear regression fit to positive alignments found by Daligner to (a) Jaccard similarity between
corresponding reads and (b) Spectral Jaccard similarity between the reads. Note that SJS provides a better fit.

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1.0 1.0 1 > 1.0
T Ve
,/

0.8 1 8 . 81
P 0.8 AUC 0.94 7 0.8
& ’
o 061 0.6 1 q% ,«/ 0.6 1
g o
£ C 7
8 P*\) s
o 0.4 0.4 1 4 0.4 1
° /7
2 //
= N ,

0.2 1 7 —]S 0.24 7 0.2 4

/7 /7
/ s /
004 ¥ == = Random Guessing 004 ¥ 00
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate
(a) (b) (c)

Figure 7: ROC curves across different PacBio datasets and different 6 thresholds using Daligner ground
truth and a 1000 hashes: (a) shows ROC of E. coli (K-12 from PacBio website) for alignment threshold
6 = 0.3, (b) shows ROC of E. coli for alignment threshold § = 0.8, and (c) shows ROC of K. Pneumoniae
(NCTC5047) for alignment threshold # = 0.8. Figure [16|shows a similar plot with minimap2 ground truth.

as in Figures 2] and [T4]

We note that the performance of both JS and SIS filters degrades as the k-mer distribution becomes
skewed. This skew can be captured by the collision probability for a given k-mer distribution. We define
the collision probability as the probability that a randomly selected read from the k-mer distribution of the
dataset has a min-hash collision with a bag of L randomly sampled k-mers from the k-mer distribution of
the data set. This can be computed in closed form, as we discuss in Appendix [A] In Fig. [8(a)] we plot the
performance of SJS and JS as a function of the computed collision probability of a dataset for 40 datasets
from the NCTC3000 project [Parkhill et al]. This shows the uniform improvement in performance afforded
by SIS, in that for every dataset the SIS AUC is higher than the JS AUC. Further, it shows that as the k-mer
distribution becomes more skewed, the degradation in performance suffered by SJS is smaller than that
suffered by JS. We plot the ratio of the improvement of two AUCs over random guessing in Fig. ()] This
shows that the improvement of SIS over JS is larger when the k-mer distribution is more skewed.

1.00

Slope: -0.009 °
| ° | 00°%e 'E
0.95 D e °o R o
1 []
° ® %% ° WV |in
0.90 ° e
g° i
<l B
< Slope: -0.293 L_? <
0.85 1 SIS
< |<
0801 o SIS
Is 1.04
0.25 0.30 035 0.40 0.45 0.25 0.30 0.35 0.40 0.45
Mean collision probability over the dataset Mean collision probability over the dataset
(@) (b)

Figure 8: (a) The higher the min-hash collision probability is, the worse both methods perform, indicating a
“harder” dataset. However, the performance of the SJS filter degrades less than that of the JS filter; (b) Ratio
between the improvement of the SJS filter over random guessing and the improvement of the JS filter over
random guessing, as a function of collision probability of the reads’ k-mer distribution. Both plots using
1000 hashes.

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

5 Discussion

In this paper, we introduced the notion of Spectral Jaccard Similarity as an alternative to the standard k-mer
Jaccard Similarity for estimating the overlap size between pairs of noisy, third-generation sequencing reads.
SJS is a probabilistic approach that utilizes min-hash collisions as a way to estimate the size of the overlap
between pairs of reads. However, unlike previous approaches, SJS attempts to learn how good different hash
functions are at estimating overlap size for that specific dataset. In particular, when the k-mer distribution of
the dataset in question is very uneven, the gain of SJS over JS is greater.

We conclude the paper by discussing four points: the first two are algorithmic aspects of SIS that, while
not central to understanding the method, are important from an implementation standpoint. The third is
another empirical validation of our model, and the last is the performance of SJS as we vary the number of
hashes used. First, we discuss how we normalize, or calibrate, the p;s obtained for different reference reads
(i.e., from the SVD of different matrices A; and A;) so that the SJS are comparable. Second, we show how
the fact that the columns of the Ay matrix are typically sparse can be exploited in order to approximate the
SVD using a single matrix-vector multiplication, which can significantly speed up the computation of SJS.
Third, we validate our earlier claim that g;s represent how bad a hash function is for the purpose of alignment.
Finally, we examine the performance of SJS as function of the number of hashes used and show that it can
match the performance of exact Jaccard similarity with around 150 hashes.

5.1 Calibrating SJS values from different reference reads

Given two min hash collision matrices Ag, A1 € {0, 1} we have from (@) that 4, — 117 ~ (1 —
pr)(ar — 1) for k € {0,1}. When one computes an SVD, the left and right singular vectors are scaled
so that they have an ¢ norm of 1. However for our purposes, normalizing these vectors by the ¢ norm
implies assuming that p;’s have similar norms for all reference reads 7 which need not be true. Notice that we
could potentially have two constants g, y; # 0, Yo # 1 such that A, — 117 = ’Yik(l —pi)Yk(ae —1)7
for k € {0, 1} With different vy and 1, we see that we would not be able to compare values in py and p1,
which leads to issues when one is trying to threshold all with a common threshold.

One approach to calibrating the po;’s and p; ;’s to make the left singular vectors of Ay — 117 and
A; — 117 comparable takes advantage of calibration reads. Calibration reads are fake reads, following the
dataset’s k-mer distribution, that are expected to have no overlap with the reference, thus making sure that
the Spectral Jaccard Similarities computed on different runs of the SVD have the same “ground level”, so
that we can compare the SJS values between two pairs of reads coming from two different SVDs.

More precisely, our procedure involves including W calibration reads into the min-hash collision matrix.
To create these calibration reads, we sample L. — k + 1 k-mers from the k-mer distribution of the dataset,
where L is the average read length of the dataset. Hence, each calibration read is essentially a “bag of
L — k + 1 k-mers”. Then we augment the matrix Ao and consider instead a matrix By € {0, 1}(+W)xH
with the first n rows of By being Ag and the last W rows being the min-hash collision matrix computed for
the W calibration reads. We then compute an SVD of By — 11" as

Bo - 1].T = (1 - f)o)((io - 1)T = uovoT.
Using our random reads we define 4! = median {uo[i],i € [n,n + W — 1]}. We now proceed to enforce

that the median of {p;,7 € [n,n + W — 1]} be 0 by defining the normalized SJS values as

uQ [Z] . Vo [Z]
i = 1— =1 —-|—
o uge U] max|vo[£]|
Le[H]

10

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Remark 1. We set the median alignment of the random reads to O rather than the minimum or maximum
alignment because the variance in the extremal value was empirically found to be large.

Remark 2. In practice we use W =5, but varying W does not seem to affect results significantly. Since n is
typically large (in the thousands), these additional fake reads do not really change the result of the SVD.

5.2 Approximation in the case where most p;’s are zero

Given a min-hash collision matrix A € {0,1}"*#, define

1 « 1 «
p:nzlpla Qj:nzlAO[lv.j]a
1= 1=

for1 < j < Hji.e., pis the average p; value and g; is the fraction of ones in column j. We note that, since
Aoli, j] ~ Ber(p;) V Ber(g;), when most p;’s are zero, most of the entries in column j are distributed as
Ber(g;). It follows that E[g;] = ¢; + p — pg; =~ g; since p ~ 0. This means that the leading right singular
vector is approximately § = [q1, ..., Gz] | . Since the rank-one approximation is

Ag—11"~(1-p)(q—-1)' =1 -p)Gg-1",
by multiplying both sides by (@ — 1), we obtain
(40— 117) (@~ 1) =~ |la - 1[3(1 —p)

=p~1l-— (4 —117)(q—1) (10)

la — 113
which gives us a method to compute the Spectral Jaccard Similarity with a matrix-vector multiplication,
rather than an SVD. This can intuitively be understood as follows. We wish to approximate the principal
left singular vector of the matrix Ay — 11". We are, however given some side information; we are able
to easily obtain a high-quality approximation of the principal right singular vector as g — 1. This allows
us to effectively perform one step of the Power Iteration algorithm, as (49 — 117)(q — 1), which after
normalization, gives us a very good approximation of the principal left singular vector.

1.0 1.0

G

Approximations of p;

0.0 0.0 0.30

0.0 0.2 0.4 0.6 0.8 1.0 =020 =015 =010 =-0.05 000 005 010 0.15 -020 =015 =010 =005 0.00 005 010 015

C/] Pj pj
(a) (b) (©)
Figure 9: When most p; =~ 0, it is possible to approximate the SVD by a simple matrix-vector multiplication
as described in (I0). In particular, we verify empirically that (a) G ~ q and that (b) the p obtained from
is nearly the same as the one computed by SVD. (c¢) If one instead tries to approximate p by considering row
averages, the approximation is not as good.

In Figure O(a)] we show that for an E. coli dataset where most reads do not have any overlap, q is very
correlated with q. In Figure (b)l we show that the approximate SJS values computed using (I0) are highly
correlated with those computed through a full SVD.

We note that one could have have attempted to use row averages instead of column averages in this
approximation procedure. However, this would correspond to computing the standard Jaccard Similarities.

11

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Jaccard Similarity is not as well correlated with the Spectral Jaccard Similarity as we show in Figure [9(c)
Further, we note that (I0) implies that p; o< [A(1 — q)],, which is expanded as

an

1 [& 1<
Pi X 7 ZAi,j <1—nZAe,j>)
j:l /=1

where o indicates “monotonic function of”. Since JSi (S, S;) ~ % Z]H:1 A; j, our method can be under-

stood as down-weighting the contribution of hash functions that yield many collisions.
We show that this approximation performance performs nearly as well as SJS in Figure[12]

5.3 Validating the Model

In Section (3| we proposed the model in with the interpretation that g; represented how likely were
min-hash collisions given the hash function A;. In this section, we empirically verify that claim.

For a dataset with mean read length L, the collision probability of a read S on a hash function 5 is
defined as the probability that . — k + 1 samples from the k-mer distribution of the the dataset have the
same min-hash on h as S. This can be computed in closed form as discussed in Appendix [A] In Figure
we show the collision probability of a reference read on a hash function h; as a function of our computed
q; for the E. coli and K. pneumoneae (NCTC5047) datasets. We see a very strong correlation between the
computed collision probability and the g; parameters, validating our model.

Collision Probability

=
=3

4
®

o
o

©
IS

o
N

4
o

A/

0.4 0.6
qs normalized

(a)

0.8

1.0

Collision Probability

=
=)

e
=)

o
o

o
IS

o
N

o
o

0.4 0.6
gs normalized

(b)

0.8

Figure 10: For each hash function /;, we compared the collision probability on hash A ; with the corresponding
qj for (a) the E. coli dataset and (b) the K. pneumoniae dataset (NCTC5047).

5.4 Trade-off between filter accuracy and number of hash functions

While throughout this manuscript we present results for SIS using 1000 hash functions, our method performs
well even with a smaller number of hash functions. In Figure we plot ROC curves for SJS and the
SJS approximation (aSJS) described in Section[5.2]using different number of hashes in order to compare the
performance of these filters on the E. coli K-12 dataset. We note that as few as 150 hashes are enough for
SJS to dominate the exact JS based filter. The performance of the approximation is similar.

12

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

o g

¢ [

(a4 o

0 [0)

2 2

- —

£ b=

) ,/ == S|S 1000 hashes) // === S|S 1000 hashes

=) 7 =) ,

s L Is = v]S
021 SJS 500 hashes 027 aS|S 500 hashes

// SJS 150 hashes /’ aS)S 150 hashes
0.0 - - SJS 50 hashes 0.0 . aS)S 50 hashes
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(@) (b)

Figure 11: ROC curves obtained by (a) SJS and (b) aSJS as we vary the number of hash functions used for
f=0.3.

13

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

References

K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy. Assembling large genomes
with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology, 33(6):623, 2015.

A. Z. Broder. On the resemblance and containment of documents. In Proceedings. Compression and
Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21-29. IEEE, 1997.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permutations. Journal
of Computer and System Sciences, 60(3):630-659, 2000.

C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum, A. Copeland,
J. Huddleston, E. E. Eichler, et al. Nonhybrid, finished microbial genome assemblies from long-read smrt
sequencing data. Nature methods, 10(6):563, 2013.

C.-S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C. Dunn, R. O’Malley,
R. Figueroa-Balderas, A. Morales-Cruz, et al. Phased diploid genome assembly with single-molecule
real-time sequencing. Nature methods, 13(12):1050, 2016.

D. R. Denver, A. M. Brown, D. K. Howe, A. B. Peetz, and I. A. Zasada. Genome skimming: a rapid approach
to gaining diverse biological insights into multicellular pathogens. PLoS Pathogens, 12(8):¢1005713, 2016.

G. M. Kamath, I. Shomorony, F. Xia, T. A. Courtade, and D. N. Tse. Hinge: long-read assembly achieves
optimal repeat resolution. Genome research, 27(5):747-756, 2017.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy. Canu: scalable and
accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research, 27(5):
722-736, 2017.

J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets. Cambridge university press, 2014.

H. Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics,
32(14):2103-2110, 2016.

H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094-3100, 2018.
U. Manber et al. Finding similar files in a large file system. In Usenix Winter, volume 94, pages 1-10, 1994.
E. W. Myers. Ano (nd) difference algorithm and its variations. Algorithmica, 1(1-4):251-266, 1986.

G. Myers. Efficient local alignment discovery amongst noisy long reads. In International Workshop on
Algorithms in Bioinformatics, pages 52—67. Springer, 2014.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of molecular biology, 48(3):443—-453, 1970.

B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren, and A. M. Phillippy.
Mash: fast genome and metagenome distance estimation using minhash. Genome biology, 17(1):132,
2016.

Pacific Biosciences Inc. Pacbio e. coli dataset, 2013. URL https://github.com/
PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assemblyl

14

https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

J. Parkhill et al. National collection of type cultures (NCTC)- 3000. URL https://www.sanger.ac.
uk/resources/downloads/bacteria/nctc/!

S. Sarmashghi, K. Bohmann, M. T. P. Gilbert, V. Bafna, and S. Mirarab. Skmer: assembly-free and
alignment-free sample identification using genome skims. Genome biology, 20(1):34, 2019.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of molecular
biology, 147(1):195-197, 1981.

R. Vaser, I. Sovi¢, N. Nagarajan, and M. Siki¢. Fast and accurate de novo genome assembly from long
uncorrected reads. Genome research, 27(5):737-746, 2017.

J. L. Weirather, M. de Cesare, Y. Wang, P. Piazza, V. Sebastiano, X.-J. Wang, D. Buck, and K. F. Au.
Comprehensive comparison of pacific biosciences and oxford nanopore technologies and their applications
to transcriptome analysis. F'1000Research, 6, 2017.

R. R. Wick. Rebaler - a reference-based long read assemblies of bacterial genomes, 2019. URL https:
//github.com/rrwick/Rebaler.

15

https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/
https://github.com/rrwick/Rebaler
https://github.com/rrwick/Rebaler
https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Appendices

A Collision Probability

We define collision probability for a length-L read S with a hash function h; as the probability that a bag of
random L — k + 1 k-mers drawn from the dataset’s k-mer distribution has the same min-hash on hash h; as
read S. For a dataset, we consider the average collision probability of all reads as the collision probability
representative of the dataset.

We begin with some notation. First, note that each hash function can be thought of as inducing an ordering
on the set of 4% k-mers. We denote this permutation by (-) j for hash h;. Let P(Z)) be the probability (or the
frequency) of the /-th k-mer in the permutation defined by hash h; (on the k-mer distribution) of the dataset.
For example, P((f)) denotes the probability of the k-mer hashed to the minimum value by hash /. Further,
define partial sums

?
U _)
o =2 P
t=1

In words, ¢ (Z) are the probabilities of the first £ k-mers in the permutation induced by hash /; (or equivalently,
the probability of £ k-mers that hash /; maps to the smallest values). Finally, we denote the smallest £-mer
in the order induced by hash £; that is also in read S; as ;. Then the collision probability with the ith read as
reference and hash function h; is

Pr(random read collides with reference read S; on hash ;)
= Pr(random read has k-mer (¢;); and does not have k-mers (1);,...(i —1);)
= Pr(random read does not have k-mers(1);,...(¢; — 1);)
x Pr(read has k-mer (¢;); | read does not have k-mers (1);,...(4; —1);)

ST Ry 1
=1-)Y P/ 1—|1—- ——2—
< Z “>> St PY)
. L
P(])
0 * (t:)
=(1-¢ 1—|1— :
(£;—1))] ’
() (L=y
0 1
, P
~ _ 7@ e)
~ €Xp(LC(&'—I)) 1 1 1 C((g)))

where the approximation in (a) follows in our setting where L and 4* are of similar orders, and hence /; is

16

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

small and ¢ ((Z _)_1) is close to 0. From this we obtain

Pr(rand read collides with read Sp)
4k
= Z Pr(rand read collides with read Sy given hash permutation (-),,)

m=0

x Pr(hash yields permutation (-),,)
H
Z Pr(rand read collides with read Sy given hash permutation (-);).
j=1

1
“H

The first term above is exactly the probability we computed previously. This gives us an explicit way to
(approximately) compute the collision probability.

B Details of experiments

We used the first 40 NCTC datasets of Parkhill et al| (sorted numerically) for our empirical results. Since our
main goal was to evaluate the performance of SJS (rather than fully re-align all the reads in these datasets),
we pruned the datasets down so that each one contained 1000 reads. These reads were picked to match the
distribution in Figure[I] such that each read has at least five significant overlaps. In essence, we went over
the reads and added five reads that have large overlaps (according to Daligner [Myers| 2014]]) with the read
giving us a dataset where ~ 0.5% of read pairs have significant alignments. We then used Daligner and
Minimap?2 [Li, [2018]] to generate alignments on these 1000 reads which we use as ground truths for AUC
computations. The same is done for the E. coli K-12 dataset of Pacific Biosciences Inc.|[2013|] for the running
example used throughout this manuscript. The code to reproduce our numerical results is available online at
https://github.com/TavorB/spectral_jaccard_similarity.

C Additional Empirical Results

1.00

Slope: -0.009 °
8 o° [3!!9!
0.95 ¥ e 9 ve . O}
° 8 o [¢ . g/

0.90
g Slope: 0.002
< Slope: -0.293

0.85 4

| e ss
0.80 Is
o ass

0.25 0.30 0.35 0.40 0.45

Mean collision probability over the dataset

Figure 12: Redrawing Figure 8(a)] with our power iteration approximation added in red as aSJS. As we can
see, our one step of power iteration performs very well as an approximation for the SVD. While aSJS rarely
outperforms SJS, it has most of the gain in predictive power while still being almost as computationally
efficient as empirical JS, who’s performance is slightly under that of JS.

17

https://github.com/TavorB/spectral_jaccard_similarity
https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

H List of NCTC datasets used H

NCTC74
NCTC86
NCTC92
NCTC129
NCTC204
NCTC235
NCTC418
NCTC1080
NCTC1936
NCTC2218
NCTC2366
NCTC2669
NCTC3046
NCTC3166
NCTC3168
NCTC3438
NCTC3750
NCTC3761
NCTC4001
NCTC4133
NCTC4136
NCTC4137
NCTC4163
NCTC4168
NCTC4169
NCTC4174
NCTC4199
NCTC4444
NCTC4450
NCTC4669
NCTC4671
NCTC4672
NCTC4673
NCTC4675
NCTC4725
NCTC4840
NCTC5046
NCTC5047
NCTC5050
NCTC5051
NCTC5052

Table 1: List of datasets used

18

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1.00

Slope: -0.046 o | @
[] []
00 »| o ootge’ 1.5
® v S o
0951 o o ®o B S °® e o
o 0,% ° 19 1n 1.4 4 ®
° ° ISP Slope: 1.117
O %91 17 134
) | 2l v
= Slope: -0. 339 % Sy
0.85 4 NS
< [
1.1
080T e Sk 1.0
IS
025 0.30 035 0.40 045 0.25 0.30 0.35 0.40 0.45

Mean collision probability over the dataset

(a)

Mean collision probability over the dataset

(b)

Figure 13: Analogue of Figure[§|using Minimap2 to provide the ground truth alignment sizes. The results are
similar to those in Figure|8} Note that in (b) the slope is almost identical to what we obtained in the Daligner

case in Fig. B(b)]

1.000

> Xl ,
£ o] st e v
© .] 174" ,/
= o 0 ° s
€ 0.9501 . il
Y 7’
Y 4.925 1 <
= .
@ 0.900 A —
o s
© 0.875 A -
- %
= 7’
© 0.850 1 ya
9]
@ 0.8254 7
Q 7
V) 4.800 4 } } :
0.80 0.85 0.90 0.95 1.00
Jaccard Similarity
(@)

1.000 -
.'.:,.!G‘(.J L] //

0.975 o (et e a
(3

0.950 4 . v

0.925 4 o

0.900 4 ”

0.875 4 ,

0.850 7

0.8254

Spectral Jaccard Similarity

0.800 42 } } .
0.80 0.85 0.90 0.95 1.00

Jaccard Similarity

(b)

Figure 14: Analogue of Figurebut for = 0.5. (a) shows the ROCs using Daligner alignments as ground
truth. (b) shows them using Minimap2 alignments as ground truth.

19

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

6 260 460 660 860
Sorted singular value index
Figure 15: Singular values of empirical centered min-hash matrix A; — 11T for PacBio E. coli K-12 dataset.
By repeating the computation of the singular values of A; — 117 fori = 1,2, 3, ... (i.e., based on different
reference reads), we can compute the mean and standard deviation for each sorted singular value, which we
display here using error bars of 1o.

1.0 1.0 - 1.0 -
/7 /7
’/ ’/
0.8 0.8 4 0.8 4
/7 /7
/7 /7
/7 /7
0.6 0.6 . 0.6 .
/7 /7
L’ i
0.4 0.4 7l 0.4 41
/7 /7
/7 /7
024 024 7 024 7
/7 /
) 4 7’
0.0 4 == = Random Guessing 0.0 74 0.0 74
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
(@) () (©)

Figure 16: Analogue of Figure[7]but with minimap2 as ground truth alignments instead of Daligner. We plot
ROC curves across different PacBio datasets and different 6 thresholds: (a) shows ROC of E. coli (K-12
from PacBio website) for alignment threshold 6 = 0.3, (b) shows ROC of E. coli for alignment threshold
6 = 0.8, and (c) shows ROC of K. Pneumoniae (NCTC5047) for alignment threshold 6§ = 0.8

20

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/800581,; this version posted October 10, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1.0 1.0

0.8 1 0.8 1
0.6 1 0.6 1

0.4+ 0.4

/
V4 — 5|5
0.2 7 s 0.2
// == = Random Guessing
0.0 ” m—aS|S 0.0
010 012 0:4 0:6 0i8 1j0 OtO 0?2 0?4 0?6 0t8 ltO 010 0:2 0:4 0:6 ofa 1?0
(@) (b) (©

Figure 17: Analogue of Figure[7] with aSJS added (one step of power iteration approximation to SJS) on
Daligner. We plot ROC curves across different PacBio datasets and different 6 thresholds: (a) shows ROC of
E. coli (K-12 from PacBio website) for alignment threshold 6§ = 0.3, (b) shows ROC of E. coli for alignment
threshold # = 0.8, and (c) shows ROC of K. Pneumoniae (NCTC5047) for alignment threshold 6 = 0.8

B Overlap M Layout Consensus

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

core-seconds

Klebsiella E. coli S. aureus
sp.

Figure 18: Time required for different stages of the assembly pipeline for different bacterial genomes. Note
that the vast majority of time is spent determining pairwise alignments in the overlap stage (Adapted from

Figure S11 inKamath et al.| [2017]]).

21

https://doi.org/10.1101/800581
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Jaccard Similarity
	Drawbacks of Jaccard Similarity

	Spectral Jaccard Similarity
	Computing the Spectral Jaccard similarity

	Results
	Discussion
	Calibrating SJS values from different reference reads
	Approximation in the case where most pi's are zero
	Validating the Model
	Trade-off between filter accuracy and number of hash functions

	Collision Probability
	Details of experiments
	Additional Empirical Results

