

¹ Heterosis indices: What do we really measure?

²

³

⁴

⁵ Dominique de Vienne^{1*} and Julie B. Fiévet¹

⁶

⁷ ¹GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

⁹ (*Author for correspondence: tel +33 1 69332360; email dominique.de-vienne@inra.fr)

¹⁰ **Abstract**

¹¹ Heterosis (hybrid vigor) is a universal phenomenon of crucial agro-economic
¹² and evolutionary importance. We show that the most common heterosis
¹³ indices do not properly measure the deviation from additivity because they
¹⁴ include both a component accounting for the "real" heterosis and a term
¹⁵ that has no link with heterosis since it depends only on the parental values.
¹⁶ Therefore these indices are ineffective whenever the aim of the studies is to
¹⁷ compare heterosis levels between traits, environments, genetic backgrounds
¹⁸ or developmental stages, as these factors may affect not only heterosis but
¹⁹ also the parental values. This observation argues for the careful choice of
²⁰ heterosis indices according to the purpose of the work.

²¹ **Introduction**

²² Non-linear processes are extremely common in biology. In particular,
²³ the genotype-phenotype or phenotype-phenotype relationships display fre-
²⁴ quently concave behaviours, resulting in dominance of "high" over "low"
²⁵ alleles (Wright, 1934) and in positive heterosis for a large diversity of poly-
²⁶ genic traits (Fiévet *et al.*, 2018; Vasseur *et al.*, 2019). Quantifying properly
²⁷ the degree of non-additivity is an essential prerequisite for any interpre-

28 tation and comparison of genetic studies and for predictions in plant and
29 animal breeding. However, most of the classically used heterosis indices
30 can hardly meet this requirement.

31 Recall first the way the degree of dominance is measured. There are
32 two classical dominance indices: (i) Wright (1934) defined:

$$D_W = \frac{z_2 - z_{12}}{z_2 - z_1}$$

33 where z_1 , z_2 and z_{12} are respectively the phenotypic values of genotypes
34 A_1A_1 , A_2A_2 and A_1A_2 , with $z_2 > z_1$. D_W varies from 0, when A_2 is fully
35 dominant over A_1 , to 1, when A_2 is fully recessive with respect to A_1 .
36 $D_W = 0.5$ corresponds to semi-dominance or additivity ($z_{12} = \frac{z_1+z_2}{2}$) (Ta-
37 ble 1). Note that D_W is strictly equivalent to the coefficient of dominance h
38 used in evolutionary genetics (Crow & Kimura, 1970). (ii) Falconer (1960)
39 proposed the following index:

$$D_F = \frac{z_{12} - \bar{z}}{\frac{z_2 - z_1}{2}}$$

40 where $\bar{z} = \frac{z_1+z_2}{2}$. D_F varies in the reverse direction as compared to D_W :
41 its value is 1 if $z_{12} = z_2$ (complete dominance of A_2 over A_1), -1 if $z_{12} = z_1$
42 (A_2 is fully recessive with respect to A_1) and 0 in case of additivity. In case
43 of overdominance, $D_W < 0$ and $D_F > 1$, and in case of underdominance,
44 $D_W > 1$ and $D_F < -1$ (Table 1).

45 The indices D_W and D_F are linearly related:

$$D_F = 1 - 2D_W,$$

46 so it does not make any difference to quantify dominance with either of
47 these indices: both give the position of the heterozygote relative to the
48 parental homozygotes.

49 For polygenic traits, either index could be used to quantify non additivity, *i.e.* real heterosis, without any ambiguity. Actually D_W does not
50 seem to have been used in this context, and D_F very little. In the literature one finds five heterosis indices, which are summarized in Table 1,
51 with their characteristic values. Their expression in terms of genetic effects, namely additive, dominance, dominance-by-dominance epistasis and
52 additive-by-additive epistasis effects, are shown in Supporting Table S1.
53

54 The two most popular indices are the best-parent (BP) and mid-parent
55 (MP) heterosis indices (*e.g.* Gowen, 1952; Frankel, 1983):

$$H_{BP} = \frac{z_{12} - z_2}{z_2}$$

$$H_{MP} = \frac{z_{12} - \bar{z}}{\bar{z}}$$

56 where z_2 , z_{12} and \bar{z} are respectively the phenotypic values of parent 2 (with
57 $z_2 > z_1$), of hybrid parent 1 \times parent 2 and of the parental mean.

58 In some instances, the authors do not normalize the difference between
59 the hybrid and the best- or mid-parent value:

$$H_{bp} = z_{12} - z_2$$

$$H_{mp} = z_{12} - \bar{z}$$

60 Finally, the so-called “potence ratio” (Mather, 1949) has the same expression as the Falconer’s index of dominance:

$$H_{PR} = \frac{z_{12} - \bar{z}}{\frac{z_2 - z_1}{2}}.$$

61 Its value is 0 in case of additivity, 1 if $z_{12} = z_2$ (hybrid value = best-
62 parent value), -1 if $z_{12} = z_1$ (hybrid value = worst-parent value) and > 1
63 (resp. < -1) in case of best-parent (resp. worst-parent) heterosis. H_{PR}

69 includes the values of the three genotypes, whereas the other indices lack
70 one of the parental values (H_{BP} and H_{bp}) or both (H_{MP} and H_{mp}). From a
71 genetic point of view, H_{PR} is explicitly expressed in terms of the five genetic
72 effects contributing to heterosis (Supporting information Table S1). Thus
73 the potency ratio, which is yet by far the least used index, is the only one
74 that informs us on the exact position of the hybrid value relative to the
75 parental values. The Wright's index of dominance has the same property,
76 but its inverse direction of variation, that makes comparisons less easy,
77 probably explains why it is not used in this context.

78 Let us examine the possible interpretation fallacies resulting from the
79 use of the common heterosis indices.

80 **Relationships between the potency ratio and other
81 heterosis indices**

It is easy to show that the relationship between H_{PR} , hereafter noted h_P for simplicity, and the other indices is (with $z_2 > z_1$):

$$H_{MP} = h_P \left(\frac{z_2 - z_1}{z_1 + z_2} \right) = h_P z_m \quad (1)$$

$$H_{BP} = \left(\frac{-1 + h_P}{2} \right) \left(\frac{z_2 - z_1}{z_2} \right) = \left(\frac{-1 + h_P}{2} \right) z_b \quad (2)$$

$$H_{mp} = h_P \left(\frac{z_2 - z_1}{2} \right) = h_P \bar{z} z_m \quad (3)$$

$$H_{bp} = \left(\frac{-1 + h_P}{2} \right) (z_2 - z_1) = \left(\frac{-1 + h_P}{2} \right) z_2 z_b \quad (4)$$

82 where $z_m = \frac{z_2 - z_1}{z_1 + z_2}$ is the coefficient of variation (σ/μ) of the trait in the
83 parents and $z_b = \frac{z_2 - z_1}{z_2}$ is the difference between parents normalized by the
84 best-parent value (or $z_b = 2\sigma/z_2$).

85 For a given h_P value, the indices H_{MP} and H_{BP} are linearly related to
86 z_m and z_b , respectively, *i.e.* they depend on the scale of parental values.

87 The relation between H_{MP} and z_m is negative when $h_P < 0$ and positive
88 when $h_P > 0$, while the relation between H_{BP} and z_b is negative when
89 $h_P < 1$ and positive when $h_P > 1$. Recalling that z_m and z_b are positive,
90 we see from equation 1 that for $h_P \neq 0$, we have

$$0 < H_{MP} < h_P \quad \text{if } h_P > 0 \quad (\text{positive mid-parent heterosis})$$

91

$$h_P < H_{MP} < 0 \quad \text{if } h_P < 0 \quad (\text{negative mid-parent heterosis})$$

92 and we see from equation 2 that for $h_P \neq 1$, we have

$$0 < H_{BP} < \left(\frac{-1 + h_P}{2} \right) \quad \text{if } h_P > 1 \quad (\text{positive best-parent heterosis})$$

93

$$\left(\frac{-1 + h_P}{2} \right) < H_{BP} < 0 \quad \text{if } h_P < 1 \quad (\text{negative best-parent heterosis})$$

94 If $h_P = 0$ (resp. $h_P = 1$), H_{MP} (resp. H_{BP}) = 0.

95 Numerical applications performed with nine h_P values, from $h_P = -2$
96 to $h_P = 2$, show that a given H_{MP} or H_{BP} value can be observed with con-
97 trasted h_P values (Supporting information Fig. S1). For instance, $H_{MP} \approx$
98 0.4 can both correspond to mid-parent heterosis ($h_P = 0.5$, $z_m \approx 0.8$) and
99 to best-parent heterosis ($h_P = 2$, $z_m \approx 0.21$).

100 This can also be illustrated from experimental data in maize. We
101 measured six traits (flowering time, plant height, ear height, grain yield,
102 thousand-kernel weight and kernel moisture) in four crosses ($B73 \times F252$,
103 $F2 \times EP1$, $F252 \times EP1$, $F2 \times F252$) and three environments in France (Saint-
104 Martin-de-Hinx in 2014, Jargeau in 2015 and Rhodon in 2015). We com-
105 puted h_P , H_{MP} and H_{BP} for the 72 trait-cross-environment combinations.
106 Fig. 1a,b shows that the relationship between h_P and either index is very
107 loose, if any. A given h_P value can correspond to a large range of H_{MP} or
108 H_{BP} values, and vice versa. We performed the same analyses from the data

109 published by Shang *et al.* (2016), who measured in cotton five traits in two
110 crosses and three environments. The same loose relationship between h_P
111 and either heterosis index was observed (Fig. 1c,d). This means that the
112 coefficients of variation of the traits or the normalized difference between
113 parents, which have no link with heterosis since they do not include the
114 hybrid values, affect markedly H_{MP} and H_{BP} .

115 Regarding the indices H_{mp} and H_{bp} , which are not dimensionless, they
116 give no other information than the sign of heterosis. For a given h_P value,
117 H_{mp} can vary from $-\infty$ to 0 when $h_P < 0$ and from 0 to $+\infty$ when $h_P > 0$,
118 and H_{bp} can vary from $-\infty$ to 0 when $h_P < 1$ and from 0 to $+\infty$ when
119 $h_P > 1$ (equations 3 and 4).

120 The pitfalls of the commonly used indices

121 The non-univocal relationship between h_P and the commonly used heterosis
122 indices has two consequences. (i) For a given trait, comparing these indices
123 in different crosses and/or environments and/or developmental stages is
124 quite tricky: as soon as there is an effect of these factors on the scale of the
125 trait and/or the difference between parental values (*i.e.* on z_m or z_b), it
126 becomes impossible to compare the actual levels of heterosis between the
127 conditions. (ii) When studying different traits, the problem is even more
128 pronounced because each trait has its own scale of variation, making H_{MP}
129 or H_{BP} (and even more H_{mp} or H_{bp}) useless for comparing their real levels
130 of heterosis.

131 These pitfalls could easily be illustrated from our maize dataset. Fig. 2a
132 shows that classifying the traits for their degree of heterosis can give
133 markedly different results depending on whether one uses the h_P index or
134 one of the two indices H_{MP} and H_{BP} . For instance, in the cross F252×EP1
135 flowering time displays moderate heterosis according to H_{MP} and H_{BP} but
136 it is actually the trait with the highest h_P value. Conversely, plant height

137 is the second most heterotic trait regarding H_{MP} or H_{BP} , which is not the
138 case if we consider h_P . Similarly, comparing heterosis of a given trait in
139 different hybrids results in index-specific rankings: heterosis of ear height
140 measured with h_P is maximum in hybrid B73×F252, while from H_{MP} and
141 H_{BP} the highest values are in hybrid F252×EP1 (Fig. 2b). Finally the ef-
142 fect of the environment on heterosis gives the same discrepancies between
143 h_P on the one hand and H_{MP} or H_{BP} on the other hand (Fig. 2c).

144 It is also informative to compare the variation of heterosis indices for a
145 trait measured during development or growth. We fitted the percentage of
146 flowering over time in the hybrids W117×F192 and W117×F252 and their
147 parents, using Hill functions:

$$y = \frac{ax^n}{b + x^n}$$

148 where n is the Hill coefficient, then we computed the variation of heterosis
149 for percentage of flowering estimated from the fitted curves (Fig. 3). Again,
150 h_P tells a specific story as compared to H_{MP} or H_{BP} . Both H_{MP} and H_{BP}
151 decrease as flowering comes along because the coefficient of variation also
152 decrease. This prevents to follow the variation of real heterosis.

153 The same type of result was observed in a simulation describing the
154 increase of a population size that follows a logistic function, as observed
155 for instance in yeast cultures. We used:

$$y = \frac{K}{1 + a e^{-r\theta}}$$

156 where y is the size of the population, K the carrying capacity, a a constant,
157 r the growth rate and θ the time. We assumed that the parents differed
158 only for growth rate r and that there is additivity for this parameter.
159 The result shows that H_{MP} and H_{BP} for population size follow over time
160 variations clearly non congruent with that of h_P (Supporting information

¹⁶¹ Fig. S2).

¹⁶² Discussion

¹⁶³ If H_{MP} and H_{BP} (and their non normalized forms H_{mp} and H_{bp}) do not
¹⁶⁴ give reliable information on non-additivity, why are they so commonly
¹⁶⁵ used? There are probably both historical and technical reasons: (i) The
¹⁶⁶ first scientists who quantified heterosis were plant breeders (Shull, 1908;
¹⁶⁷ East, 1936). In an economic perspective, the goal was and still is to develop
¹⁶⁸ hybrids "better" than the best- or mid-parent for desired agronomic traits,
¹⁶⁹ and not to know where is the hybrid value relative to the parental values.
¹⁷⁰ So the heterosis indices have been defined accordingly and the habit has
¹⁷¹ remained; (ii) The indices giving the right non-additivity values, h_P (=
¹⁷² H_{PR}) for heterosis and D_W or D_F for dominance, can take high or very
¹⁷³ high values when the parents are close, due to the small differences $z_2 - z_1$
¹⁷⁴ in the denominator of the fractions. This can produce extreme values
¹⁷⁵ that are not easy to represent and to manipulate for statistical treatments.
¹⁷⁶ Nevertheless such values are biological realities that convey precisely the
¹⁷⁷ inheritance of the traits under study, what H_{MP} , H_{BP} , H_{mp} and H_{bp} do
¹⁷⁸ not. In addition, from a practical point of view, a single index is sufficient
¹⁷⁹ to know the position of the hybrid relative to the mid- or the best-parent,
¹⁸⁰ whereas in a number of studies the authors compute and comment both
¹⁸¹ H_{MP} and H_{BP} (or H_{mp} and H_{bp}). More important, as soon as it comes
¹⁸² to compare amplitude of heterosis between traits, developmental stages,
¹⁸³ crosses or environmental conditions, there is no other choice but to use
¹⁸⁴ heterosis indices that are not affected by the scale of the parental values
¹⁸⁵ but account for the position of the hybrid in the parental range.

186 Acknowledgements

187 We thank our colleagues Mélisande Blein-Nicolas, Michel Zivy, Judith
188 Legrand and Christine Dillmann for their useful reading of the manuscript.
189 We are grateful to the key persons of the INRA Station of Saint-Martin-de-
190 Hinx, of Euralis and of MASseeds for the 2014 and 2015 field experiments.
191 These experiments were supported by the French Agence Nationale de la
192 Recherche (*Amaizing* project ANR-10-BTBR-01).

193 Author contributions

194 Conceptualization: DdV. Maize experiments: JBF. Data analyses and nu-
195 merical applications: DdV and JBF. Writing article: DdV and JBF.

196 References

197 **Crow JF, Kimura M. 1970.** *An introduction to population genetics*
198 *theory*. Caldwell, New Jersey, USA: The Blackburn Press.

199 **East EM. 1936.** Heterosis. *Genetics* **21**: 375-397.

200 **Falconer DS. 1960.** *Introduction to quantitative genetics*. Edinburgh &
201 London, UK: Oliver and Boyd.

202 **Fiévet JB, Dillmann C, de Vienne D. 2010.** Systemic properties of
203 metabolic networks lead to an epistasis-based model for heterosis. *Theo-
204 retical and Applied Genetics* **120**: 463-473.

205 **Fiévet JB, Nidelet T, Dillmann C, de Vienne D. 2018.** Hetero-
206 sis is a systemic property emerging from non-linear genotype-phenotype
207 relationships: Evidence from in vitro genetics and computer simulations.
208 *Frontiers in Genetics* **9**: 159.

209 **Frankel R. 1983.** *Heterosis: Reappraisal of Theory and Practice*. Berlin
210 Heidelberg New York Tokyo: Springer-Verlag.

211 **Gowen JW. 1952.** *Heterosis*. Ames, USA: Iowa State College Press.

²¹² **Mather K. 1949.** *Biometrical Genetics*. London, UK: Methuen.

²¹³ **Shang L, Wang Y, Cai S, Wang X, Li Y, Abduweli A, Hua J. 2016.**

²¹⁴ Partial Dominance, Overdominance, Epistasis and QTL by Environment

²¹⁵ Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. *G3: Genes, Genomes, Genetics* **6**: 499-507.

²¹⁶ **Shull GH. 1908.** The composition of a field of maize. *American Breeder's Association Report* **4**: 296-301.

²¹⁷ **Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D.**

²¹⁸ **2019.** Nonlinear phenotypic variation uncovers the emergence of heterosis in *Arabidopsis thaliana*. *PLoS Biology* **17**:e3000214.

²¹⁹ **Wright S. 1934.** Physiological and evolutionary theories of dominance.

²²⁰ *American Naturalist* **68**: 24-53.

Table 1. The dominance and heterosis indices. Light yellow background: the two dominance indices, Wright's (D_W) and Falconer's (D_F) ones. Light blue background: the five heterosis indices (see text). Subscripts: mp or MP, mid-parent; PR, potency ratio; bp or BP, best-parent. In the text, H_{PR} is also noted h_P . z_1 (resp. z_2): phenotypic value of parental homozygote 1 or of parent 1 (resp. 2). z_{12} : heterozygote or hybrid value. \bar{z} : mean parental value. By convention, $z_2 > z_1$.

Reference	Index	Index scales with their characteristic values
High homozygote	$D_W = \frac{z_2 - z_{12}}{z_2 - z_1}$	$z_{12} = z_1 \quad z_{12} = \bar{z} \quad z_{12} = z_2$
Mean homozygote	$D_F = \frac{z_{12} - \bar{z}}{(z_2 - z_1)/2}$	$z_{12} = z_1 \quad z_{12} = \bar{z} \quad z_{12} = z_2$
Mid-parent	$H_{mp} = z_{12} - \bar{z}$	$z_{12} = \bar{z}$
	$H_{MP} = \frac{z_{12} - \bar{z}}{\bar{z}}$	$z_{12} = \bar{z}$
	$H_{PR} = \frac{z_{12} - \bar{z}}{(z_2 - z_1)/2}$	$z_{12} = z_1 \quad z_{12} = \bar{z} \quad z_{12} = z_2$
Best-parent	$H_{bp} = z_{12} - z_2$	$z_{12} = z_2$
	$H_{BP} = \frac{z_{12} - z_2}{z_2}$	$z_{12} = z_2$

²²⁴ **Figure legends**

²²⁵ **Figure 1 Relationship between the potency ratio h_P and the two**
²²⁶ **heterosis indices H_{MP} and H_{BP} .** (a), (b) Six traits have been mea-
²²⁷ sured in maize (FLO: flowering time [number of days between the day at
²²⁸ 50% flowering and August, 12], PH: plant height, EH: ear height, GY:
²²⁹ grain yield, TKW: thousand-kernel weight, KM: kernel moisture) in four
²³⁰ crosses (H1: B73×F252, H2: F2×EP1, H3: F252×EP1, H4: F2×F252)
²³¹ and three environments in France (E1: Saint-Martin-de-Hinx, E2: Jargeau,
²³² E3: Rhodon). (a) Relationship between h_P and H_{MP} . (b) Relationship
²³³ between h_P and H_{BP} . (For clarity, four out the 72 trait-cross-environment
²³⁴ combinations are not represented because they have high h_P values.) (c),
²³⁵ (d) Five traits have been measured in cotton (SY: seed yield, LY: lint yield,
²³⁶ BNP: bolls per plant, BW: boll weight, LP: lint percent) in two crosses (H1:
²³⁷ X1135×GX100-2 and H2: GX1135×VGX100-2) and three environments in
²³⁸ China (E1: Handan, E2: Cangzhou, E3: Xiangyang). (c) Relationship be-
²³⁹ tween h_P and H_{MP} . (d) Relationship between h_P and H_{BP} . Data from
²⁴⁰ Shang *et al.*, 2016.

²⁴¹ **Figure 2 Heterosis ranking according to the index.** (a) Heterosis
²⁴² indices for six traits measured in the cross F252×EP1 grown in Saint-
²⁴³ Martin-de-Hinx (France) in 2014. (b) Heterosis indices of ear height in
²⁴⁴ four crosses grown in Saint-Martin-de-Hinx (France) in 2014. (c) Heterosis
²⁴⁵ indices of plant height in the cross F2×F252 grown in the three environ-
²⁴⁶ ments. The six traits and the three environments are the same as in Fig. 1a.
²⁴⁷ The scales of the heterosis indices are normalized by the maximum value
²⁴⁸ in the dataset considered (figures at the top right of the vertical lines).

²⁴⁹ **Figure 3 Heterosis for flowering in two maize hybrids.** (a) Per-
²⁵⁰ centage of flowering over time (number of days since January, 1st) for par-

251 ents W117 and F192 and their hybrid, adjusted with a Hill function (see
252 text) **(b)** Percentage of flowering over time for parents W117 and F252 and
253 their hybrid. **(c)** Evolution of heterosis indices for the cross W117×F192.
254 **(d)** Evolution of heterosis indices for the cross W117×F252.

255 **Key words:** Flowering, growth rate, heterosis index, hybrid vigour, maize,
256 non-additivity, yield.

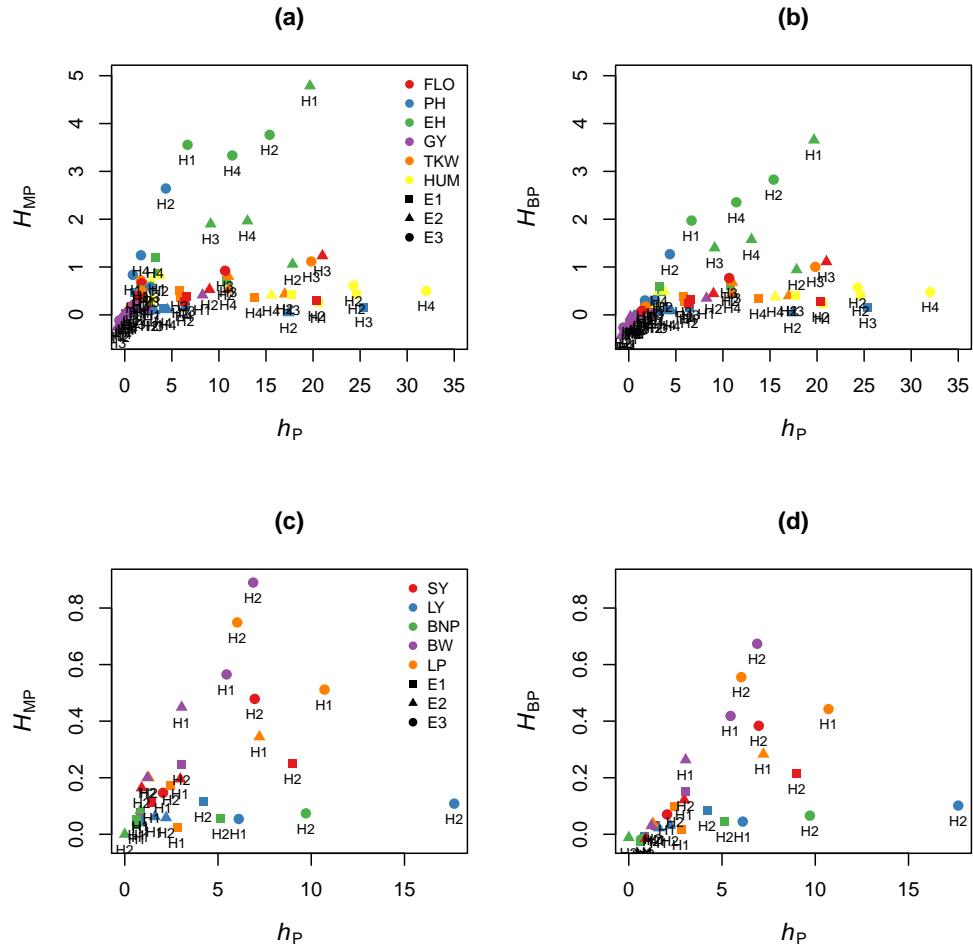


Figure 1. Relationship between the potency ratio h_P and the two heterosis indices H_{MP} and H_{BP} . (a), (b) Six traits have been measured in maize (FLO: flowering time [number of days between the day at 50% flowering and August, 12], PH: plant height, EH: ear height, GY: grain yield, TKW: thousand-kernel weight, KM: kernel moisture) in four crosses (H1: B73×F252, H2: F2×EP1, H3: F252×EP1, H4: F2×F252) and three environments in France (E1: Saint-Martin-de-Hinx, E2: Jargeau, E3: Rhodon). (a) Relationship between h_P and H_{MP} . (b) Relationship between h_P and H_{BP} . (For clarity, four out of the 72 trait-cross-environment combinations are not represented because they have high h_P values.) (c), (d) Five traits have been measured in cotton (SY: seed yield, LY: lint yield, BNP: bolls per plant, BW: boll weight, LP: lint percent) in two crosses (H1: X1135×GX100-2 and H2: GX1135×VGX100-2) and three environments in China (E1: Handan, E2: Cangzhou, E3: Xiangyang). (c) Relationship between h_P and H_{MP} . (d) Relationship between h_P and H_{BP} . Data from Shang *et al.*, 2016.

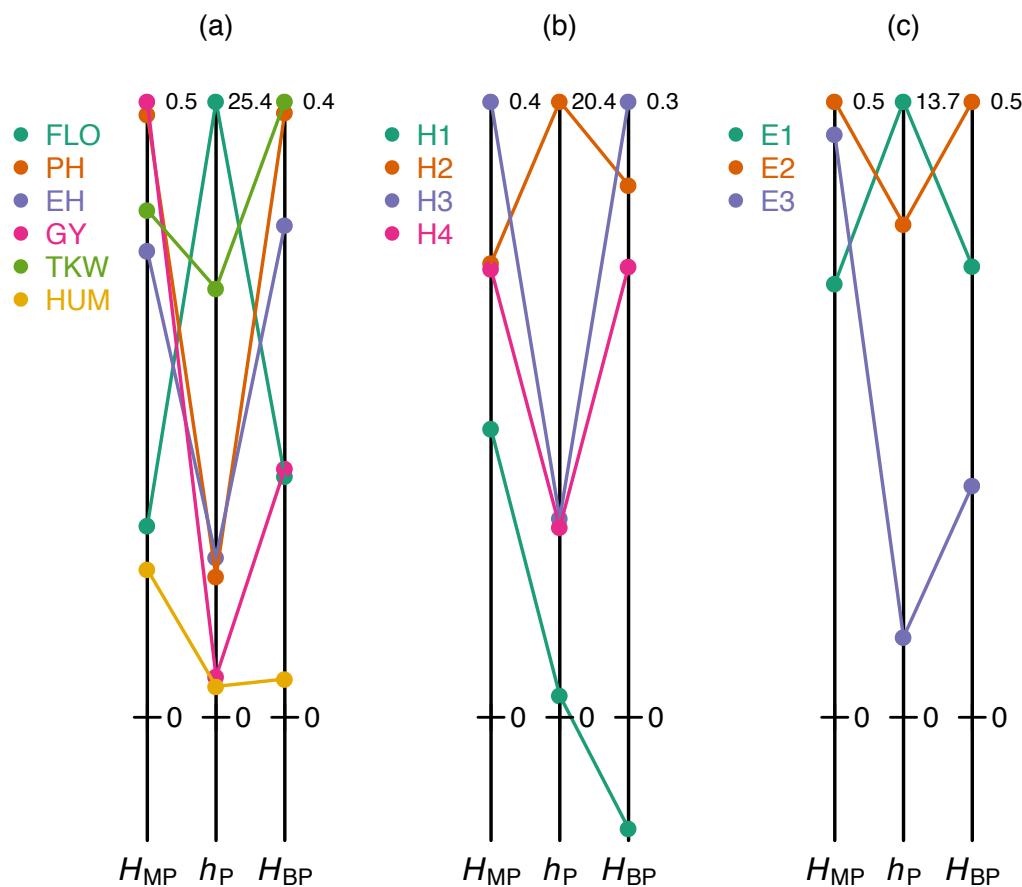


Figure 2. Heterosis ranking according to the index. (a) Heterosis indices for six traits measured in the cross F252×EP1 grown in Saint-Martin-de-Hinx (France) in 2014. (b) Heterosis indices of ear height in four crosses grown in Saint-Martin-de-Hinx (France) in 2014. (c) Heterosis indices of plant height in the cross F2×F252 grown in the three environments. The six traits and the three environments are the same as in Fig. 1a. The scales of the heterosis indices are normalized by the maximum value in the dataset considered (figures at the top right of the vertical lines).

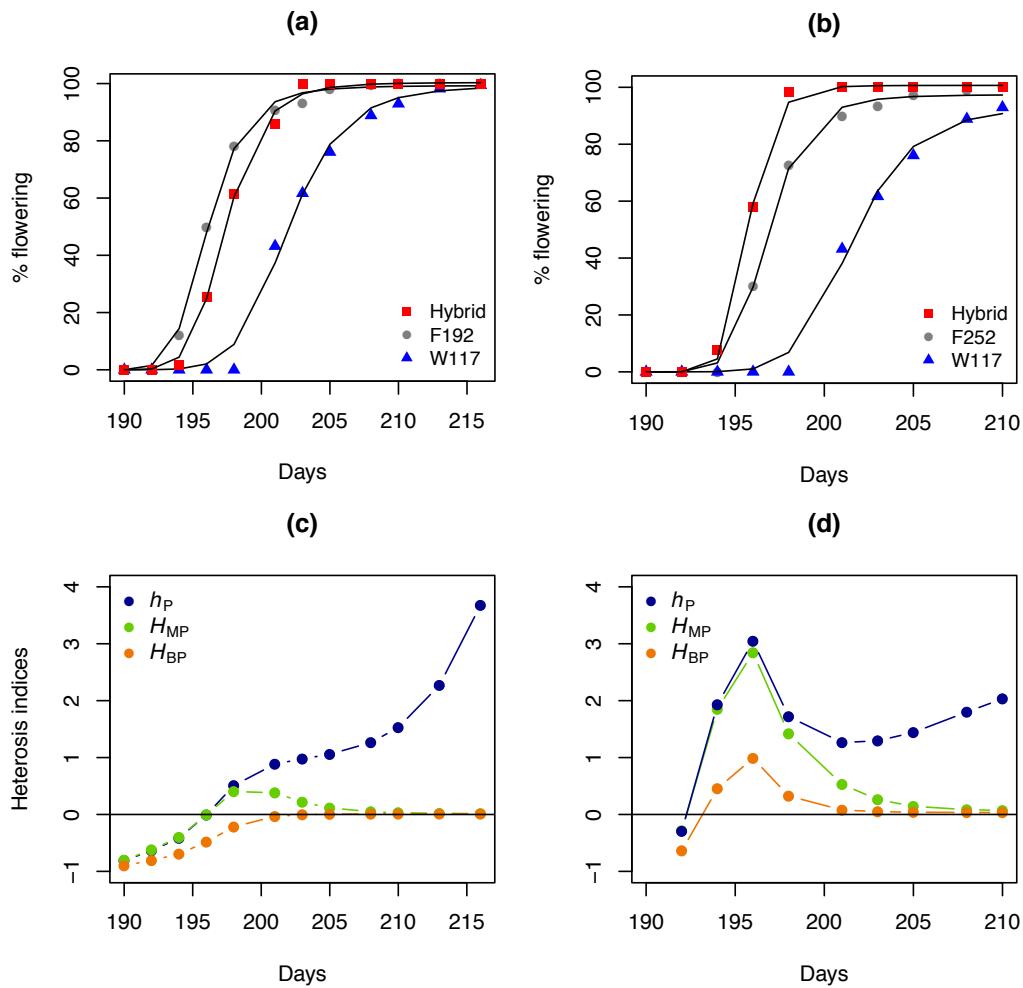
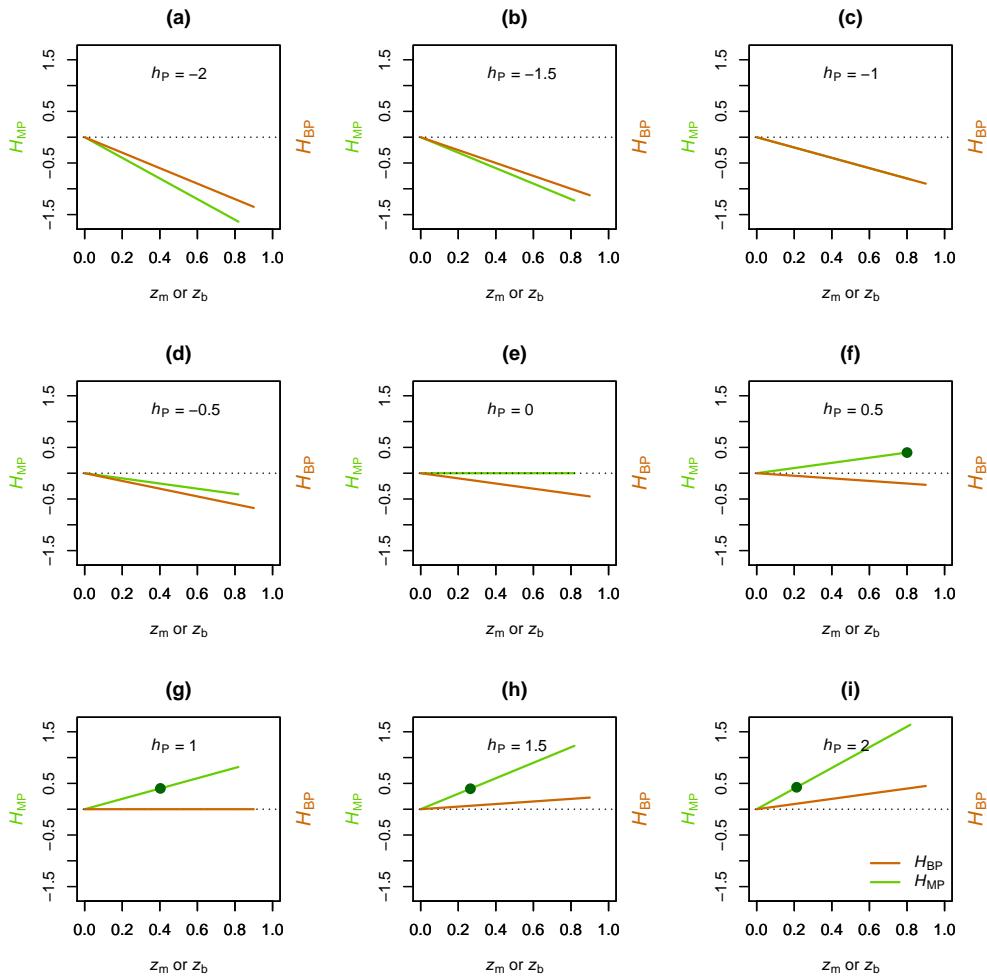


Figure 3. Heterosis for flowering in two maize hybrids. (a) Percentage of flowering over time (number of days since January, 1st) for parents W117 and F192 and their hybrid, adjusted with a Hill function (see text) (b) Percentage of flowering over time for parents W117 and F252 and their hybrid. (c) Evolution of heterosis indices for the cross W117×F192. (d) Evolution of heterosis indices for the cross W117×F252.

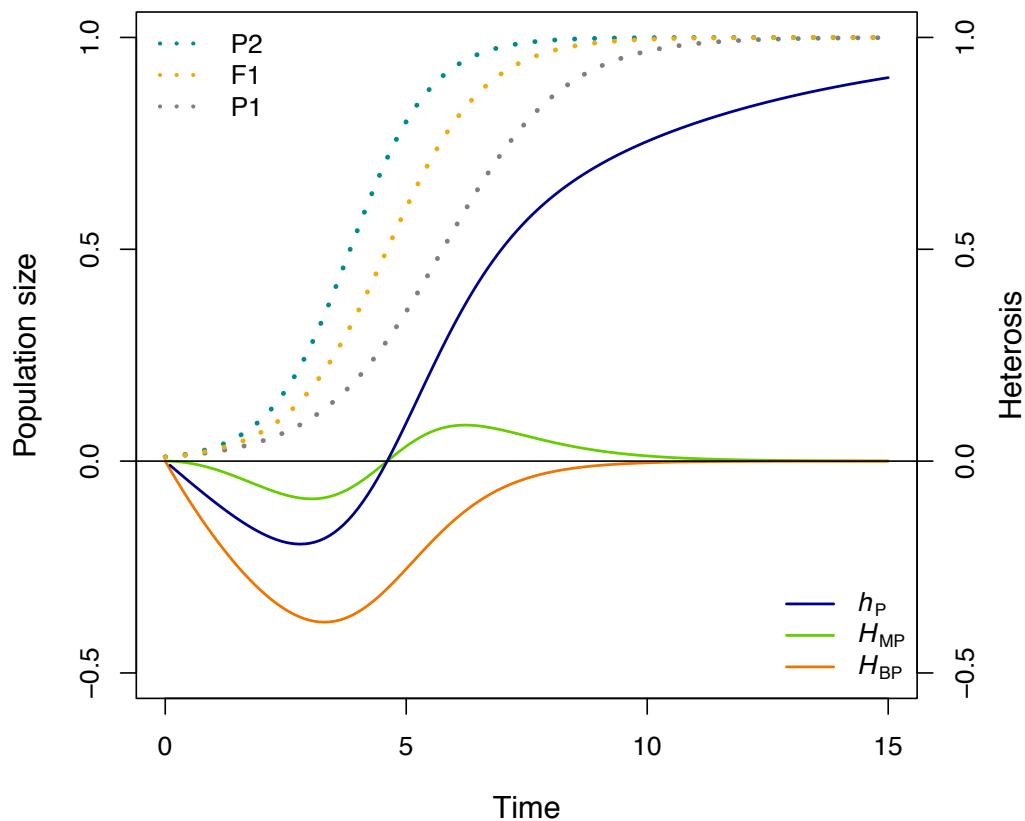
257 **Supporting information**

258 **Table S1 Heterosis indices expressed as functions of genetic ef-**
 259 **fects.** Subscripts: same as in Table 1. μ , mean of the multilocus homozy-
 260 $\sum a$, sum of the additive effects; $\sum d$, sum of the dom-
 261 inance effects; $\sum e_{\text{dom}}$, sum of the dominance-by-dominance epistatic ef-
 262 fects; $\sum e_{\text{add}}$, sum of the additive-by-additive epistatic effects; $\sum e_{\text{add even}}$,
 263 sum of the additive-by-additive epistatic effects involving an even num-
 264 ber of genes; $\sum e_{\text{add odd}}$, sum of the additive-by-additive epistatic effects
 265 involving an odd number of genes (from Fiévet *et al.*, 2010).

Reference	Index	Index as function of genetic effects
Mid-parent	$H_{\text{mp}} = z_{12} - \bar{z}$	$\sum d + \sum e_{\text{dom}} - \sum e_{\text{add even}}$
	$H_{\text{MP}} = \frac{z_{12} - \bar{z}}{\bar{z}}$	$\frac{\sum d + \sum e_{\text{dom}} - \sum e_{\text{add even}}}{\mu + \sum e_{\text{add even}}}$
	$H_{\text{PR}} = \frac{z_{12} - \bar{z}}{(z_2 - z_1)/2}$	$\frac{\sum d + \sum e_{\text{dom}} - \sum e_{\text{add even}}}{\sum a + \sum e_{\text{add odd}}}$
Best-parent	$H_{\text{bp}} = z_{12} - z_2$	$\sum d + \sum e_{\text{dom}} - \sum a - \sum e_{\text{add}}$
	$H_{\text{BP}} = \frac{z_{12} - z_2}{z_2}$	$\frac{\sum d + \sum e_{\text{dom}} - \sum a - \sum e_{\text{add}}}{\mu + \sum a + \sum e_{\text{add}}}$



267 **Fig. S1 Influence of the scale of the parental values on H_{MP} and**
 268 **H_{BP} for different values of the potency ratio h_P .** (a) to (i) h_P values
 269 from -2 to 2 . $z_m = \frac{z_2 - z_1}{z_1 + z_2}$ and $z_b = \frac{z_2 - x_1}{z_2}$, with $z_1 = 1$ and z_2 varying from 1
 270 to 10 (see equations 1 and 2 in the text). Green line: relationship between
 271 z and H_{MP} . Orange line: relationship between z_b and H_{BP} . Dotted line:
 272 H_{MP} or $H_{BP} = 0$. The dark green points show that a given H_{MP} value
 273 (≈ 0.4) can be observed for quite different h_P values, and the same is true
 274 for H_{BP} .



275 **Fig. S2 Heterosis of population size (simulations).** The popula-
276 tion sizes (dotted curves) follows over time a logistic function with $K = 1$
277 and $a = 100$ (see text). Parents P1 and P2 and hybrid F1 have respectively
278 the growth rates $r = 0.8$, $r = 1.2$ and $r = 1$. Solid curves (right scale):
279 profiles of heterosis indices.