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Abstract

An open problem in biology is to understand when particular phenotypic
adaptation strategies of microorganisms are selected during evolution. They
range from random, bet-hedging strategies to deterministic, responsive strate-
gies, relying on signalling circuits. We present an evolutionary model that
integrates basic statistical physics of molecular circuits with fitness maximi-
sation and information theory. Besides illustrating when bet-hedging strate-
gies are more evolutionarily successful than responsive strategies, it gives
new explanations for several puzzling observations on responsive strategies.
For instance, the accuracy with which outputs of signalling networks of single
cells track external signals can be remarkably low: cells often distinguish only
between 2 to 4 concentration ranges, corresponding to 1 or 2 bits of mutual
information between the signal and response variable. Why did evolution
lead to such low-fidelity signalling systems? Our theory offers an explana-
tion by taking a novel perspective. It considers the fitness benefit of all
signals, including those that are not sensed. We introduce a new concept,
‘latent information’, which captures the mutual information between all non-
sensed signals and the optimal response. The theory predicts that it is often
evolutionarily optimal to transduce sensed signals noisily, due to latent in-
formation. It indicates that fitness can indeed be maximal when the optimal
mutual information extracted from sensed signals is not maximal, but rather
has a low value of about 1 or 2 bits - even at moderate values of the latent
information - in agreement with experimental findings. Cells likely do not
sense all signals because of the fitness cost of expressing many idle signalling
systems, which consume limited biosynthetic resources otherwise available
for growth. Signals should only be sensed at maximal precision when they
contain all information about the optimal response. This work contributes to
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a better understanding of the fitness contributions of phenotypic adaptation
strategies of microorganisms.

Keywords: Cellular decision making, Phenotypic adaptation strategies,
Bet-hedging, Cellular signalling, Information Theory, Mutual information,
Biochemical noise

1. Introduction

Evolutionary theories about the fitness of phenotypic strategies [1, 2, 3,
4, 5, 6] have made successful predictions of the outcomes of natural selection
in fluctuating environments [3, 4, 7, 8]. In those theories, the (geometric)
fitness [4, 5, 6] is generally maximised. This fitness measure equals the loga-
rithm of the fold change in the number of organisms divided by the number of
environmental periods. Organisms that produced most offspring have max-
imal geometric fitness. These theories evaluate the fitness contributions of
phenotypic strategies, ranging from random, bet-hedging strategies to deter-
ministic, responsive strategies. This work contributes to this growing body
of theories.

Some phenotypic adaptation mechanisms are based on chance and are
independent of environmental conditions. In such bet-hedging strategies
[9], cells can switch randomly between alternative phenotypic states. This
ensures the existence of subpopulations that are maladapted to the cur-
rent condition, but are prepared for different future conditions. For ex-
ample, slow-growing, stress-tolerant cells (so-called persister cells) and fast-
growing, stress-sensitive cells have been discovered in microbial cell popula-
tions [10, 11, 12, 13]. One explanation is that the fast growing cells determine
the current fitness, while the persister cells are ‘insurance policies’, guar-
anteeing survival when conditions suddenly become harsh and extinction-
threatening. Together, they maximise the geometric fitness of the popula-
tion in conditions that fluctuate between benign and existence-threatening
conditions.

Close-to-deterministic adaptation strategies also exist, where cells per-
ceive and transmit a signal to infer the state of the environment and adapt
their phenotype accordingly. The omnipresence of two-component signalling
circuits across microorganisms [14] indicates the importance of this mode of
adaptation. However, inevitable molecular stochasticity in signalling circuits
can cause random mismatches between the phenotype and the environmental
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state, leading to fitness losses.
Since the entire range of phenotypic behaviours is found amongst microor-

ganisms, and because they are great experimental systems for physiology and
evolution, microbiology is the perfect playground for testing predictions and
improving evolutionary theories. We therefore limit our theory to microbial
phenotypic adaptation.

When bet-hedging adaptation strategies are more evolutionarily success-
ful than sensing strategies has been a long standing question in evolution-
ary biology. Bet-hedging has been predicted to be evolutionarily advan-
tageous under at least two conditions [9]: In slowly-changing, mild envi-
ronments where sensing machinery would rarely provide an evolutionary
benefit for long periods of time, and in environments that change quickly
into extinction-threatening states where responsive adaptation would be too
slow [1, 2, 3, 4, 6, 9]. In all other cases, responsive signalling strategies are
favoured.

What remains poorly understood is what the optimal accuracy of sig-
nalling systems should be. Especially since experiments indicate that single
cells have a remarkably low capacity for accurate tracking of environmen-
tal signals [15, 16, 17, 18, 19] below what is predicted to be possible from
theory. Intuitively, one would expect that more accurate signalling improves
evolutionary success as it reduces maladaptation. Accordingly, many the-
ories are based on maximisation of the mutual information between signal
and response [20, 21, 22]. However, in reality cells only appear to sense
few external signals and in a noisy regime, leading to stochastic responses
[23, 24, 25, 26]. Moreover, experiments report poor signalling capabilities of
single cells; no more than 2 bits of mutual information between an external
signal and an internal response have been found [16, 17, 18, 19]. Thus, either
reliable signal transduction is not that important for evolutionary success, or
it is very problematic for cells to achieve reliable signal transduction.

Reliable signal transduction might be difficult to achieve due to the in-
evitable randomness of molecular systems [27]. Increased expression of sig-
nalling proteins can make them more reliable [28], but requires a fitness-
reducing diversion of resources from growth processes. Only if signalling
activity leads to a net fitness increase will signalling systems evolve. There-
fore, expression of idle signalling systems is generally fitness reducing in the
absence of the signal and, moreover, genes encoding signalling machinery
can then accumulate random mutations that reduce signalling performance.
In addition, many signalling systems rely on signal receptors in the mem-
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brane and their expression is at the expense of the nutrient importers, which
reduces fitness too. These considerations may explain why cells express so
few signalling systems; E. coli can grow, for instance, on hundreds of car-
bon sources, but it only has a handful of one and two-component sensing
systems dedicated to nutrient sensing. However, these considerations do not
explain why exploited signalling systems display such remarkably low mutual
information values between their signal and their response. Answering this
question is the goal of this paper.

In information-theoretic studies on cellular signalling, maximisation of
mutual information between a signal and a response variable is considered
beneficial for cells. We argue that this does not capture all situations. Imag-
ine a flat relationship between the fitness value and the response variable
versus one that is sharply peaked. In the former case, infinite mutual infor-
mation between signal and response variable would not improve fitness, while
it would in the latter case. Another limitation is that most theories consider
only one signal and one response variable. It is likely that cells integrate
different signals to induce a single response. Imagine a fitness landscape
as a function of several response variables that contains ridges and peaks.
In such a landscape, mutual information maximisation with respect to one
signal and one response variable is insufficient. Therefore, phenotypic adap-
tation strategies should be evaluated on the basis of fitness maximisation,
considering all signals. Importantly, also ‘latent signals’ – those that are not
sensed by the cell, but that are fitness enhancing if they would be sensed –
should be considered. Our theory incorporates this novel idea.

Our theory indicates that a signal should be transduced as accurately as
possible only when it contains nearly all information about the optimal re-
sponse. When information about the optimal response is partially contained
in signals that are not sensed, it is evolutionarily optimal to perceive the
sensed signals noisily. In this situation, the only way to increase fitness is
to sense more signals. This suggests that cells should sense as many signals
as possible, which might not be feasible as cells need to evolve separate sig-
nalling machinery for each signal. If those signals occur infrequently, and the
signalling systems are generally idle, selection and drift will lead to their loss.
Whether or not a cell evolves signalling circuits depends on the fitness gain
that can be achieved by sensing this individual signal: when this fitness gain
is higher than the fitness cost of having the sensing machinery, the machinery
should evolve. This is why it can occur that it is optimal to sense individual
signals noisily: the optimal accuracy of signal transduction decreases with
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the cumulative latent information in all signals that did not reach the ‘fitness
threshold’ for being sensed. When the ability to sense one signal is lost, the
other sensed signals should not be perceived more, but less accurately. This
is because, as the total available information about the optimal behaviour
decreases, the cell should trust the available information less, and gamble
more. This is the central idea of this paper, which we shall substantiate with
theory.

The main insight from our work is that we can expect to find microor-
ganisms in nature with poor signalling capacities because they live in an
environment that they perceive only partially. They behave ‘semi-blindly’
not because they cannot do better, but because natural selection leads to
maximisation of fitness by diverting biosynthetic resources to growth pro-
cesses, at the expense of expressing signalling systems that either sense infre-
quent signals or those with moderate to low information about the optimal
behaviour.

2. Results

2.1. The geometric fitness model

We aim to investigate fitness maximisation of an isogenic population in
the presence of fluctuating signals. All single cells sense a signal ss that
induces the expression of a response protein with concentration p (figure
1A). In addition to the sensed signal, ‘latent’ signals, sl1, ..., sln, exist that
are not sensed by cells. They are the elements of the vector ~sl. All signals,
both sensed and latent, determine the optimal protein concentration po(ss, ~sl)
that maximises fitness.

We use the following fitness function, which reaches its maximal value
fo(ss, ~sl) at p = po(ss, ~sl),

f(p; po(ss, ~sl), fo(ss, ~sl)) = fo(ss, ~sl) exp

{
−1

2

(p− po(ss, ~sl)) 2

ω2

}
. (1)

The fitness reduction, due to a deviation of the protein concentration p from
its optimal value po is determined by the width of the “fitness-landscape” ω
(figures 1A and 1C). The interpretation of the fitness equation is explained
in figure 1C.

To keep the model analytically tractable, we assume in addition that: (1)
the optimum value po is a nonlinear function of ss plus a weighted sum of all
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Figure 1: Biological situation, methodological workflow, and intuition for the
fitness function. A. Evolution acts on an (isogenic) population. An individual cell
senses an environmental signal ss and estimates its concentration to be s′. In this pro-
cess noise is added, this variance is σ2

s (to distinguish between two types of variances,
variances denoted by σ2 are intracellular variances (e.g. of a protein concentration) and
variances denoted by 〈δ2x〉 are extracellular variances (e.g. of an external signal concen-
tration). The signal is transduced and eventually leads to protein concentration p, which
contains noise on its own; with variance σ2

p. The concentration p leads to a certain fitness
of the cell depending on how far it is from the optimum po following the fitness function
f (p, po; fo, ω). The optimal protein concentration po is a function of the sensed signal ss
and all latent signals sl1, ..., sln. Finally, fo determines the fitness (growth rate) in the
optimum. B. Under a fixed environment we use s′|ss ∼ N (ss, σ

2
s) and p|s′ ∼ N (αs′, σ2

p)
to obtain p|ss ∼ N (αss, α

2σ2
s + σ2

p), as shown in the appendix. The average fitness of
the phenotypically heterogeneous population at one environment can now be determined
and depends on ss. Taking the logarithm and averaging over all signals (i.e. all envi-
ronments) leads to the geometric mean of the fitness. C. The fitness of one cell is given

by: f(p, po(ss, ~sl), fo(ss, ~sl)) = fo(ss, ~sl) exp
{
− 1

2
(p−po(ss,~sl))2

ω2

}
where ω determines the

width of the fitness function. The optimal protein concentration po is determined by the
sensed signal ss (black curve), but is also influenced by the latent signals ~sl (gray curves).
Considering two hypothetical populations of blue and red cells, where the blue cells are
genetically superior in transducing signals, we see how the mean fitness of the population
in one environment depends on the accuracy of estimating the optimum po. However, de-
pending on the latent signals ~sl, the optimum and thus the mean fitness can still change.
The middle plot shows how, under fixed ~sl, the variance in optima determines how far the
peaks of the fitness curves lie apart. The bottom plot illustrates how inaccurate signal
transduction will have fewer fitness consequences when the variance in optima is small
relative to the width of the fitness curve.
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latent signals ~sl such that

po(ss, ~sl) = po(ss) +
n∑
i=1

αisli; (2)

(2) all latent signals in ~sl are independent, i.e. they do not covary, and are
normally distributed; and (3) the means of ~sl are set to 0.

Given these assumptions, following the methodology explained in figure
1B, we obtain for the geometric mean fitness of a population of isogenic cells
(also see the appendix),

G = ln [fo]−
1

2
ln

[
ω2 + σ2

p + α2σ2
s

ω2

]
− 1

2

∫
(αss − po(ss))2 h(ss)dss +

∑n
i=1 α

2
i 〈δ2sli〉

ω2 + σ2
p + α2σ2

s

.

(3)

The first term ln[fo(ss, ~sl)] equals the maximal geometric fitness. The last
two terms are fitness costs. The first captures the cost of noisy signalling
and quantifies the fitness reduction due to protein fluctuations that lead to
an average deviation from the optimal concentration. The total variance of
the protein fluctuations equals σ2

p + α2σ2
s . The second cost term captures a

distance from optimality due to two suboptimal (deterministic) effects: i. the
relationship p(ss, , ~sl) = αss might deviate from the optimal relation po(ss, ~sl)
and ii. not sensing of latent signals that are informative about the optimal
value of po(ss, ~sl), leads to a fitness loss too, in terms of the variances of these
latent signals.

The last cost term in equation 3 contains
∫

(αss−po(ss))2h(ss)dss, which
is reminiscent of a mean squared error (MSE) of an estimator. Its occurrence
suggests that evolution can be interpreted as minimising the distance of a
cell’s behaviour to its optimal behaviour. It is debatable whether this term
can be made small by natural selection. For this to occur, the dependency
po(ss) should not become a too complex function, as otherwise cells would
not be able to approximate it by a steady-state input-output relation of a
molecular circuit. Considering that we aim to investigate optimal sensing
cells, we assume that αss ≈ po(ss) for any ss. Therefore, the equation for
the geometric mean fitness of sensing cells in the presence of multiple signals,
both latent and observed, reduces to

Gs = ln [fo]−
1

2
ln

[
ω2 + σ2

p + α2σ2
s

ω2

]
− 1

2

∑n
i=1 α

2
i 〈δ2sli〉

ω2 + σ2
p + α2σ2

s

. (4)
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The final term in equation 4 is the fitness cost of varying latent signals.
It quantifies how much fitness-influencing uncertainty remains about the en-
vironment, caused by the influence of all latent signals ~sl on the optimum
po. It is dependent on the width of the fitness function and the internal vari-
ance. This fitness cost can be reduced by increased protein fluctuations, i.e.
of σ2

p + α2σ2
s by bet-hedging or ‘noisy sensing’ strategies, in agreement with

previous results [1, 2, 3]. This can also be shown by differentiating equation 4
with respect to the normalised internal variance and solving for its optimum
value, division by ω2 then gives,(

σ2
p + α2σ2

s

ω2

)opt

=

∑n
i=1 α

2
i 〈δ2sli〉
ω2

− 1; (5)

indicating that the relative internal variance should only exceed zero when
the relative uncertainty in the environment exceeds 1 (figure 2A) then noisy
signalling pays off due uncertainty in the environment. The geometric mean
fitness of a cell is more sensitive to the relative uncertainty about its envi-
ronment than to its own relative internal variance (figure 2A).

Thus, an optimal sensing cell, which senses not all signals that are infor-
mative about the optimal behaviour, will still have to be noisy to overcome
fitness variation due to the influences of all latent, not-sensed signals. Such
a cell would therefore not follow a deterministic, pure sensing strategy, but
allow for some bet-hedging behaviour; indicating that the mutual informa-
tion between ss and p should not always be maximised. This is an important
insight from our theory that we will explore further.

2.2. Sensing vs non-sensing cells

The geometric mean fitness of non-sensing cells can be also derived from
equation 3. First, σ2

s is set to 0; since in its absence, sensing cannot induce
noise. Subsequently, we deduce that for an optimal, non-sensing cell 〈p〉 =
αss (see appendix). Finally, for a fair comparison to sensing cells, we have
to consider the bias for non-sensing cells to be negligibly small such that
〈p〉 ≈ 〈po(ss)〉. Integration of equation 3 over ss under these conditions gives
for geometric fitness the following relationship

Gns = ln [fo]−
1

2
ln

[
ω2 + σ2

p

ω2

]
− 1

2

〈δ2po(ss)〉+
∑n

i=1 α
2
i 〈δ2sli〉

ω2 + σ2
p

. (6)
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Figure 2: Mutual information, latent information and fitness of sensing cells.
A. Contour plot of the geometric mean fitness (Gs) as a function of the relative within-
cell variance and relative uncertainty in the environment. The colour indicates Gs as a
percentage of the maximum (given by ln[fo]) here it ranges from 90% (bottom left) to
30% (bottom right). The red line shows the optimal relative internal variance for a given
relative uncertainty. B. Mutual information (MI) between p and ss as a function of the
fraction of internal variance (i.e. noise) over all variance in p. This gives an indication
of the range of the MI between p and ss given a certain noise level. Note that the x-axis
ranges from 0 to 0.1. C. MI between po and ~sl as a function of the propagated variance
in po from ss over the total variance in po. Since we are considering normal distributions,
variance is proportional to mutual information. D. Contour plot of Gs as a function of
the MI between the sensed signal ss and the cell’s response p and the MI between the
optimum po and all latent signals ~sl (i.e. the latent information). The colouring indicates
Gs as a percentage of the maximum; ranging from 75% (top left) to -150% (top right), the
red line is the optimal MI between p and ss, and ρ = 5. The x-axis covers a much smaller
range than the y-axis, it corresponds to the red y-axis in C.
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The optimal, normalised internal variance for non-sensing cells is given by,(
σ2
p

ω2

)opt

=
〈δ2po(ss)〉+

∑n
i=1 α

2
i 〈δ2sli〉

ω2
− 1 (7)

This result is similar to the results of Bull [1] and Haccou & Iwasa [2]. The
total variance in the environment, defined in those papers as a single pa-
rameter, equals 〈δ2po(ss)〉+

∑n
i=1 α

2
i 〈δ2sli〉 in our extended formalism. Cells

should introduce noise when the variance in the environment is exceeds the
the width of the cellular fitness function.

We can now evaluate the fitness difference between sensing and non-
sensing cells, i.e. G opt

s − G opt
ns for three different scenarios; pure sensing vs

pure non-sensing (low total variance in the optimum), pure sensing vs bet-
hedging (most variance in the optimum is caused by ss) and noisy sensing
vs bet-hedging (high variance in optima caused by both ss and ~sl). Here
‘pure’ indicates the strategy that aims to minimise internal variance. In each
of these comparisons (see appendix), we find that G opt

s − G opt
ns is minimally

0, which only occurs when 〈δ2po(ss)〉 = 0 or ω2 → ∞. These limits are
in agreement with biological intuition, since the only reason not to sense
a signal, when sensing does not come at any cost, is when it contains no
information about the optimum or it has no fitness consequence.

2.3. Mutual and latent information

In order to interpret the geometric mean fitness of sensing cells from an
information theoretic perspective we express it in terms of mutual informa-
tion (MI). First we define the MI between the signal ss that is being sensed
and the response of the cell p. This way of using MI is very common in the
evaluation of the accuracy of signal transduction. We find for the MI, in bits,
between the sensed signal ss and the internal response p (see appendix) the
following relation

I(p; ss) =− 1

2
log2

[
σ2
p + α2σ2

s

α2〈δ2ss〉+ σ2
p + α2σ2

s

]
. (8)

The argument of the logarithm is the fraction of all variance in p that is
caused by internal variance (i.e. noise). The MI depends on this fraction as
shown in figure 2B, which indicates that when it decreases below 10%, the
relevant range of MI is approximately 1-5 bits. The relevant range of MI as a
function of the internal noise depends on both the type of signal transduction
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and the choice of the input distribution. For instance, when two modes of a
bimodal input distribution are perfectly separated and equally likely, the MI
increases with 1 bit, effectively doubling the number of perceived states.

We will now introduce the in-our-eyes crucial information measure for
the fitness of sensing cells. In contrast to what is commonly done, we define
an MI term between the optimum and the latent signals. From the cell’s
perspective, this measure can be interpreted as ‘latent information’,

I(po;~sl) = −1

2
log2

[
α2〈δ2ss〉

α2〈δ2ss〉+
∑n

i=1 α
2
i 〈δ2sli〉

]
. (9)

The argument of the logarithm captures the fraction of information on the
optimum that the cell retrieved (figure 2C). The relevant range of the latent
information can be very low. For instance, when the sensed signal ss contains
25% of the total information about the optimum, the latent information
is 1 bit. When ss contains 75% of all information on the optimum, the
latent information is only 0.2 bit (figure 2C). An informative reference point
to keep in mind is that at 0.5 bit latent information, ss provides 50% of
all information on the optimum po. Equation 9 indicates that the cell can
reduce latent information by sensing more signals. By sensing an extra signal
this signal’s variance is added to the numerator in equation 9, decreasing the
latent information. We note that latent information is not reduced by sensing
an already sensed signal more accurately.

2.4. Maximal mutual information is not always optimal

We can write the geometric mean fitness of sensing cells (equation 4) in
terms of the two mutual information measures. Before doing so, we define

ρ = α2〈δ2ss〉
ω2 , the normalised variance in optima caused by the perceived signal

ss. The geometric mean fitness of a sensing population of isogenic cells equals

Gs = ln [fo]−
1

2
ln

[
1 +

ρ

4I(p;ss) − 1

]
− 1

2

ρ (4I(po;~sl) − 1)

1 + ρ
4I(p;ss)−1

. (10)

When we study Gs as a function of the mutual and latent information, given
a certain value of ρ, we observe that the fitness decreases sharply in the
direction of increasing latent information (figure 2D, note the low range on
the x-axis).
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Differentiating equation 10 with respect to the MI between p and ss and
setting it to 0 gives the optimal MI:

I(p; ss)
opt =

1

2
log2

[
1 +

ρ

ρ (4I(po;~sl) − 1)− 1

]
(11)

The optimal MI, I(p; ss)
opt , given a certain amount of latent information,

I(po;~sl), is plotted in red in figure 2D. The fact that there is an optimum
for the MI means that cells should not maximise this term. This is exactly
what a great part of previous research has focused on, as discussed in the
introduction. The optimum is valid as long as 4I(po;~sl) − 1 > 1

ρ
, which shows

that as ρ increases there are lower values of I(po;~sl) for which an optimal
number of bits MI between p and ss exists. When this optimum does not
exist, fitness is maximised as I(p; ss) approaches infinity, the fitness in this
limit is given by:

lim
I(p;ss)→∞

Gs = ln [fo]−
1

2
ρ
(
4I(po;~sl) − 1

)
(12)

This is the maximal fitness in the ‘pure sensing’ regime, where more MI
always leads to higher fitness.

2.5. Distributed information leads to ‘noisy sensing’ of individual signals

An important conclusion can be drawn from figure 2D. It shows that
for each given amount of latent information, there exists an optimal value
of mutual information. This optimum converges to infinity as the latent
information becomes very small. As discussed above, the only way for cells
to reduce the latent information is to sense more signals. The red line in
figure 2D shows that the mutual information should increase when the latent
information decreases. This concerns not just the mutual information of p
and ss, but also of the newly sensed signal. This suggests that the total
mutual information should increase as the cell reduces its latent information,
but we do not know whether or not there is still an optimum for the mutual
information per signal. Within our framework, the only reason to maximise
the mutual information with one signal is that this signal contains almost all
information about the optimal response of the cell.

2.6. High mutual information between one signal and a response seems rarely
necessary

By distinguishing between the regimes where cells should maximise mu-
tual information and where there exists an optimum, we can plot which
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Figure 3: Comparison of pure and noisy sensing strategies A. Optimal strategies
given a certain relative variance in the optimum po caused by ss (ρ) and a certain number
of bits of mutual information (MI) between po and all latent signals ~sl (i.e. the latent
information). In this plot the MI between p and ss is optimal in each point, so ∞ in the

pure sensing regime and 1
2 log2

[
1 + ρ

ρ (4I(po;~sl)−1)−1

]
in the noisy sensing regime. B. The

geometric mean fitness G as a percentage of ln [fo] (the maximal obtainable fitness) as a
function of the MI between po and ~sl. Again the MI between p and ss is optimal in each
point. The dashed gray line shows the fitness of the optimal bet-hedging strategy in this
situation. The direction of evolution is towards higher fitness, note that this can only be
achieved by sensing more signals, as the total amount of information that is contained in
one signal about the optimum is a given. C. G as a percentage of limI(p;ss)→∞G, as a
function of the MI between p an ss. The curve saturates quickly, even when ρ is increased
drastically. The latent information (mutual information of po and ~sl) is 0.02 bit. D. G
as a percentage of limI(p;ss)→∞G, as a function of the MI between p an ss. As the latent
information increases from 0.02 (in C) to 0.06 bit an optimum appears in the line where
ρ = 30, meaning that in this situation cells should not maximise the MI between the
sensed signal ss and their response p.
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strategy should be chosen for certain combinations of ρ and the latent infor-
mation (figure 3A). Pure sensing is generally only preferred given low latent
information. Another option seen in 3A, is when ρ becomes small; this is,
however, an artificial situation as it means that the optimum would barely
change. This solution exists because we do not consider costs to sensing.
How low the latent information should become in order for pure sensing to
become favourable depends on the value of ρ.

Evolution will drive the cell to reduced latent information values (figure
3B). However, cells can only achieve this by sensing more signals. In our
model the cell would therefore start sensing all relevant signals, ending up
in the pure sensing regime. In addition, as long as the variance in optima
caused by the sensed signal (ρ > 0) remains, sensing is always preferred over
bet-hedging. In reality however, cells will only sense signals that contain a
sufficiently large and frequent enough fitness benefit, likely creating a lower
bound on the latent information. As discussed, sensing machinery with low
fitness benefit might be lost via selection and genetic drift; in figure 3B we
see that this could happen at high latent information.

When one signal contains almost all information about the optimum,
the mutual information should be maximised (figure 3C). We note, however,
that even for high ρ the fitness curve saturates quickly, i.e. the amount of
fitness gained per bit of mutual information quickly becomes very low. This
is a consequence of two factors: (1) mutual information is an exponential
measure, where the number of bits MI leads to 2MI perceived states; (2) the
usage of normal distributions leads to 4MI instead of 2MI , as can be seen in
equation 10. In figure 3D we see how, when the latent information increases,
the previously discussed optimum appears in the fitness curve. The exact
latent information value when this occurs depends on the value of ρ.

3. Discussion

Maximisation of the mutual information between the input and the out-
put of a signalling circuit has received a lot of theoretical attention. One
of its advantages is that it can be applied without the use of a mechanistic,
stochastic model of the signalling network. In one application, only three
functions are needed: the input/output relation, the dependency of the out-
put noise on the input, and the probability distributions of input values, i.e.
of environmental states [20]. Maximisation of mutual information then al-
lows for the prediction of one of those three functions from the two others.
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Maximisation of mutual information is often rationalised by saying that it is
a requirement for fitness maximisation. Our theory has shed doubt on this
argument.

How precise the signalling machinery of a single microbe should track
environmental signals depends on how important those signals are for its
fitness. If latent signals exist, which would improve fitness if they would be
sensed, then the accuracy with which sensed signals are transduced should be
low. Thus, our theory predicts that the optimal mutual information between
the sensed signal and the cell’s response should generally not be maximal for
fitness maximisation when latent signals occur.

It is likely that latent signals often occur. Firstly, because microorganisms
display only a handful of signalling systems – in particular in the light of the
huge number of nutrients that they can grow on. Secondly, expressing idle
signalling systems reduces immediate fitness, because of biosynthetic resource
consumption by non-growth promoting processes. Thirdly, idle, scanning sig-
nalling systems are evolutionary unstable; selection and drift would randomly
mutate those unused systems. Thus, our theory sheds doubts on the rele-
vance of maximisation of mutual information of signalling circuits. Natural
selection for maximal geometric fitness in the presence of latent signals leads
to optimal mutual information values that are not maximal.

Our approach does however have limitations, most of which are caused
by our aim to create an analytically tractable model that has a general ap-
plicability. We have used non-truncated normal distributions, such that dis-
tributions of compound concentrations go to minus infinity. We assumed
all variances to be independent of fluctuations in compound concentrations.
Also, using normal distributions might by overly simplistic. Lastly, all as-
sumptions of linearity might not always be in agreement with experimental
data. However, by keeping our model analytically tractable, we obtained
general qualitative insights into the fitness effects of phenotypic adaptation
mechanisms from the consideration of a minimal model. When particular
systems are of interest, models that are more mechanistic would provide
additional, system-specific insight.

It has become clear in this work that the concept of mutual information
should be used with care when it comes to quantifying cell performance.
Firstly, biological performance should not be measured in terms of bits, but
in terms of the fitness consequences of these bits. Secondly, it is difficult
to distinguish characteristics of the input distribution from characteristics
of the transduction system. This aspect of mutual information can lead to
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a certain number of bits being perceived as low, but for the distribution
of inputs that is being considered it might well be that it is close to all
information that is contained in the input. For example, three bits mutual
information does not sound as much, but when we consider figure 3C we see
that it is actually relatively high for a normally distributed input. Thirdly,
we show that the commonly used mutual information measure, the mutual
information between a signal and a cell’s response, is not the relevant measure
when considering its fitness consequences. Together this does not mean that
mutual information cannot be used in cell biology, it only means that one
has to look at what is relevant for fitness. We have shown that in cellular
adaptation there is a very relevant mutual information term, which is the
mutual information between all latent signals and the optimum, the latent
information. Thus, it is not about how well the cell can perceive one aspect
of the environment, but about how the whole environment determines the
optimal behaviour. Using this perspective, it became clear that only signals
that contain nearly all information on the optimal behaviour should be sensed
as accurately as possible.

Our model implies that cells should improve their fitness by sensing as
many informative signals as are available. In reality, we see that cells only
sense a few signals. Apart from the possibility of flux-based regulation (e.g.
catabolite repression [29, 30]), this is likely caused by the fact that to ob-
tain specific information on individual signals, a cell needs separate signalling
machinery for each of these signals. Whether or not a cell evolves sensing
machinery for a particular signal depends on the fitness gain that can be
achieved by sensing this individual signal. When this fitness gain is higher
than the fitness cost of having the sensing machinery, the machinery should
evolve. Even when the fitness cost of having sensing machinery is very low,
sensing machinery for signals with low or infrequent fitness gain will be lost
due to genetic drift. So the signals that are being sensed by microbes must
have exceeded the ‘fitness threshold’, having sensing machinery for these
signals is evolutionarily beneficial. The accuracy with which these signals
should be sensed depends on the cumulative information in all signals that
did not reach the fitness threshold, and are thus not being sensed, i.e. the
latent information. This leads to the somewhat counter-intuitive conclusion
that when the ability to sense one signal is lost, the other sensed signals
should be perceived less accurately – not more. As the total available in-
formation about the optimal behaviour decreases, the cell should trust the
available information less, and gamble more. In conclusion: cells will not
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evolve signalling systems for signals that provide a low or infrequent fitness
gain, therefore they cannot precisely know the optimal behaviour. In this
situation it is fitness reducing to sense other signals too accurately, so noisy
signalling systems will evolve.

This work contributes to a better understanding of optimal phenotypic
adaptation strategies and of the use of information theoretic concepts. By
considering multiple signals in the light of their fitness consequence we were
able to show that not the mutual information between one signal and one
response is what is crucial to cells, but that the latent information is what
ultimately determines evolutionary success.
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Appendix A. Model derivations

For ease of comparison this appendix is structured in the same order as
the results section.

Appendix A.1. The geometric fitness model

To determine the fitness of the population we start by considering the fit-
ness of a single cell. We assume that a maximal fitness exists for each cell. In
our case, the optimal behaviour, and deviation from this state, is determined
by the protein concentration p. The sensing cell bases its concentration of
p on an externally sensed signal with bulk concentration ss. Since the cell
infers ss by sensing single molecules it will not know ss exactly. It will make
an estimate, s′. We assume that in a single cell p|s′ is normally distributed
with a mean 〈p|s′〉 and a variance σ2

s . We assume 〈p|s′〉 to be a linear func-
tion of s′ such that 〈p|s′〉 = αs′. The variance σ2

s can be expressed in terms
of signal concentration, diffusion constant, sample number and total time of
sampling [31, 32]; we will not go into this further in this work and simply
summarise these terms in the notation σ2

s .
The optimal concentration of p is given by po(ss, ~sl), which is a deter-

ministic function of the sensed signal ss and of all, so-called, ’latent signals’
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whose values are the elements of the vector ~sl. A latent signal can be any
measurable physical quantity, e.g. a nutrient concentration, in the cell’s en-
vironment that the cell is not sensing, but that could be sensed by it, were
the cell to change its genotype and evolve a sensing circuit. The influence
of ~sl on the optimal protein concentration is therefore defined as the concen-
tration of p the cell should have had, when it would have had the required
signalling circuits for estimation of the concentrations of these latent signals.

We define the fitness of one cell as follows,

f(p, po(ss, ~sl), fo(ss, ~sl)) = fo(ss, ~sl) exp

{
−1

2

(p− po(ss, ~sl)) 2

ω2

}
. (A.1)

The function fo(ss, ~sl) determines the maximal fitness when p = po(ss, ~sl). It
is a deterministic function of ss and ~sl. The parameter ω sets the width of
the fitness function, the higher its value the more gentle the environment is
(meaning optimality deviations have smaller fitness consequences), and vice

versa. Equation A.1 is analogous to N(p,t+∆ti,ss,~sl)
N(p,t,ss,~sl)

= eµi(p,ss,~sl)∆t, it gives the
fold change in number of organisms, N , at one value of p, in environment i,
which lasts for ∆t time, during which the organisms grow at specific growth
rate µi(p, ss, ~sl). Note we define a fixed time scale, ∆t, after which we deter-
mine the fold change in the number of microorganisms; this time scale can
be chosen small.

To determine the average growth of the population of a single genotype
in a fixed environment we need to average over its phenotypes having dif-
ferent p values. We first determine the expected distribution of p over the
whole population. We know p|s′ ∼ N

(
αs′, σ2

p

)
, and over the whole popu-

lation s′|ss ∼ N (ss, σ
2
s), corresponding to the probability density functions

gp|s′(p|s′) and hs′|ss(s
′|ss) respectively. For the probability density function

gp|ss(p|ss) we obtain that p|ss ∼ N
(
αss, σ

2
p + α2σ2

s

)
, i.e.

gp|ss(p|ss) =

∫
gp|s′(p|s′)hs′|ss(s′|ss)ds′

=
1√

2π
(
σ2
p + α2σ2

s

) exp

{
−1

2

(p− αss)2

σ2
p + α2σ2

s

}
.

(A.2)

We can calculate the average fitness of the population over all concentrations
p (all phenotypes) under fixed ss and ~sl by multiplying f(p, po(ss, ~sl), fo(ss, ~sl))
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(eq. A.1) with g(p|ss) and integrating over p:

〈f(p, po(ss, ~sl), fo(ss, ~sl)) 〉p

=

∫
f(p, po(ss, ~sl), fo(ss, ~sl))g(p|ss)dp

=
fo(ss, ~sl)ω√
ω2 + σ2

p + α2σ2
s

exp

{
−1

2

(αss − po(ss, ~sl))2

ω2 + σ2
p + α2σ2

s

}
= f(ss, po(ss, ~sl), fo(ss, ~sl))

(A.3)

This is the average fitness of the population at a fixed environment. What we
have done so far is average the fitness in one environment over all phenotypes
to obtain the fitness of the genotype in that environment i.

Next, we average the fitness over a sequence of environments. First we
take the natural logarithm of equation A.3 and then calculate its expected
value over ss and ~sl. The equation we obtain gives the geometric mean of
the population’s fitness over all environments;

G =〈ln [f(ss, po(ss, ~sl), fo(ss, ~sl))] 〉ss,~sl

=

∫ ∫
ln [f(ss, po(ss, ~sl), fo(ss, ~sl))] kss(ss )dssk~sl(~sl)d~sl

=〈ln [fo(ss, ~sl)]〉ss,~sl −
1

2
ln

[
ω2 + σ2

p + α2σ2
s

ω2

]
− 1

2

∫ ∫
(αss − po(ss, ~sl ))2 kss(ss )dssk~sl(~sl)d~sl

ω2 + σ2
p + α2σ2

s

(A.4)

What we have done now is equivalent to 1
T

∑N
i=1 ln

[
eµi,∆ti

]
= 〈µ〉, where the

summation and division by T = N∆t is used to average over all environments
and Ni∆t

T
= pi is the probability of an environment, with Ni as the number

of times environment i occurred for duration ∆t. We write the first term in
equation A.4 as 〈ln [fo]〉, the mean maximal fitness over all environments. To
simplify the third term of equation A.4 we make three assumptions: (1) the
optimum is a function of ss plus a weighted sum of all latent signals ~sl such
that;

po(ss, ~sl) = po(ss) +
n∑
i=1

αisli (A.5)
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(2) all latent signals in ~sl are independent (they do not covary) and are nor-
mally distributed; (3) the means of each sl are 0, thus the vector ~sl contains
the values of the latent signals in terms of a deviation from their means.
Substituting po(ss, ~sl) gives for the numerator of the third term:∫ ∫ (

αss − po(ss)−
n∑
i=1

αisli

)2

kss(ss )dssk~sl(~sl)d~sl (A.6)

We assume that the cell’s sensing machinery is optimised such that αss ≈
po(ss). The term is now independent of ss, and considering all, n, latent
signals are independent we can write them as separate integrals:∫

· · ·
∫ ( n∑

i=1

αisli

)2 n∏
i=1

ksli(sli)dsli (A.7)

The square of the sum can be written as the sum of each term squared plus
all their crossproducts:∫

· · ·
∫ ( n∑

i=1

α2
i s

2
li +

n∑
i=1

n∑
j=1j 6=i

αiαjslishj

)
n∏
i=1

ksli(sli)dsli (A.8)

An integral of a sum can be written as the sum of integrals, αi does not
depend on sli and can thus also be taken out of the integral, so we obtain:

n∑
i=1

α2
i 〈s2

li〉+
n∑
i=1

n∑
j=1,j 6=i

αiαj〈slishj〉 (A.9)

The covariances and the means were assumed to be 0 so equation A.9 is
equivalent to

∑n
i=1 α

2
i 〈δ2sli〉, inserting this result in equation A.4 and rear-

ranging the second term, we obtain for the geometric mean fitness (i.e. the
mean growth rate) of sensing cells:

Gs =〈ln [fo]〉 −
1

2
ln

[
1 +

σ2
p + α2σ2

s

ω2

]
− 1

2

∑n
i=1 α

2
i 〈δ2sli〉

ω2 + σ2
p + α2σ2

s

(A.10)

corresponding to equation 4 in the main text.
To obtain the optimal internal noise we differentiate equation A.10 with

respect to the relative internal variance,
σ2
p+α2σ2

s

ω2 , and solve for the optimum:(
σ2
p + α2σ2

s

ω2

)opt

=

∑n
i=1 α

2
i 〈δ2sli〉
ω2

− 1 (A.11)
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This equation tells us internal variance is beneficial when
∑n

i=1 α
2
i 〈δ2sli〉
ω2 > 1;

thus when the variance in the optimal protein level, due to not knowing
the values of the latent signals, exceeds the width parameter of the fitness
function it is optimal for cells to display noisy signalling. We expect this to
be often the case, because: i. the sensing capacity of cells appears very low
and ii. having sensing systems idle for long periods leads to a fitness costs
that would eventually lead to the loss of those signalling systems.

Appendix A.2. Sensing vs non-sensing cells

To determine the geometric mean fitness of non-sensing cells we start with
equation A.4. For non-sensing cells σ2

s equals 0 and αss = 〈p〉; since there is
no relationship between p and the signal, and we have already averaged over
all values of p in equation A.3. We obtain for the fitness of a non-sensing cell

Gns =〈ln [fo]〉 −
1

2
ln

[
1 +

σ2
p

ω2

]
− 1

2

∫ ∫
(〈p〉 − po(ss, ~sl ))2 kss(ss )dssk~sl(~sl)d~sl

ω2 + σ2
p

.

(A.12)

Again we insert the definition of po(ss, ~sl) from equation A.5 and inspect the
numerator of the last term∫ ∫ (

〈p〉 − po(ss)−
n∑
i=1

αisli

)2

kss(ss )dssk~sl(~sl)d~sl (A.13)

For now we will just consider the integration over ss, expanding the squared
term we obtain:∫ (

〈p〉2 + po(ss)
2 +

(
n∑
i=1

αisli

)2

− 2〈p〉po(ss)

− 2〈p〉
n∑
i=1

αisli + 2po(ss)
n∑
i=1

αisli

)
kss(ss )dss

, (A.14)

which equals

〈p〉2 + 〈po(ss)2〉+

(
n∑
i=1

αisli

)2

− 2〈p〉〈po(ss)〉

− 2〈p〉
n∑
i=1

αisli + 2〈po(ss)〉
n∑
i=1

αisli.

(A.15)
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We assume, similar to the optimisation assumption for sensing cells, that
the mean protein concentration is optimised such that 〈p〉 ≈ 〈po(ss)〉. We
obtain:

〈po(ss)2〉 − 〈po(ss)〉2 +

(
n∑
i=1

αisli

)2

= 〈δ2po(ss)〉+

(
n∑
i=1

αisli

)2
(A.16)

The second term in this equation still needs to be integrated over all latent
signals ~sl. This is equivalent to the derivation from equation A.7 to A.9, so
the result will be 〈δ2po(ss)〉+α2〈δ2sli〉. Inserting this result in equation A.12
we obtain:

Gns =〈ln [fo]〉 −
1

2
ln

[
1 +

σ2
p

ω2

]
− 1

2

〈δ2po(ss)〉+ α2〈δ2sli〉
ω2 + σ2

p

, (A.17)

which corresponds to equation 6 in the main text. Analogous to equation
A.11, the optimal, normalized internal variance for non-sensing cells is given
by: (

σ2
p

ω2

)opt

=
〈δ2po(ss)〉+

∑n
i=1 α

2
i 〈δ2sli〉

ω2
− 1 (A.18)

This equation indicates that having internal noise is beneficial if
〈δ2po(ss)〉+

∑n
i=1 α

2
i 〈δ2sli〉

ω2 > 1 which is more stringent than the previous condi-
tion because of added term 〈δ2po(ss)〉, which captures the uncertainty in the
optimal value of p due to fluctuations in ss.

As has been stated in the main text, there exists relevant comparisons
between the sensing and non-sensing strategies; pure sensing vs pure non-
sensing, pure sensing vs bet-hedging and noisy sensing vs bet-hedging. There
exists no regime where noisy sensing and pure non-sensing would be preferred
at the same time. Here we will subtract the optimal non-sensing strategy
from the optimal sensing strategy for each of the three possible situations.
First we will derive the four fitness formulas where the internal variance is
optimal. Let us define u =

∑n
i=1 α

2
i 〈δ2sli〉
ω2 and ρ = 〈δ2po(ss)〉

ω2 .
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When u ≤ 1 pure sensing is optimal so we have
(
σ2
p+α2σ2

s

ω2

)opt
= 0, hence

we obtain for the geometric mean fitness (starting from equation A.10):

Gopt−pure
s = ln [fo]−

1

2
ln

[
1 +

σ2
p + α2σ2

s

ω2

]
− 1

2

u

1 +
σ2
p+α2σ2

s

ω2

= ln [fo]−
1

2
u

(A.19)

For u > 1 we have noisy sensing with in the optimum
(
σ2
p+α2σ2

s

ω2

)opt
= u−1

giving:

Gopt−noisy
s = ln [fo]−

1

2
ln

[
1 +

σ2
p + α2σ2

s

ω2

]
− 1

2

u

1 +
σ2
p+α2σ2

s

ω2

= ln [fo]−
1

2
ln[u]− 1

2

(A.20)

Now for the non-sensing strategies; when u + ρ ≤ 1 we are in the pure

regime where
(
σ2
p

ω2

)opt
= 0 leading to the optimal G:

Gopt−pure
ns = ln [fo]−

1

2
ln

[
1 +

σ2
p

ω2

]
− 1

2

u+ ρ

1 +
σ2
p

ω2

= ln [fo]−
1

2
u− 1

2
ρ

(A.21)

For u + ρ > 1 the optimal non-sensing strategy is bet-hedging with(
σ2
p

ω2

)opt
= u+ ρ− 1 which leads to:

Gopt−bh
ns = ln [fo]−

1

2
ln

[
1 +

σ2
p

ω2

]
− 1

2

u+ ρ

1 +
σ2
p

ω2

= ln [fo]−
1

2
ln[u+ ρ]− 1

2

(A.22)

Now we can calculate the fitness difference between the strategies in each
possible regime, starting with u+ ρ ≤ 1 (and so u ≤ 1 as well):
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Gopt−pure
s −Gopt−pure

ns =
1

2
ρ (A.23)

For u+ ρ > 1 and u ≤ 1 we get:

Gopt−pure
s −Gopt−bh

ns =
1

2
ln[u+ ρ] +

1

2
− 1

2
u (A.24)

And finally, for u > 1 (so u+ ρ > 1 as well):

Gopt−noisy
s −Gopt−bh

ns =
1

2
ln[u+ ρ]− 1

2
ln[u] (A.25)

It is clear that the minimum of equations A.23 to A.25 is 0 (considering
all parameters have to be positive) and that this minimum is only reached
when ρ = 0. In the case of equation A.24 this can only happen when u = 1
(and even then u + ρ > 1 strictly speaking does not hold when ρ = 0). Let

us remember that, ρ = 〈δ2po(ss)〉
ω2 and u =

∑n
i=1 α

2
i 〈δ2sli〉
ω2 . From this we can

conclude that, in our model, the only reasons not to sense are that the signal
of interest ss has no influence on the optimal response, or the width of the
fitness function ω2 is infinitely large (leading to u = 0 as well as ρ = 0). This
is to be expected when sensing does not come at any cost.

Appendix A.3. Expressing noise in terms of mutual information

We first define the MI between the signal that is being sensed ss and the
response of the cell p. Following the definition of MI [33, 34] we obtain;

I(p; ss) = H (p )− 〈H (p |ss )〉ss (A.26)

where H denotes the entropy. We know from equation A.2 that p|ss ∼
N
(
αss, σ

2
p + α2σ2

s

)
and given ss ∼ N (〈ss〉, 〈δ2ss〉) we can obtain the prob-

ability density function of p:

h(p) =

∫
h(p|ss)h(ss)dss

=
exp

{
−1

2
(p−α〈ss〉)2

α2〈δ2ss〉+σ2
p+α2σ2

s

}
√

2π
(
α2〈δ2ss〉+ σ2

p + α2σ2
s

)
(A.27)
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Using the definition of the entropy of a normal distribution we insert the
probability density functions of p and p|ss in equation A.26:

I(p; ss) =
1

2
log2

[
2πe

(
α2〈δ2ss〉+ σ2

p + α2σ2
s

)]
− 1

2
log2

[
2πe

(
σ2
p + α2σ2

s

)]

=− 1

2
log2

[
σ2
p + α2σ2

s

α2〈δ2ss〉+ σ2
p + α2σ2

s

]
(A.28)

The argument of the logarithm in equation A.28 is the fraction of all
variance in p that is caused by internal variance (i.e. noise).

Appendix A.4. Defining latent information: mutual information between the
optimum and all latent signals

We can derive the MI between the optimum po and all latent signals ~sl
in a similar manner as we have derived the MI between p and ss above.
This measure is what we call the ’latent information’. As po is the sum of
independent normally distributed random variables, as shown in equation
A.5, and having assumed the means of ~sl to be 0, we obtain a normally
distributed po with the following mean and variance respectively:

〈po〉 = 〈po(ss)〉 (A.29)

〈δ2po〉 = 〈δ2po(ss)〉+
n∑
i=1

α2
i 〈δ2sli〉 (A.30)

So its probability density function is given by:

h(po) =
exp

{
−1

2
(p−〈po(ss)〉)2

〈δ2po(ss)〉+
∑n

i=1 α
2
i 〈δ2sli〉

}
√

2π (〈δ2po(ss)〉+
∑n

i=1 α
2
i 〈δ2sli〉)

(A.31)

It is clear that when ~sl is fixed, containing all latent signals but not the
sensed signal, the variances of the latent signals will be 0:

h(po|~sl) =
1√

2π〈δ2po(ss)〉
exp

{
−1

2

(p− 〈po(ss)〉)2

〈δ2po(ss)〉

}
(A.32)
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Here the mean of the function is not conditional on ~sl since all signals
were assumed to be independent. Now we can make use of the probability
density functions defined in equations A.31 and A.32 and the definition of
the entropy of a normal distribution, to calculate the MI between po and ~sl:

I(po;~sl) = H (po )− 〈H (po |~sl )〉~sl

=
1

2
log2

[
2πe

(
〈δ2po(ss)〉+

n∑
i=1

α2
i 〈δ2sli〉

)]
− 1

2
log2

[
2πe

(
〈δ2po(ss)〉

)]

=− 1

2
log2

[
〈δ2po(ss)〉

〈δ2po(ss)〉+
∑n

i=1 α
2
i 〈δ2sli〉

]
(A.33)

We have assumed above that αss ≈ po(ss). This also means that
〈δ2po(ss)〉 ≈ α2〈δ2ss〉. We use the latter notation for ease of comparison
between the two MI terms. So we obtain for the MI between po and ~sl, i.e.
the latent information:

I(po;~sl) = −1

2
log2

[
α2〈δ2ss〉

α2〈δ2ss〉+
∑n

i=1 α
2
i 〈δ2sli〉

]
(A.34)

Here the fraction inside the logarithm shows how much information the
cell has on the optimum over all information that determines the optimum
itself. By sensing an extra signal this signal’s variance is added in the nu-
merator in equation A.34, decreasing the latent information.

Appendix A.5. Writing the fitness of sensing cells in terms of mutual and
latent information

Using the MI between p and ss (equation A.28) the MI between po and
~sl (equation A.34, the latent information), we can write the geometric mean
fitness of sensing cells (equation A.10) in terms of these measures. We first
rewrite equation A.28 to derive:

σ2
p + α2σ2

s =
α2〈δ2ss〉

4I(p;ss) − 1
(A.35)
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And similarly from equation 9:

n∑
i=1

α2
i 〈δ2sli〉 = α2〈δ2ss〉(4I(po;~sl) − 1) (A.36)

Now we define ρ = α2〈δ2ss〉
ω2 , which is a measure for the variance in optima

caused by the perceived signal ss, relative to the fitness width. Inserting our
results from equations A.35 and A.36 in equation A.10 gives:

Gs = ln [fo]−
1

2
ln

[
1 +

α2〈δ2ss〉
ω2(4I(p;ss) − 1)

]
− 1

2

α2〈δ2ss〉(4I(po;~sl) − 1)

ω2 + α2〈δ2ss〉
4I(p;ss)−1

= ln [fo]−
1

2
ln

[
1 +

ρ

4I(p;ss) − 1

]
− 1

2

ρ (4I(po;~sl) − 1)

1 + ρ
4I(p;ss)−1

(A.37)

Differentiating equation A.37 with respect to the MI between p and ss
and setting it to 0 gives the optimal MI:

I(p; ss)
opt =

1

2
log2

[
1 +

ρ

ρ (4I(po;~sl) − 1)− 1

]
(A.38)

This optimum is valid as long as 4I(po;~sl) − 1 > 1
ρ
, which shows that as ρ

increases there are lower values of I(po;~sl) for which an optimal number of
bits MI between p and ss exists. When this optimum does not exist fitness
is maximised as I(p; ss) approaches infinity, the fitness in this limit is given
by:

lim
I(p;ss)→∞

Gs = ln [fo]−
1

2
ρ
(
4I(po;~sl) − 1

)
(A.39)

This is the maximal fitness in the ’pure sensing’ regime, where more MI
always leads to higher fitness.
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