

1 A hierarchical model of perceptual multistability involving interocular grouping

2 Yunjiao Wang*, Zachary P Kilpatrick^{‡†}, and Krešimir Josić^{‡‡}

4 **Abstract.** Ambiguous visual images can generate dynamic and stochastic switches in perceptual interpretation known
5 as perceptual rivalry. Such dynamics have primarily been studied in the context of rivalry between two
6 percepts, but there is growing interest in the neural mechanisms that drive rivalry between more than
7 two percepts. In recent experiments, we showed that split images presented to each eye lead to subjects
8 perceiving four stochastically alternating percepts (Jacot-Guillarmod et al., 2017): two single eye images
9 and two interocularly grouped images. Here we propose a hierarchical neural network model that exhibits
10 dynamics consistent with our experimental observations. The model consists of two levels, with the first
11 representing monocular activity, and the second representing activity in higher visual areas. The model
12 produces stochastically switching solutions, whose dependence on task parameters is consistent with four
13 generalized Levelt Propositions. Our neuromechanistic model also allowed us to probe the roles of inter-
14 actions between populations at the network levels. Stochastic switching at the lower level representing
15 alternations between single eye percepts dominated, consistent with experiments.

16 **Key word.** Multistable perceptual rivalry, Levelt's propositions, interocular grouping

17 **AMS subject classifications.** 37N25

18 **1. Introduction.** When conflicting images are presented to different eyes, our visual system
19 often fails to produce a stable fused percept. Instead, perception stochastically alternates between
20 the presented images (Wheatstone, 1838; Levelt, 1965; Leopold and Logothetis, 1999; Blake and
21 Logothetis, 2002; Blake, 2001). More generally, multistable binocular rivalry between more than
22 two percepts can occur when images presented to each eye can be partitioned and regrouped into
23 coherent percepts. For example, subjects presented with the jumbled images in Fig. 1A may
24 alternatively perceive a monkey face, or the jungle scene shown in Fig. 1B (Kovacs et al., 1996). In
25 these cases perception evolves dynamically under constant stimuli, revealing aspects of the cortical
26 mechanisms underlying visual awareness (Leopold and Logothetis, 1999; Tong et al., 2006; Sterzer
27 et al., 2009; Leopold and Logothetis, 1996; Polonsky et al., 2000).

28 While the literature on bistable binocular rivalry is extensive, far fewer studies have addressed
29 multistable percepts. Rivalry between multiple percepts likely involves higher level image recogni-
30 tion, as well as monocular competition (Kovacs et al., 1996; Suzuki and Grabowecy, 2002; Huguet
31 et al., 2014; Golubitsky et al., 2019), suggesting a noninvasive way to probe perceptual mechanisms
32 across cortical areas, and offering a broader picture of visual processing.

33 Here, we build on previous models to provide a mechanistic account of perceptual multistability
34 due to interocular grouping effects (Laing and Chow, 2002; Wilson, 2003; Moreno-Bote et al.,
35 2007; Shpiro et al., 2007; Said and Heeger, 2013; Dayan, 1998). We propose a mechanism that
36 involves different levels of visual cortical processing by building a hierarchical neural network model
37 of binocular rivalry with interocular grouping. Our model captures the dynamics of perceptual
38 switches reported by human subjects in experiments described by Jacot-Guillarmod et al. (2017)
39 involving the visual stimuli shown in Fig. 1C. When presented with these stimuli, subjects reported
40 alternations between four percepts, two *single-eye percepts*, and two *grouped percepts* that combine
41 two halves of each stimulus into a coherent whole (See Fig. 1D).

42 Levelt's four propositions (Levelt, 1965) capture the hallmarks of bistable binocular rivalry by
43 relating *stimulus strength* (such as contrast or luminance), *dominance duration* (the time interval

*Dept. of Mathematics, Texas Southern University, Houston, Texas, USA, 77004 (yunjiao.wang@tsu.edu).

†Dept. of Applied Mathematics, University of Colorado, Boulder, Colorado, 80309 (zkilpat@colorado.edu)

‡Dept. of Mathematics, University of Houston, Houston, Texas, USA, 77004 (josic@math.uh.edu).

‡‡: Zachary P Kilpatrick and Krešimir Josić contributed equally to this work.

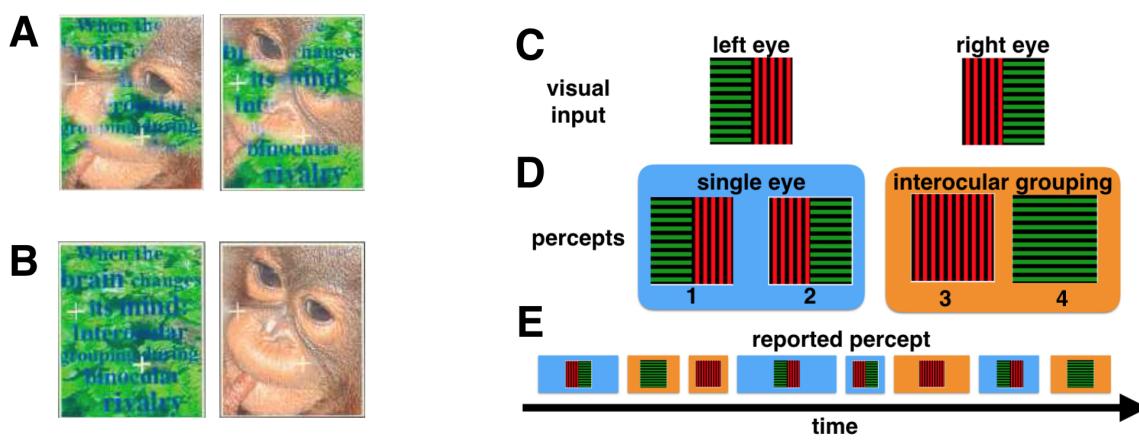


Figure 1: Multistable perceptual rivalry. The fragmented images presented to the left and right eyes in (A) can lead to the coherent percepts shown in (B) (Kovacs et al., 1996). (C) An example of the stimuli presented to the left and right eyes in Jacot-Guillarmod et al. (2017). Gratings were always split so that halves with the same color and orientation could be matched via interocular grouping, but were otherwise randomized across trials and blocks (See Jacot-Guillarmod et al. (2017) for experimental methods). (D) Subjects typically reported seeing one of four percepts – two single-eye and two grouped – at any given time during a trial. (E) A typical perceptual time series reported by a subject, showing the stochasticity in both the dominance times and the order of transitions between percepts.

44 during which a single percept is reported), and *predominance* (the fraction of the time a percept is
 45 reported). Jacot-Guillarmod et al. (2017) have provided experimental support for a generalized version
 46 of Levelt's propositions, and our model suggests neural mechanisms that drive the underlying
 47 cortical dynamics encoding perceptual changes.

48 Levelt's propositions describe well-tested statistical properties of perceptual alternations (Laing
 49 and Chow, 2002; Brascamp et al., 2006; Wilson, 2007; Moreno-Bote et al., 2010; Klink et al.,
 50 2010; Seely and Chow, 2011), and provide constraints on mechanistic models of binocular rivalry.
 51 Successful models broadly explain rivalry in terms of three interacting neural mechanisms: *Mutual*
 52 *inhibition* drives the exclusivity of the perceived patterns; *Slow adaptation* drives the transition
 53 between the different percepts; Finally, *internally generated noise* is necessary to account for the
 54 observed variability in perceptual switching times (Matsuoka, 1984; Lehky, 1988; Arrington, 1993;
 55 Lumer, 1998; Kalarickal and Marshall, 2000; Laing and Chow, 2002; Lago-Fernandez and Deco,
 56 2002; Stollenwerk and Bode, 2003; Wilson, 2003; Noest et al., 2007; Seely and Chow, 2011; Freeman,
 57 2005; Brascamp et al., 2006; Moreno-Bote et al., 2007).

58 In our model we includes these mechanisms, along with additional, abstracted features of the
 59 visual system. The model contains a lower level associated with early (e.g., eye-based) neural
 60 processes and tuned to geometric stimulus properties (e.g. orientation), and a higher level which
 61 accounts for complex pattern grouping and is responsible for the formation of late stage percepts.
 62 Our model thus extends earlier models of bistable binocular rivalry, and it reduces to simpler rivalry
 63 models under bistable inputs (Wilson, 2003; Tong et al., 2006; Diekman et al., 2013).

64 We hypothesize that pattern grouping effects occur already at the early stages of the visual
 65 system. We thus assume that the connectivity of the earlier, first layer in our network is modulated
 66 by cues – in our case color saturation – indicating which parts of the percepts belong to the
 67 same group. In most previous models of rivalry the strength of the stimulus primarily modulated
 68 the inputs to various network modules. In our case, we assume that input strength changes the

69 connectivity between the neural populations at the lower level of the network.

70 We found that our model captured the statistics of perceptual alternations reported by exper-
71 imental subjects [Jacot-Guillarmod et al. \(2017\)](#). Moreover, over a range of parameters the model
72 also displays dynamics consistent with the generalized version of Levelt's Propositions proposed
73 by [Jacot-Guillarmod et al. \(2017\)](#). Our results hold under weak feedback from the higher level
74 to the lower level. However, we observed these dynamics only with strong mutual inhibition be-
75 tween populations representing conflicting stimuli at the lower level of the visual hierarchy. Our
76 model thus suggests constraints on the interactions between neural populations in the visual system
77 consistent with experimentally observed perceptual dynamics.

78 Our study thus shows that more complex visual stimuli can be used in perceptual rivalry
79 experiments to drive the development of more detailed mechanistic models of perceptual process-
80 ing ([Wilson, 2003](#); [Dayan, 1998](#); [Freeman, 2005](#)).

81 2. Methods.

82 **2.1. Hierarchical model of perceptual multistability with interocular grouping.** Consider-
83 able evidence suggests that visual processing in humans and other mammals is organized hierar-
84 chically ([Polonsky et al., 2000](#); [Tong, 2001](#); [Leopold and Logothetis, 1996](#); [Logothetis and Schall,](#)
85 [1989](#); [Sheinberg and Logothetis, 1997](#); [Dayan, 1998](#); [Wilson, 2003](#); [Freeman, 2005](#); [Tong et al.,](#)
86 [2006](#)). The simplest models of such processing assume that visual areas at the higher level of the
87 hierarchy pool the activity of lower areas ([Riesenhuber and Poggio, 1999](#)). Here we extend previous,
88 non-hierarchical models of perceptual rivalry ([Laing and Chow, 2002](#); [Wilson, 2009](#); [Moreno-Bote](#)
89 [et al., 2007](#); [Huguet et al., 2014](#); [Diekman et al., 2013](#)) to a model that spans two levels of the
90 visual hierarchy, and study grouping in perceptual competition. A schematic representation of our
91 model is shown in Fig. 2. The sub-network at the first level of the hierarchy consists of four neural
92 populations, each receiving input from a different hemifield of the two eyes (See also Fig. 6C of
93 [Diekman et al. \(2013\)](#) and Fig. 2B of [Tong et al. \(2006\)](#)). The responses of all four possible pairs of
94 populations at the first level are integrated by distinct populations at the second level ([Laing and](#)
95 [Chow, 2002](#); [Wilson, 2003](#); [Moreno-Bote et al., 2007](#)). Each of the four populations at the second
96 level corresponds to one of the four percepts shown in Fig. 1B.

97 A key feature of our model is the presence of *excitatory* coupling between populations receiving
98 input from different hemifields both from the same and from different eyes. This is consistent
99 with electrophysiology and tracing experiments that reveal long-range horizontal connections be-
100 tween neurons in area V1 with non-overlapping receptive fields, but similar orientation preferences
101 ([Stettler et al., 2002](#); [Sincich and Horton, 2005](#)). We also assumed *inhibitory* coupling between
102 populations receiving conflicting input from the same hemifield of different eyes, *e.g.* the left hemi-
103 field of the left and the left hemifield of the right eye. Experimental literature suggests cells with
104 orthogonal orientation preferences can inhibit one another through multisynaptic pathways involv-
105 ing recurrent and feedback circuitry ([Ringach et al., 1997](#); [Ferster and Miller, 2000](#)). Finally, we
106 assumed that all populations at the second level inhibit each other, as in previous computational
107 models ([Laing and Chow, 2002](#); [Moreno-Bote et al., 2007](#); [Shapiro et al., 2007](#); [Lankheet, 2006](#); [Seely](#)
108 [and Chow, 2011](#)).

109 The two levels thus form a processing hierarchy ([Wilson, 2003](#); [Tong et al., 2006](#)) with the
110 first roughly associated with monocular neural activity generated in LGN and V1 ([Wilson, 2003](#);
111 [Blake, 1989](#); [Polonsky et al., 2000](#); [Tong, 2001](#)), and the second level associated with the activity of
112 higher visual areas, such as V4 and MT, that process objects and patterns ([Leopold and Logothetis,](#)
113 [1999](#); [Wilson, 2003](#); [Lamme and Roelfsema, 2000](#)). However, each level could also describe multiple
114 functional layers of the visual system ([Sterzer et al., 2009](#)).

115 **First level of the visual hierarchy.** The activity of each neural population receiving input from
116 one of the four hemifield-eye combinations at Level 1 is described by a firing rate variable E_i ,

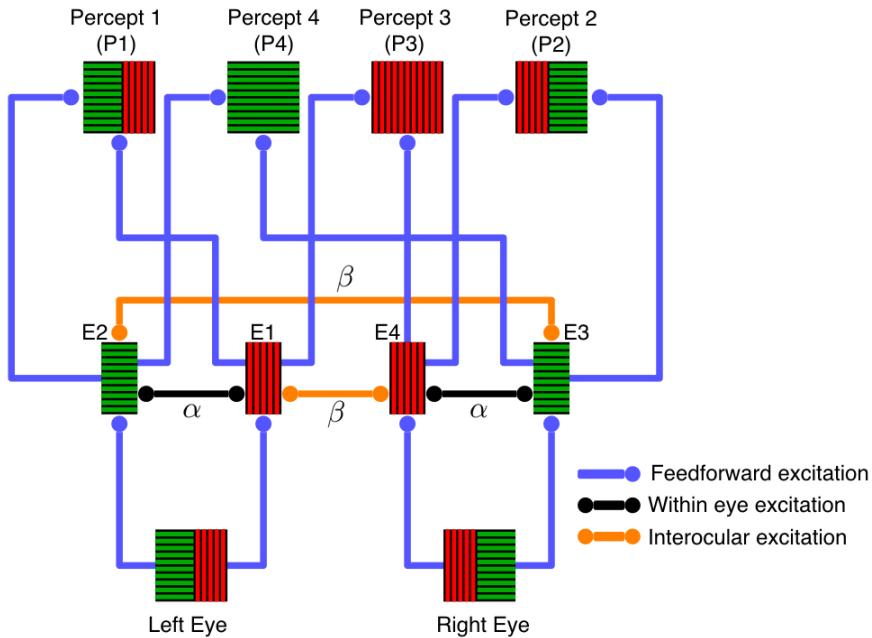


Figure 2: **A hierarchical model of interocular grouping.** Neural populations representing stimuli to the four hemifield-eye combinations at Level 1 provide feedforward input to populations representing integrated percepts at Level 2, as described by Eqs. (1) and (4) (See also Fig. 6C of Diekman et al. (2013) and Fig. 2B of Tong et al. (2006)). The figure shows recurrent excitation within Level 1. To avoid clutter, mutual inhibition between the same hemifield of opposite eyes is not shown. All populations at the second level of the hierarchy mutually inhibit one another (Laing and Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007).

117 $i = 1, 2, 3, 4$ (corresponding to left hemi/left eye; right hemi/left eye; left hemi/right eye; and right
118 hemi/right eye, see Fig. 2). To model adaptation, we included variables describing hyperpolarizing
119 currents activated at elevated firing rates, H_i , with $i = 1, 2, 3, 4$ (Benda and Herz, 2003). The firing
120 rates at the lower level of the visual hierarchy are then governed by the following equations:

$$\begin{aligned}
 121 \quad (1a) \quad \tau \dot{E}_1 &= -E_1 + G(I_1 + \alpha E_2 + \beta E_4 - w E_3 - g H_1 + n_1), & \tau_h \dot{H}_1 &= E_1 - H_1, \\
 122 \quad (1b) \quad \tau \dot{E}_2 &= -E_2 + G(I_2 + \alpha E_1 + \beta E_3 - w E_4 - g H_2 + n_2), & \tau_h \dot{H}_2 &= E_2 - H_2, \\
 123 \quad (1c) \quad \tau \dot{E}_3 &= -E_3 + G(I_3 + \alpha E_4 + \beta E_2 - w E_1 - g H_3 + n_3), & \tau_h \dot{H}_3 &= E_3 - H_3, \\
 124 \quad (1d) \quad \tau \dot{E}_4 &= -E_4 + G(I_4 + \alpha E_3 + \beta E_1 - w E_2 - g H_4 + n_4), & \tau_h \dot{H}_4 &= E_4 - H_4,
 \end{aligned}$$

126 with activity time constant $\tau = 10\text{ms}$ (Häusser and Roth, 1997) and adaptation time constant
127 $\tau_h = 1000\text{ms}$. The inputs, I_i , model the strength of the stimulus in each hemifield, and g is the
128 strength of adaptation. We assumed that all inputs, I_i , all are equal in intensity, so that $I_i = I$
129 for $i = 1, 2, 3, 4$. This is consistent with the experiments of Jacot-Guillarmod et al. (2017) where
130 stimuli were calibrated to be equal in intensity.

131 The strength of within eye excitatory coupling is determined by the parameter α , while in-
132 terocular excitatory coupling between populations receiving input from complementary hemifields
133 is described by β . The strength of mutual inhibition due to orientation and color competition is
134 determined by w .

135 We used a sigmoidal gain function, $G(x)$, to relate the total input to the population to the

136 output firing rate,

137 (2)
$$G(x) = \frac{a}{1 + e^{-\delta(x-\theta)}},$$

138 where $a = 1$, $\delta = 10$ and $\theta = 0.2$. This choice was not essential, as we could have used other
139 gain nonlinearities, such as a Heaviside step or a rectified square root, as long as each individual
140 population, E_i , has a bistable regime (with a low and high stable firing rate state) for a given input
141 I_i (Laing and Chow, 2002; Moreno-Bote et al., 2007).

142 Random fluctuations due to network effects and synaptic noise were modeled by the variables n_i ,
143 $i = 1, 2, 3, 4$ (Faisal et al., 2008). Following Moreno-Bote et al. (2007), we modeled the fluctuations
144 in the total input to each population as an Ornstein-Uhlenbeck process,

145 (3)
$$\tau_s \dot{n}_i = -n_i + \sigma \sqrt{2} \xi(t),$$

146 where $\tau_s = 200ms$, $\sigma = 0.03$, and $\xi(t)$ is a white-noise process with zero mean. Changing the
147 timescale and amplitude of noise does not impact the results significantly.

148 **Second level of the visual hierarchy.** As shown in Fig. 2, feedforward connectivity from Level 1
149 to Level 2 of the network associates each of four possible combinations of hemifields with a distinct
150 percept reported by observers, and a distinct population at the second level of the hierarchy. The
151 activity of each of these populations is governed by the firing rate, P_i , and an associated adaptation
152 variable, A_i , $i = 1, 2, 3, 4$,

153 (4a)
$$\tau \dot{P}_1 = -P_1 + G(c_1 E_1 E_2 - \nu P_2 - \gamma P_3 - \gamma P_4 - \kappa A_1 + n_5), \quad \tau_a \dot{A}_1 = P_1 - A_1$$

154 (4b)
$$\tau \dot{P}_2 = -P_2 + G(c_1 E_4 E_3 - \nu P_1 - \gamma P_3 - \gamma P_4 - \kappa A_2 + n_6), \quad \tau_a \dot{A}_2 = P_2 - A_2$$

155 (4c)
$$\tau \dot{P}_3 = -P_3 + G(c_2 E_1 E_4 - \nu P_4 - \gamma P_1 - \gamma P_2 - \kappa A_3 + n_7), \quad \tau_a \dot{A}_3 = P_3 - A_3$$

156 (4d)
$$\tau \dot{P}_4 = -P_4 + G(c_2 E_2 E_3 - \nu P_3 - \gamma P_1 - \gamma P_2 - \kappa A_4 + n_8), \quad \tau_a \dot{A}_4 = P_4 - A_4.$$

157 For simplicity we assumed that the activation rate, τ , and adaptation rate, $\tau_a \equiv \tau_h$ are equal
158 between layers.

159 Feedforward inputs to the second level were modeled as a product of activities of the associated
160 populations at the first level. For instance, population activity P_1 depends on the product $E_1 E_2$
161 since Percept 1 is composed of the two stimuli in the same-eye hemifields providing input to
162 populations 1 and 2 at Level 1 (e.g. the horizontal green bar, and vertical red bar presented to the
163 left eye in the example shown in Fig. 2). Experimental and modeling studies have pointed to such
164 multiplicative combinations of visual field segments as a potential mechanism for shape selectivity
165 (Salinas and Abbott, 1996; Brincat and Connor, 2006). When we replaced the multiplicative input
166 to the second level population with additive input from Level 1, $E_j + E_k$, our results remained
167 qualitatively similar.

168 **Feedback from upper-level.** Experimental results suggest that top-down processing can influence
169 rivalry (Bartels and Logothetis, 2010; Klink et al., 2008). We have thus also considered an extension
170 of our model by that includes feedback from Level 2 to Level 1,

171 (5a)
$$\tau \dot{E}_1 = -E_1 + G(I_1 + \alpha(1 + a_1 P_1)E_2 + \beta(1 + b_1 P_3)E_4 - w E_3 - g H_1 + n_1),$$

172 (5b)
$$\tau \dot{E}_2 = -E_2 + G(I_2 + \alpha(1 + a_1 P_1)E_1 + \beta(1 + b_2 P_4)E_3 - w E_4 - g H_2 + n_2),$$

173 (5c)
$$\tau \dot{E}_3 = -E_3 + G(I_3 + \alpha(1 + a_2 P_2)E_4 + \beta(1 + b_2 P_4)E_2 - w E_1 - g H_3 + n_3),$$

174 (5d)
$$\tau \dot{E}_4 = -E_4 + G(I_4 + \alpha(1 + a_2 P_2)E_3 + \beta(1 + b_1 P_3)E_1 - w E_2 - g H_4 + n_4),$$

175 We compare the dynamics of the networks with and without feedback, and discuss the impact of
176 feedback in Results.

179 **2.2. Parameter Values.** As with many previous models of rivalry, the dynamics of our model
180 depends on the choice of parameters, but is relatively robust: We set the time scales, τ , τ_h and
181 τ_s , to values found in computational modeling studies and suggested by experimental work neural
182 population activity dynamics, spike frequency adaptation, and temporal correlations in population-
183 wide fluctuations (Häusser and Roth, 1997; Benda and Herz, 2003; Moreno-Bote et al., 2007; Renart
184 et al., 2010). Other parameters were first chosen so that in the absence of noise the model displayed
185 periodic solutions corresponding to alternations of single-eye percepts. We then included noise, and
186 searched for parameters that produced dynamics that agreed with experimental results. For more
187 details, see Appendix A and Fig. 10 therein.

188 **3. Results.** We use the hierarchical model described by Eqs. (1) and (4) to explain the different
189 experimentally observed features of binocular rivalry involving interocular grouping. Moreover, we
190 show that our model can provide a unifying mathematical framework that accounts for the gener-
191 alized Levelt's propositions, and provides concrete hypotheses of how different neural mechanisms
192 shape perceptual dominance across levels of the visual hierarchy. At the same time, our model
193 reduces to previous successful models of binocular rivalry with stimuli that conflict between the
194 eyes, but do not allow inter-ocular grouping. We use numerical experiments and bifurcation theory
195 to demonstrate the qualitative changes in the dynamics of the model to support these conclusions.

196 **3.1. Levelt's Propositions and their generalization.** Levelt's propositions relate stimulus strength
197 to *dominance duration* – the time interval during which a single percept is reported; *predominance*
198 – the fraction of the time a percept is reported; and *alternation rate* – the rate of switching between
199 percept reports. In the context of bistable rivalry, Levelt's propositions have most recently been
200 stated as (Brascamp et al., 2015): (I) Increasing the strength of the stimulus presented to one eye
201 increases the predominance of that stimulus; (II) Increasing the difference in stimulus strengths
202 between the two eyes increases the dominance duration of the stronger stimulus; (III) Increasing
203 the difference in stimulus strengths between the two eyes reduces the perceptual alternation rate;
204 (IV) Increasing stimulus strength in both eyes while keeping it equal between eyes increases the
205 perceptual alternation rate. This effect may reverse at near-threshold stimulus strength (See Fig. 3
206 in Brascamp et al. (2015) for an illustration).

207 The *strength of a percept* has been defined as any attribute whose increase causes that percept
208 to suppress the appearance of other percepts (Brascamp et al., 2015). Levelt's Proposition I thus
209 effectively defines the strength of a percept attribute according to whether it impacts a percept's
210 predominance. Jacot-Guillarmod et al. (2017) found experimental support for some of the following
211 extensions of Levelt's proposition using the stimuli and associated percepts shown in Fig. 1C,D:

- 212 I. *Increasing percept strength of grouped percepts or single-eye percepts increases the perceptual*
213 *predominance of those percepts.* Jacot-Guillarmod et al. (2017) showed that increasing
214 color saturation increases the predominance of grouped percepts. Experimental results
215 thus support this proposition, with color saturation defining the strength of the grouped
216 percept class.
- 217 II. *Decreasing the difference between the strength of the grouped percepts and that of single-eye*
218 *percepts primarily decreases the average dominance duration of the stronger percepts.* When
219 the single-eye percept is stronger (weaker), increasing the strength of grouped percepts de-
220 creases (increases) the average dominance duration of the single-eye (grouped) percepts.
221 Jacot-Guillarmod et al. (2017) showed that increasing color saturation primarily decreased
222 the average dominance duration of the stronger, single-eye percepts, consistent with Propo-
223 sition II. Experimental results did not speak to the validity of generalized Proposition
224 II when the grouped percepts were stronger. When one class of percept is much stronger
225 (e.g., single-eye percepts), we expect them to completely suppress percepts of the other class
226 (e.g., grouped percepts). Percept strengths used in the experiments of Jacot-Guillarmod

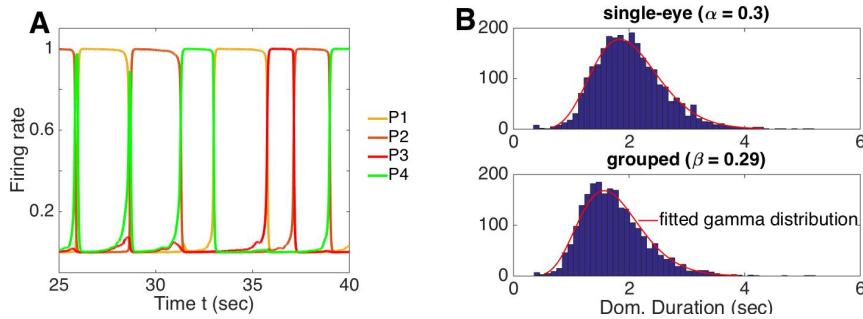


Figure 3: **Dynamics of a hierarchical model of interocular grouping.** (A) A typical time series of the firing rates, P_i , of neural populations at the second level of the model. Each of these populations is associated with one of the four percepts: P_1 and P_2 correspond to single-eye percepts, and P_3 and P_4 correspond to grouped percepts. Here we used same-eye coupling $\alpha = 0.3$, interocular grouping strength $\beta = 0.26$, and input strength $I_i = 1$. (B) Distributions of dominance durations in the model have a single mode around 1.8s for single-eye percepts, and 1.5s for grouped percepts. These distributions are consistent with experimental data. Distributions were obtained from 100 time series, each 100s in duration. Parameters were set to $I_i = 1.2$, $w = 1$, $g = 0.5$, $c_i = 1$, $\nu = \gamma = 0.45$, $\kappa = 0.5$.

228 et al. (2017) were not sufficiently high to validate these predictions, but we test them in
 229 our model.

230 III. *Decreasing the difference in strengths between grouped percepts and single-eye percepts increases the perceptual alternation rate.* Since alternation rate and average dominance duration are related reciprocally, Proposition III follows from Proposition II.

233 IV. *Increasing the strength in both grouped percepts and single-eye percepts while keeping strength equal among percepts increases the perceptual alternation rate.* Proposition IV was not
 234 tested directly in Jacot-Guillarmod et al. (2017), as changing color saturation affected the
 235 strengths of each percept differently. We show below that this Proposition holds in our
 236 model.

238
 239 **3.2. The hierarchical model exhibits perceptual multistability.** We first demonstrate how our
 240 model captures alternations between multiple percepts. As in previous studies, we associated a
 241 neural population with each percept: An elevation in the activity of a population at Level 2 of our
 242 model indicates that the corresponding percept is perceived and reported (Laing and Chow, 2002;
 243 Wilson, 2003; Moreno-Bote et al., 2007; Dayan, 1998; Freeman, 2005; Wilson, 2009; Lehky, 1988;
 244 Said and Heeger, 2013; Lago-Fernandez and Deco, 2002; Lumer, 1998).

245 For a wide range of parameters, a single Level 2 neural population exhibited elevated activity,
 246 and suppressed the activity of the remaining populations (See Fig. 3A for a representative simu-
 247 tation). The order and timing of these periods of elevated firing were stochastic, and the distributions
 248 of the time periods of elevated firings were unimodal (Fig. 3B). This dynamics corresponded to the
 249 reports of experimental subjects who primarily reported seeing individual percepts over intervals of
 250 varying durations, and random alternations between the percepts. Consistent with previous mod-
 251 els (Laing and Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007), stochastic alternations between
 252 percepts emerged due to the mutual suppression between the four populations at the second level
 253 of the hierarchy, while noise and adaptation drove alternations between the active populations.

254 **3.3. Changing stimulus strength in the model yields experimentally observed dominance
 255 duration changes.** In classical models of perceptual rivalry, stimulus and percept strengths are

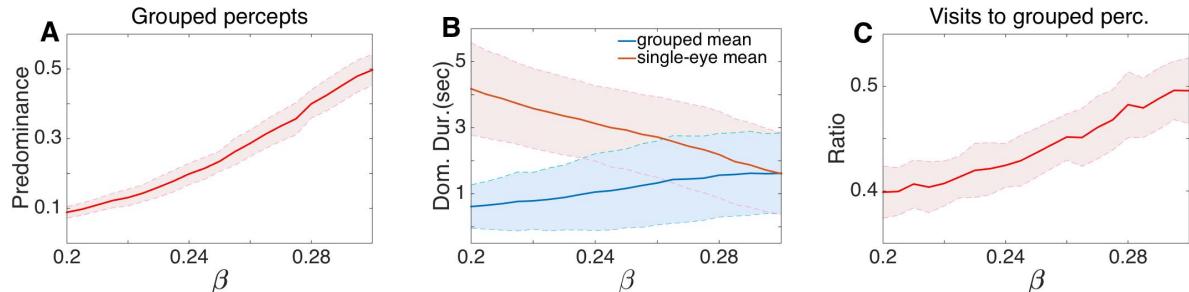


Figure 4: **Effects of varying the interocular grouping strength, β , at the first level of the hierarchical model.** (A) Predominance of grouped percepts increased with β . (B) The average dominance duration of single-eye percepts decreased with β , while that of grouped percepts remained approximately unchanged, particularly in the range $0.27 \leq \beta \leq 0.3$. (C) Furthermore, the frequency of visits to grouped percepts increased with β . Other parameters were the same as in Fig. 3. Solid lines represent computationally obtained means, and shaded regions represent one standard deviation about the means obtained over 100 realizations.

256 represented by the magnitude of input(s) to different neural populations. Changes in these input
 257 strengths correspond to changes in stimulus features like luminosity or contrast (Freeman, 2005;
 258 Seely and Chow, 2011). In the case of rivalry with grouped percepts (Fig. 1D), we assume that
 259 changes in color saturation have little effect on the strength of the inputs I_i (Jacot-Guillarmod
 260 et al., 2017). Rather, we assume that varying color saturation changes the tendency for interocular
 261 grouping between the two halves of images of the same color and orientation, consistent with Gestalt
 262 principles of similarity (Roelfsema, 2006; Kohler, 2015). Thus color saturation provides a visual
 263 cue for binding complementary halves of grouped percepts (Wagemans et al., 2012). We therefore
 264 modeled the effects of color saturation as a change in the strength of cross-hemispheric excitatory
 265 connections, β , between populations responding to like stimulus features. We also assumed that
 266 the excitatory coupling, α , between populations representing same-eye image halves was unaffected
 267 by changes in color saturation.

268 Jacot-Guillarmod et al. (2017) made several observations about the impact of color saturation
 269 on perceptual alternations recapitulated by our model. First, color saturation increased subjects'
 270 *predominance* of grouped percepts, *i.e.* the fraction of the total time subjects reported a grouped
 271 percept out of the total time they reported seeing any percept: Increasing interocular coupling
 272 strength, β , in our model also increased the predominance of grouped percepts (See Fig. 4A). Thus
 273 color saturation, modeled by connection strength, β , between first level network populations in our
 274 model, satisfies the commonly used definition of *stimulus strength* (Brascamp et al., 2015).

275 Second, Jacot-Guillarmod et al. (2017) observed that increasing color saturation decreased
 276 the average dominance duration (the average time the percept is seen before a switch occurs) of
 277 single-eye percepts while the average dominance duration of grouped percepts remained largely
 278 unchanged. Our model captured this feature over a range of parameters: For $0.2 < \beta < 0.3$,
 279 increasing β decreased the dominance duration of single-eye percepts, while changes in dominance
 280 of grouped percepts were smaller and nearly absent as β approached α (See Fig 4B).

281 Finally, Jacot-Guillarmod et al. (2017) showed that increasing color saturation increased the
 282 ratio of visits to grouped percepts. Our model exhibits this behavior as well: The ratio of visits to
 283 grouped percepts increased with interocular grouping strength, β , (See Fig 4C). As shown in Fig. 9
 284 these results also hold in the presence of feedback.

285 **3.4. Our model conforms to the generalized Levelt's propositions when $\alpha > \beta$.** We next
 286 asked whether the dynamics of our model agrees with experimentally observed generalizations of

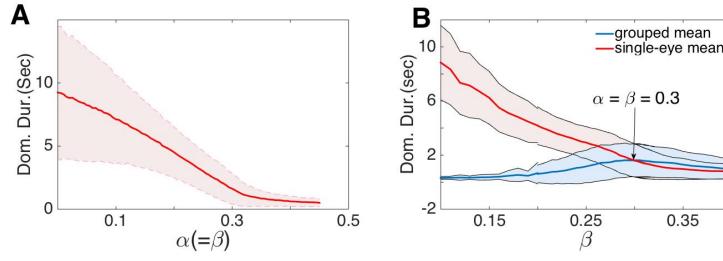


Figure 5: **Levelt's Proposition IV holds in the hierarchical model.** (A) Increasing within- and between-eye grouping strengths (α and β respectively), simultaneously while keeping them equal decreased the average dominance duration. (B) Proposition II held when $\beta < \alpha$. Here $\alpha = 0.3$, with other parameter values as in Fig. 3.

287 Levelt's propositions (Jacot-Guillarmod et al., 2017). As shown in Fig. 4, Proposition I hold. In
 288 fact, the proposition holds over a wide range of parameter values, even when other propositions
 289 fail, and in all model versions we have explored.

290 We found that Proposition II holds in our model when $\beta < \alpha$. When excitatory coupling
 291 between neural populations representing different-eye hemispheres is weaker than coupling between
 292 same-eye hemisphere populations, increasing interocular coupling strength β decreases the average
 293 dominance duration of the two single-eye percepts but very weakly increases the average dominance
 294 duration of the grouped percepts (See Fig. 5B). Since Proposition III follows from Proposition II
 295 and I, our model supports Proposition III as well.

296 To determine whether our model conforms to the prediction of Proposition IV, we varied α
 297 and β simultaneously while keeping them equal (See Fig. 5A). When grouping strength, β , is
 298 sufficiently high ($\beta > 0.32$), multiple subpopulations become co-active, indicating fusion. Fig. 5A
 299 shows that an increase in β (and α) decreased the average dominance duration of both grouped and
 300 single-eye percepts, *i.e.* increasing the strengths of all percepts while keeping them equal increases
 301 the perceptual switching rate, in accord with Proposition IV. As in existing models for bistable
 302 binocular rivalry, Levelt's Propositions IV holds only for parameter values over which the period
 303 of the periodic solutions of the associated deterministic model decreases as I increases (See Fig. 10
 304 in Appendix for more details).

305 **Remark:** To explore the full range of model behaviors, we also consider the case $\alpha < \beta$ repre-
 306 senting strong interocular coupling. In this case, Proposition II fails since increasing the strength
 307 of the grouped percepts by increasing β does not lead to an increase in their average dominance
 308 duration, despite the grouped percepts being stronger (Fig. 5B). Such failures are common in other
 309 existing models when percept strengths are close (See Fig. 11C which reproduces results from Seely
 310 and Chow (2011)). Proposition II states that the average dominance duration of the stronger per-
 311 cept should change more than that of the weaker percept, but this effect does not hold when input
 312 strengths are close in mutual inhibitory models of perceptual bistability (Fig. 11C and (Seely and
 313 Chow, 2011)).

314 When the percept strength of the grouped percepts is much stronger than that of the single-eye
 315 percepts, perception is dominated by two rivaling grouped percepts. According to the original
 316 Levelt's Proposition IV, further increasing in the strength of the grouped percepts should increase
 317 the switching rate between the two grouped percepts, reducing their average dominance duration.
 318 This is the case in our model, and is the reason for the decrease in average dominance duration
 319 when $\beta > \alpha$ shown in Fig. 5B, in contrast to the increase seen in Fig 11C).

320 **3.5. The mechanisms of multistable rivalry in the hierarchical model.** We next describe the
 321 mechanisms that drive the perceptual switching dynamics in our model. The neural interactions

322 implied by these mechanisms may underlie the dynamics described by the generalized Levelt's
323 Propositions:

- 324 1. Increasing interocular grouping strength, β , promotes co-activation of populations E_1 and
325 E_4 , as well as E_2 and E_3 at the first level of the hierarchy. Joint activity of populations
326 E_1 and E_4 leads to increased activation of population P_3 at the second level. Similarly,
327 joint activity of E_2 and E_3 increases activation of P_4 . Due to mutual inhibition between
328 populations at the same hemifields of opposite eyes, E_1 and E_3 (E_2 and E_4) synchronous
329 activity of the pair E_1 and E_4 (E_2 and E_3) is likely not to be observed together with a
330 coactivation of E_1 and E_2 , or E_3 and E_4 . Thus, a coactivation of the input E_1E_4 to P_3
331 (E_2E_3 to P_4) decreases the likelihood of elevated inputs E_1E_2 and E_3E_4 to the populations
332 P_1 and P_2 corresponding to single-eye percepts. This explains why increasing interocular
333 grouping strength, β , increases the predominance of the grouped percepts (P_3 and P_4), and
334 hence the mechanism behind Proposition I.
- 335 2. As in earlier models of bistable rivalry, our hierarchical model exhibits perceptual switches
336 either due to (a) inhibition release, or (b) escape driven by noise or the relaxation of
337 adaptation (Curtu et al., 2008; Moreno-Bote et al., 2007). These two mechanisms are not
338 mutually exclusive, and depend on model parameters. We chose parameters such that the
339 escape mechanism dominates.
- 340 3. Keeping $\alpha = \beta$ and increasing their values is 'equivalent' to increasing the input, I : When
341 single-eye percepts dominate, the two terms $\alpha E_2 + \beta E_4 \approx \alpha$ in the gain of E_1 in Eq. (1a).
342 A similar observation applies to the corresponding two terms determining the evolution of
343 the firing rates E_2 , E_3 and E_4 , and a similar effect occurs when the grouped percepts dom-
344 inate. Hence, simultaneously increasing the value of α and β while keeping them equal, is
345 approximately equivalent to increasing the input I . Because of the choice of our parameter
346 region in which the period of the associated deterministic model decreases as I increases,
347 this implies that Proposition IV holds.

348 **3.6. Impact of mutual inhibition at different levels of the hierarchical model.** It has been
349 debated at which level of the visual hierarchy mutually inhibitory interactions lead to rivalry (Carl-
350 son and He, 2004; Andrew and Lotto, 2004; Wilson, 2003). Carlson and He (2004) showed that
351 incompatibilities (conflicting interocular information that cannot be fused) at the lower level are
352 necessary for producing rivalry. In contrast, Andrew and Lotto (2004) used identical stimuli within
353 a different chromatic surround to show that the presence of rivalry can depend on the perceptual
354 meaning of the visual stimuli, and must thus occur at higher levels of the visual processing hier-
355 archy. Wilson (2003), on the other hand, used a two-stage feedforward model to show that the
356 elimination of mutual inhibition at early stages reveals the activity at the higher layer, *i.e.* the
357 activity remains at steady-state at the first level, and rivalry occurs only at the higher level.

358 Our model exhibits behavior similar to that reported by Wilson (2003): If lower-level mutual
359 inhibition is not strong enough, activity at the lower level of the hierarchy approaches steady-state.
360 Multistable rivalry in this situation requires stronger mutual inhibition at the higher level of the
361 model. However, if this is the case, changes in interocular grouping strength have the same effect on
362 all the percepts. As a consequence Levelt's propositions do not hold. We conclude that multistable
363 rivalry is possible with inhibition only at the higher level of the visual hierarchy. However, mutual
364 inhibition at the lower level is necessary for generalized Levelt's propositions to hold.

365 Next we ask whether the mutual inhibition at the upper level is necessary for generalized
366 Levelt's propositions to be valid. Our model showed that it was not. The four propositions hold
367 without mutual inhibition at the upper level (Fig. 6): The predominance of the (weaker) grouped
368 percepts increases with β (Fig. 6A), and the average dominance duration of the (stronger) single-
369 eye percepts decreases faster than that of the (weaker) grouped percepts increases (Fig. 6B). The

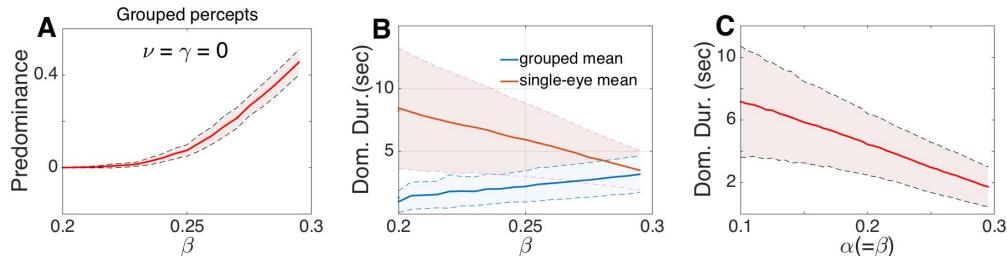


Figure 6: **Levelt's propositions hold without mutual inhibition at Level 2 ($\nu = \gamma = 0$).** (A) Predominance of grouped percepts increased with interocular grouping strength, β . (B) The average dominance duration of single-eye percepts (stronger percepts) decreased much faster than the average dominance duration of grouped percepts (weak percepts). (C) The average dominance duration decreased as α and β were increased and kept equal. Other parameter values as in Fig. 3.

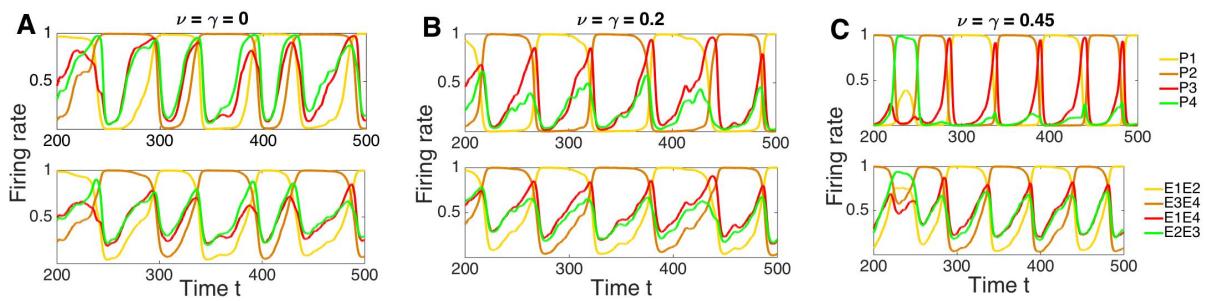


Figure 7: **Time series with different mutual inhibition at the upper level.** Each upper panel shows the neural activity of percepts (populations at the higher level of the hierarchy), and lower panels show inputs from the lower to the higher level of the hierarchical model; e.g., $E1E2$ is the input to $P1$. (A,B) Weak or mild mutual inhibition at the higher level helped disentangle different percepts, i.e. mutual inhibition at the upper level increased the distance between the activity levels of the dominating percepts and suppressed percepts; whereas (C) strong inhibition at the higher level lead to more frequent percept switching. Other parameter values as in Fig. 3.

371 average dominance duration of all percepts decreases as $\alpha = \beta$ increases (Fig. 6C).

372 Weak or mild mutual inhibition at the upper level does help improve the persistence of dominant
373 percepts by increasing the difference between the activity levels of the dominant and suppressed
374 percepts. Nonetheless, dominance switches still tend to be mainly determined by the activity at
375 the lower level (See Fig. 7), as the dominance of a percept becomes increasingly clear as mutual
376 inhibition is increased.

377 **3.7. Impact of Adaptation at the Different Levels.** Adaptation plays a central role in most
378 models of rivalry, by decreasing the stability of the dominant percept, and thus driving transitions
379 between percepts (Kang and Blake, 2010; Hollins and Hudnell, 1980; Roumani and Moutoussis,
380 2012; Blake and Overton, 1979; Blake et al., 1990; van Boxtel et al., 2008; Wade and Weert,
381 1986). We therefore asked at what level of the visual hierarchy this type of adaptation is needed
382 to explain experimentally observed switching dynamics. As with mutual inhibition, we found that
383 the generalized Levelt's Propositions did hold when we removed adaptation ($\kappa = 0$) at the second
384 Level of the population model (See Fig. 8). In addition, a change in the strength of adaptation
385 had little effect on the average dominance of either grouped percepts or single-eye percepts. See
386 Fig. 11A for example. However, when we removed adaptation at the lower level, the activity of

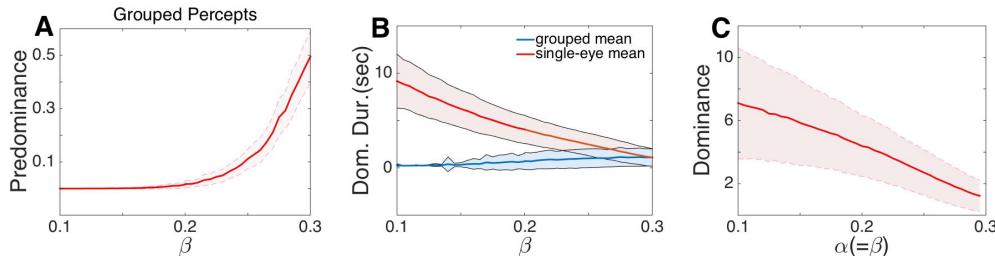


Figure 8: **Generalized Levelt's propositions hold in the absence of adaptation at the higher level of the visual hierarchy.** (A) The predominance of grouped percepts increased with the interocular grouping strength, β . (B) The average dominance duration of single-eye percepts (stronger percepts) decreased much faster than the average dominance duration of grouped percepts (weak percepts). (C) The average dominance duration decreased with α and β when the two were kept equal. Parameter values as in Fig. 3.

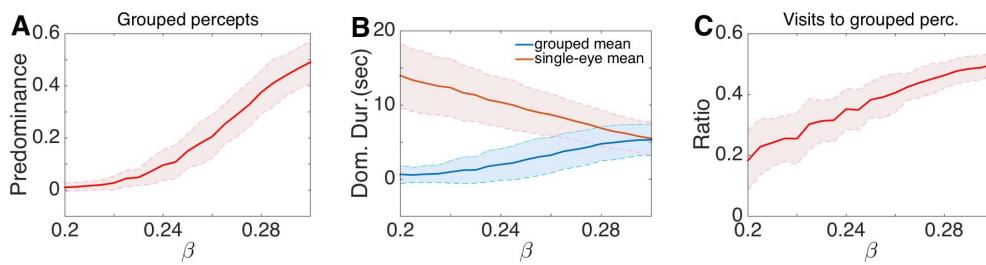


Figure 9: **Simulation results with feedback from the higher to the lower level of the hierarchy.** Simulations indicate that the model can capture the key experimental results in (Jacot-Guillarmod et al., 2017) even with feedback from the higher level to the lower level: (A) Predominance of grouped percepts increased as the interocular grouping strength increased; (B) The average dominance duration of single-eye percepts decreased while the average dominance duration of grouped percepts remained approximately unchanged (when $\beta < \alpha$ but close to the value α); (C) The ratio of the number of visits to the grouped percepts increased as the interocular grouping strength increased. Here $a_i = b_i = 0.1$ in (5), with other parameters as in Fig. 3.

387 lower level populations approached steady state since adaptation was necessary for switching to
 388 occur, and the generalized propositions did not hold any more.

389 **3.8. Impact of Feedback.** So far, we assumed an absence of feedback ($a_i = 0$ and $b_i = 0$)
 390 from the higher level of the visual hierarchy. However, numerous studies have found top-down
 391 feedback pathways from higher areas processing more complex features to lower areas processing
 392 basic geometric features (Angelucci et al., 2002; van Ee et al., 2006; Tong et al., 2006). Thus, we next
 393 asked whether generalized Levelt's propositions still hold when we included feedback in our model
 394 as described in Eqs. (5a) - (5d). Our simulations showed that for weak feedback (a_i and b_i small),
 395 the dynamics of the hierarchical model described above did not change qualitatively (Compare
 396 Fig. 9 with feedback, to Fig. 4, with no feedback). However, the average dominance duration was
 397 larger when we included feedback, consistent with findings in the bistable case (Wilson, 2003).

398 **3.9. The hierarchical model captures bistable binocular rivalry.** As our hierarchical model is
 399 an extension of earlier models of binocular rivalry, we asked whether it also exhibits dynamics con-
 400 sistent with rivalry between two percepts. To answer this question we provided coherent “stimuli”
 401 to each pair of populations receiving input from the same eye, but conflicting stimuli to the two

402 eyes. This would be equivalent to displaying a monochromatic square composed of vertical bars to
403 one eye, and a monochromatic square composed of horizontal bars to the other eye.

404 Without feedback and including weak mutual inhibition and adaptation at the higher level, the
405 dynamics of the system is mainly determined by that of the lower-level populations. Hence the
406 only active populations at the higher level are therefore those corresponding to single-eye percepts.
407 More precisely, without noise, and assuming $I_1 = I_2, I_3 = I_4$, the subsystem at the lower level has
408 a flow-invariant subspace, $S = \{E_1 = E_2, E_3 = E_4, H_1 = H_2, H_3 = H_4\}$. Diekman et al. (2012)
409 proved the subspace S is locally attracting at every point. When restricted to the subspace S ,
410 Eq. (1) reduces to a classical two population model (Laing and Chow, 2002; Wilson, 2003):

$$411 \quad (6a) \quad \tau \dot{E}_1 = -E_1 + G(I_1 + \alpha E_1 - w E_3 - g H_1) \quad \tau_h \dot{H}_1 = E_1 - H_1$$
$$412 \quad (6b) \quad \tau \dot{E}_3 = -E_3 + G(I_3 + \alpha E_3 - w E_1 - g H_3) \quad \tau_h \dot{H}_3 = E_3 - H_3.$$

414 When population $E_1 (= E_2)$ dominates, it leads to the domination of percept 1 (P_1). Similarly,
415 when $E_3 (= E_4)$ dominates, then so does percept 2 (P_2). Alternations in elevated activity between
416 populations E_1 and E_3 therefore correspond to rivalry between percepts 1 and 2. Hence, Eq. (1)
417 generalizes existing models of rivalry, and can capture features of binocular and multistable rivalry
418 observed in experiments.

419 In addition, while the synchrony subspace S is associated with single-eye percepts (when $E_1 =$
420 $E_2 > E_3 = E_4, P_1$ dominates; when $E_3 = E_4 > E_1 = E_2, P_2$ dominates), if $I_1 = I_4, I_2 = I_3$, then
421 there is another synchrony subspace $W = \{E_1 = E_4, E_2 = E_3\}$ (when $I_1 = I_4, I_2 = I_3$) associated
422 to grouped percepts (when $E_1 = E_4 > E_3 = E_2, P_3$ dominates; when $E_3 = E_2 > E_1 = E_4, P_4$
423 dominates). The model thus also suggests that with sufficiently strong cues, the dynamics could
424 be restricted to the invariant subset W , resulting in pure pattern rivalry.

425 **4. Discussion.** Multistable perceptual phenomena have long been used to probe the mecha-
426 nisms underlying visual processing (Leopold and Logothetis, 1999). Among these, binocular rivalry
427 is perhaps the most robust, and has been studied most frequently. However, we can obtain dif-
428 ferent insights by employing visual inputs that are integrated to produce interocularly grouped
429 percepts (Kovacs et al., 1996; Suzuki and Graboweczyk, 2002). These experiments are particu-
430 larly informative when guided by Levelt's Propositions, which were originally proposed to describe
431 alternations between two rivaling percepts (Levelt, 1965; Brascamp et al., 2015).

432 We generalized Levelt's Propositions to perceptual multistability involving interocular group-
433 ing. These extended propositions are consistent with experimental findings, and the dynamics of
434 a hierarchical model of visual processing. Our neural population model thus points to potential
435 mechanisms that underlie experimentally reported perceptual alternations in rivalry with interoc-
436 ular grouping (Jacot-Guillarmod et al., 2017).

437 Evidence suggests that rivalry exists across a hierarchy of visual cortical areas (Alias and Blake,
438 2004). Indeed, rivalry can occur between complex stimulus representations, requiring higher order
439 processing than typically observed in early visual areas (Kovacs et al., 1996; Tong et al., 2006).
440 Physiological and imaging experiments have also shown that binocular rivalry modulates neural
441 activities in the primary visual cortex, as well as higher areas including V2 and V4, MT, and
442 inferior temporal cortex (Leopold and Logothetis, 1996; Logothetis and Schall, 1989; Sheinberg
443 and Logothetis, 1997; Tong and et al, 1998). However, the way in which activity at these different
444 levels contributes to binocular rivalry remains unclear. Competition at the lower or higher levels,
445 or a combination thereof can all explain different aspects of this phenomenon, depending on the
446 experiment (Leopold and Logothetis, 1999; Pearson et al., 2007). Our model suggests that mutual
447 inhibition at the early stages of the visual hierarchy is necessary for dynamics consistent with
448 generalized Levelt's Propositions.

449 Multistable rivalry has been studied previously using interocular grouping and fusion of co-

450 herently moving gratings. Moving plaid percepts arise when superimposing two drifting gratings
451 moving at an angle to one another (Hupe and Rubin, 2004). In these cases subjects perceive either
452 a grating or a moving plaid in alternation (three total percepts: moving to the left, moving the
453 right and moving upward). Mutual inhibitory, adapting neuronal network models display dynamics
454 consistent with data from such experiments, suggesting the mechanisms behind such rivalry may be
455 similar to those driving conventional binocular rivalry (Huguet et al., 2014). This provides further
456 evidence that the classical models of rivalry can serve as a foundation for models describing more
457 complex settings.

458 *Comparisons with previous models of perceptual multistability.* Our computational model is based
459 on the assumption that perceptual multistability occurs via a winner-take-all process, with a single
460 percept temporarily excluding all others (Wilson, 2003; Shapiro et al., 2007). Consequently, some
461 neural process must allow the system to switch from the dominant percept to another after a
462 few seconds (Laing and Chow, 2002). The simplest model of this process is a multistable system
463 with slow adaptation and/or noise drives switches between multiple attractors (Moreno-Bote et al.,
464 2007; Braun and Mattia, 2010). This framework is common in models of binocular rivalry (Laing
465 and Chow, 2002; Shapiro et al., 2007), non-eye-based perceptual rivalry (Brascamp et al., 2009),
466 and even perceptual multistability with more than two percepts (Diekman et al., 2013; Kilpatrick,
467 2013; Huguet et al., 2014). Each percept typically corresponds to a single neural population which
468 mutually inhibits the other(s). Spike rate adaptation or short term plasticity then drive the slow
469 switching between network attractors (Laing and Chow, 2002), and noise generates variation in the
470 dominance times (Moreno-Bote et al., 2007).

471 Our computational model differs from previous ones in a few key ways. Excitatory connec-
472 tivity at the first level facilitates both single-eye and grouped binocular percepts. Diekman et al.
473 (2013) provided a preliminary account of interocular grouping, but ignored the effects of noise fluc-
474 tuations on switching dynamics, and did not account for the known hierarchical structure of the
475 visual system (Angelucci et al., 2002; Tong et al., 2006). In our model the strength of excitatory
476 connectivity at the first level determines the input strength to populations at the higher level of
477 the visual hierarchy, and ultimately each percept's predominance. In this way, our model is similar
478 to that in Wilson (2003), who used a two level model to capture the effects of monocular and
479 binocular neurons. However, Wilson's model focused on the case of two possible percepts, while
480 our computational model accounts for all four possible percepts in an interocular grouping task.

481 A number of other hierarchical models have also been proposed: Dayan (1998) developed a
482 top-down statistical generative model, which places the competition at the higher level. Freeman
483 (2005) proposed a feedforward multistage model with all stages possessing the same structure.
484 These models also focused on conventional bistable binocular rivalry, and did not address the
485 mechanisms of multistable rivalry.

486 *Extensions to other computational models.* We made several specific choices in our computational
487 model. First, we described neural responses to input in each visual hemifield by a single variable.
488 We could also have partitioned population activity based on orientation selectivity or receptive field
489 location (Ferster and Miller, 2000). This would allow us to describe the effects of horizontal con-
490 nections that facilitate the representation of collinear orientation segments in more detail (Bosking
491 et al., 1997; Angelucci et al., 2002). Since there is evidence for chromatically-dependent collinear
492 facilitation (Beaudot and Mullen, 2003), we could model the effects of image contrast and color
493 saturation as separate contributions to interocular grouping. However, these extensions would com-
494 plicate the model and make it more difficult to analyze. We therefore chose a reduced model with
495 the effects of color saturation described by a single parameter, β .

496 *Neural mechanisms of perceptual multistability.* Our observations support the prevailing theory
497 that perceptual multistability is significantly percept-based and involves higher visual and object-
498 recognition areas (Leopold and Logothetis, 1999). However, a number of issues remain unresolved.

499 The question of whether and when binocular rivalry is eye-based or percept-based has not been
500 fully answered (Blake, 2001). Activity predictive of a subject's dominant percept has been recorded
501 in lateral geniculate nucleus (LGN) (Haynes and Rees, 2005), primary visual cortex (V1) (Lee and
502 Blake, 2002; Polonsky et al., 2000), and higher visual areas (e.g., V2, V4, MT, IT) (Logothetis and
503 Schall, 1989; Leopold and Logothetis, 1996; Sheinberg and Logothetis, 1997). Thus, rivalry likely
504 results from interactions between networks at several levels of the visual system (Freeman, 2005;
505 Wilson, 2003). To understand how these activities collectively determine perception it is hence
506 important to develop descriptive models that incorporate multiple levels of the visual processing
507 hierarchy.

508 Collinear facilitation involves both recurrent connectivity in V1 as well as feedback connections
509 from higher visual areas like V2 (Angelucci et al., 2002; Gilbert and Sigman, 2007), reenforcing
510 the notion that perceptual rivalry engages a distributed neural architecture. However, a coherent
511 theory that relates image features to dominance statistics during perceptual switching is lacking.
512 It is unclear how neurons that are associated to each subpopulation may interact due to grouping
513 factors such as collinearity and color.

514 **Conclusion.** Our work supports the general notion that perceptual multistability is a distributed
515 process that engages several layers of the visual system. Interocular grouping requires integration
516 in higher visual areas (Leopold and Logothetis, 1996), but orientation processing and competition
517 occurs earlier in the visual stream (Angelucci et al., 2002; Gilbert and Sigman, 2007). Overall, our
518 model shows that the mechanisms that explain bistable perceptual rivalry can indeed be extended
519 to multistable perceptual rivalry.

520 **5. Acknowledgments.** We thank Martin Golubitsky for helpful suggestions. Funding was
521 provided by DHS-2014-ST-062-000057, NSF HRD-1800406 and NSF CNS-1831980 (YW); NSF
522 DMS-1615737, NSF DMS-1853630 (ZPK); NIH-1R01MH115557 (KJ and ZPK); DBI-1707400 (KJ).

523 **Appendix A. Choice of parameter values.** We had to set a number of parameters in our
524 model to capture the perceptual alternations observed experimentally. To do so we first let $\alpha = \beta$,
525 and chose a set of parameter values so that the corresponding deterministic model had a periodic
526 solution with $E_1(t) = E_2(t)$ and $E_3(t) = E_4(t)$. *i.e.* the periodic solution associated with the
527 alternation of single-eye percepts. We then used XPPAUT to obtain the bifurcation diagram
528 shown in Fig. 10, where the green curve in (A) is a branch of stable periodic solutions and the
529 green curve in (B) is the corresponding periods of the periodic solutions in (A). We choose the
530 values of input strength I_i all to be equal and in the interval (0.8, 1.25) so that the model displayed
531 decreases in dominance duration with increasing input strength I .

532 Changing the values of α and β changes the bifurcation diagram. However, by continuity, as
533 long as parameter values are not far from those we used to obtain the bifurcation diagram, the
534 dynamics of the system remains similar. In many of our simulations, we fixed the input values I
535 to 1.2, and other values at $\alpha = 0.3$, $w = 1$, $g = 0.5$, $c_i = 1$, $\nu = \gamma = 0.45$, $\kappa = 0.5$. $\tau = 10ms$,
536 $\tau_h = \tau_a = 1000ms$, $\delta = 0.03$. The parameter values of w , g , ν , γ and κ roughly follow the values
537 used in the literature (Seely and Chow, 2011; Wilson, 2003). We then numerically found the same
538 qualitative results hold for $I \in [1, 1.25]$.

539 **Appendix B. Simulation procedure.** To obtain the results shown in the figure, for each
540 given parameter set we ran 100 realizations of the model for 300 seconds each and computed the
541 dominance durations, predominance, and visit ratio for each percept. We pooled all dominance
542 durations of one class of percepts (e.g., single-eye percepts or grouped percepts) and computed its
543 average and standard deviation across occurrences and realizations.

544 **Appendix C. Simulation results with feedback from higher to lower level.** Our hierarchical
545 model with sufficiently weak feedback from the higher level to the lower level can also capture the

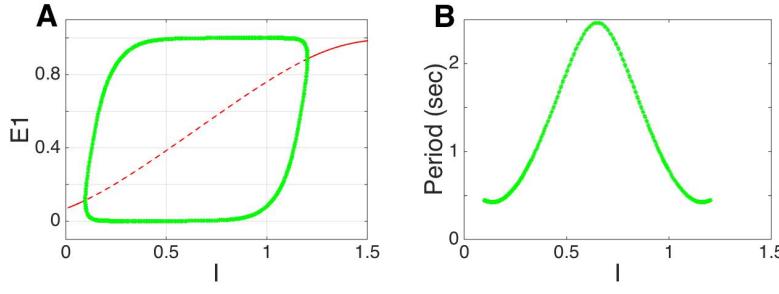


Figure 10: **The hierarchical model captures conventional bistable binocular rivalry.** (A) The bifurcation diagram with bifurcation parameter I when $\alpha = \beta = 0.3$, and other parameters as in Fig. 3 shows the emergence and disappearance of periodic solutions. The green curves represent the branches of a stable periodic solution, the solid red curve represents stable equilibria, and the dashed red curve represents unstable equilibria; (B) The period of the corresponding stable periodic solution peaks around $I = 0.6$.

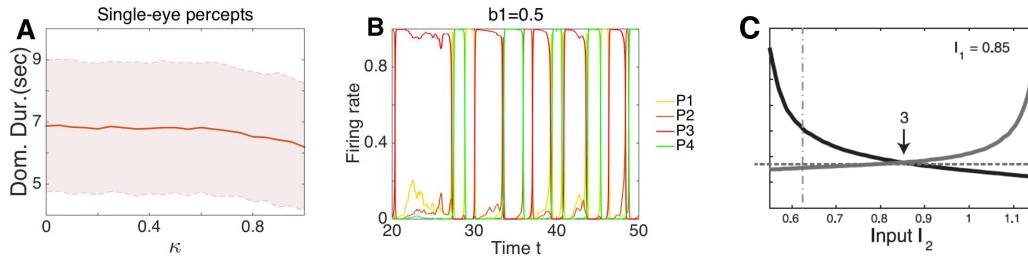


Figure 11: **Adaptation rate, κ , at the higher level of the hierarchy, and top-down influence.** (A) The adaptation rate had little or no effect on the dominance duration of percepts. Parameter values as in Fig. 3. (B) Example of top-down influence from only one percept, here P_3 ($a_1 = a_2 = b_2 = 0$ and $b_1 = 0.5$). Top down input from one percept increased its dominance duration. Parameters not listed were as in Fig. 3. (C) Part of Fig. 4C from (Seely and Chow, 2011): Proposition IV did not hold when $I_2 \in (0.85, 1)$ since the increasing rate of the stronger percepts did not exceed the decreasing rate of the weak percept.

546 three main observations reported by Jacot-Guillarmod et al. (2017) with the minor difference that
 547 the average dominance duration increases (Fig. 9). Increasing the adaptation rate κ in the top level
 548 had little or no effect on the dominance duration of percepts (Fig. 11A shows single-eye percepts,
 549 but results for grouped percepts were similar) over a large interval (0, 0.8). The main effect of top
 550 down excitatory feedback from a percept we observed was to increase that percept's dominance
 551 duration (Fig. 11B).

552 **References.**

- 553 Alias, D., Blake, R., 2004. Binocular Rivalry. MIT Press, Cambridge, MA.
 554 Andrew, T. J., Lotto, R. B., 2004. Fusion and rivalry are dependent on the perceptual meaning of
 555 visual stimuli. *Curr. Biol.* 14, 418–423.
 556 Angelucci, A., Levitt, J. B., Walton, E. J., Hupe, J.-M., Bullier, J., Lund, J. S., 2002. Circuits for
 557 local and global signal integration in primary visual cortex. *The Journal of Neuroscience* 22 (19),
 558 8633–8646.
 559 Arrington, K. F., 1993. Neural network models for color brightness perception and binocular
 560 rivalry. Ph.D. thesis, Boston University.

- 561 Bartels, A., Logothetis, N. K., 2010. Binocular rivalry: a time-depedence of eye and stimulus
562 contributions. *Journal of vision* 10, 1–14.
- 563 Beaudot, W. H., Mullen, K. T., 2003. How long range is contour integration in human color vision?
564 *Visual Neuroscience* 20 (01), 51–64.
- 565 Benda, J., Herz, A. V., 2003. A universal model for spike-frequency adaptation. *Neural computation*
566 15 (11), 2523–2564.
- 567 Blake, R., 1989. A neural theory of binocular rivalry. *Psychol. Rev.* 96, 145–167.
- 568 Blake, R., 2001. A primer on binocular rivalry, including current controversies. *Brain and Mind* 2,
569 5–38.
- 570 Blake, R., Logothetis, N. K., 2002. Visual competition. *Nat. Rev. Neurosci* 3, 13–21.
- 571 Blake, R., Overton, R., 2019/09/27 1979. The site of binocular rivalry suppression. *Perception*
572 8 (2), 143–152.
573 URL <https://doi.org/10.1068/p080143>
- 574 Blake, R., Westendorf, D., Fox, R., Nov 1990. Temporal perturbations of binocular rivalry. *Percep-*
575 *tion & Psychophysics* 48 (6), 593–602.
576 URL <https://doi.org/10.3758/BF03211605>
- 577 Bosking, W., Zhang, Y., Schofield, B., Fitzpatrick, D., 1997. Orientation selectivity and the ar-
578 arrangement of horizontal connections in tree shrew striate cortex. *Journal of neuroscience* 17,
579 2112–2127.
- 580 Brascamp, J., Klink, P., Levelt, W. J., 2015. The ‘laws’ of binocular rivalry: 50 years of levelt’s
581 propositions. *Vision research* 109, 20–37.
- 582 Brascamp, J., Pearson, J., Blake, R., Van Den Berg, A., 2009. Intermittent ambiguous stimuli:
583 Implicit memory causes periodic perceptual alternations. *Journal of Vision* 9 (3), 3.
- 584 Brascamp, J. W., Van, R. E., Noest, A. J., Jacobs, R. H., van den Berg, A. V., 2006. The time
585 course of binocular rivalry reveals a fundamental role of noise. *J. Vis.* 6, 1244 – 1256.
- 586 Braun, J., Mattia, M., 2010. Attractors and noise: twin drivers of decisions and multistability.
587 *Neuroimage* 52 (3), 740–751.
- 588 Brincat, S. L., Connor, C. E., 2006. Dynamic shape synthesis in posterior inferotemporal cortex.
589 *Neuron* 49 (1), 17–24.
- 590 Carlson, T. A., He, S., 2004. Competing global representations fail to initiate binocular rivalry.
591 *Neuron* 43, 970–914.
- 592 Curtu, R., Shpiro, A., Rubin, N., Rinzel, J., 2008. Mechanisms for frequency control in neuronal
593 competition models. *SIAM J. Appl. Dyn. Sys.* 7, 609–649.
- 594 Dayan, P., 1998. A hierarchical model of binocular rivalry. *Neural Comput.* 10, 1119–1135.
- 595 Diekman, C. O., Golubitsky, M., McMillen, T., 2012. Reduction and dynamics of a generalized
596 rivalry network with two learned patterns. *SIAM J. Appl. Dyn. Sys.* 11, 1270–1309.
- 597 Diekman, C. O., Golubitsky, M., Wang, Y., 2013. Derived patterns in binocular rivalry networks.
598 *Journal of Mathematical Neuroscience* 3 (6).
- 599 Faisal, A. A., Selen, L. P. J., Wolpert, D. M., Apr 2008. Noise in the nervous system. *Nat Rev
600 Neurosci* 9 (4), 292–303.
- 601 Ferster, D., Miller, K. D., 2000. Neural mechanisms of orientation selectivity in the visual cortex.
602 Annual review of neuroscience 23 (1), 441–471.
- 603 Freeman, A. W., 2005. Multistage model for binocular rivalry. *J. Neurophysiol* 94, 4412–4420.
- 604 Gilbert, C. D., Sigman, M., 2007. Brain states: top-down influences in sensory processing. *Neuron*
605 54 (5), 677–696.
- 606 Golubitsky, M., Zhao, Y., Wang, Y., Lu, Z.-L., 2019. The symmetry of generalized rivalry network
607 models determines patterns of interocular grouping in four-location binocular rivalry. *Journal of
608 Neurophysiology*.
- 609 Häusser, M., Roth, A., 1997. Estimating the time course of the excitatory synaptic conductance

- 610 in neocortical pyramidal cells using a novel voltage jump method. *The Journal of neuroscience*
611 17 (20), 7606–7625.
- 612 Haynes, J. D., Rees, G., 2005. Predicting the stream of consciousness from activity in human visual
613 cortex. *Curr. Biol.* 15 (14), 1301–7.
- 614 Hollins, M., Hudnall, K., 09 1980. Adaptation of the binocular rivalry mechanism. *Investigative
615 Ophthalmology & Visual Science* 19 (9), 1117–1120.
- 616 Huguet, G., Rinzel, J., Hupé, J. M., 2014. Noise and adaptation in multistable perception: Noise
617 drives when to switch, adaptation determines percept choice. *J Vis* 14 (3).
- 618 Hupe, J.-M., Rubin, N., 2004. The oblique plaid effect. *Vision Research* 44 (5), 489–500.
- 619 Jacot-Guillarmod, A., Wang, Y., Pedroza, C., Ogom, H., Kilpatrick, Z., Josié, K., 2017. Extending
620 Levelt's propositions to perceptual multistability involving interocular grouping. Submitted.
- 621 Kalarickal, G. J., Marshall, J. A., 2000. Neural model of temporal and stochastic properties of
622 binocular rivalry. *Neurocomputing* 32, 843–853.
- 623 Kang, M.-S., Blake, R., Jan 2010. What causes alternations in dominance during binocular rivalry?
624 *Atten Percept Psychophys* 72 (1), 179–86.
- 625 Kilpatrick, Z. P., 2013. Short term synaptic depression improves information transfer in perceptual
626 multistability. *Front Comput Neurosci* 7 (85).
- 627 Klink, P. C., Brascamp, J. W., Blake, R., Wezel, R. J. A. V., 1464-1469 2010. Experience-driven
628 plasticity in binocular vision. *Curr. Biol.* 20.
- 629 Klink, P. C., van Ee, R., Nijs, M. M., Brouwer, G. J., Noest, A. J., van Wezel, R. J. A., 2008. Early
630 interactions between neuronal adaptation and voluntary control determine perceptual choices in
631 bistable vision. *Journal of Vision* 8 (16), 1–18.
- 632 Kohler, W., 2015. The task of Gestalt psychology. Princeton University Press.
- 633 Kovacs, I., Papathomas, T. V., Yang, M., Feher, A., 1996. When the brain changes its mind:
634 Interocular grouping during binocular rivalry. *PNAS* 93, 15508–15511.
- 635 Lago-Fernandez, L. F., Deco, G., 2002. A model of binocular rivalry based on competition in it.
636 *Neurocomputing* 44-46, 503–507.
- 637 Laing, C., Chow, C. C., 2002. A spiking neuron model for binocular rivalry. *J. Comput. Neurosci.*
638 12, 39– 53.
- 639 Lamme, V. A., Roelfsema, P. R., 2000. The distinct modes of vision offered by feedforward and
640 recurrent processing. *Trends in neurosciences* 23 (11), 571–579.
- 641 Lankheet, M. J. M., 2006. Unraveling adaptation and mutual inhibition in perceptual rivalry.
642 *Journal of Vision* 6, 304–310.
- 643 Lee, S.-H., Blake, R., 2002. V1 activity is reduced during binocular rivalry. *Journal of Vision* 2 (9),
644 4.
- 645 Lehky, S. R., 1988. An astable multivibrator model of binocular rivalry. *Perception* 17, 215–228.
- 646 Leopold, D., Logothetis, N. K., 1999. Multistable phenomena: changing views in perception. *Trends
647 in Cognitive Sciences* 3, 254–264.
- 648 Leopold, D. A., Logothetis, N. K., 1996. Activity changes in early visual cortex reflect monkeys'
649 percepts during binocular rivalry. *Nature* 379, 549–553.
- 650 Levelt, W. J. M., 1965. On binocular rivalry. Ph.D. thesis, Institute for Perception RVO-TNO
651 Soeterberg (Netherlands).
- 652 Logothetis, N. K., Schall, J. D., 1989. Neuronal correlates of subjective visual perception. *Science*
653 245 (4919), 761–763.
- 654 Lumer, E. D., 1998. A neural model of binocular intergration and rivalry based on the coordination
655 of action-potential timing in primary visual cortex. *Cereb. Cortex* 8, 553–561.
- 656 Matsuoka, K., 1984. The dynamic model of binocular rivalry. *Biol Cybern* 49, 201–208.
- 657 Moreno-Bote, R., Rinzel, J., Rubin, N., 2007. Noise-induced alternations in an attractor network
658 model of perceptual bistability. *Journal of Neurophysiology* 98, 1125–1139.

- 659 Moreno-Bote, R., Shapiro, A., Rinzel, J., Rubin, N., 2010. Alternation rate in perceptual bistability
660 is maximal at and symmetric around equi-dominance. *Journal of vision* 10 (11), 1–18.
- 661 Noest, A. J., van Ee, R., Nijs, M. M., van Wezel, R. J. A., 2007. Percept-choice sequences driven
662 by interrupted ambiguous stimuli: a low-levl neural model. *Journal of Vision* 7 (8), 1–14.
- 663 Pearson, J., Tadin, D., Blake, R., May 2007. The effects of transcranial maganetic stimulation on
664 visual rivalry. *Journal of Vision* 7 (7), 1–11.
- 665 Polonsky, A., Blake, R., Braun, J., Heeger, D., 2000. Neuronal activity in human primary visual
666 cortex correlates with perception during binocular rivalry. *Nat. Neurosci* 3, 1153–1159.
- 667 Renart, A., De La Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., Harris, K. D., 2010.
668 The asynchronous state in cortical circuits. *science* 327 (5965), 587–590.
- 669 Riesenhuber, M., Poggio, T., Nov. 1999. Hierarchical models of object recognition in cortex. *Nature*
670 *Neuroscience* 2 (11), 1019–1025.
- 671 Ringach, D. L., Hawken, M. J., Shapley, R., et al., 1997. Dynamics of orientation tuning in macaque
672 primary visual cortex. *Nature* 387 (6630), 281–284.
- 673 Roelfsema, P. R., 2006. Cortical algorithms for perceptual grouping. *Annu. Rev. Neurosci.* 29,
674 203–227.
- 675 Roumani, D., Moutoussis, K., 03 2012. Binocular rivalry alternations and their relation to visual
676 adaptation. *Frontiers in human neuroscience* 6, 35–35.
677 URL <https://www.ncbi.nlm.nih.gov/pubmed/22403533>
- 678 Said, C. P., Heeger, D. J., 2013. A model of binocular rivalry and cross-orientation suppression.
679 *Plos Computational Biology* 9, e1002991.
- 680 Salinas, E., Abbott, L., 1996. A model of multiplicative neural responses in parietal cortex. *Pro-
681 ceedings of the national academy of sciences* 93 (21), 11956–11961.
- 682 Seely, J., Chow, C. C., 2011. The role of mutual inhibition in binocular rivalry. *J Neurophysiol* 106,
683 2136–2150.
- 684 Sheinberg, D. L., Logothetis, N. K., 1997. The role of temporal cortical areas in perceptual orga-
685 nization. *Proceedings of the National Academy of Sciences* 94 (7), 3408–3413.
- 686 Shpiro, A., Curtu, R., Rinzel, J., Rubin, N., 2007. Dynamical characteristics common to neuronal
687 competition models. *Journal of neurophysiology* 97 (1), 462–473.
- 688 Sincich, L. C., Horton, J. C., 2005. The circuitry of v1 and v2: integration of color, form, and
689 motion. *Annu. Rev. Neurosci.* 28, 303–326.
- 690 Sterzer, P., Kleinschmit, A., Rees, G., 2009. The neural bases of multistable perception. *Trends in*
691 *Cognitive Sciences* 13 (7).
- 692 Stettler, D. D., Das, A., Bennett, J., Gilbert, C. D., 2002. Lateral connectivity and contextual
693 interactions in macaque primary visual cortex. *Neuron* 36 (4), 739–750.
- 694 Stollenwerk, L., Bode, M., 2003. Lateral neural model of binocular rivalry. *Neural Comput.* 15,
695 2863–2882.
- 696 Suzuki, S., Grabowecky, M., 2002. Evidence for perceptual “trapping” and adaptation in multistable
697 binocular rivalry. *Neuron* 36, 143–157.
- 698 Tong, F., 2001. Competing theories of binocular rivalry. *Brain and Mind* 2, 55083.
- 699 Tong, F., et al, 1998. Binocular rivalry and visual awareness in human extrastriate cortex. *Neuron*
700 21 (753-759).
- 701 Tong, F., Meng, M., Blake, R., 2006. Neural bases of binocular rivalry. *Trends in Cognitive Sciences*
702 10 (11).
- 703 van Boxtel, J. J. A., Alais, D., van Ee, R., 05 2008. Retinotopic and non-retinotopic stimulus
704 encoding in binocular rivalry and the involvement of feedback. *Journal of Vision* 8 (5), 17–17.
705 URL <https://doi.org/10.1167/8.5.17>
- 706 van Ee, R., Noest, A. J., Brascamp, J. W., van den Berg, A. V., 2006. Attentional control over
707 either of the two competing percepts of ambiguous stimuli revealed by a two-parameter analysis:

- 708 Means do not make the difference. *Vision Research* 46, 3129–3141.
- 709 Wade, N. J., Weert, C. M. M. D., 1986. Aftereffects in binocular rivalry. *Perception* 15 (4), 419–434,
710 pMID: 3822728.
- 711 URL <https://doi.org/10.1068/p150419>
- 712 Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., von der
713 Heydt, R., 2012. A century of gestalt psychology in visual perception: I. perceptual grouping
714 and figure-ground organization. *Psychological bulletin* 138 (6), 1172.
- 715 Wheatstone, C., 1838. Contributions to the physiology of vision. part i. on some remarkable, and
716 hitherto unobserved, phenomena of binocular vision. London and Edinberugh Philosophical Mag-
717 azing and Journal of Science 3, 241–267.
- 718 Wilson, H. R., 2003. Computational evidence for a rivalry hierarchy in vision. *PNAS* 100, 14499–
719 14503.
- 720 Wilson, H. R., 2007. Minimal physiological conditions for binocular rivalry and rivalry memory.
721 *Vision Res* 47, 2741–2750.
- 722 Wilson, H. R., 2009. Requirements for conscious visual processing. Cambridge University Press,
723 Ch. In *Cortical Mechanisms of Vision*, pp. 399–417.