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Abstract. Ambiguous visual images can generate dynamic and stochastic switches in perceptual interpretation known4
as perceptual rivalry. Such dynamics have primarily been studied in the context of rivalry between two5
percepts, but there is growing interest in the neural mechanisms that drive rivalry between more than6
two percepts. In recent experiments, we showed that split images presented to each eye lead to subjects7
perceiving four stochastically alternating percepts (Jacot-Guillarmod et al., 2017): two single eye images8
and two interocularly grouped images. Here we propose a hierarchical neural network model that exhibits9
dynamics consistent with our experimental observations. The model consists of two levels, with the first10
representing monocular activity, and the second representing activity in higher visual areas. The model11
produces stochastically switching solutions, whose dependence on task parameters is consistent with four12
generalized Levelt Propositions. Our neuromechanistic model also allowed us to probe the roles of inter-13
actions between populations at the network levels. Stochastic switching at the lower level representing14
alternations between single eye percepts dominated, consistent with experiments.15

Key word. Multistable perceptual rivalry, Levelt’s propostions, interocular grouping16

AMS subject classifications. 37N2517

1. Introduction. When conflicting images are presented to different eyes, our visual system18

often fails to produce a stable fused percept. Instead, perception stochastically alternates between19

the presented images (Wheatstone, 1838; Levelt, 1965; Leopold and Logothetis, 1999; Blake and20

Logothetis, 2002; Blake, 2001). More generally, multistable binocular rivalry between more than21

two percepts can occur when images presented to each eye can be partitioned and regrouped into22

coherent percepts. For example, subjects presented with the jumbled images in Fig. 1A may23

alternatively perceive a monkey face, or the jungle scene shown in Fig. 1B (Kovacs et al., 1996). In24

these cases perception evolves dynamically under constant stimuli, revealing aspects of the cortical25

mechanisms underlying visual awareness (Leopold and Logothetis, 1999; Tong et al., 2006; Sterzer26

et al., 2009; Leopold and Logothetis, 1996; Polonsky et al., 2000).27

While the literature on bistable binocular rivalry is extensive, far fewer studies have addressed28

multistable percepts. Rivalry between multiple percepts likely involves higher level image recogni-29

tion, as well as monocular competition (Kovacs et al., 1996; Suzuki and Grabowecky, 2002; Huguet30

et al., 2014; Golubitsky et al., 2019), suggesting a noninvasive way to probe perceptual mechanisms31

across cortical areas, and offering a broader picture of visual processing.32

Here, we build on previous models to provide a mechanistic account of perceptual multistability33

due to interocular grouping effects (Laing and Chow, 2002; Wilson, 2003; Moreno-Bote et al.,34

2007; Shpiro et al., 2007; Said and Heeger, 2013; Dayan, 1998). We propose a mechanism that35

involves different levels of visual cortical processing by building a hierarchical neural network model36

of binocular rivalry with interocular grouping. Our model captures the dynamics of perceptual37

switches reported by human subjects in experiments described by Jacot-Guillarmod et al. (2017)38

involving the visual stimuli shown in Fig. 1C. When presented with these stimuli, subjects reported39

alternations between four percepts, two single-eye percepts, and two grouped percepts that combine40

two halves of each stimulus into a coherent whole (See Fig. 1D).41

Levelt’s four propositions (Levelt, 1965) capture the hallmarks of bistable binocular rivalry by42

relating stimulus strength (such as contrast or luminance), dominance duration (the time interval43
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Figure 1: Multistable perceptual rivalry. The fragmented images presented to the left and right
eyes in (A) can lead to the coherent percepts shown in (B) (Kovacs et al., 1996). (C) An example
of the stimuli presented to the left and right eyes in Jacot-Guillarmod et al. (2017). Gratings were
always split so that halves with the same color and orientation could be matched via interocular
grouping, but were otherwise randomized across trials and blocks (See Jacot-Guillarmod et al.
(2017) for experimental methods). (D) Subjects typically reported seeing one of four percepts –
two single-eye and two grouped – at any given time during a trial. (E) A typical perceptual time
series reported by a subject, showing the stochasticity in both the dominance times and the order
of transitions between percepts.

during which a single percept is reported), and predominance (the fraction of the time a percept is44

reported). Jacot-Guillarmod et al. (2017) have provided experimental support for a generalized ver-45

sion of Levelt’s propositions, and our model suggests neural mechanisms that drive the underlying46

cortical dynamics encoding perceptual changes.47

Levelt’s propositions describe well–tested statistical properties of perceptual alternations (Laing48

and Chow, 2002; Brascamp et al., 2006; Wilson, 2007; Moreno-Bote et al., 2010; Klink et al.,49

2010; Seely and Chow, 2011), and provide constraints on mechanistic models of binocular rivalry.50

Successful models broadly explain rivalry in terms of three interacting neural mechanisms: Mutual51

inhibition drives the exclusivity of the perceived patterns; Slow adaptation drives the transition52

between the different percepts; Finally, internally generated noise is necessary to account for the53

observed variability in perceptual switching times (Matsuoka, 1984; Lehky, 1988; Arrington, 1993;54

Lumer, 1998; Kalarickal and Marshall, 2000; Laing and Chow, 2002; Lago-Fernandez and Deco,55

2002; Stollenwerk and Bode, 2003; Wilson, 2003; Noest et al., 2007; Seely and Chow, 2011; Freeman,56

2005; Brascamp et al., 2006; Moreno-Bote et al., 2007).57

In our model we includes these mechanisms, along with additional, abstracted features of the58

visual system. The model contains a lower level associated with early (e.g., eye-based) neural59

processes and tuned to geometric stimulus properties (e.g. orientation), and a higher level which60

accounts for complex pattern grouping and is responsible for the formation of late stage percepts.61

Our model thus extends earlier models of bistable binocular rivalry, and it reduces to simpler rivalry62

models under bistable inputs (Wilson, 2003; Tong et al., 2006; Diekman et al., 2013).63

We hypothesize that pattern grouping effects occur already at the early stages of the visual64

system. We thus assume that the connectivity of the earlier, first layer in our network is modulated65

by cues – in our case color saturation – indicating which parts of the percepts belong to the66

same group. In most previous models of rivalry the strength of the stimulus primarily modulated67

the inputs to various network modules. In our case, we assume that input strength changes the68
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connectivity between the neural populations at the lower level of the network.69

We found that our model captured the statistics of perceptual alternations reported by exper-70

imental subjects Jacot-Guillarmod et al. (2017). Moreover, over a range of parameters the model71

also displays dynamics consistent with the generalized version of Levelt’s Propositions proposed72

by Jacot-Guillarmod et al. (2017). Our results hold under weak feedback from the higher level73

to the lower level. However, we observed these dynamics only with strong mutual inhibition be-74

tween populations representing conflicting stimuli at the lower level of the visual hierarchy. Our75

model thus suggests constraints on the interactions between neural populations in the visual system76

consistent with experimentally observed perceptual dynamics.77

Our study thus shows that more complex visual stimuli can be used in perceptual rivalry78

experiments to drive the development of more detailed mechanistic models of perceptual process-79

ing (Wilson, 2003; Dayan, 1998; Freeman, 2005).80

2. Methods.81

2.1. Hierarchical model of perceptual multistability with interocular grouping. Consider-82

able evidence suggests that visual processing in humans and other mammals is organized hierar-83

chically (Polonsky et al., 2000; Tong, 2001; Leopold and Logothetis, 1996; Logothetis and Schall,84

1989; Sheinberg and Logothetis, 1997; Dayan, 1998; Wilson, 2003; Freeman, 2005; Tong et al.,85

2006). The simplest models of such processing assume that visual areas at the higher level of the86

hierarchy pool the activity of lower areas (Riesenhuber and Poggio, 1999). Here we extend previous,87

non-hierarchical models of perceptual rivalry (Laing and Chow, 2002; Wilson, 2009; Moreno-Bote88

et al., 2007; Huguet et al., 2014; Diekman et al., 2013) to a model that spans two levels of the89

visual hierarchy, and study grouping in perceptual competition. A schematic representation of our90

model is shown in Fig. 2. The sub-network at the first level of the hierarchy consists of four neural91

populations, each receiving input from a different hemifield of the two eyes (See also Fig. 6C of92

Diekman et al. (2013) and Fig. 2B of Tong et al. (2006)). The responses of all four possible pairs of93

populations at the first level are integrated by distinct populations at the second level (Laing and94

Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007). Each of the four populations at the second95

level corresponds to one of the four percepts shown in Fig. 1B.96

A key feature of our model is the presence of excitatory coupling between populations receiving97

input from different hemifields both from the same and from different eyes. This is consistent98

with electrophysiology and tracing experiments that reveal long-range horizontal connections be-99

tween neurons in area V1 with non-overlapping receptive fields, but similar orientation preferences100

(Stettler et al., 2002; Sincich and Horton, 2005). We also assumed inhibitory coupling between101

populations receiving conflicting input from the same hemifield of different eyes, e.g. the left hemi-102

field of the left and the left hemifield of the right eye. Experimental literature suggests cells with103

orthogonal orientation preferences can inhibit one another through multisynaptic pathways involv-104

ing recurrent and feedback circuitry (Ringach et al., 1997; Ferster and Miller, 2000). Finally, we105

assumed that all populations at the second level inhibit each other, as in previous computational106

models (Laing and Chow, 2002; Moreno-Bote et al., 2007; Shpiro et al., 2007; Lankheet, 2006; Seely107

and Chow, 2011).108

The two levels thus form a processing hierarchy (Wilson, 2003; Tong et al., 2006) with the109

first roughly associated with monocular neural activity generated in LGN and V1 (Wilson, 2003;110

Blake, 1989; Polonsky et al., 2000; Tong, 2001), and the second level associated with the activity of111

higher visual areas, such as V4 and MT, that process objects and patterns (Leopold and Logothetis,112

1999; Wilson, 2003; Lamme and Roelfsema, 2000). However, each level could also describe multiple113

functional layers of the visual system (Sterzer et al., 2009).114

First level of the visual hierarchy. The activity of each neural population receiving input from115

one of the four hemifield-eye combinations at Level 1 is described by a firing rate variable Ei,116
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Figure 2: A hierarchical model of interocular grouping. Neural populations representing
stimuli to the four hemifield-eye combinations at Level 1 provide feedforward input to populations
representing integrated percepts at Level 2, as described by Eqs. (1) and (4) (See also Fig. 6C of
Diekman et al. (2013) and Fig. 2B of Tong et al. (2006)). The figure shows recurrent excitation
within Level 1. To avoid clutter, mutual inhibition between the same hemifield of opposite eyes is
not shown. All populations at the second level of the hierarchy mutually inhibit one another (Laing
and Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007).

i = 1, 2, 3, 4 (corresponding to left hemi/left eye; right hemi/left eye; left hemi/right eye; and right117

hemi/right eye, see Fig. 2). To model adaptation, we included variables describing hyperpolarizing118

currents activated at elevated firing rates, Hi, with i = 1, 2, 3, 4 (Benda and Herz, 2003). The firing119

rates at the lower level of the visual hierarchy are then governed by the following equations:120

τĖ1 = −E1 +G(I1 + αE2 + βE4 − wE3 − gH1 + n1), τhḢ1 = E1 −H1,(1a)121

τĖ2 = −E2 +G(I2 + αE1 + βE3 − wE4 − gH2 + n2), τhḢ2 = E2 −H2,(1b)122

τĖ3 = −E3 +G(I3 + αE4 + βE2 − wE1 − gH3 + n3), τhḢ3 = E3 −H3,(1c)123

τĖ4 = −E4 +G(I4 + αE3 + βE1 − wE2 − gH4 + n4), τhḢ4 = E4 −H4,(1d)124125

with activity time constant τ = 10ms (Häusser and Roth, 1997) and adaptation time constant126

τh = 1000ms. The inputs, Ii, model the strength of the stimulus in each hemifield, and g is the127

strength of adaptation. We assumed that all inputs, Ii, all are equal in intensity, so that Ii = I128

for i = 1, 2, 3, 4. This is consistent with the experiments of Jacot-Guillarmod et al. (2017) where129

stimuli were calibrated to be equal in intensity.130

The strength of within eye excitatory coupling is determined by the parameter α, while in-131

terocular excitatory coupling between populations receiving input from complementary hemifields132

is described by β. The strength of mutual inhibition due to orientation and color competition is133

determined by w.134

We used a sigmoidal gain function, G(x), to relate the total input to the population to the135
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output firing rate,136

(2) G(x) =
a

1 + e−δ(x−θ)
,137

where a = 1, δ = 10 and θ = 0.2. This choice was not essential, as we could have used other138

gain nonlinearities, such as a Heaviside step or a rectified square root, as long as each individual139

population, Ei, has a bistable regime (with a low and high stable firing rate state) for a given input140

Ii (Laing and Chow, 2002; Moreno-Bote et al., 2007).141

Random fluctuations due to network effects and synaptic noise were modeled by the variables ni,142

i = 1, 2, 3, 4 (Faisal et al., 2008). Following Moreno-Bote et al. (2007), we modeled the fluctuations143

in the total input to each population as an Ornstein-Uhlenbeck process,144

(3) τsṅi = −ni + σ
√

2ξ(t),145

where τs = 200ms, σ = 0.03, and ξ(t) is a white-noise process with zero mean. Changing the146

timescale and amplitude of noise does not impact the results significantly.147

Second level of the visual hierarchy. As shown in Fig. 2, feedforward connectivity from Level 1148

to Level 2 of the network associates each of four possible combinations of hemifields with a distinct149

percept reported by obsevers, and a distinct population at the second level of the hierarchy. The150

activity of each of these populations is governed by the firing rate, Pi, and an associated adaptation151

variable, Ai, i = 1, 2, 3, 4,152

τṖ1 = −P1 +G(c1E1E2 − νP2 − γP3 − γP4 − κA1 + n5), τaȦ1 = P1 −A1(4a)153

τṖ2 = −P2 +G(c1E4E3 − νP1 − γP3 − γP4 − κA2 + n6), τaȦ2 = P2 −A2(4b)154

τṖ3 = −P3 +G(c2E1E4 − νP4 − γP1 − γP2 − κA3 + n7), τaȦ3 = P3 −A3(4c)155

τṖ4 = −P4 +G(c2E2E3 − νP3 − γP1 − γP2 − κA4 + n8), τaȦ4 = P4 −A4.(4d)156157

For simplicity we assumed that the activation rate, τ , and adaptation rate, τa ≡ τh are equal158

between layers.159

Feedforward inputs to the second level were modeled as a product of activities of the associated160

populations at the first level. For instance, population activity P1 depends on the product E1E2161

since Percept 1 is composed of the two stimuli in the same-eye hemifields providing input to162

populations 1 and 2 at Level 1 (e.g. the horizontal green bar, and vertical red bar presented to the163

left eye in the example shown in Fig. 2) . Experimental and modeling studies have pointed to such164

multiplicative combinations of visual field segments as a potential mechanism for shape selectivity165

(Salinas and Abbott, 1996; Brincat and Connor, 2006). When we replaced the multiplicative input166

to the second level population with additive input from Level 1, Ej + Ek, our results remained167

qualitatively similar.168

Feedback from upper-level. Experimental results suggest that top-down processing can influence169

rivalry (Bartels and Logothetis, 2010; Klink et al., 2008). We have thus also considered an extension170

of our model by that includes feedback from Level 2 to Level 1,171

τĖ1 = −E1 +G(I1 + α(1 + a1P1)E2 + β(1 + b1P3)E4 − wE3 − gH1 + n1),(5a)172

τĖ2 = −E2 +G(I2 + α(1 + a1P1)E1 + β(1 + b2P4)E3 − wE4 − gH2 + n2),(5b)173

τĖ3 = −E3 +G(I3 + α(1 + a2P2)E4 + β(1 + b2P4)E2 − wE1 − gH3 + n3),(5c)174

τĖ4 = −E4 +G(I4 + α(1 + a2P2)E3 + β(1 + b1P3)E1 − wE2 − gH4 + n4),(5d)175176

We compare the dynamics of the networks with and without feedback, and discuss the impact of177

feedback in Results.178
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2.2. Parameter Values. As with many previous models of rivalry, the dynamics of our model179

depends on the choice of parameters, but is relatively robust: We set the time scales, τ , τh and180

τs, to values found in computational modeling studies and suggested by experimental work neural181

population activity dynamics, spike frequency adaptation, and temporal correlations in population-182

wide fluctuations (Häusser and Roth, 1997; Benda and Herz, 2003; Moreno-Bote et al., 2007; Renart183

et al., 2010). Other parameters were first chosen so that in the absence of noise the model displayed184

periodic solutions corresponding to alternations of single-eye percepts. We then included noise, and185

searched for parameters that produced dynamics that agreed with experimental results. For more186

details, see Appendix A and Fig. 10 therein.187

3. Results. We use the hierarchical model described by Eqs. (1) and (4) to explain the different188

experimentally observed features of binocular rivalry involving interocular grouping. Moreover, we189

show that our model can provide a unifying mathematical framework that accounts for the gener-190

alized Levelt’s propositions, and provides concrete hypotheses of how different neural mechanisms191

shape perceptual dominance across levels of the visual hierarchy. At the same time, our model192

reduces to previous successful models of binocular rivalry with stimuli that conflict between the193

eyes, but do not allow inter-ocular grouping. We use numerical experiments and bifurcation theory194

to demonstrate the qualitative changes in the dynamics of the model to support these conclusions.195

3.1. Levelt’s Propositions and their generalization. Levelt’s propositions relate stimulus strength196

to dominance duration – the time interval during which a single percept is reported; predominance197

– the fraction of the time a percept is reported; and alternation rate – the rate of switching between198

percept reports. In the context of bistable rivalry, Levelt’s propositions have most recently been199

stated as (Brascamp et al., 2015): (I) Increasing the strength of the stimulus presented to one eye200

increases the predominance of that stimulus; (II) Increasing the difference in stimulus strengths201

between the two eyes increases the dominance duration of the stronger stimulus; (III) Increasing202

the difference in stimulus strengths between the two eyes reduces the perceptual alternation rate;203

(IV) Increasing stimulus strength in both eyes while keeping it equal between eyes increases the204

perceptual alternation rate. This effect may reverse at near-threshold stimulus strength (See Fig. 3205

in Brascamp et al. (2015) for an illustration).206

The strength of a percept has been defined as any attribute whose increase causes that percept207

to suppress the appearance of other percepts (Brascamp et al., 2015). Levelt’s Proposition I thus208

effectively defines the strength of a percept attribute according to whether it impacts a percept’s209

predominance. Jacot-Guillarmod et al. (2017) found experimental support for some of the following210

extensions of Levelt’s proposition using the stimuli and associated percepts shown in Fig. 1C,D:211

212 I. Increasing percept strength of grouped percepts or single-eye percepts increases the perceptual213

predominance of those percepts. Jacot-Guillarmod et al. (2017) showed that increasing214

color saturation increases the predominance of grouped percepts. Experimental results215

thus support this proposition, with color saturation defining the strength of the grouped216

percept class.217

II. Decreasing the difference between the strength of the grouped percepts and that of single-eye218

percepts primarily decreases the average dominance duration of the stronger percepts. When219

the single-eye percept is stronger (weaker), increasing the strength of grouped percepts de-220

creases (increases) the average dominance duration of the single-eye (grouped) percepts.221

Jacot-Guillarmod et al. (2017) showed that increasing color saturation primarily decreased222

the average dominance duration of the stronger, single-eye percepts, consistent with Propo-223

sition II. Experimental results did not speak to the validity of generalized Proposition224

II when the grouped percepts were stronger. When one class of percept is much stronger225

(e.g., single-eye percepts), we expect them to completely suppress percepts of the other class226

(e.g., grouped percepts). Percept strengths used in the experiments of Jacot-Guillarmod227
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Figure 3: Dynamics of a hierarchical model of interocular grouping. (A) A typical time
series of the firing rates, Pi, of neural populations at the second level of the model. Each of
these populations is associated with one of the four percepts: P1 and P2 correspond to single-eye
percepts, and P3 and P4 correspond to grouped percepts. Here we used same-eye coupling α = 0.3,
interocular grouping strength β = 0.26, and input strength Ii = 1. (B) Distributions of dominance
durations in the model have a single mode around 1.8s for single-eye percepts, and 1.5s for grouped
percepts. These distributions are consistent with experimental data. Distributions were obtained
from 100 time series, each 100s in duration. Parameters were set to Ii = 1.2, w = 1, g = 0.5, ci =
1, ν = γ = 0.45, κ = 0.5.

et al. (2017) were not sufficiently high to validate these predictions, but we test them in228

our model.229

III. Decreasing the difference in strengths between grouped percepts and single-eye percepts in-230

creases the perceptual alternation rate. Since alternation rate and average dominance du-231

ration are related reciprocally, Proposition III follows from Proposition II.232

IV. Increasing the strength in both grouped percepts and single-eye percepts while keeping strength233

equal among percepts increases the perceptual alternation rate. Proposition IV was not234

tested directly in Jacot-Guillarmod et al. (2017), as changing color saturation affected the235

strengths of each percept differently. We show below that this Proposition holds in our236

model.237

238

3.2. The hierarchical model exhibits perceptual multistabiliy. We first demonstrate how our239

model captures alternations between multiple percepts. As in previous studies, we associated a240

neural population with each percept: An elevation in the activity of a population at Level 2 of our241

model indicates that the corresponding percept is perceived and reported (Laing and Chow, 2002;242

Wilson, 2003; Moreno-Bote et al., 2007; Dayan, 1998; Freeman, 2005; Wilson, 2009; Lehky, 1988;243

Said and Heeger, 2013; Lago-Fernandez and Deco, 2002; Lumer, 1998).244

For a wide range of parameters, a single Level 2 neural population exhibited elevated activity,245

and suppressed the activity of the remaining populations (See Fig. 3A for a representative simula-246

tion). The order and timing of these periods of elevated firing were stochastic, and the distributions247

of the time periods of elevated firings were unimodal (Fig. 3B). This dynamics corresponded to the248

reports of experimental subjects who primarily reported seeing individual percepts over intervals of249

varying durations, and random alternations between the percepts. Consistent with previous mod-250

els (Laing and Chow, 2002; Wilson, 2003; Moreno-Bote et al., 2007), stochastic alternations between251

percepts emerged due to the mutual suppression between the four populations at the second level252

of the hierarchy, while noise and adaptation drove alternations between the active populations.253

3.3. Changing stimulus strength in the model yields experimentally observed dominance254

duration changes. In classical models of perceptual rivalry, stimulus and percept strengths are255
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Figure 4: Effects of varying the interocular grouping strength, β, at the first level
of the hierarchical model. (A) Predominance of grouped percepts increased with β. (B) The
average dominance duration of single-eye percepts decreased with β, while that of grouped percepts
remained approximately unchanged, particularly in the range 0.27 ≤ β ≤ 0.3. (C) Furthermore,
the frequency of visits to grouped percepts increased with β. Other parameters were the same as
in Fig. 3. Solid lines represent computationally obtained means, and shaded regions represent one
standard deviation about the means obtained over 100 realizations.

represented by the magnitude of input(s) to different neural populations. Changes in these input256

strengths correspond to changes in stimulus features like luminosity or contrast (Freeman, 2005;257

Seely and Chow, 2011). In the case of rivalry with grouped percepts (Fig. 1D), we assume that258

changes in color saturation have little effect on the strength of the inputs Ii (Jacot-Guillarmod259

et al., 2017). Rather, we assume that varying color saturation changes the tendency for interocular260

grouping between the two halves of images of the same color and orientation, consistent with Gestalt261

principles of similarity (Roelfsema, 2006; Kohler, 2015). Thus color saturation provides a visual262

cue for binding complementary halves of grouped percepts (Wagemans et al., 2012). We therefore263

modeled the effects of color saturation as a change in the strength of cross-hemispheric excitatory264

connections, β, between populations responding to like stimulus features. We also assumed that265

the excitatory coupling, α, between populations reprsenting same-eye image halves was unaffected266

by changes in color saturation.267

Jacot-Guillarmod et al. (2017) made several observations about the impact of color saturation268

on perceptual alternations recapitulated by our model. First, color saturation increased subjects’269

predominance of grouped percepts, i.e. the fraction of the total time subjects reported a grouped270

percept out of the total time they reported seeing any percept: Increasing interocular coupling271

strength, β, in our model also increased the predominance of grouped percepts (See Fig. 4A). Thus272

color saturation, modeled by connection strength, β, between first level network populations in our273

model, satisfies the commonly used definition of stimulus strength (Brascamp et al., 2015).274

Second, Jacot-Guillarmod et al. (2017) observed that increasing color saturation decreased275

the average dominance duration (the average time the percept is seen before a switch occurs) of276

single-eye percepts while the average dominance duration of grouped percepts remained largely277

unchanged. Our model captured this feature over a range of parameters: For 0.2 < β < 0.3,278

increasing β decreased the dominance duration of single-eye percepts, while changes in dominance279

of grouped percepts were smaller and nearly absent as β approached α (See Fig 4B).280

Finally, Jacot-Guillarmod et al. (2017) showed that increasing color saturation increased the281

ratio of visits to grouped percepts. Our model exhibits this behavior as well: The ratio of visits to282

grouped percepts increased with interocular grouping strength, β, (See Fig 4C). As shown in Fig. 9283

these results also hold in the presence of feedback.284

3.4. Our model conforms to the generalized Levelt’s propositions when α > β. We next285

asked whether the dynamics of our model agrees with experimentally observed generalizations of286
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Figure 5: Levelt’s Proposition IV holds in the hierarchical model. (A) Increasing within-
and between-eye grouping strengths (α and β respectively), simultaneously while keeping them
equal decreased the average dominance duration. (B) Proposition II held when β < α. Here
α = 0.3, with other parameter values as in Fig. 3.

Levelt’s propositions (Jacot-Guillarmod et al., 2017). As shown in Fig. 4, Proposition I hold. In287

fact, the proposition holds over a wide range of parameter values, even when other propositions288

fail, and in all model versions we have explored.289

We found that Proposition II holds in our model when β < α. When excitatory coupling290

between neural populations representing different-eye hemispheres is weaker than coupling between291

same-eye hemisphere populations, increasing interocular coupling strength β decreases the average292

dominance duration of the two single-eye percepts but very weakly increases the average dominance293

duration of the grouped percepts (See Fig. 5B). Since Proposition III follows from Proposition II294

and I, our model supports Proposition III as well.295

To determine whether our model conforms to the prediction of Proposition IV, we varied α296

and β simultaneously while keeping them equal (See Fig. 5A). When grouping strength, β, is297

sufficiently high (β > 0.32), multiple subpopulations become co-active, indicating fusion. Fig. 5A298

shows that an increase in β (and α) decreased the average dominance duration of both grouped and299

single-eye percepts, i.e. increasing the strengths of all percepts while keeping them equal increases300

the perceptual switching rate, in accord with Proposition IV. As in existing models for bistable301

binocular rivalry, Levelt’s Propositions IV holds only for parameter values over which the period302

of the periodic solutions of the associated deterministic model decreases as I increases (See Fig. 10303

in Appendix for more details).304

Remark: To explore the full range of model behaviors, we also consider the case α < β repre-305

senting strong interocular coupling. In this case, Proposition II fails since increasing the strength306

of the grouped percepts by increasing β does not lead to an increase in their average dominance307

duration, despite the grouped percepts being stronger (Fig. 5B). Such failures are common in other308

existing models when percept strengths are close (See Fig. 11C which reproduces results from Seely309

and Chow (2011)). Proposition II states that the average dominance duration of the stronger per-310

cept should change more than that of the weaker percept, but this effect does not hold when input311

strengths are close in mutual inhibitory models of perceptual bistability (Fig. 11C and (Seely and312

Chow, 2011)).313

When the percept strength of the grouped percepts is much stronger than that of the single-eye314

percepts, perception is dominated by two rivaling grouped percepts. According to the original315

Levelt’s Proposition IV, further increasing in the strength of the grouped percepts should increase316

the switching rate between the two grouped percepts, reducing their average dominance duration.317

This is the case in our model, and is the reason for the decrease in average dominance duration318

when β > α shown in Fig. 5B, in contrast to the increase seen in Fig 11C).319

3.5. The mechanisms of multistable rivalry in the hierarchical model. We next describe the320

mechanisms that drive the perceptual switching dynamics in our model. The neural interactions321
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implied by these mechanisms may underlie the dynamics described by the generalized Levelt’s322

Propositions:323

1. Increasing interocular grouping strength, β, promotes co-activation of populations E1 and324

E4, as well as E2 and E3 at the first level of the hierarchy. Joint activity of populations325

E1 and E4 leads to increased activation of population P3 at the second level. Similarly,326

joint activity of E2 and E3 increases activation of P4. Due to mutual inhibition between327

populations at the same hemifileds of opposite eyes, E1 and E3 (E2 and E4) synchronous328

activity of the pair E1 and E4 (E2 and E3) is likely not to be observed together with a329

coactivation of E1 and E2, or E3 and E4. Thus, a coactivation of the input E1E4 to P3330

(E2E3 to P4) decreases the likelihood of elevated inputs E1E2 and E3E4 to the populations331

P1 and P2 corresponding to single-eye percepts. This explains why increasing interocular332

grouping strength, β, increases the predominance of the grouped percepts (P3 and P4), and333

hence the mechanism behind Proposition I.334

2. As in earlier models of bistable rivalry, our hierarchical model exhibits perceptual switches335

either due to (a) inhibition release, or (b) escape driven by noise or the relaxation of336

adaptation (Curtu et al., 2008; Moreno-Bote et al., 2007). These two mechanisms are not337

mutually exclusive, and depend on model parameters. We chose parameters such that the338

escape mechanism dominates.339

3. Keeping α = β and increasing their values is ‘equivalent’ to increasing the input, I: When340

single-eye percepts dominate, the two terms αE2 + βE4 ≈ α in the gain of E1 in Eq. (1a).341

A similar observation applies to the corresponding two terms determining the evolution of342

the firing rates E2, E3 and E4, and a similar effect occurs when the grouped percepts dom-343

inate. Hence, simultaneously increasing the value of α and β while keeping them equal, is344

approximately equivalent to increasing the input I. Because of the choice of our parameter345

region in which the period of the associated deterministic model decreases as I increases,346

this implies that Proposition IV holds.347

348

3.6. Impact of mutual inhibition at different levels of the hierarchical model. It has been349

debated at which level of the visual hierarchy mutually inhibitory interactions lead to rivalry (Carl-350

son and He, 2004; Andrew and Lotto, 2004; Wilson, 2003). Carlson and He (2004) showed that351

incompatibilities (conflicting interocular information that cannot be fused) at the lower level are352

necessary for producing rivalry. In contrast, Andrew and Lotto (2004) used identical stimuli within353

a different chromatic surround to show that the presence of rivalry can depend on the perceptual354

meaning of the visual stimuli, and must thus occur at higher levels of the visual processing hier-355

archy. Wilson (2003), on the other hand, used a two-stage feedforward model to show that the356

elimination of mutual inhibition at early stages reveals the activity at the higher layer, i.e. the357

activity remains at steady-state at the first level, and rivalry occurs only at the higher level.358

Our model exhibits behavior similar to that reported by Wilson (2003): If lower-level mutual359

inhibition is not strong enough, activity at the lower level of the hierarchy approaches steady-state.360

Multistable rivalry in this situation requires stronger mutual inhibition at the higher level of the361

model. However, if this is the case, changes in interocular grouping strength have the same effect on362

all the percepts. As a consequence Levelt’s propositions do not hold. We conclude that multistable363

rivalry is possible with inhibition only at the higher level of the visual hierarchy. However, mutual364

inhibition at the lower level is necessary for generalized Levelt’s propositions to hold.365

Next we ask whether the mutual inhibition at the upper level is necessary for generalized366

Levelt’s propositions to be valid. Our model showed that it was not. The four propositions hold367

without mutual inhibition at the upper level (Fig. 6): The predominance of the (weaker) grouped368

percepts increases with β (Fig. 6A), and the average dominance duration of the (stronger) single-369

eye percepts decreases faster than that of the (weaker) grouped percepts increases (Fig. 6B). The370
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Figure 6: Levelt’s propositions hold without mutual inhibition at Level 2 (ν = γ = 0).
(A) Predominance of grouped percepts increased with interocular grouping strength, β. (B) The
average dominance duration of single-eye percepts (stronger percepts) decreased much faster than
the average dominance duration of grouped percepts (weak percepts). (C) The average dominance
duration decreased as α and β were increased and kept equal. Other parameter values as in Fig. 3.

Figure 7: Time series with different mutual inhibition at the upper level. Each upper
panel shows the neural activity of percepts (populations at the higher level of the hierarchy), and
lower panels show inputs from the lower to the higher level of the hierarchical model; e.g., E1E2
is the input to P1. (A,B) Weak or mild mutual inhibition at the higher level helped disentangle
different percepts, i.e. mutual inhibition at the upper level increased the distance between the
activity levels of the dominating percepts and suppressed percepts; whereas (C) strong inhibition
at the higher level lead to more frequent percept switching. Other parameter values as in Fig. 3.

average dominance duration of all percepts decreases as α = β increases (Fig. 6C).371

Weak or mild mutual inhibition at the upper level does help improve the persistence of dominant372

percepts by increasing the difference between the activity levels of the dominant and suppressed373

percepts. Nonetheless, dominance switches still tend to be mainly determined by the activity at374

the lower level (See Fig. 7), as the dominance of a percept becomes increasingly clear as mutual375

inhibition is increased.376

3.7. Impact of Adaptation at the Different Levels. Adaptation plays a central role in most377

models of rivalry, by decreasing the stability of the dominant percept, and thus driving transitions378

between percepts (Kang and Blake, 2010; Hollins and Hudnell, 1980; Roumani and Moutoussis,379

2012; Blake and Overton, 1979; Blake et al., 1990; van Boxtel et al., 2008; Wade and Weert,380

1986). We therefore asked at what level of the visual hierarchy this type of adaptation is needed381

to explain experimentally observed switching dynamics. As with mutual inhibition, we found that382

the generalized Levelt’s Propositions did hold when we removed adaptation (κ = 0) at the second383

Level of the population model (See Fig. 8). In addition, a change in the strength of adaptation384

had little effect on the average dominance of either grouped percepts or single-eye percepts. See385

Fig. 11A for example. However, when we removed adaptation at the lower level, the activity of386
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Figure 8: Generalized Levelt’s propositions hold in the absence of adaptation at the
higher level of the visual hierarchy. (A) The predominance of grouped percepts increased with
the interocular grouping strength, β. (B) The average dominance duration of single-eye percepts
(stronger percepts) decreased much faster than the average dominance duration of grouped percepts
(weak percepts). (C) The average dominance duration decreased with α and β when the two were
kept equal. Parameter values as in Fig. 3.

Figure 9: Simulation results with feedback from the higher to the lower level of the
hierarchy. Simulations indicate that the model can capture the key experimental results in (Jacot-
Guillarmod et al., 2017) even with feedback from the higher level to the lower level: (A) Pre-
dominance of grouped percepts increased as the interocular grouping strength increased; (B) The
average dominance duration of single-eye percepts decreased while the average dominance duration
of grouped percepts remained approximately unchanged (when β < α but close to the value α);
(C) The ratio of the number of visits to the grouped percepts increased as the interocular grouping
strength increased. Here ai = bi = 0.1 in (5), with other parameters as in Fig. 3.

lower level populations approached steady state since adaptation was necessary for switching to387

occur, and the generalized propositions did not hold any more.388

3.8. Impact of Feedback. So far, we assumed an absence of feedback (ai = 0 and bi = 0)389

from the higher level of the visual hierarchy. However, numerous studies have found top–down390

feedback pathways from higher areas processing more complex features to lower areas processing391

basic geometric features (Angelucci et al., 2002; van Ee et al., 2006; Tong et al., 2006). Thus, we next392

asked whether generalized Levelt’s propositions still hold when we included feedback in our model393

as described in Eqs. (5a) -(5d). Our simulations showed that for weak feedback (ai and bi small),394

the dynamics of the hierarchical model described above did not change qualitatively (Compare395

Fig. 9 with feedback, to Fig. 4, with no feedback). However, the average dominance duration was396

larger when we included feedback, consistent with findings in the bistable case (Wilson, 2003).397

3.9. The hierarchical model captures bistable binocular rivalry. As our hierarchical model is398

an extension of earlier models of binocular rivalry, we asked whether it also exhibits dynamics con-399

sistent with rivalry between two percepts. To answer this question we provided coherent “stimuli”400

to each pair of populations receiving input from the same eye, but conflicting stimuli to the two401
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eyes. This would be equivalent to displaying a monochromatic square composed of vertical bars to402

one eye, and a monochromatic square composed of horizontal bars to the other eye.403

Without feedback and including weak mutual inhibition and adaptation at the higher level, the404

dynamics of the system is mainly determined by that of the lower–level populations. Hence the405

only active populations at the higher level are therefore those corresponding to single–eye percepts.406

More precisely, without noise, and assuming I1 = I2, I3 = I4, the subsystem at the lower level has407

a flow-invariant subspace, S = {E1 = E2, E3 = E4, H1 = H2, H3 = H4}. Diekman et al. (2012)408

proved the subspace S is locally attracting at every point. When restricted to the subspace S,409

Eq. (1) reduces to a classical two population model (Laing and Chow, 2002; Wilson, 2003):410

τĖ1 = −E1 +G(I1 + αE1 − wE3 − gH1) τhḢ1 = E1 −H1(6a)411

τĖ3 = −E3 +G(I3 + αE3 − wE1 − gH3) τhḢ3 = E3 −H3.(6b)412413

When population E1(= E2) dominates, it leads to the domination of percept 1 (P1). Similarly,414

when E3(= E4) dominates, then so does percept 2 (P2). Alternations in elevated activity between415

populations E1 and E3 therefore correspond to rivalry between percepts 1 and 2. Hence, Eq. (1)416

generalizes existing models of rivalry, and can capture features of binocular and multistable rivalry417

observed in experiments.418

In addition, while the synchrony subspace S is associated with single-eye percepts (when E1 =419

E2 > E3 = E4, P1 dominates; when E3 = E4 > E1 = E2, P2 dominates), if I1 = I4, I2 = I3, then420

there is another synchrony subspace W = {E1 = E4, E2 = E3} (when I1 = I4, I2 = I3) associated421

to grouped percepts (when E1 = E4 > E3 = E2, P3 dominates; when E3 = E2 > E1 = E4, P4422

dominates). The model thus also suggests that with sufficiently strong cues, the dynamics could423

be restricted to the invariant subset W, resulting in pure pattern rivalry.424

4. Discussion. Multistable perceptual phenomena have long been used to probe the mecha-425

nisms underlying visual processing (Leopold and Logothetis, 1999). Among these, binocular rivalry426

is perhaps the most robust, and has been studied most frequently. However, we can obtain dif-427

ferent insights by employing visual inputs that are integrated to produce interocularly grouped428

percepts (Kovacs et al., 1996; Suzuki and Grabowecky, 2002). These experiments are particu-429

larly informative when guided by Levelt’s Propositions, which were originally proposed to describe430

alternations between two rivaling percepts (Levelt, 1965; Brascamp et al., 2015).431

We generalized Levelt’s Propositions to perceptual multistability involving interocular group-432

ing. These extended propositions are consistent with experimental findings, and the dynamics of433

a hierarchical model of visual processing. Our neural population model thus points to potential434

mechanisms that underlie experimentally reported perceptual alternations in rivalry with interoc-435

ular grouping (Jacot-Guillarmod et al., 2017).436

Evidence suggests that rivalry exists across a hierarchy of visual cortical areas (Alias and Blake,437

2004). Indeed, rivalry can occur between complex stimulus representations, requiring higher order438

processing than typically observed in early visual areas (Kovacs et al., 1996; Tong et al., 2006).439

Physiological and imaging experiments have also shown that binocular rivalry modulates neural440

activities in the primary visual cortex, as well as higher areas including V2 and V4, MT, and441

inferior temporal cortex (Leopold and Logothetis, 1996; Logothetis and Schall, 1989; Sheinberg442

and Logothetis, 1997; Tong and et al, 1998). However, the way in which activity at these different443

levels contributes to binocular rivalry remains unclear. Competition at the lower or higher levels,444

or a combination thereof can all explain different aspects of this phenomenon, depending on the445

experiment (Leopold and Logothetis, 1999; Pearson et al., 2007). Our model suggests that mutual446

inhibition at the early stages of the visual hierarchy is necessary for dynamics consistent with447

generalized Levelt’s Propositions.448

Multistable rivalry has been studied previously using interocular grouping and fusion of co-449
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herently moving gratings. Moving plaid percepts arise when superimposing two drifting gratings450

moving at an angle to one another (Hupe and Rubin, 2004). In these cases subjects perceive either451

a grating or a moving plaid in alternation (three total percepts: moving to the left, moving the452

right and moving upward). Mutual inhibitory, adapting neuronal network models display dynamics453

consistent with data from such experiments, suggesting the mechanisms behind such rivalry may be454

similar to those driving conventional binocular rivalry (Huguet et al., 2014). This provides further455

evidence that the classical models of rivalry can serve as a foundation for models describing more456

complex settings.457

Comparisons with previous models of perceptual multistability. Our computational model is based458

on the assumption that perceptual multistability occurs via a winner-take-all process, with a single459

percept temporarily excluding all others (Wilson, 2003; Shpiro et al., 2007). Consequently, some460

neural process must allow the system to switch from the dominant percept to another after a461

few seconds (Laing and Chow, 2002). The simplest model of this process is a multistable system462

with slow adaptation and/or noise drives switches between multiple attractors (Moreno-Bote et al.,463

2007; Braun and Mattia, 2010). This framework is common in models of binocular rivalry (Laing464

and Chow, 2002; Shpiro et al., 2007), non-eye-based perceptual rivalry (Brascamp et al., 2009),465

and even perceptual multistability with more than two percepts (Diekman et al., 2013; Kilpatrick,466

2013; Huguet et al., 2014). Each percept typically corresponds to a single neural population which467

mutually inhibits the other(s). Spike rate adaptation or short term plasticity then drive the slow468

switching between network attractors (Laing and Chow, 2002), and noise generates variation in the469

dominance times (Moreno-Bote et al., 2007).470

Our computational model differs from previous ones in a few key ways. Excitatory connec-471

tivity at the first level facilitates both single-eye and grouped binocular percepts. Diekman et al.472

(2013) provided a preliminary account of interocular grouping, but ignored the effects of noise fluc-473

tuations on switching dynamics, and did not account for the known hierarchical structure of the474

visual system (Angelucci et al., 2002; Tong et al., 2006). In our model the strength of excitatory475

connectivity at the first level determines the input strength to populations at the higher level of476

the visual hierarchy, and ultimately each percept’s predominance. In this way, our model is similar477

to that in Wilson (2003), who used a two level model to capture the effects of monocular and478

binocular neurons. However, Wilson’s model focused on the case of two possible percepts, while479

our computational model accounts for all four possible percepts in an interocular grouping task.480

A number of other hierarchical models have also been proposed: Dayan (1998) developed a481

top-down statistical generative model, which places the competition at the higher level. Freeman482

(2005) proposed a feedforward multistage model with all stages possessing the same structure.483

These models also focused on conventional bistable binocular rivalry, and did not address the484

mechanisms of multistable rivalry.485

Extensions to other computational models. We made several specific choices in our computational486

model. First, we described neural responses to input in each visual hemifield by a single variable.487

We could also have partitioned population activity based on orientation selectivity or receptive field488

location (Ferster and Miller, 2000). This would allow us to describe the effects of horizontal con-489

nections that facilitate the representation of collinear orientation segments in more detail (Bosking490

et al., 1997; Angelucci et al., 2002). Since there is evidence for chromatically-dependent collinear491

facilitation (Beaudot and Mullen, 2003), we could model the effects of image contrast and color492

saturation as separate contributions to interocular grouping. However, these extensions would com-493

plicate the model and make it more difficult to analyze. We therefore chose a reduced model with494

the effects of color saturation described by a single parameter, β.495

Neural mechanisms of perceptual multistability. Our observations support the prevailing theory496

that perceptual multistability is significantly percept-based and involves higher visual and object-497

recognition areas (Leopold and Logothetis, 1999). However, a number of issues remain unresolved.498
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The question of whether and when binocular rivalry is eye-based or percept-based has not been499

fully answered (Blake, 2001). Activity predictive of a subject’s dominant percept has been recorded500

in lateral geniculate nucleus (LGN) (Haynes and Rees, 2005), primary visual cortex (V1) (Lee and501

Blake, 2002; Polonsky et al., 2000), and higher visual areas (e.g., V2, V4, MT, IT) (Logothetis and502

Schall, 1989; Leopold and Logothetis, 1996; Sheinberg and Logothetis, 1997). Thus, rivalry likely503

results from interactions between networks at several levels of the visual system (Freeman, 2005;504

Wilson, 2003). To understand how these activities collectively determine perception it is hence505

important to develop descriptive models that incorporate multiple levels of the visual processing506

hierarchy.507

Collinear facilitation involves both recurrent connectivity in V1 as well as feedback connections508

from higher visual areas like V2 (Angelucci et al., 2002; Gilbert and Sigman, 2007), reenforcing509

the notion that perceptual rivalry engages a distributed neural architecture. However, a coherent510

theory that relates image features to dominance statistics during perceptual switching is lacking.511

It is unclear how neurons that are associated to each subpopulation may interact due to grouping512

factors such as collinearity and color.513

Conclusion. Our work supports the general notion that perceptual multistability is a distributed514

process that engages several layers of the visual system. Interocular grouping requires integration515

in higher visual areas (Leopold and Logothetis, 1996), but orientation processing and competition516

occurs earlier in the visual stream (Angelucci et al., 2002; Gilbert and Sigman, 2007). Overall, our517

model shows that the mechanisms that explain bistable perceptual rivalry can indeed be extended518

to multistable perceptual rivalry.519
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Appendix A. Choice of parameter values. We had to set a number of parameters in our523

model to capture the perceptual alternations observed experimentally. To do so we first let α = β,524

and chose a set of parameter values so that the corresponding deterministic model had a periodic525

solution with E1(t) = E2(t) and E3(t) = E4(t). i.e. the periodic solution associated with the526

alternation of single-eye percepts. We then used XPPAUT to obtain the bifurcation diagram527

shown in Fig. 10, where the green curve in (A) is a branch of stable periodic solutions and the528

green curve in (B) is the corresponding periods of the periodic solutions in (A). We choose the529

values of input strength Ii all to be equal and in the interval (0.8, 1.25) so that the model displayed530

decreases in dominance duration with increasing input strength I .531

Changing the values of α and β changes the bifurcation diagram. However, by continuity, as532

long as parameter values are not far from those we used to obtain the bifurcation diagram, the533

dynamics of the system remains similar. In many of our simulations, we fixed the input values I534

to 1.2, and other values at α = 0.3, w = 1, g = 0.5, ci = 1, ν = γ = 0.45, κ = 0.5. τ = 10ms,535

τh = τa = 1000ms, δ = 0.03. The parameter values of w, g, ν, γ and κ roughly follow the values536

used in the literature (Seely and Chow, 2011; Wilson, 2003). We then numerically found the same537

qualitative results hold for I ∈ [1, 1.25].538

Appendix B. Simulation procedure. To obtain the results shown in the figure, for each539

given parameter set we ran 100 realizations of the model for 300 seconds each and computed the540

dominance durations, predominance, and visit ratio for each percept. We pooled all dominance541

durations of one class of percepts (e.g., single-eye percepts or grouped percepts) and computed its542

average and standard deviation across occurrences and realizations.543

Appendix C. Simulation results with feedback from higher to lower level. Our hierarchical544

model with sufficiently weak feedback from the higher level to the lower level can also capture the545
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Figure 10: The hierarchical model captures conventional bistable binocular rivalry.
(A) The bifurcation diagram with bifurcation parameter I when α = β = 0.3, and other parameters
as in Fig. 3 shows the emergence and disappearance of periodic solutions. The green curves represent
the branches of a stable periodic solution, the solid red curve represents stable equilibria, and the
dashed red curve represents unstable equilibria; (B) The period of the corresponding stable periodic
solution peaks around I = 0.6.

Figure 11: Adaptation rate, κ, at the higher level of the hieararchy, and top-down
influence. (A) The adaptation rate had little or no effect on the dominance duration of percepts.
Parameter values as in Fig. 3. (B) Example of top-down influence from only one percept, here
P3 (a1 = a2 = b2 = 0 and b1 = 0.5). Top down input from one percept increased its dominance
duration. Parameters not listed were as in Fig. 3. (C) Part of Fig. 4C from (Seely and Chow,
2011): Proposition IV did not hold when I2 ∈ (0.85, 1) since the increasing rate of the stronger
percepts did not exceed the decreasing rate of the weak percept.

three main observations reported by Jacot-Guillarmod et al. (2017) with the minor difference that546

the average dominance duration increases (Fig. 9). Increasing the adaptation rate κ in the top level547

had little or no effect on the dominance duration of percepts (Fig. 11A shows single-eye percepts,548

but results for grouped percepts were similar) over a large interval (0, 0.8). The main effect of top549

down excitatory feedback from a percept we observed was to increase that percept’s dominance550

duration (Fig. 11B).551
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