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Resting-state functional connectivity is used throughout neuroscience to study brain organization
and to generate biomarkers of development, disease, and cognition. The processes that give rise to
correlated activity are, however, poorly understood. Here, we decompose resting-state functional
connectivity using a “temporal unwrapping” procedure to assess the contributions of moment-to-
moment activity co-fluctuations to the overall connectivity pattern. This approach temporally
resolves functional connectivity at a timescale of single frames, which enables us to make direct
comparisons of co-fluctuations of network organization with fluctuations in the BOLD time series.
We show that, surprisingly, only a small fraction of frames exhibiting the strongest co-fluctuation
amplitude are required to explain a significant fraction of variance in the overall pattern of connection
weights as well as the network’s modular structure. These frames coincide with frames of high
BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across
individuals and identify fluctuations in default mode and control network activity as the primary
driver of resting-state functional connectivity. Our approach reveals fine-scale temporal structure of
resting-state functional connectivity, and discloses that frame-wise contributions vary across time.
These observations illuminate the relation of brain activity to functional connectivity and open a
number of new directions for future research.

INTRODUCTION

Resting-state functional connectivity (rsFC) refers to
the correlation structure of fMRI BOLD activity, usually
estimated over the course of an entire scan session [1].
Inter-individual differences in rsFC have been linked to
variation in biological age [2], cognitive state [3], and
clinical status [4]. Other studies have emphasized the
dynamic nature of rsFC, using sliding window techniques
to generate temporally blurred estimates of rsFC across
time [5, 6] and linking changes in network architecture to
behavior [7] and phenotypes [8].

Despite intense interest and widespread application,
the processes that underpin and shape rsFC are not fully
understood. For instance, how do moment-to-moment
fluctuations in connectivity contribute to the pattern of
rsFC estimated over longer timescales? How are changes
in connectivity supported by instantaneous fluctuations
in brain activity? While approaches like innovation-
driven co-activity patterns (iCAPs) [9], state-based mod-
els [10], and sliding-window analyses [11] have provided
insight into the dynamics of either activity or connectiv-
ity, they generally are less well suited to provide insight
into the relations between domains.

Here, we address these questions using a novel ap-
proach for modeling instantaneous co-fluctuations in
rsFC. We find that at rest co-fluctuations are “bursty”
and occur intermittently as part of whole-brain co-
fluctuation “events” that are uncorrelated with respira-
tion, cardiac cycle, and in-scanner motion. We then show
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that rsFC estimated using only event frames is highly cor-
related with rsFC estimated over the entire scan session,
indicating that rsFC and its system-level organization are
driven by co-fluctuations during relatively few frames.
Finally, we show that events are underpinned by the ac-
tivation of a particular spatial mode of brain activity in
which default mode and control networks anticorrelated
with sensorimotor and attentional systems.

RESULTS

The strength of rsFC between two brain regions can
be quantified as the Pearson correlation of their fMRI
BOLD time series, which is calculated (after z-scoring)
as the mean value of their element-wise product [12]. By
omitting the averaging step, we can “temporally unwrap”
the correlation measure, which results in a new set of
time series – one for every pair of brain regions (net-
work edges) – whose elements represent the magnitude
of co-fluctuation between those regions resolved at every
moment in time (Fig. 1a). These edge time series can
be analyzed directly to pinpoint both the magnitude and
timing of co-fluctuations between pairs of brain regions.

In the following subsections, we analyze co-fluctuation
time series constructed from functional imaging data ac-
quired as part of the Human Connnectome Project [13]
(see Materials and Methods for details). All results
reported in the main text were generated using these
data; we replicate these findings using a second, inde-
pendently acquired dataset [14], with results reported in
the Supplementary Material.
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FIG. 1. Co-fluctuation time series reveal event structure of resting-state functional connectivity. (a) We use a
“temporal unwrapping” of the Pearson correlation to generate co-fluctuation time series for every pair of brain regions (edges).
The elements of the co-fluctuation time series are the element-wise products of z-scored regional BOLD time series that, when
averaged across time, yield vectors that are exactly equal to the Pearson correlation coefficient and can be rearranged to
create an resting-state functional connectivity matrix. (b) We find that the co-fluctuation time series contains moments in
time where many edges collectively co-fluctuate. We can identify these moments by calculating the root mean square across
all co-fluctuation time series and plotting this value as a function of time. We consider high-amplitude values as potential
“events”. In panel b we label moments in time corresponding to particularly high amplitude co-fluctuations that would be
classified as events. The distribution of edge co-fluctuation amplitude is heavy tailed. We wanted to assess the contribution of
events and non-events to the overall pattern of functional connectivity. To do this, we extracted the top and bottom 5% of all
time points (ordered by co-fluctuation amplitude) and estimated functional connectivity from those points alone. (c) Average
functional connectivity across 100 subjects using top 5% (left) and bottom 5% (right). (d) In general, the networks estimated
using the top 5% of time points were much more similar to traditional functional connectivity than those estimated using the
bottom 5% of time points. (e) We performed a similar comparison of network modularity using networks reconstructed using
top and bottom 5% frames.

rsFC is driven by short-lived and
high-amplitude co-fluctuation events

When estimated using Pearson correlation, rsFC is ex-
pressed as a normalized and time-averaged (over the en-
tire scan session) measure of how strongly the activity
of two brain regions co-fluctuates. While past studies
have used sliding window methods to generate estimates
of moment-to-moment fluctuations in rsFC [5, 6], the use
of a windowing procedure results in a temporally blurred
estimate of rsFC. This restricts the time scale of obser-

vations regarding dynamic changes in functional connec-
tivity to the width of the time window, generally on the
order of dozens of frames ( 1 minute of real time). Here,
we address this limitation using co-fluctuation times se-
ries, which allow us to accurately assess contributions
made to rsFC by single frames without the necessity of
a sliding window.

When analyzed across the whole brain, we find that
edge time series exhibit “bursty” behavior, such that
the amplitude of co-fluctuations (quantified by comput-
ing the root mean square; RMS) moves around a mean
value, but is punctuated by brief, intermittent, and dis-
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proportionately large fluctuations, which we refer to as
“events” (Fig. 1b). These events are not directly related
to cardiac and respiratory cycles, in-scanner head mo-
tion (Fig. S1), and spectral properties of fMRI BOLD
time series (Fig. S2), and appear aperiodic with heavy-
tailed distributions of event size, event durations, and
inter-event intervals (Fig. S3).

To better understand how instantaneous co-
fluctuations contribute to whole-brain rsFC, we
isolated high-amplitude “events” and compared them
with low-amplitude episodes (top and bottom 5% in
terms of co-fluctuation amplitude; 60 frames for HCP;
see Fig. S4 for comparisons at other percentiles). We
then estimated rsFC separately for each category, using
only fMRI BOLD data corresponding to those time
points and compared the resulting networks. First, we
found that connection weights were significantly stronger
during events than non-events (within-sample t-test;
p < 10−15; Fig. 1c). Next, we calculated the similarity
of rsFC estimated during events and low-amplitude
episodes with respect to time-averaged rsFC estimated
using the full time series. We found that the event net-
works were highly correlated with rsFC (r = 0.81±0.05)
while the non-event networks were much less correlated
(r = 0.54 ± 0.07) and that these differences were
highly significant (t-test, p < 10−15; Fig. 1d). We
also performed an analogous comparison of network
modularity [15], an index that can be interpreted as a
measure of how segregated a network’s systems are from
one another. As before, we found that modularity was
greater in the event networks (q = 0.51±0.06) compared
to the non-event networks (q = 0.37 ± 0.05) (t-test,
p < 10−15; Fig. 1e).

In the supplement we show similar results in a sec-
ond dataset (Fig. S5). We also demonstrate that these
effects persist with highly conservative motion censoring
(Fig. S6), when using an alternative strategy for estimat-
ing networks from the top and bottom 5% time points
(Fig. S7), and when comparing against a null model that
preserves the temporal structure of events while sampling
frames randomly from the entire time series (Fig. S8).

Collectively, these results suggest that rsFC, estimated
over long time scales, is driven by a small number of brief,
intermittent, and high-amplitude co-fluctuations. The
network structure over these points in time contributes
disproportionately to the overall modularity and system-
level organization of cerebral cortex, as estimated from
long-time averages of rsFC. In contrast, low-amplitude
co-fluctuations are only weakly related to the overall pat-
tern of rsFC and correspond to less modular architec-
tures.

FC events are driven by fluctuations of
task-positive/task-negative mode of brain activity

In the previous section we demonstrated that time-
averaged rsFC can be explained by high-amplitude co-

fluctuations that occur during a relatively small num-
ber of frames. It remains unclear, however, whether co-
fluctuation events are underpinned by a specific pattern
of brain activity or whether they reflect contributions
from multiple distinct patterns. Here, we address this
question directly, using co-fluctuation time series, which
enable us to temporally localize network-level events at
the resolution of individual frames, and to compare co-
fluctuations directly with brain activity.

As a first point of comparison, we calculated the
RMS of both the co-fluctuation time series as well as
the z-scored fMRI BOLD time series. We found that,
across subjects, these time series were highly correlated
(r = 0.97), indicating that co-fluctuation events have an
almost one-to-one correspondence with high-amplitude
BOLD fluctuations (Fig. 2a). This relationship is ex-
pected; because co-fluctuations are calculated as prod-
ucts of z-scored regional activity, their amplitudes will
necessarily be correlated with one another.

Given that fluctuations in BOLD activity are greater
during events than non-events, we asked whether they
formed a consistent and recognizable pattern of activity.
To address this question, we calculated the mean activ-
ity pattern for each subject during their events and non-
events and computed between-subject and between-scan
similarity (Fig. 2b). In general, activity during events
was more correlated across subjects compared to the ac-
tivity patterns during non-events (t-test, p < 10−15). To
better understand what was driving these correlations,
we performed a principal components analysis of the ac-
tivity patterns during events and non-events, aggregated
over all subjects and scans. We focused on the first prin-
cipal component (PC1), which explained 26% of total
variance. The coefficients for PC1 were, on average, much
greater for events than non-events (t-test, p < 10−15;
Fig. 2c), indicating that PC1 was descriptive of activity
patterns during events but less so for non-events. We
then mapped component scores for PC1 onto the corti-
cal surface and found that PC1 corresponded to a mode
of activity that delineates regions in default mode and
control networks from sensorimotor and attentional net-
works (Fig. 2d,e). We replicated these results in a second
dataset (see Fig. S9).

These results suggest that underlying co-fluctuation
events is a mode of brain activity whose spatial pattern
resembles the traditional task-positive/task-negative di-
vision of the brain [16]. This pattern of activity is simi-
lar across individuals, suggesting a conserved mechanism
by which rsFC emerges from brain activity. These ob-
servations suggest a fundamental link between distinct
patterns of brain activity and connectivity while further
clarifying the origins of co-fluctuation “events.”

DISCUSSION

Here, we presented a general approach for “temporally
unwrapping” Pearson correlations to generate time se-
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FIG. 2. Relationship of network co-fluctuations with BOLD fluctuations. In the previous section we demonstrated
that resting-state functional connectivity could be explained on the basis of relatively few frames during which high-amplitude
co-fluctuations occurred. Here, we relate those co-fluctuation frames to BOLD activity fluctuations. We first the root mean
square amplitude of BOLD activity at each time point and compare that to the amplitude of co-fluctuations. (a) Pooling
data from across subjects, we find that these two variables are highly correlated. (b) To investigate this relationship further,
we extract mean activity patterns for each subject and for each scan during the top and bottom 5% time points, indexed
according to co-fluctuation amplitude. Here, we show the correlation matrix of those activity vectors. (c) We then performed
a principal component analysis of this correlation matrix and found that absolute value of coefficients for the first component
(PC1) were greater for the top 5% than the bottom 5%, and (d, e) the PC1 score corresponded to activity patterns that
emphasized correlated fluctuations of default mode and control networks that were weakly or anti-correlated with fluctuations
elsewhere in the brain. These observations suggest that co-fluctuation events, which drive resting-state functional connectivity,
are underpinned by instantaneous activation and deactivation of default mode and control network areas.

ries of inter-regional co-fluctuations along network edges.
This simple procedure enables us to parse the contribu-
tions made by individual frames to rsFC. We find that,
in general, we can accurately estimate whole-brain rsFC
and its system-level organization using data from a rela-
tively small number of frames. Importantly, we link these
frames to a high-modularity brain state and to a specific
mode of brain activity, in which default mode and con-
trol networks fluctuate in opposition to sensorimotor and
attention systems.

Origins of co-fluctuation events

Altogether, these findings speak to the origins of
whole-brain rsFC and modularity in terms of co-
fluctuation events that are, themselves, driven by instan-
taneous and opposed fluctuations of association and sen-
sorimotor cortex. These observations clarify our under-
standing of, as well as challenge core assumptions under-
pinning the origins of rsFC. Perhaps the most pressing

question concerns the neurobiological processes under-
lying both the co-fluctuation events and their concomi-
tant BOLD signal patterns. Our findings suggest that
these events are unrelated to head motion, cardiac cycle,
or respiration. However, they make disproportionately
large contributions to the observed patterns of rsFC [17],
a measure that is used widely throughout neuroscience
and neuroimaging communities. The analysis presented
here suggests that high co-fluctuation events may corre-
spond to previously observed “network states” associated
with time-varying changes in modular structure [18, 19].
Determining the causes of such events will help to bet-
ter contextualize findings related to rsFC and suggest
avenues for future research.

For example, the categorization of time points into
“events” and “non-events” may have important impli-
cations for “functional fingerprinting” [20]. We find that
events are associated with activation patterns that are
more similar across subjects than activation patterns
during non-events – How repeatable are those patterns
within an individual? Are“functional fingerprints” more
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strongly expressed during events or non-events [21]? Are
event or non-event patterns more useful for accurately
identifying a subject [22]? Do the statistics of event and
non-event patterns differ across genetic and phenotypic
markers as well as clinical, developmental, or cognitive
state? How does underlying white-matter connectivity
relate to rsFC during events and non-events? Past stud-
ies have reported that rsFC decouples from anatomy dur-
ing modular brain states [23, 24]. Our approaches allows
us to investigate this relationship with greatly improved
temporal resolution.

Contributions of brain activity to the system-level
organization of rsFC

Lastly, our findings hint at a crucial link between in-
stantaneous fluctuations in activity and the organization
of rsFC [25, 26]. Many studies have found that the com-
munity structure of rsFC resembles known co-activation
patterns, including task-evoked activity [27, 28]. Here,
we proposed a strategy that enables us to tease apart
the precise contribution of instantaneous BOLD fluctua-
tions (and their topography) to rsFC.

We demonstrated that a particular pattern of activ-
ity involving default mode and control regions is pri-
marily responsible for driving co-fluctuation events and,
in turn, whole-brain rsFC. While this mode made the
greatest contribution, it is likely that other modes make
non-trivial contributions as well. By extending the def-
inition of an event to include lower-amplitude fluctua-
tions, we expect to find patterns of activity that corre-
spond to other, well-known brain systems [9]. Moreover,
we speculate that these patterns likely recombine in dif-
ferent proportions as a function of task complexity and
domain [27, 29] and across individuals [30]. In future
work, the proportion of variance explained by different
patterns and other statistics related to events, including
the frequency with which they occur, may serve as po-
tent correlates of cognitive and disease state. Because
events appear to drive the overall configuration of rsFC,
we further speculate that their statistics may serve as
important complements to traditional measures of rsFC.

Conclusion

In conclusion, our study discloses a novel a link be-
tween cortical activity and rsFC, facilitating a statisti-
cal explanation of the brain’s system-level architecture
in terms of intermittent, short-lived, high-amplitude fluc-
tuations in activity and co-activity. Our methodological
framework is readily applicable to other imaging datasets
and recording modalities, including observations at neu-
ronal scales, enabling the study of neural co-activity at
unprecedented temporal resolution.
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MATERIALS AND METHODS

Datasets

The Human Connectome Project (HCP) dataset [13]
included resting state functional data (rsfMRI) from 100
unrelated adult subjects (54% female, mean age = 29.11
± 3.67, age range = 22-36). The study was approved by
the Washington University Institutional Review Board
and informed consent was obtained from all subjects.
Subjects underwent four 15 minute rsfMRI scans over
a two day span. A full description of the imaging param-
eters and image prepocessing can be found in [31]. The
rsfMRI data was acquired with a gradient-echo EPI se-
quence (run duration = 14:33 min, TR = 720 ms, TE =
33.1 ms, flip angle = 52◦, 2 mm isotropic voxel resolution,
multiband factor = 8) with eyes open and instructions to
fixate on a cross. Images were collected on a 3T Siemens
Connectome Skyra with a 32-channel head coil.

The Midnight Scan Club (MSC) dataset [14] included
rsfMRI from 10 adults (50% female, mean age = 29.1
± 3.3, age range = 24-34). The study was approved by
the Washington University School of Medicine Human
Studies Committee and Institutional Review Board and
informed consent was obtained from all subjects. Sub-
jects underwent 12 scanning sessions on separate days,
each session beginning at midnight. 10 rsfMRI scans per
subject were collected with a gradient-echo EPI sequence
(run duration = 30 min, TR = 2200 ms, TE = 27 ms, flip
angle = 90◦, 4 mm isotropic voxel resolution) with eyes
open and with eye tracking recording to monitor for pro-
longed eye closure (to assess drowsiness). Images were
collected on a 3T Siemens Trio.

Image Preprocessing

HCP Functional Preprocessing

Functional images in the HCP dataset were minimally
preprocessed according to the description provided in
[31]. Briefly, these data were corrected for gradient dis-
tortion, susceptibility distortion, and motion, and then
aligned to a corresponding T1-weighted (T1w) image
with one spline interpolation step. This volume was
further corrected for intensity bias and normalized to
a mean of 10000. This volume was then projected to
the 32k fs LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [32]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
* REST{1,2} {L,R} Atlas MSMAll.dtseries.nii.

MSC Functional Preprocessing

Functional images in the MSC dataset were pre-
processed using fMRIPrep 1.3.2 [33], which is based
on Nipype 1.1.9 [34]. The following description of
fMRIPrep’s preprocessing is based on boilerplate dis-
tributed with the software covered by a “no rights re-
served” (CC0) license. Internal operations of fMRIPrep
use Nilearn 0.5.0 [35], ANTs 2.2.0, FreeSurfer 6.0.1, FSL
5.0.9, and AFNI v16.2.07. For more details about the
pipeline, see the section corresponding to workflows in
fMRIPrep’s documentation.

The T1-weighted (T1w) image was corrected for in-
tensity non-uniformity with N4BiasFieldCorrection
[36, 37], distributed with ANTs, and used as T1w-
reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow, using NKI as
the target template. Brain surfaces were reconstructed
using recon-all [38], and the brain mask estimated pre-
viously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray-matter using Mindboggle
[39]. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c [40] was performed
through nonlinear registration with antsRegistration,
using brain-extracted versions of both T1w volume and
template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using FSL’s
fast [41].

Functional data was slice time corrected using AFNI’s
3dTshift and motion corrected using FSL’s mcflirt
[42]. Fieldmap-less distortion correction was performed
by co-registering the functional image to the same-
subject T1w image with intensity inverted [43] con-
strained with an average fieldmap template [44], im-
plemented with antsRegistration. This was fol-
lowed by co-registration to the corresponding T1w us-
ing boundary-based registration [45] with 9 degrees of
freedom. Motion correcting transformations, field distor-
tion correcting warp, BOLD-to-T1w transformation and
T1w-to-template (MNI) warp were concatenated and ap-
plied in a single step using antsApplyTransforms using
Lanczos interpolation.

Several confounding time-series were calculated based
on this preprocessed BOLD: framewise displacement
(FD), DVARS and three region-wise global signals. FD
and DVARS are calculated for each functional run, both
using their implementations in Nipype [46]. The three
global signals are extracted within the CSF, the WM,
and the whole-brain masks.

The resultant nifti file for each MSC subject
used in this study followed the file naming pattern
* space-T1w desc-preproc bold.nii.gz.
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Image Quality Control

All functional images in the HCP dataset were re-
tained. The quality of functional images in the MSC were
assessed using fMRIPrep’s visual reports and MRIQC
0.15.1 [47]. Data was visually inspected for whole brain
field of view coverage, signal artifacts, and proper align-
ment to the corresponding anatomical image. Functional
data were excluded if greater than 25% of the frames
exceeded 0.2 mm framewise displacement [48]. Further-
more, functional data were excluded if marked as an out-
lier (exceeding 1.5x inter-quartile range in the adverse di-
rection) in more than half of the following image quality
metrics (calculated within-dataset, across all functional
acquisitions): dvars, tsnr, fd mean, aor, aqi, snr, and
efc. Information about these image quality metrics can
be found within MRIQC ’s documentation [49].

Functional and Structural Networks Preprocessing

Parcellation Preprocessing

A functional parcellation designed to optimize both lo-
cal gradient and global similarity measures of the fMRI
signal [50] (Schaefer200 ) was used to define 200 areas
on the cerebral cortex. These nodes are also mapped
to the Yeo canonical functional networks [25]. For the
HCP dataset, the Schaefer200 is openly available in
32k fs LR space as a cifti file. For the MSC and HBM
datasets, a Schaefer200 parcellation was obtained for
each subject using a Gaussian classifier surface atlas [51]
(trained on 100 unrelated HCP subjects) and FreeSurfer’s
mris ca label function. These tools utilize the sur-
face registrations computed in the recon-all pipeline
to transfer a group average atlas to subject space based
on individual surface curvature and sulcal patterns. This
method rendered a T1w space volume for each subject.
For use with functional data, the parcellation was resam-
pled to 2mm T1w space.

Functional Network Preprocessing

The mean BOLD signal for each cortical node data
was linearly detrended, band-pass filtered (0.008-0.08 Hz)
[48], confound regressed and standardized using Nilearn’s
signal.clean, which removes confounds orthogonally to
the temporal filters [52]. The confound regression em-
ployed [53] included 6 motion estimates, time series of
the mean CSF, mean WM, and mean global signal, the
derivatives of these nine regressors, and the squares these
18 terms. Furthermore, a spike regressor was added for
each fMRI frame exceeding a motion threshold (HCP =
0.25 mm root mean squared displacement, MSC = 0.5
mm framewise displacement). This confound strategy
has been shown to be relatively effective option for re-
ducing motion-related artifacts [48]. Following this pre-

processing and nuisance regression, residual mean BOLD
time series at each node was recovered.

Co-fluctuation time series

Constructing networks from fMRI data (or any neural
time series data) requires estimating the statistical de-
pendency between every pair of time series. The magni-
tude of that dependency is usually interpreted as a mea-
sure of how strongly (or weakly) those voxels are parcels
are functionally connected to each other. By far the most
common measure of statistic dependence is the Pearson
correlation coefficient. Let xi = [xi(1), . . . , xi(T )] and
xj = [xj(1), . . . , xj(T )] be the time series recorded from
voxels or parcels i and j, respectively. We can calculate
the correlation of i and j by first z-scoring each time se-
ries, such that zi = xi−µi

σi
, where µi = 1

T

∑
t xi(t) and

σi = 1
T−1

∑
t[xi(t)−µi] are the time-averaged mean and

standard deviation. Then, the correlation of i with j can
be calculated as: rij = 1

T−1

∑
t[zi(t) · zj(t)]. Repeating

this procedure for all pairs of parcels results in a node-by-
node correlation matrix, i.e. an estimate of FC. If there
are N nodes, this matrix has dimensions [N ×N ].

To estimate edge-centric networks, we need to modify
the above approach in one small but crucial way. Sup-
pose we have two z-scored parcel time series, zi and zj .
To estimate their correlation we calculate the mean their
element-wise product (not exactly the average, because
we divide by T−1 rather than T ). Suppose, instead, that
we never calculate the mean and simply stop after calcu-
lating the element-wise product. This operation would
result in a vector of length T whose elements encode the
moment-by-moment co-fluctuations magnitude of parcels
i and j. For instance, suppose at time t, parcels i and j
simultaneously increased their activity relative to base-
line. These increases are encoded in zi and zj as positive
entries in the tth position, so their product is also posi-
tive. The same would be true if i and j decreased their
activity simultaneously (because the product of negatives
is a positive). On the other hand, if i increased while j
decreased (or vice versa), this would manifest as a nega-
tive entry. Similarly, if either i or j increased or decreased
while the activity of the other was close to baseline, the
corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-wise
product of zi and zj can be viewed as encoding the mag-
nitude of moment-to-moment co-fluctuations between i
and j. An analogous vector can easily be calculated for
every pair of parcels (network nodes), resulting in a set
of co-fluctuation (edge) time series. With N parcels, this

results in N(N−1)
2 pairs, each of length T .

Modularity maximization

Modularity maximization is a heuristic for detecting
communities in networks [54]. Intuitively, it attempts to
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decompose a network into non-overlapping sub-networks
such that the observed density of connections within sub-
networks maximally exceeds what would be expected by
chance, where chance is determined by the user. The ac-
tual process of detecting communities is accomplished by
choosing community assignments that maximize a mod-
ularity quality function, Q, defined as:

Q =
∑
ij

Bijδ(gi, gj) (1)

where Bij = Aij − Pij is the {i, j} element of the mod-
ularity matrix, which represents the observed weight of
the connection between nodes i and j minus the expected
weight. The variable gi is the community assignment of
node i and δ(x, y) is the Kronecker delta function, whose
value is 1 when gi = gj and 0 otherwise. The modularity,
Q, is effectively a sum over all edges that fall within com-
munities and is optimized when the the observed weights
of connections is maximally greater than the expected. In
general, larger values of Q are thought to reflect superior
community partitions.

Signed and correlation matrices

In this manuscript, we used the following variant of
modularity, q∗, which has been shown to be especially
well-suited for use with correlation matrices [15]:

q∗ = q+ +
v−
v+v−

q− (2)

where q± = 1
v±

∑
ij(r

±
ij −

k±i k
±
j

v± )δ(gi, gj). In this ex-

pression, r±ij represents either the positive or negative

elements of the correlation matrix, k±i =
∑
j r

±
ij , and

v± =
∑
i k

±
i .
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FIG. S1. Comparison of co-fluctuation amplitude with confounding variables. In the main text we calculated the
magnitude of co-fluctuation at every frame. A concern is that variation in this measure could be attributed to physiological
and motion-related variables of non-neural origins. To address this concern, we calculated the correlation of co-fluctuation
amplitude with three variables: respiration and cardiac data as well as in-scanner head motion (relative root mean square error
framewise displacement). In-scanner motion is already sampled at the same frequency as the BOLD acquisition; for the two
physiological variables, we calculated the mean value within a frame. We calculated these variables for every subject and scan
session in the HCP dataset and computed their correlation with the co-fluctuation amplitude. The distributions of correlation
coefficients, shown here in panels a, b, and c, were tightly centered on zero, suggesting that co-fluctuation amplitude is not
obviously related to standard physiological or motion-related variables.

FIG. S2. Comparison of co-fluctuation amplitude from observed data and from phase-randomized surrogates.
In the main text we calculate co-fluctuation amplitude as root mean square of edge co-fluctuations at each moment in time.
Here, we compare these observed amplitudes with those estimated from phase-randomized surrogate time series. The phase
randomization procedure has been described in detail elsewhere [55]. Briefly, this procedure entails taking the discrete Fourier
transform of each regional BOLD time series, adding random phase at each frequency bin, and taking the inverse Fourier
transform, generating a surrogate time series for that region with same power spectrum but random phase properties. We
repeat this procedure for all N = 200 regions and subsequently calculate their co-fluctuation time series and overall amplitude
(panel a). We repeated this procedure 100 times and found that the distribution of co-fluctuation amplitude for the observed
data was broad and included a heavy tail that was not present in the surrogate data (panel b). This observation suggests that
the observed co-fluctuations (in particular the high-amplitude “events”) cannot be explained by spectral properties of the fMRI
BOLD time series alone.
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FIG. S3. Event duration and inter-event interval distributions. For each scan session, we calculated the co-fluctuation
amplitude at every frame. We imposed percentile-based thresholds on these data (percentiles calculated based on pooled data
from all subjects and all scan sessions). Thresholding the co-fluctuation amplitude time series results in a binary classification
of time points as either “events” or “non-events”. From these observations, we calculated two quantities: “event duration” as
the number of consecutive frames classified as events and “inter-event duration” as the number of frames between successive
events. We repeated this analysis for both the HCP and MSC datasets. Panels a and b show event durations for HCP and MSC
datasets, respectively. Note that the distribution is broad and includes a heavy tail, indicating a lack of periodicity. Panels c
and d depict inter-event durations for HCP and MSC datasets. Additionally, we assessed the size of events, as measured by the
fraction of all edges whose co-fluctuation amplitude at a given frame exceeded some threshold. Here, we identified events as
time points at which the co-fluctuation amplitude was in the top 1%, 2.5%, 5%, 10%, and 25% (event thresholds are indicated
by different colors in each plot). Then, for each time point classified as an event, we calculated the fraction of all edges whose
absolute co-fluctuation amplitude exceed the 75th percentile. We performed this procedure using both HCP (e) and MSC (f )
data and found that event sizes follow a broad and heavy-tailed distribution, suggesting that they follow no characteristic scale
of description.
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FIG. S4. Similarity of time-averaged FC with FC estimated using fewer frames. In the main text, we showed that
rsFC, when estimated using the top 5% of frames (ordered by co-fluctuation magnitude) resulted in a connectivity matrix that
much more similar to time-averaged FC than the matrix generated using the bottom 5% of frames. Here, we show that this
relationship persists irrespective of percentile. To do this for a given subject and scan session, we ordered frames according
to co-fluctuation magnitude from greatest to least. Then, we extracted the top and bottom k frames (varying k from 3 to
to T , where T is the total number of frames in the scan session), estimating FC using those k frames, and calculating the
similarity with time-averaged FC. This procedure results in a similarity value at every k for both the top and bottom frames.
We repeated this analysis for all 100 subjects in the HCP dataset. We find that across the full range of k, FC estimated using
frames corresponding to high-amplitude co-fluctuations was always more similar to the time-averaged FC than those estimated
using low-amplitude frames.
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FIG. S5. Co-fluctuation time series reveal event structure of resting-state functional connectivity for MSC
dataset. (a) We use a “temporal unwrapping” of the Pearson correlation to generate co-fluctuation time series for every pair
of brain regions (edges). The elements of the co-fluctuation time series are the element-wise products of z-scored regional BOLD
time series that, when averaged across time, yield vectors that are exactly equal to the Pearson correlation coefficient and can
be rearranged to create an resting-state functional connectivity matrix. (b) We find that the co-fluctuation time series contains
moments in time where many edges collectively co-fluctuate. We can identify these moments by calculating the root mean
square across all co-fluctuation time series and plotting this value as a function of time. We consider high-amplitude values as
potential “events”. The distribution of edge co-fluctuation amplitude is heavy tailed. We wanted to assess the contribution of
events and non-events to the overall pattern of functional connectivity. To do this, we extracted the top and bottom 5% of all
time points (ordered by co-fluctuation amplitude) and estimated functional connectivity from those points alone. (c) Average
functional connectivity across 100 subjects using top 5% (left) and bottom 5% (right). (d) In general, the networks estimated
using the top 5% of time points were much more similar to traditional functional connectivity than those estimated using the
bottom 5% of time points. (e) We performed a similar comparison of network modularity using networks reconstructed using
top and bottom 5% frames.
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FIG. S6. Effect of frame-censoring. In the main text, we demonstrated that FC estimated using frames corresponding to
high-amplitude co-fluctuations was more similar to time-averaged FC than the FC estimated using low-amplitude co-fluctuation
frames. Here, we perform an identical analysis using only the bottom 50% frames in terms of in-scanner motion [56]. Note
that this procedure results in time series that include exactly half of the original frames. (a) Correlation of FC estimated using
top and bottom 5% of frames, ordered by co-fluctuation amplitude. As in the main text, the top 5% are more correlated with
time-averaged FC than the bottom 5%. (b) Modularity of FC estimated using only the top and bottom 5% of frames. As in
the main text, the top 5% are more modular than the bottom. (c) Group-averaged FC matrices estimated using the top 5% of
frames (left) and the bottom 5% of frames (right). Panels a, b, and c depict results using HCP data, while d, e, and f depict
analogous results using data from the MSC.
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FIG. S7. Alternative strategy for estimating FC from a limited number of frames. In the main text, we estimated
FC from the top and bottom 5% of frames by extracting fMRI BOLD activity from computing the correlation structure. An
alternative strategy for estimating FC is to simply average co-fluctuation time series over the top/bottom frames, ordered by
co-fluctuation amplitude. Here, we perform this analysis on HCP data and show that (a) FC from the top 5% of frames in
terms of co-fluctuation amplitude is more similar to time-averaged FC than FC from the bottom 5% of frames and that (b) FC
from the top 5% results in more modular networks than FC from the bottom 5%. These results are in exact agreement with
what was reported in the main text.

FIG. S8. Effect of “jittering” on correspondence between time-averaged rsFC and rsFC estimated using reduced
number of rames. In the main text, we demonstrated that the correspondence between time-averaged rsFC and rsFC
estimated using high-amplitude co-fluctuation frames was significantly greater than the correspondence using low-amplitude
frames. This comparison of the highest- and lowest-amplitude frames can be viewed as a comparison of extremes. A more
general test would be to compare the correspondence of rsFC from high-amplitude frames with rsFC from randomly-sampled
frames. A truly random sample, however, may destroy any temporal autocorrelation in the time series data. Instead, we
identified “events” as frames whose co-fluctuation amplitude exceeded some label, and used the circular shift operator to move
these frames forward and backward in time, approximately preserving their temporal structure. Here, we show the correlation
of time-averaged rsFC with rsFC estimated using the offset event frames (100 frames forward and backward in time). We
repeat this analysis with different event thresholds (from left to right,the top 1%, 2.5%, 5%, 10%, and 25%). In general, we
find that the correlation with time-averaged rsFC is peaked exactly at an offset of 0 and rapidly decays to a baseline level.
This observation holds for all event thresholds, and suggests that random samples with temporal structure that preserves
autocorrelative properties of the co-fluctuation amplitude time series will, in general, result in estimates of rsFC with poorer
correspondence to time-averaged rsFC than the event frames, themselves.
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FIG. S9. Relationship of network co-fluctuations with BOLD fluctuations for MSC dataset. Here, we replicate
results from the main text using the MSC data. Specifically, we relate high-amplitude co-fluctuations to fluctuations in fMRI
BOLD activity. We subsequently demonstrate that the high-amplitude fluctuations are driven by activity patterns involving
control and default mode networks, and that these patterns are expressed similarly across individuals. As in the main text,
we first calculate the root mean square amplitude of BOLD activity at each time point and compare that to the amplitude of
co-fluctuations. (a) Pooling data from across subjects, we find that these two variables are highly correlated. (b) To investigate
this relationship further, we extract mean activity patterns for each subject and for each scan during the top and bottom 5%
time points, indexed according to co-fluctuation amplitude. Here, we show the correlation matrix of those activity vectors. (c)
We then performed a principal component analysis of this correlation matrix and found that absolute value of coefficients for
the first component (PC1) were greater for the top 5% than the bottom 5%, and (d, e) the PC1 score corresponded to activity
patterns that emphasized correlated fluctuations of default mode and control networks that were weakly or anti-correlated with
fluctuations elsewhere in the brain. These observations suggest that co-fluctuation events, which drive resting-state functional
connectivity, are underpinned by instantaneous activation and deactivation of default mode and control network areas.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2019. ; https://doi.org/10.1101/800045doi: bioRxiv preprint 

https://doi.org/10.1101/800045
http://creativecommons.org/licenses/by-nc-nd/4.0/

	High-amplitude co-fluctuations in cortical  activity drive resting-state functional connectivity
	Abstract
	Introduction
	Results
	rsFC is driven by short-lived and  high-amplitude co-fluctuation events 
	FC events are driven by fluctuations of task-positive/task-negative mode of brain activity

	Discussion
	Origins of co-fluctuation events
	Contributions of brain activity to the system-level organization of rsFC
	Conclusion

	Materials and methods
	Datasets
	Image Preprocessing
	HCP Functional Preprocessing
	MSC Functional Preprocessing

	Image Quality Control
	Functional and Structural Networks Preprocessing
	Parcellation Preprocessing
	Functional Network Preprocessing

	Co-fluctuation time series
	Modularity maximization
	Signed and correlation matrices


	Author Contributions
	Data availability
	Code availability
	References


