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Abstract 
 

A test of association between the phenotype and a set of genes within a biological pathway can 

be complementary to single variant or single gene association analysis and provide further 

insights into the genetic architecture of complex phenotypes. Although multiple methods exist to 

perform such a gene-set analysis, most have low statistical power when only a small fraction of 

the genes are associated with the phenotype. Further, since existing methods cannot identify 

possible genes driving association signals, interpreting results of such association in terms of the 

underlying genetic mechanism is challenging. Here, we introduce Gene-set analysis Association 

Using Sparse Signals (GAUSS), a method for gene-set association analysis with GWAS 

summary statistics. In addition to providing a p-value for association, GAUSS identifies the 

subset of genes that have the maximal evidence of association and appears to drive the 

association. Using pre-computed correlation structure among test statistics from a reference 

panel, the p-value calculation is substantially faster compared to other permutation or simulation-

based approaches. Our numerical experiments show that GAUSS can increase power over 

several existing methods while controlling type-I error under a variety of association models. 

Through the analysis of summary statistics from the UK Biobank data for 1,403 phenotypes, we 

show that GAUSS is scalable and can identify associations across many phenotypes and gene-

sets. 
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Introduction 

 

Over the last decade and half, genome-wide association studies (GWAS) have identified 

thousands of genetic variants associated with hundreds of complex diseases and traits. However, 

the variants identified so far, individually or in combination, account for a small proportion of 

the heritable component of disease risk1. A possible explanation is that due to the large number 

of genetic polymorphisms examined in GWAS and the massive number of tests conducted, weak 

associations are likely to be missed after multiple comparison adjustment 2. 

 

Gene-set analysis (GSA) has been suggested as a potentially more powerful alternative to the 

standard GWAS, especially in identifying weak to moderate effects 3. In GSA, individual genes 

are aggregated into groups sharing certain biological or functional characteristics. This 

considerably reduces the number of tests that need to be performed since the number of gene-sets 

analyzed are smaller than the number of genes or genetic variants tested 4-5. Additionally, most 

complex phenotypes are manifested through a concerted activity of multiple variants. Thus, in 

such cases GSA can provide insight into the involvement of specific biological pathways, 

cellular mechanisms to the phenotype [6]. 

 

GSA aims to evaluate one of two types of null hypotheses [5]: the competitive null hypothesis in 

which the genes in a gene-set of interest are no more associated with the phenotype than any 

other genes outside it or the self-contained null hypothesis in which none of the genes in a gene-

set of interest is associated with the phenotype. Several novel statistical methods to perform GSA 

for self-contained null hypothesis have been published and have successfully discovered gene-

sets associated with numerous complex diseases [7-12]. For example, de Leeuw et al. [13] developed 

MAGMA, a method that transforms the p-values of the genes in the gene-set to z-values using an 

inverse normal transformation and employs linear regression to test the association. Pan et al. [11] 

formulated a method aSPUpath, which uses an adaptive test statistic based on the sum of 

powered scores and calculates a permutation-based p-value to test association. 

 

However, there are several concerns regarding the properties and applicability of these methods. 

Existing GSA methods often demonstrate low power [8] especially in situations where only a few 
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genes within the gene-set are associated with the phenotype [12]. Additionally, in the presence of 

correlation between variants or genes due to linkage disequilibrium (LD), many existing methods 

cannot control the type-I error [14]. Resampling-based p-value calculation [15] can be used, but 

these approaches are computationally very expensive and hence can reduce the applicability of 

the method, especially for large datasets. 

 

Another key challenge is the question of interpretability none of the current methods have 

addressed. Although the existing GSA methods produce a p-value for association between the 

gene-set and the trait, it remains important to understand the genes that drive the association 

signal within the gene-set. This is critical in further downstream analysis and eventually using 

the results for functional follow-up or to suggest therapeutic targets. Existing GSA methods fail 

to identify such genes which individually or in combination might be driving the association 

signal. 

 

Here we describe a maximum-type pathway-based association method Gene-set analysis 

Association Using Sparse Signals (GAUSS) which aims to address the issues mentioned above. 

GAUSS focuses on the self-contained null hypothesis, as our main goal is to identify trait-

associated genes or loci. GAUSS identifies a subset of genes within the gene-set which carries 

the maximum signal of association and evaluates the association p-value through a fast 

simulation approach. The identified genes can be considered as core genes which drive the 

association signal. Using pre-computed correlation matrices from publicly available reference 

samples, our approach is computationally fast and can be efficiently applied to large biobank-

scale datasets. Furthermore, GAUSS test can be conducted using publicly available summary 

level GWAS information (effect sizes, standard errors and minor allele frequency). 

 

Using simulation studies, we show that GAUSS can be more powerful than the existing methods 

while maintaining the correct type-I error. We applied the method to evaluate the associations of 

1,403 phenotypes from UK Biobank [16] with 10,679 gene-sets derived from the molecular 

signature database (MSigDB) [17], thus proving it feasible to be applied to such large-scale data 

and gaining new insights into the genetic architecture of the phenotypes. The association analysis 

results have been made publicly available through a visual browser. 
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Results 

Overview of the methods  

 

To conduct the GAUSS test, we need p-values for the regions or genes in the gene-set. Popular 

gene-based tests such as SKAT [18], SKAT-Common-Rare [19], prediXcan [20], and others can be 

used to obtain the p-values when individual level data are available. If only GWAS summary 

statistics (effect size, standard error, p-value, minor allele frequency for each variant) are 

available, we can approximate the gene-based tests and obtain their p-values using LD 

information from a suitable reference panel (See Methods) [21]. Constructing the GAUSS test for 

a given gene-set can be done in the following two steps. 

 

Step 1, test statistics calculation: To construct the GAUSS test statistic, we start with the gene-

based p-values for the m genes in the gene-set H and convert them to z-statistics as zj = −Φ−1(pj) 

for j = 1, 2, · · · , m. The GAUSS statistic for the gene-set H is the maximum association score of 

any non-empty subset of H i.e. GAUSS(H) = ������  

∑   
���  ��

�|�|
, where |B| is the number of genes 

in a subset. Such maximum type statistics have previously been used in the context of multiple 

phenotype, meta-analysis [22], and gene-environment interaction tests [23]. Although we consider 

the maximum over all 2m−1 non-empty subsets of H, in practice the GAUSS test statistic can be 

obtained through an algorithm with the computational complexity of O(mlogm) (See Methods). 

We term the subset of genes B for which the maximum is attained the core subset (CS) of the 

gene-set H.  

 

Step 2, p-value calculation: Due to LD, z-statistics in Step 1 may be dependent. Thus, it is 

challenging to derive the null distribution of the GAUSS analytically. Instead, we employ a fast 

simulation approach. We first estimate the correlation structure (���) among the z-statistics (z1, z2, 

· · ·, zm) under the null hypothesis, which can be estimated from a given reference panel. Here we 

use publicly available 1000 Genomes data [24] as the reference panel. With VH estimated, we 

approximate the joint distribution of z-statistics using a multivariate normal distribution. Now 

the null distribution of GAUSS test statistics can be simulated by repeatedly generating z-
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statistics from the multivariate normal distribution with the estimated variance-covariance 

structure ��� and calculating GAUSS statistics from the simulated z-statistics. The proportion of 

simulated null test statistics greater than the observed GAUSS statistics is an estimate of the p-

value (See Methods). We used an adaptive resampling scheme to further reduce the 

computational cost (See Computation time comparison). 

 

Simulation results 

 

We carried out simulation studies to evaluate the type I error and power of GAUSS. To 

understand the effect of the number of genes in the gene-sets, we selected a large and a small 

gene-set from GO terms in MSigDB for our simulations, sterol metabolic process (GO: 0016125) 

consisting of 123 genes and regulation of blood volume by renin angiotensin (GO: 0002016) 

consisting of 11 genes, respectively.  

 

Type I error rates and power 

Using genotypes of 5,000 unrelated individuals from the UK Biobank, we generated a normally 

distributed phenotype for the same individuals (See Simulation Model), independent of the 

genotypes. We then calculated the gene-based p-values using SKAT-Common-Rare test for the 

genes in the gene-sets and subsequently applied the GAUSS test. Type-I errors of GAUSS 

remains well calibrated at α = 1 × 10−04, 1 × 10−05 and 5 × 10−06 (Table 1) for both gene-sets 

under consideration. 

 

Next, we compared the power of GAUSS with three competing methods, SKAT for all the 

variants in the gene-set (SKAT-Pathway), MAGMA and aSPUpath. With gene-set GO: 0016125, 

we first considered a scenario with dense signals, i.e., where a relatively high fraction of the 

genes in the gene-set were active, i.e. had at least one variant with non-zero effect size. We set 

20 of the 123 genes (16.2%) to be active and within each active gene we set 30% of the variants 

within each active gene to have non-zero effects. For different values of the heritability 

explained by the gene-set (h2), the empirical power of GAUSS to detect gene-sets associated 

with the phenotypes increases with increasing heritability explained by the gene-sets. The 

powers of GAUSS and MAGMA were very similar (Figure 5a) for all the different scenarios, 
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and the power of SKAT-Pathway was consistently lower than all other methods. aSPUpath had 

slightly lower power than GAUSS when the heritability was low to moderate (h2 = 1-3%), but 

with higher average heritability (h2 = 4-6%) the estimates for power of both methods were 

similar. This trend remained consistent when we reduced the proportion of variants with non-

zero effect size to 20%.  

 

Next, we considered a scenario where the signals were sparse (Figure 5b), i.e., 2 (1.6%) to 6 

(5%) genes among the 123 genes in the gene-set were active. We fixed the average heritability 

explained by the gene-set at approximately 2%. In all the simulation settings, GAUSS is the most 

powerful method. The power gap between GAUSS and the other methods was particularly large 

when only 2 genes were active. Among the other methods aSPUpath had the second highest 

power and MAGMA had the lowest power when 2 to 5 genes were active.  The patterns were 

similar when we decreased the proportion of variants with non-zero effect size to 20%. 

 

Empirical power comparisons elucidate an important advantage of GAUSS compared to the 

other methods. The competing methods, such as MAGMA and aSPUpath, use test statistics that 

are averaged over all the variants or genes in the gene-set. If the fraction of non-null variants is 

relatively low, these tests will have low power. However, GAUSS uses a subset-based approach 

to choose the subset with maximum evidence of association, and thus does not average over all 

null and non-null variants or genes in the gene-set. Hence, even when the fraction of non-null 

variants is relatively low, GAUSS can have relatively higher power since it adaptively selects the 

best possible subset of active genes. But, when the fraction of non-null variants is relatively high, 

MAGMA and aSPUpath can have high power of detection similar to GAUSS. Also, the power of 

GAUSS increases with increasing heritability explained by the gene-set under consideration, as 

expected.   

 

Identification of active genes 

We further report the sensitivity and specificity of GAUSS in identifying the active genes 

through the core subset (CS) genes. Sensitivity and specificity are defined by the proportion of 

active genes correctly identified by GAUSS as CS genes and the proportion of inactive genes 

that are not in CS genes, respectively. Since no current methods attempt to identify the active 
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genes within the gene-set, we compared the performance of GAUSS to a method which selects 

only the significant genes (p-value < 2.5×10−06) as the active set. For GAUSS, both sensitivity 

and specificity remained higher (>75%) at different values of h2 and for varying number of 

active genes (Figure 6) implying that the CS genes extracted by GAUSS approximate the true 

active set of genes with high accuracy. If we use only the significant genes to as the active set, 

both sensitivity and specificity are generally lower than those from GAUSS. We further 

evaluated the power to identify the exact set of active genes which is a more stringent criteria 

compared to sensitivity and specificity. Under different magnitudes of effect size defined by 

different values of c, the empirical probability to identify the exact set of active genes through 

the CS genes, increases with the number of active genes as well the magnitude of effect size. For 

strong effects in 4 or more genes, estimated power to identify the exact set of active genes is 

more than 75% for both the gene-sets (Figure 7).  

 

Simulation results highlight the utility of GAUSS compared to existing methods, especially 

under the scenarios when only a few genes are active in the gene-set. Further by extracting CS 

genes, GAUSS can identify the set of such active genes with high probability and provides a 

direct way to interpret and utilize the findings. 

 

Computation time comparison 

The computational efficiency of GAUSS can make it a useful method for current large genetic 

data. Although the p-value calculation is based on simulation, we have reduced the 

computational burden compared to other permutation-based approaches. The method only 

requires us to generate z-statistics from multivariate normal distribution with given ���  an 

operation which can be done quickly. The LD matrices and ��� within a gene and between genes 

can be precomputed from a given reference panel. We have employed adaptive resampling 

scheme to further reduce the computational cost. Larger p-values (> 0.005) are computed using a 

lesser number of resampling iterations (1000 iterations) while for smaller p-values ( < 0.005) we 

use a much larger number of resampling iterations (1 million iterations). 

 

Figure 8 shows the total run-time (in CPU-hours) of GAUSS, MAGMA, and aSPUpath applied 

on pernicious anemia (PA) and type-2 diabetes (T2D) from UK Biobank (see below). Total run-
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times were calculated as the net time taken starting from the input of summary statistics until the 

p-values for 10,679 gene-sets were generated. GAUSS performs similar to MAGMA, while 

aSPUpath, which is also based on simulation p-values, is substantially slower than GAUSS. 

 

Association analysis in UK Biobank 

We performed association analysis with GAUSS for 1,403 binary phenotypes in UK Biobank 

data to identify disease related gene-sets and the corresponding core genes that are driving the 

associations. We used publicly available GWAS summary statistics generated by SAIGE for the 

1,403 binary phenotypes (See Methods for more details). We used two collections of gene-sets 

from MSigDB: 1) the curated gene-sets (C2) which contains gene-sets from KEGG, BioCarta, 

and Reactome databases and also gene-sets representing expression signatures of genetic and 

chemical perturbations, and 2) gene sets that contain genes annotated by the GO term (C5), 

resulting in a total of 10,679 gene-sets. The Bonferroni corrected p-value threshold for testing 

association across these gene-sets for a given phenotype is 0.05/10,679 ≈ 5 × 10−06. For each 

phenotype, we estimated the gene-based (SKAT-Common-Rare) p-value for 18,334 genes using 

the SAIGE summary statistics and LD information from a reference panel consisting of the 

Europeans in 1000-Genomes population (See Methods for more details). Then, for each pair of 

phenotype and gene-set we computed the GAUSS test-statistic, corresponding p-value and the 

core subset (CS) of genes (if the gene-set is reported to be significant). 

 

Overview of UK-Biobank results: 

The 10,679 gene-sets had median size of 36 (average: 93.2) genes per gene-set. 94.2% (17,284 of 

18,334) genes belonged to at least one gene-set. In our analysis, we identified 13,466 significant 

phenotype-gene-set associations at a cut-off of 5 × 10−06. Among the 1,403 phenotypes, 14.1% 

(199) phenotypes had at least one significantly associated gene-set while among the 10,679 gene-

sets, 34.1% (3,638) had at least one significantly associated phenotype. There was no significant 

enrichment in the proportion of association by category of gene-sets, i.e. the GO (C5) gene-sets 

or Curated (C2) gene-sets (p-value = 0.13). For the significant associations, the average number 

of the extracted CS genes were 17.2, and a majority (53.6%; 7,237) were due to strong effects of 

a single gene within the gene-set. However, 24.6% of the associations were driven by a set of 5 

or more CS genes. Among the different categories of phenotypes, “endocrine/metabolic” 
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diseases had the highest number of associations (5,015; 37.2%), followed by “circulatory 

system” diseases (2,312; 17.2%) and “digestive” diseases (1,985; 14.7%).  

 

Gene-set association analysis for a Single phenotype:  

To demonstrate the utility of GAUSS in detecting weaker associations and improving 

interpretation, we show association results for two exemplary phenotypes: E.Coli infection (EC; 

PheCode: 041.4) and Gastritis and duodenitis (GD; PheCode: 535). Single variant GWAS results 

using SAIGE for these traits can be visualized on UK-Biobank PheWeb (See URL) and do not 

show any evidence of substantial inflation (λGC varies from 0.91 to 1.09). In the single variant 

analysis, GD has five genome-wide significant loci and EC has none. When we estimated the 

gene-based (SKAT-Common-Rare) p-values for EC and GD, the QQ plots were well calibrated 

without any indication of inflation (λGC varies from 0.98 to 1.01). At an exome-wide cut-off of 

2.5 × 10−06, EC does not have any significantly associated genes; GD has three genes, HLA-

DQA1 (p-value = 9.8 × 10−11), HLA-DQB1 (p-value = 1.4 × 10−08) and PBX2 (p-value = 2.1 

×10−06) that are significantly associated. 

Next, we performed gene-set association analysis using GAUSS (Figure 2 and 3). We found that 

EC, which does not have any significantly associated variant or gene, is associated with two 

gene-sets (Figure 2): fatty acid catabolic process (GO: 0009062; p-value < 1×10−06) and fatty 

acid beta oxidation (GO: 0006635; p-value = 2 × 10−06). Although a thorough gene-set 

association analysis of E.Coli infection has not been done before to our knowledge, the 

antibacterial role of fatty acids has been well-reported [25, 26]. A set of 25 distinct genes (Table 2) 

is selected by GAUSS as the CS genes that are responsible for the association although none of 

them are marginally associated with EC, i.e. SKAT-Common-Rare p-values for each of the 

genes in core subset is greater than 2.5×10−06. This demonstrates how GAUSS can effectively 

aggregate weaker signals within a gene-set, which would otherwise have not been detected at 

exome-wide threshold.  

 

When we performed gene-set association analysis of GD, we found 4 gene-sets associated to GD 

(Table 2). Although the gene-sets and the corresponding functions are biologically related, their 

role in GD is not easily identifiable. GAUSS selects a set of 10 genes to be the CS genes for the 

gene-sets, the majority being from the different proteasome endopeptidase complex (PSM) 
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subunits. Different proteasome subunit genes have been found to be associated with several 

diseases including inflammatory responses. In particular, the role of PSMB8 [27] in gastric cancer 

has been extensively reported in literature. Also, PSMB9 and PSMB8 have been found to be 

associated with several gastrointestinal disorders like celiac disease and inflammatory bowel 

disease. Although, none of these genes are individually associated with GD, they jointly drive 

the strong association signals of the identified gene-sets. This highlights the role that the selected 

core genes (CS) play in interpreting the results and how GAUSS cab help in finding meaningful 

biological targets for downstream investigation. 

 

Phenome-wide association analysis for single gene-set: 

Due to the computational scalability of GAUSS, it can also be applied to phenome-wide analysis 

to identify the role of gene-sets to phenomes. Figure 1 shows association results across the 

phenome of 1,403 phenotypes in UK Biobank and for one exemplary gene-set: ATP-binding 

cassette (ABC) transporters from KEGG database (ABC transporters; URL). ABC transporters 

are involved in tumor resistance, cystic fibrosis and a spectrum of other heritable phenotypes 

along with the development of resistance to several drugs. We found 18 phenotypes significantly 

associated (p-value < 5×10−06) with ABC transporters (Table 3), mainly from “digestive” disease 

and “endocrine/metabolic” disease categories. Among the CS genes selected for different 

associated phenotypes, as reported by GAUSS, TAP2 is the most frequent. This gene has 

previously been associated with several phenotypes including diastolic blood pressure [31], type-1 

diabetes and autoimmune thyroid diseases [32]. Our results suggest that the significant association 

of ABC transporters to disorders like psoriasis, celiac disease, and type-1 diabetes are mainly 

driven by single-gene effect of TAP2. However, the association of ABC transporters with gout, 

lipoid metabolism, and Cholelithiasis are driven mainly by ABCG5 and ABCG2. Thus, although 

ABC transporters gene-set is significantly associated with 18 phenotypes, the CS genes that drive 

the associations are different which can be indicative of different mechanisms underlying the 

phenotypes.   

 

The results highlight several important aspects of association results for pathway-based analysis. 

GAUSS can detect and aggregate weak to moderate association signals in a gene-set which 

might not be detected by standard genome-wide or exome-wide Bonferroni corrections. The CS 
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genes extracted by GAUSS underlines another important feature of GAUSS. A phenotype might 

be associated with several gene-sets, but the signals might not be independent of each other, i.e., 

driven by the same CS genes. The phenome-wide association analysis of a given gene-set 

elucidates an aspect of gene-set analysis that has been unexplored until now. A particular gene-

set may be associated with different phenotypes but the CS genes that are driving the association 

might be exactly the same (e.g. TAP2 for Psoriasis, Celiac disease and Type-1 diabetes in Table 

3) or completely different (e.g. CS genes of Type-1diabetes and Cholelithiasis in Table 3). This 

underlines the role that CS genes play in producing association signals and can highlight the 

underlying biological similarities or differences between phenotypes. 

 

Further, the computation burden of GAUSS is low, which makes it usable for UK-biobank 

analysis. Given summary statistics, the computation time to estimate the SKAT-Common-Rare 

p-values for EC and GD were 5.5 and 5.6 CPU-hours respectively. Subsequently, the time taken 

to calculate the p-values for 10, 679 gene-sets for EC and GD were 4.1 and 4.7 CPU-hours 

respectively. 

 

In the simulation studies and UK-Biobank data analysis, we used European ancestry samples of 

1000 Genome data for reference data. To investigate whether the method is sensitive to the 

reference panel, we have further compared the performance of GAUSS using 1000-Genomes 

data to that using UK-Biobank data (Supplementary Figure 10). The results show that the choice 

of reference panel did not substantially impact the results from the GAUSS test. 

 

Discussion 

 

In this article we have presented GAUSS which introduces a maximum-type statistic to test the 

association between a gene-set and a phenotype. Similar to several existing approaches like 

MAGMA and aSPUpath, GAUSS aims to aggregate weak to moderate association signals across 

a set of genes which might not have been detected due to stringent Bonferroni correction in 

standard single variant or gene-based approaches. Given association z-statistics for the genes in 

the gene-set, GAUSS computes the maximum association score that can be achieved among any 

subset of the gene-set and computes a simulation-based p-value. Further, it identifies the subset 
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for which this maximum association score is obtained which is termed the core subset (CS) of 

genes. 

 

The distinction between the CS genes and the rest of the gene-set highlights a key feature of 

GAUSS. To the best of our knowledge, there does not exist any other method to adaptively 

identify the subset of genes that drives the pathway signal. Most existing approaches suggest 

using the genes with the lowest p-values in the gene-set. But such choices are difficult to 

interpret. In GAUSS, we select a subset of the gene-set that has the maximum association score 

as the core subset (CS) and thus provides a natural way to interpret the results. The selected CS 

genes can be a singleton or multiple genes depending on the phenotype. For example, ABC 

transporters gene-set has only one gene (TNXB) as the CS gene for at least 14 phenotypes. In 

contrast, a set of 25 genes drives the association of EC and GO:0009062. Hence, selecting the 

core subset through a data-driven approach is helpful for interpreting the association signals and 

understanding the underlying mechanisms. 

 

Computational scalability is another important aspect of GAUSS. Although GAUSS obtains 

simulation-based p-values, the computational cost is much lower than existing methods which 

employ direct resampling or permutation (refs). This improvement is obtained since GAUSS 

uses a copula to convert gene-based p-values to the multivariate normal distribution and uses 

pre-computed correlation matrices. This allows GAUSS to be used for phenome-wide gene-set 

analysis. 

 

Our UK Biobank analysis shows that only a small percentage of genes in the pathway are 

selected as core genes (Supplementary Figure 9). Simulations show that GAUSS has a 

substantial higher power than the existing methods in detecting associations in such sparse 

scenarios. For example, MAGMA did not produce any significant results for Pernicious Anemia 

(PA) in the UK Biobank data (Figure 9). This shows that GAUSS can be more powerful than 

existing approaches in data applications. When many of the genes in the gene-set are associated, 

the power of GAUSS was similar to MAGMA. Thus, in most of the practical scenarios GAUSS 

has power better than or as good as the widely used existing methods, like MAGMA or 

aSPUpath, to detect association. Further, the type-I error for GAUSS remains calibrated at the 
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desired level as well. 

 

One of the limitations of GAUSS is that it only allows testing for the self-contained null 

hypothesis. Furthermore, the p-value being a simulation-based estimation can only provide 

estimates up to a level of accuracy determined by the number of iterations. The minimum 

possible p-value that can be estimated by this resampling-based method depends on the number 

of resampling iterations. For example, if we use N resampling iterations, the minimum possible 

p-value that can be observed is 
�

�
. To address it, we use a generalized Pareto distribution-based 

method to estimate smaller (p-value < 5×10− 6) p-values (See Supplementary). We fit a 

generalized Pareto distribution (GPD) to the upper tail of the simulated distribution of the 

GAUSS test statistic and estimate the p-value by inverting the distribution function of the GPD. 

Using this method, we can estimate the highly significant p-values (< 1 × 10−06) that cannot be 

accurately estimated using resampling (Supplementary Figures 2-4, Supplementary Table 1-2). 

However, further research is needed in this respect. 

 

The novel insights generated by GAUSS and its computational scalability make it a potentially 

attractive choice to perform gene-set analysis. We have made available the results from the 

analysis of UK Biobank data in a public repository.  

 

 

URL 

PathWEB: http://ukb-pathway.leelabsg.org/ 

 

UK-Biobank single variant analysis Pheweb: http://pheweb.sph.umich.edu/SAIGE-UKB/ 

 

ABC transporters: http://software.broadinstitute.org/gsea/msigdb/cards/KEGG_ABC_TRANSPORTERS 

 

TFF2 targets: http://software.broadinstitute.org/gsea/msigdb/cards/BAUS_TFF2_TARGETS_UP 

 

GO 0098643: http://software.broadinstitute.org/gsea/msigdb/cards/GO_BANDED_COLLAGEN_FIBRIL 

 

emeraLD: https://github.com/statgen/emeraLD 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

 

References 

[1] T. A. Manolio et al., “Finding the missing heritability of complex diseases,” Nature. 2009. 

[2] J. Z. Liu et al., “A versatile gene-based test for genome-wide association studies,” Am. J. 

Hum. Genet., 2010. 

[3] R. M. Cantor, K. Lange, and J. S. Sinsheimer, “Prioritizing GWAS Results: A Review of 

Statistical Methods and Recommendations for Their Application,” American Journal of 

Human Genetics. 2010. 

[4] B. L. Fridley and J. M. Biernacka, “Gene set analysis of SNP data: Benefits, challenges, 

and future directions,” European Journal of Human Genetics. 2011. 

[5] K. Yu et al., “Pathway analysis by adaptive combination of P-values,” Genet. Epidemiol., 

2009. 

[6] T. H. Pers, “Gene set analysis for interpreting genetic studies,” Human Molecular 

Genetics. 2016. 

[7] P. H. Lee, C. O’Dushlaine, B. Thomas, and S. M. Purcell, “INRICH: interval-based 

enrichment analysis for genome-wide association studies,” Bioinformatics. 2012. 

[8] P. Jia, L. Wang, H. Y. Meltzer, and Z. Zhao, “Pathway-based analysis of GWAS datasets: 

Effective but caution required,” International Journal of Neuropsychopharmacology. 

2011. 

[9] C. O’Dushlaine et al., “The SNP ratio test: pathway analysis of genome-wide association 

datasets,” Bioinformatics. 2009. 

[10] M. A. Mooney, J. T. Nigg, S. K. McWeeney, and B. Wilmot, “Functional and genomic 

context in pathway analysis of GWAS data,” Trends Genet. 2014. 

[11] W. Pan, I.-Y. Kwak, and P. Wei, “A Powerful Pathway-Based Adaptive Test for Genetic 

Association with Common or Rare Variants,” Am. J. Hum. Genet. 2015. 

[12] R. Sun, S. Hui, G. D. Bader, X. Lin, and P. Kraft, “Powerful gene set analysis in GWAS 

with the Generalized Berk-Jones statistic,” Plos Genet., 2019. 

[13] C. A. de Leeuw, J. M. Mooij, T. Heskes, and D. Posthuma, “MAGMA: Generalized Gene-

Set Analysis of GWAS Data,” PLOS Comput. Biol. 2015. 

[14] V. Moskvina et al., “Permutation-based approaches do not adequately allow for linkage 

disequilibrium in gene-wide multi-locus association analysis,” Eur. J. Hum. Genet. 2012. 

[15] P. Holmans et al., “Gene Ontology Analysis of GWA Study Data Sets Provides Insights 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

 

into the Biology of Bipolar Disorder,” Am. J. Hum. Genet., vol. 85, no. 1, pp. 13–24, Jul. 

2009. 

[16] C. Bycroft et al., “The UK Biobank resource with deep phenotyping and genomic data,” 

Nature. 2018. 

[17] A. Liberzon, C. Birger, H. Thorvaldsdottir, M. Ghandi, J. P. Mesirov, and P. Tamayo, 

“The Molecular Signatures Database (MSigDB) hallmark gene set collection.,” Cell Syst. 

2015. 

[18] M. C. Wu, S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin, “Rare-variant association 

testing for sequencing data with the sequence kernel association test,” Am. J. Hum. Genet. 

2011. 

[19] I. Ionita-Laza, S. Lee, V. Makarov, J. D. Buxbaum, and X. Lin, “Sequence Kernel 

Association Tests for the Combined Effect of Rare and Common Variants,” Am. J. Hum. 

Genet. 2013. 

[20] E. R. Gamazon, H. E. Wheeler, K. P. Shah, S. V Mozaffari, K. Aquino-Michaels, and 

others, “A gene-based association method for mapping traits using reference 

transcriptome data,” Nat. Genet. 2015. 

[21] T. Lumley, J. Brody, G. Peloso, A. Morrison, and K. Rice, “FastSKAT: Sequence kernel 

association tests for very large sets of markers,” Genet. Epidemiol. 2018. 

[22] S. Bhattacharjee, P. Rajaraman, K. B. Jacobs, W. A. Wheeler, B. S. Melin, and others, “A 

Subset-Based Approach Improves Power and Interpretation for the Combined Analysis of 

Genetic Association Studies of Heterogeneous Traits,” Am. J. Genet. 2012. 

[23] Y. Yu, L. Xia, Seunggeun Lee, X. Zhou, H. M. Stringham, and others, “Subset-Based 

Analysis using Gene-Environment Interactions for Discovery of Genetic Associations 

across Multiple Studies or Phenotypes,” BiorXiv, 2018. 

[24] The 1000 Genomes Project Consortium, “A global reference for human genetic variation,” 

Nature. 2015. 

[25] H. J. Heipieper and R. Y.-Y. Chiou, “Adaptation of Escherichia coli to Ethanol on the 

Level of Membrane Fatty Acid Composition,” Appl. Environ. Microbiol. 2005. 

[26] T. OHYA, T. MARUBASHI, and H. ITO, “Significance of Fecal Volatile Fatty Acids in 

Shedding of Escherichia coli O157 from Calves: Experimental Infection and Preliminary 

Use of a Probiotic Product.,” J. Vet. Med. Sci. 2000. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

 

[27] C. H. Kwon et al., “PSMB8 and PBK as potential gastric cancer subtype-specific 

biomarkers associated with prognosis,” Oncotarge. 2016. 

[28] M. NikPay et al., “Partitioning the Pleiotropy Between Coronary Artery Disease and Body 

Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous 

System–Specific Functional Elements”. Circulation: Genomic and Precision Medicine. 

2018. 

[29] Y. Zeng et al., “A Combined Pathway and Regional Heritability analysis indicates 

NETRIN1 Pathway is associated with Major Depressive Disorder,” Biol. Psychiatry, 

2017. 

[30] M. Baus-Loncar et al., “Trefoil factor 2 (Tff2) deficiency in murine digestive tract 

influences the immune system,” Cell. Physiol. Biochem., 2005. 

[31] H. R. Warren et al., “Genome-wide association analysis identifies novel blood pressure 

loci and offers biological insights into cardiovascular risk,” Nat. Genet., 2017. 

[32] Y. Tomer et al., “Genome wide identification of new genes and pathways in patients with 

both autoimmune thyroiditis and type 1 diabetes,” J. Autoimmun., 2015. 

[33] W. Zhou et al., “Efficiently controlling for case-control imbalance and sample relatedness 

in large-scale genetic association studies,” Nat. Genet., vol. 50, no. 9, pp. 1335–1341, Sep. 

2018. 

[34] C. Quick, C. Fuchsberger, D. Taliun, G. Abecasis, M. Boehnke, and H. M. Kang, 

“emeraLD: rapid linkage disequilibrium estimation with massive datasets,” 

Bioinformatics. 2019. 

 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Methods 

Estimating gene-based p-values from summary statistics 

Let � � ���, ��, … , ����  be the vector of phenotype for n individuals; X the matrix of q non-

genetic covariates including the intercept; 	� � �	�� , 	�� , … , 	����the vector of the minor allele 

counts (0,1, or 2) for a genetic variant j; and 	 � �	�, 	�, … , 	�� the genotype matrix for m 

genetic variants in a target region. The regression model used to relate the phenotype to the m 

genetic variants in the region is: 


�����
  �  �� �  	�  
where 
�. � is a link function and can be set to be the identity function for continuous traits or the 

logistic function for binary traits, � is the vector of regression coefficients of q non-genetic 

covariates; β = (β1, · · ·, βm) T is the vector of regression coefficients of the m genetic variants. To 

test for H0: β = 0, under the random effects assumption βi ∼ N (0, τ 2). The SKAT test statistic 

[35] is 

� �  �� � μ��� 	��	� �� � μ�� 

where μ� is the estimated expected value of y under the null hypothesis of no association and W = 

diag(w1, .., wm) is a diagonal weighting matrix. Wu et al [18] suggested to use Beta (MAF, 1,25) 

density function as a weight, which upweights rarer variants. The test statistic Q asymptotically 

follows a mixture of chi-squared distributions under the null hypothesis and p-values can be 

computed by inverting the characteristic function. The mixing parameters are the eigenvalues of 

WGT P0GW where P0 = In − X(XT X)−1XT. 

 

Equation (1) uses individual level data on the samples. However, the test of association can be 

effectively approximated by using summary level statistics on the m variants in the region. Given 

GWAS summary statistics (MAFi, βi, SEi), the test statistic Q in (2) can be shown to be equal to 

�	
����
  �  � 2���1 � �����
���

�
�

���

  

where ��  �  ��

���

 is the standardized effect size. Under the null hypothesis, Q follows a mixture of 

chi-squares and the mixing parameters are the eigenvalues of the matrix WGT P0GW. Replacing 

P0 by Φ0 = I − 11T /n, we can approximate the eigenvalues by that of the matrix WGT Φ0GW. 
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The matrix GT Φ0G is the LD-matrix of the m variants. We can estimate this matrix using a 

suitable publicly available reference panel [21].  

 

To test for the combined effects of common and rare variants, Ionita-Laza et al. [19] developed 

SKAT-Common-Rare which tests the combined effect of rare and common variants in the 

region. Given summary statistics as above, we construct the test statistic separately for common 

and rare variants as 

�	
����
; ������  �  � 2��;�������1 � ��;���������;������
� ��;������

�
 

�

  

�	
����
; ����  �  � 2��;�����1 � ��;�������;����
� ��;����

�
 

�

  

where �	
����
; ������(�	
����
; ����) is constructed using common (rare) variants only. The 

weights wi;common uses a Beta(MAF, 0.5,0.5) density function whereas the weights wi;rare uses a 

Beta(MAF, 0.5,0.5) desity distribution. SKAT-Common-Rare test is then constructed as 

������������  �  �1 �  � �	
����
; ������  �    �	
����
; ����  

where � �  

�����������; ���	�

�����������; ���	� � �����������; 
������
. The asymptotic null distribution of Qcommon-

rare is a mixture of chi-squares and can be approximated using the LD matrices of common and 

rare variants. 

      

GAUSS test statistic 

We start with the z-statistics for gene-based p-values for the m genes in the gene-set !. In this 

article we have used SKAT-Common-Rare test but others like prediXan can also be used to 

obtain gene-based p-values.  

 

For any non-empty subset " # !, we define S(B) the association score for the subset B as 

$�"�  � ∑ ��
 
���  

�|�|
 where |B| is the number of genes in B. We define the GAUSS statistic for the 

gene-set H as the maximum score of any non-empty subset of H 

	%&$$�!�  � '()���  ∑ +�
 
� �

,|"|  
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Although the maximum is over all possible 2m − 1 subsets of H, the computational complexity 

can be greatly reduced by rewriting the formula as.  

	%&$$�	�  � '()! "�,..,�% '()����  ∑   
� ��

 +�

,|"!|  

where "!  denotes a non-empty subset of H with k elements. It is easy to show that 

'()����  ∑   
� ��

 +�

,|"!|  � +� � +� 
 � . . � +!

√/  

where z1, z2, ..., zm are the z-statistic sorted in decreasing order with z1 being the maximum z-

statistic for a gene within the gene-set H. We implement the following algorithm to obtain the 

GAUSS statistic as: 

1. Order the z-statistic for the m genes as z1, z2, ..., zm in decreasing order with z1 being the 

maximum z-statistic. 

2. Starting with k =1 compute $!  �  �1� �2 
 � ..� ��

�

  for all k = 1, 2, …, m 

3. Calculate the GAUSS test statistic as '()! "�,..,�% $!  

Using this approach, computational cost is reduced from O(2m) to O(mlogm). 

 

Fast estimation of the p-value of GAUSS 

We employ a fast two-step approach which uses a normal-Copula to estimate p-values for 

GAUSS. We first estimate the correlation structure (���) among the z-statistics z1, z2, ..., zm under 

the null hypothesis of no association through a small number of simulations using reference LD 

structure (See next section). Then we estimate the p-value of the GAUSS test statistic as follows: 

1. Starting from r = 1, in the rth step, generate a random m vector Zr from the multivariate 

normal distribution N (0, ���) 

2. Calculate the null GAUSS statistic using Zr as above, 	%&$$�!�� 

3. Repeat steps 1 and 2 many times, say R (= 106) 

4. Estimate the p-value for the observed 	%&$$�!� as 
∑  �

� 	 
  &'(��)�*�+ &'(��)�*

,
       

 

Although it is a simulation-based method, the algorithm can be efficiently implemented since it 

only requires generating multivariate normal (MVN) random vectors. For example, generating 1 
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million MVN random vectors for a gene-set with 100 genes (m = 100) requires 2 CPU-seconds 

on an Intel Xeon 2.80�GHz computer. 

 

We also implemented an adaptive resampling scheme that performs fewer iterations if the p-

value is large (say >0.005). For a given GAUSS test statistic, we first use 1000 iterations to 

estimate the p-value. If the estimated p-value is ≤ 0.005, then we perform 106 iterations to further 

accurately estimate the p-value. Thus, if the true p-value is large (> 0.005) the above algorithm 

estimates it in less than 1 CPU-seconds and if the true p-values is small the algorithm takes 161 

CPU seconds on an average to estimate it. 

 

Our approach of simulating MVN random vectors is considerably faster than the existing 

approaches for simulation or permutation-based p-values. For example, in aSPUpath, a new null 

trait vector (or score vector) is generated through permutation in each iteration. The test statistic 

is then calculated based on that null trait (or score) vector and this process is repeated for the 

specified number of iterations. This procedure has a high computational burden since at each 

step it repeats the entire procedure of calculating a p-value starting from null traits (or scores). In 

contrast, we assume that the z-statistics for the genes in the jointly follow a multivariate normal, 

so that the simulations can be carried out using the null distributions of the z-statistics rather than 

generating a null trait (or score), reducing computation greatly. Additionally, since simulating 

MVN random vectors is considerably faster than generating permutation-based null traits (or 

scores), our algorithm has a significantly lower computational burden. 

 

Reference data and the estimation of correlation structure VH 

Given the GWAS summary statistic for a phenotype, to obtain the GAUSS p-value for a gene-

set, we have used the reference panel twice. First, we used the reference panel to extract LD 

across variants in a gene or region. This LD information is used to construct the null distribution 

and evaluate the gene-based p-value. We have used emeraLD (URL, ref) for fast extraction of 

LD from variant-call-format files. Second, we used the reference panel to estimate the null 

correlation matrix VH between the z-statistics of a given gene-set H. This is a pre-computed 

matrix that is used in estimating p-values, which needs to be computed once from the reference 

data and can be reused for future applications. To estimate this matrix, we generated a null 
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continuous phenotype from standard normal distribution, computed the gene-based p-values for 

the annotated genes using SKAT-Common-Rare and converted them to z-statistics. We repeated 

this procedure for 1000 iterations and VH was calculated as the Pearson’s correlation between 

1000 null z-statistic values. The use of this matrix greatly reduces the computational burden of 

GAUSS since we do not need to estimate VH for every iteration or gene-set separately.  

 

Simulation Studies 

We used UK-Biobank genotype data for simulation studies. We define a gene within a gene-set 

as “active” if at least one variant annotated to the gene has non-zero effect size. For a given 

gene-set we randomly set ga genes to be active and within the lth active gene with tl variants we 

set va;l to be the proportion of variants with non-zero effects. Using genotypes of N randomly 

selected unrelated individuals from the UK Biobank we generate the phenotypes for individual i 

(i = 1, · · ·, N) according to the model 

0�  �  � �!	�!  �  1�

�

!��

  

where ��  2  3�0,1� and 	�!  is the genotype of the ith individual at the kth variant and 5 �
 ∑ �-6�;- 

.�

-��  is the total number of variants with non-zero effects. Throughout our simulations, we 

used N=5000. The effect size of the kth active variant with minor allele frequency MAFk is 

generated as βik = c|log10(MAFk)| where c is the magnitude of the association between a variant 

and phenotypes. For type-I error simulation we used c = 0 while for power we set c > 0. We 

determined the value of c by fixing the average heritability explained by the gene-set (h2). We 

used several values for the average heritability explained by the gene-set between h2 = 1% (as 

observed in NETRIN1 signaling pathway associated with Major Depression; Zeng et al.) and h2 = 

6% (as observed in the association of a set of 28 genes involved in carbohydrate metabolism and 

BMI [28]). With 20-30% variants having non-zero effect sizes, the corresponding values of c 

varied approximately between 0.10 and 0.25. 

 

With the UK-Biobank genotypes and the simulated phenotypes, we first calculated the GWAS 

summary statistics for each variant and estimated the gene-based (SKAT-Common-Rare) p-

values using the LD extracted from the Europeans in the 1000-Genomes data. Subsequently, we 

applied GAUSS on the gene-based p-values and extracted the p-value for association. We then 
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calculated power as the fraction of GAUSS p-values less than 5 × 10−06 which represents the 

Bonferroni corrected threshold for testing association across 10,000 independent gene-sets. 

 

 

UK-Biobank data analysis  

In our analysis, we used publicly available UK-Biobank summary statistics that were generated 

by SAIGE [33]. The summary statistics files included results for markers directly genotyped or 

imputed by the Haplotype Reference Consortium (HRC) which produced approximately 28 

million markers with MAC ≥ 20 and an imputation info score ≥ 0.3. Nonsynonymous variants 

and variants of within ±1 kb region of the first and last variants in each exon were used for each 

gene to test for the effect of possibly functional and regulatory variants. We used EPACTs with 

RefSeq gene database for the annotation. For each gene, we constructed SKAT-Common-Rare 

test statistic using the estimates of effect size (β), standard errors (SE), and minor allele 

frequencies (MAF) as provided in the summary statistics files for SAIGE (See URL). We then 

calculated the p-values using LD information from a reference panel of European ancestry 

samples in 1000-Genomes data. For the fast extraction of the LD information, we used emerald 
[34]. For each of the 1,403 phenotypes, we tested 18,334 genes. These gene-based p-values were 

transformed into z-statistics and subsequently used in the gene-set analysis with GAUSS.  
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Tables and Figures 

1 
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Table 1: Estimated type-I error of GAUSS for gene-sets GO: 0016125 and GO: 

0002016 

 

 α GO: 0016125 GO: 0002016 

1 × 10−04 9.8 × 10−05 9.7 × 10−05 

1 × 10−05 9.9 × 10−06 9.6 × 10−06 

5 × 10−06 4.6 × 10−06 4.2 × 10−06 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

Table 2: Significant gene-sets associated with E. Coli infection (EC), and duodenitis (GD) and Pernicious anemia (PA) 

corresponding p-values and the CS genes selected by GAUSS 

 

Phenotype 

 

Gene-Set 

 

Genes 

 

p-value 

 

Core subset (CS) selected by GAUSS 

 GO: Fatty acid catabolic process 73 < 1 × 10−06 SLC27A2, CRAT, CPT1B, ACOX2, LPIN1, CPT1C, ETFB, 
SLC27A4, EHHADH, ACAA1, LEP, ABCD2, GCDH, HADH, 
MUT, BDH2, PLA2G15, PEX2, IVD, 
ACAAS, PEX13, ACAD8, ACADL, ECI1, ADIPOQ 

EC GO: Fatty acid beta oxidation 51 1 × 10−06 SLC27A2, CRAT, CPT1B, ACOX2, CPT1C, ETFB, 
EHHADH, ACAA1, LEP, ABCD2, GCDH, HADH, BDH2, 

PEX2, IVD, ACAAS, ACAD8, ACADL, ECI1, ADIPOQ 

 Reactome:P53independent 

G1/S DNA damage checkpoint 

51 < 1 × 10−06 PSMB2, PSMB9, PSMC5, CHEK1, PSMB8, PSMD9, 

PSMD2, RPS27A, PSMA6, PSMB7 

 Reactome: CDK mediated 

phosphorylation and removal of 
CDC6 

48 < 1 × 10−06 PSMB2, PSMB9, PSMC5, PSMB8, PSMD9, PSMD2, 

RPS27A, PSMA6, PSMB7 

GD Reactome: Cyclin E associated 

events during G1/S transition 

65 < 1 × 10−06 PSMB2, PSMB9, PKMYT1, PSMC5, PSMB8, PSMD9, 

PSMD2, RPS27A, PSMA6, PSMB7 

 Reactome:P53 dependent G1 

DNA damage response 

57 < 1 × 10−06 PSMB2, PSMB9, PSMC5, MDM2, PSMB8, PSMD9, 

PSMD2, RPS27A, PSMA6, PSMB7 
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Table 3: Phenotypes associated with ABC transporters gene-set, corresponding p-values and the CS genes 

selected by GAUSS 

Phenotype Category PheCode p-value Core subset (CS) selected by GAUSS 

Psoriasis dermatologic 696.4 < 1 × 10−06 TAP2 

Psoriasis and related disorders dermatologic 696 < 1 × 10−06 TAP2 

Celiac disease digestive 557.1 < 1 × 10−06 TAP2 

Intestinal malabsorptions (non-celiac) digestive 557 < 1 × 10−06 TAP2 

Cholelithiasis with other cholecystitis digestive 574.12 < 1 × 10−06 ABCG5 

Cholelithiasis digestive 574.1 < 1 × 10−06 ABCG5 

Calculus of bile duct digestive 574.2 < 1 × 10−06 ABCG5 

Cholelithiasis without cholecystitis digestive 574.3 < 1 × 10−06 ABCG5, ABCC12, ABCA8, ABCB4 

Cholelithiasis and cholecystitis digestive 574 < 1 × 10−06 ABCG5 

Other biliary tract disease digestive 575 < 1 × 10−06 ABCG5 

Cholelithiasis and cholecystitis digestive 574 < 1 × 10−06 ABCG5 

Hypothyroidism NOS endocrine/metabolic 244.4 3 × 10−06 TAP2 

Type-1 diabetes endocrine/metabolic 250.1 < 1 × 10−06 TAP2 

Hypercholesterolemia endocrine/metabolic 272.11 < 1 × 10−06 ABCG5, TAP2, ABCC10, ABCA2, ABCA5, ABCA1, ABCA6, 
ABCC12, ABCC1, ABCA8, ABCB9 

Hyperlipidemia endocrine/metabolic 272.1 < 1 × 10−06 TAP2, ABCG5, ABCC10, ABCA6, ABCA2, 

ABCA5, ABCA1, ABCC1, ABCA8 

Disorders of lipoid metabolism endocrine/metabolic 272 < 1 × 10−06 ABCG2 

Gout endocrine/metabolic 274.1 < 1 × 10−06 ABCG2 

Asthma    respiratory 495  < 1 × 10−06 TAP2 
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Figure 1: P-values for association of 1403 phenotypes with ABC transporters. P-values which were < 1 × 10−06 are 

collapsed to 1 × 10−06 for the ease of viewing 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799791doi: bioRxiv preprint 

https://doi.org/10.1101/799791
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 (a) (b) 
 

Figure 2: P-values for association of (a) E. Coli infection (EC) and (b) Gastritis and duodenitis (GD) with the GO gene-

sets (C5). Colored horizontal lines denote the Bonferroni correction thresholds for corresponding groups. The 

horizontal solid black line denotes the significance threshold of 5 × 10−06. The horizontal dashed line denotes a less 

stringent suggestive threshold of 1 × 10−05. 
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 (a) (b) 
 

Figure 3: P-values for association of (a) E. Coli infection (EC) and (b) Gastritis and duodenitis (GD) with the curated 

gene-sets (C2). Colored horizontal lines denote the Bonferroni correction thresholds for corresponding groups. The 

horizontal solid black line denotes the significance threshold of 5 × 10−06. The horizontal dashed line denotes a less 

stringent suggestive threshold of 1 × 10−05. 
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  (a)            (b) 

Figure 4: QQ plots for gene-based p-values of (a): E. Coli infection (EC) and (b) Gastritis and duodenitis (GD) 
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 (a) (b) 

Figure 5: Estimated power of GAUSS using GO: 0016125 gene-set, compared with that of aSPUpath, SKAT-Pathway 

and MAGMA under different average heritability explained (h2) and different number of active genes (ga). (a) Power 

of GAUSS when 20 genes are active (ga = 20) and the variants with different average heritability (h2) explained by 

the gene-set. (b) Power of GAUSS with different number of active genes and the gene-set has an average heritability 

h2 of 3%. The proportion of variants in an active gene (See Simulation Model) was set to 30%. 
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Figure 6: Sensitivity and Specificity of GAUSS for GO: 0016125 and GO: 0002016 

with different average heritability explained by the gene-set (h2) and different 

number of active genes (ga). The solid lines denote GAUSS and the dashed lines 

denote the method of selecting the significant genes. The proportion of variants in 

an active gene (See Simulation Model) was set to 30%. 
 

   GAUSS 

    Significant Genes 
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Figure 7: Estimate of the probability of identifying the exact set of core subset (CS) 

genes across different average heritability explained by the gene-set (h2) and 

different number of active genes (ga). The solid lines denote GAUSS and the dashed 

lines denote the method of selecting the exome-wide significant genes. The 

proportion of variants in an active gene (See Simulation Model) was set to 30%. 
 

   GAUSS 

  Significant     

Genes 
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Figure 8: Total run-time of GAUSS for Pernicious anemia and Type-2 diabetes in 

UK Biobank compared to that of MAGMA and aSPUpath. Total run-time is 

calculated as the net time taken starting from the input of summary statistic till the 

p-values for the 10,679 gene-sets are generated 
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