

1 **Native and invasive populations of the ectomycorrhizal death cap *Amanita phalloides***
2 **are highly sexual but dispersal limited**

3
4 Jacob Golan¹, Catherine A. Adams², Hugh Cross³, Holly Elmore⁴, Monique Gardes⁵, Sydney
5 I. Glassman⁶, Susana C. Gonçalves⁷, Jaqueline Hess⁸, Franck Richard⁹, Yen-Wen Wang¹,
6 Benjamin Wolfe¹⁰, Anne Pringle¹

7
8 1. Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison,
9 WI, 53706, USA

10 2. Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley,
11 CA, 94720, USA

12 3. Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand

13 4. Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA,
14 02138, USA

15 5. UMR 5174 EDB UPS-CNRS-IRD, Université Paul Toulouse III, Toulouse, 31062 Cedex
16 9, France

17 6. Department of Microbiology and Plant Pathology, University of California-Riverside,
18 Riverside, CA, 92521, USA

19 7. Centre for Functional Ecology, Department of Life Sciences, University of Coimbra,
20 Coimbra, 3000-456, Portugal

21 8. Department of Botany and Biodiversity Research, University of Vienna, A-1030, Austria

22 9. CEFE - CNRS Université de Montpellier, Université Paul-Valéry EPHE IRD INSERM
23 Campus CNRS, 1919 Route de Mende, 34293, Montpellier, France

24 10. Department of Biology, Tufts University, Medford, MA, 02155, USA.

25

26 **Author for correspondence:**

27 Jacob Golan

28 Tel: +1 608-890-4364

29 Email: jgolan@wisc.edu

30

31 **Key words:** fungi, genet, global change, invasion biology, movement ecology, mutualism,
32 population genomics, spore

33

34 Summary: 200

35 Main body word count: 5,672

36 Introduction word count: 773

37 Materials and Methods word count: 2,412

38 Results word count: 1,214

39 Discussion word count: 1,273

40 Body figures: 7 (all color)

41 Body tables: 1

42 Supporting information figures: 5 (all color)

43 Supporting information tables: 3

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

WITHDRAWN
see manuscript DOI for details

62 **Abstract**

63 1. The ectomycorrhizal death cap *Amanita phalloides* is native to Europe but invasive in
64 North America. To understand whether the fungus spreads underground using hyphae, or above
65 ground using sexual spores, we mapped and genotyped sporocarps from European and American
66 populations. Larger genetic individuals (genets) would suggest spread mediated by vegetative
67 growth, while many small genets would suggest dispersal mediated by spores. To test whether
68 genets are ephemeral or persistent, we also sampled from the same invasive populations over
69 time.

70 2. We mapped 13 European and American populations between 2004-2007 and characterized
71 each using amplified fragment length polymorphisms (AFLP). In 2014 and 2015, we resampled
72 populations in California and added three new European populations. These populations and a
73 subset of the specimens originally collected in 2004 were characterized using whole genome
74 sequencing.

75 3. In every population and across all time points, sporocarps resolve into small, apparently
76 short-lived genets. Sporocarps nearer each other are more closely related, suggesting spores land
77 and germinate near parent sporocarps.

78 4. *A. phalloides* uses spores to move across landscapes. Spores travel very short distances
79 and individuals appear ephemeral. The death cap's life history suggests yearly sporocarp
80 removal as a strategy for control of this deadly fungus.

81

82

83

84

85

86

87

88

89

90

91

92

93 **Introduction**

94 Invasions drive global change (Vitousek *et al.*, 1997; Dukes & Mooney 1999; Ravi *et al.*,
95 2009) but invasion biology often focuses on plants and animals in isolation (Shea & Chesson
96 2002), ignoring the role mutualists may play in invasion dynamics. Mutualist ectomycorrhizal
97 (ECM) fungi provide resources to plants in exchange for photosynthetically derived carbon
98 (Smith & Read, 2008), and consequently introduced or invasive ECM fungi impact local
99 ecosystems (Litchman 2010). But while the mechanisms enabling the spread of invasive plants,
100 and the roles of ECM in facilitating plant invasions, are increasingly documented (Welk *et al.*,
101 2002; Williams *et al.*, 2005; Barker *et al.*, 2017), the mechanisms enabling the spread of invasive
102 ECM fungi in association with native plants are scarcely explored (Desprez-Loustau *et al.*, 2007,
103 but see Nuñez *et al.*, 2013).

104 Although invasions by plants are often mediated by symbiotic associations with introduced
105 or invasive ECM fungi (and vice versa; Richardson *et al.*, 2000; Hayward *et al.*, 2015; Teste *et*
106 *al.*, 2019), introduced ECM fungi can also invade independently of introduced or invasive plants
107 (Díez *et al.*, 2005; Pringle *et al.*, 2009; Berch *et al.*, 2016; Vargas *et al.*, 2019). A fungus
108 invading on its own is likely to have an invasion dynamic distinct from a fungus associating with
109 an invasive plant (Dickie *et al.* 2017). However data tracking ECM invasions are limited, as are
110 data describing potential impacts. Open questions include whether these fungi persist as
111 mutualists, behave as parasites, or displace native ECM species (Chapela *et al.*, 2001; Vellinga *et*
112 *al.*, 2009).

113 The death cap *Amanita phalloides* is an invasive ECM fungus spreading through the endemic
114 coastal live oak woodlands of California (Pringle & Vellinga, 2006, Pringle *et al.*, 2009, Wolfe *et*
115 *al.*, 2010, Wolfe & Pringle 2011). Native to Europe, it now grows across the Southern
116 Hemisphere, but its invasion dynamic is best described in North America, and specifically in the
117 United States. The fungus first appeared in California and the Northeast U.S. in the mid-20th
118 century (Pringle *et al.*, 2009), and it has since spread through California and north into
119 Washington and British Columbia (Ammirati *et al.*, 1977; Pringle *et al.*, 2009; Berch *et al.*,
120 2016). In contrast, populations on the East Coast appear confined within initial points of
121 introduction, despite nearly 50 years of monitoring (Tanghe & Simons 1973; Tanghe, 1983;
122 Pringle & Vellinga, 2006).

123 While the death cap is clearly invading California, how it spreads is unknown. Fungi
124 reproduce and disperse using vegetative fragments or spores (sexual or asexual). At one time
125 spores were assumed to mediate dispersal across continents and oceans (Peay *et al.*, 2010; Golan
126 & Pringle 2017), but recent data suggest the sexual spores of many mushroom forming
127 Basidiomycete fungi fall just next to parent sporocarps (Galante *et al.* 2011; Peay & Bruns
128 2014). Steady vegetative growth can result in enormous mycelia (e.g., *Armillaria* spp.), but
129 whether fragmentation enables colonization of empty habitats is often unclear (Smith *et al.*,
130 1992; Anderson *et al.*, 2018).

131 Directly observing the dispersal of fungi in nature is challenging. Spores are difficult to track
132 and often, vegetative mycelia are hidden in substrates. But dispersal can be inferred by extending
133 the concept of a genetic individual, or *genet* (*c.f.* Harper, 1977; a term originally developed by
134 plant demographers) to include fungi. In the context of *A. phalloides*, we define a genet as the
135 body (or mycelium) generated by the fusion of two germinating, haploid (or monokaryotic)
136 spores, and assume the diploid body (or the dikaryon) is the dominant phase of the life cycle
137 (Rayner, 1991; Dahlberg & Stenlid, 1994; Anderson & Kohn, 1995; Booth 2014). Vegetative
138 growth would result in large genets, while frequent colonization by sexual spores would result in
139 many small genets (Dahlberg & Stenlid, 1994). Practically, genet size is measured by genotyping
140 sporocarps. Many genetically identical sporocarps scattered across a habitat characterize large
141 genets; distances among genetically identical sporocarps define the size of the genet. Genets of
142 other ECM species range from centimeters to hundreds of meters (Gryta *et al.*, 1997; Redecker *et*
143 *al.*, 2001; Sawyer *et al.*, 2001; Bergemann *et al.*, 2002; Dunham *et al.*, 2003; Lian *et al.*, 2006;
144 Rubini *et al.*, 2011), and like these fungi, *A. phalloides* may propagate using either fragments or
145 spores, or both.

146 By physically mapping and genotyping sporocarps from multiple populations in European
147 and American forests, and from the same Californian sites over time, we generated data on genet
148 size to ask 1) does the death cap establish across landscapes using vegetative hyphae or sexual
149 spores, 2) can the same individuals persist in a population over time, and 3) does genet size differ
150 between native and invasive ranges?

151
152
153

154 **Materials and Methods**

155 *Collections and Mapping*

156 Sporocarps of *A. phalloides* were collected from populations throughout Europe and the
157 United States (Fig. 1, Table 1, Supporting Information Table S1a,b). We define a population as a
158 group of sporocarps occurring within an area no larger than 75m by 75m. Most populations are
159 kilometers away from each other (Fig. 1), but at Point Reyes National Seashore (PRNS) in
160 California, individuals are continuously distributed along Limantour Road. Populations from
161 PRNS were delineated arbitrarily by walking across the road or at least 75m away before
162 collecting and naming a distinct population (Wolfe & Pringle, 2011). Global Position System
163 (GPS) coordinates were recorded for each location within 5 m of accuracy (Table 1). Due to
164 small-scale GPS inaccuracies, we are unable to overlay the spatial maps of sporocarps from
165 different years (when we sampled over time at a single site).

166 The majority of sporocarps were collected from forests dominated by native species of
167 Fagaceae and Pinaceae. Populations from the former Centre d'Ecologie des Système Aquatiques
168 Continentaux (CESAC) surrounded a planted *Cedrus libani* on what is now the Marvig campus
169 of the CNRS Institute and Toulouse III University, and the population from the Escola Superior
170 Agrária de Coimbra was collected from a disturbed site on the Polytechnical Institute of Coimbra
171 campus. In New Jersey, *A. phalloides* grows in planted forests of native *Pinus strobus* (Wolfe *et*
172 *al.*, 2010; Wolfe & Pringle, 2011), and in Rochester, NY, in a municipal park with *Pinus strobus*,
173 *P. resinosa*, *Tsuga canadiensis*, and *Betula* spp. In California, *A. phalloides* were collected from
174 relatively undisturbed coast live oak woodlands in association with *Quercus agrifolia* (Wolfe &
175 Pringle, 2011).

176 Every sporocarp in a population consisting of more than two sporocarps was carefully
177 mapped using one of three mapping methods depending on the tools available at each site. A full
178 description of each mapping method can be found in Supporting Information Methods S1.
179

180 *DNA extraction and sequencing*

181 Amplified Fragment Length Polymorphism (AFLP) data were generated between 2005 and
182 2007 from a total of 221 sporocarps, and genome sequence data were generated between 2015
183 and 2016 from a total of 86 sporocarps (Table 1). Approximately 50 mg of cap tissue from each
184 sporocarp was placed in a 2.0 ml microcentrifuge tube with four to five 3 mm glass beads, and

185 macerated using a MiniBeadbeater-8 (BioSpec Products Inc., Bartlesville, OK) set at 75% speed
186 for one minute. For AFLP samples, genomic DNA was extracted from tissue using a Qiagen
187 DNeasy Tissue kit (Qiagen, Hilden, Germany) according to manufacturer's specifications. Any
188 extractions of low quality (as measured on a NanodropTM Spectrophotometer [NanoDrop
189 Technologies, Wilmington, DE]) were re-extracted. Extraction blanks were extracted along with
190 samples and used as a control to test for potential contamination.

191 For genome samples, 700 μ l of CTAB buffer (2% CTAB, 2% PVP, 100 mM Tris-HCL [pH
192 8.0], 20 mM EDTA [pH 8.0], and 1.4 mM NaCl) was added after maceration, and samples were
193 left to incubate at 60°C for one hour. Next, 700 μ l of a 24:24:1, by volume, of a
194 phenol:chloroform:isoamyl alcohol solution was added to each sample and samples were gently
195 mixed at room temperature for ten minutes, followed by centrifugation at room temperature at
196 13,000 rpm for ten minutes. The aqueous phase (~650-700 μ l) of each sample was then carefully
197 transferred to a new 2.0 ml tube. 700 μ l of the phenol:chloroform:isoamyl alcohol solution was
198 again added to each sample, and samples were inverted and mixed at room temperature for ten
199 minutes, followed by centrifugation at room temperature at 13,000 rpm for 10 minutes, at which
200 point the aqueous phase was again transferred to a new 2.0 ml tube. Approximately 1,400 ml of
201 100% ethanol was added to each sample, and samples were incubated at -20°C for 45 minutes,
202 and then centrifuged at 4°C at 13,000 rpm for ten minutes. The supernatant was discarded, and
203 the pellet dried on a ThermoSci DNA SpeedVac at room temperature for ten minutes, or until
204 dry, and finally resuspended in 400 μ l of 10 mM Tris-HCL (pH 8.0) and transferred to a new 1.5
205 ml tube. To further purify genomic DNA, 12 μ l of RNase A (Qiagen, Hilden, Germany) was
206 added to each sample, and each sample incubated at 37°C for one hour. 16 μ l of 5 M NaCl and
207 860 μ l of 100% ethanol were then added to each tube and the solution left to precipitate at -20°C
208 for one hour, after which each tube was centrifuged at 4°C at 13,000 rpm for 15 minutes and the
209 supernatant discarded. A final washing was performed with 500 μ l of 75% ethanol; solutions
210 were centrifuged at 4°C at 13,000 rpm for ten minutes and the supernatant discarded. Finally, the
211 resulting pellet was resuspended in 200 μ l of 10mM Tris-HCl (pH 8.0). 5 ml of an Oxygen
212 AxyPrep Mag PCR Clean-Up kit (Fisher Scientific, Pittsburg, PA, USA) was used per
213 manufacturer instructions to remove any remaining impurities. DNA was stored at -80°C until it
214 was provided to the University of Wisconsin-Madison Biotechnology Center.

215

216 *Amplification and visualization of AFLP markers*

217 The AFLP protocol is a DNA fingerprinting technique that does not require prior DNA
218 sequence information as it is based on a selective polymerase chain reaction (PCR) amplification
219 of adaptor-ligated restriction fragments formed from digested genomic DNA (Vos *et al.*, 1995).
220 Mutations at restrictions sites result in the presence or absence of fragments of different sizes and
221 enable individuals to be distinguished from one another. AFLP data were generated for
222 sporocarps collected from 2004-2007, before genome data of *A. phalloides* were available, and at
223 the time AFLP was a genetic fingerprinting method of choice.

224 We adapted the AFLP protocol of the Applied Biosystems Microbial Fingerprinting Kit
225 (Applied Biosystems [ABI], Foster City, CA, USA) for use with our samples. Typically, ligated
226 fragments are amplified with increasingly selective primers in order to randomly subset the
227 number of fragments to a quantifiable number. But to generate consistent results, we first
228 amplified with no selective primers, and then proceeded to the +1 preselective (one additional
229 base pair on the primer) and +2 (two additional base pairs) selective amplifications. Moreover,
230 because *A. phalloides* has a smaller genome (~45 mb) than most organisms for which the ABI
231 AFLP kit is typically used, we modified the protocol to use less selective primers: we designed
232 +2 selective primers for the *MseI* restriction site, instead of the +3 typically used on larger
233 genomes. The primer combinations we used were: *EcoRI*-AC/*MseI*-CT (where AC are the two
234 additional base pairs on the *EcoRI* site and CT are the two base pairs on the *MseI* site), *EcoRI*-
235 TG/*MseI*-CC, *EcoRI*-AC/*MseI*-CT. Amplification products were denatured in formamide and
236 visualized on a 3730 ABI capillary sequencer. Data were analyzed using GeneMapper version
237 4.0 (ABI). Potential markers were scored using GeneMapper, and then inspected by eye. Clear
238 presence/absence patterns were recorded as 1 or 0, respectively. A total of 102 loci across 221
239 specimens were recovered and converted to a GenAlEx v6.5 format for downstream analyses
240 (Peakall & Smouse, 2012).

241

242 *Genome sequencing, read filtering and variant calling*

243 In 2016, genomes were sequenced using an Illumina HiSeq2500 platform at the University of
244 Wisconsin-Madison Biotechnology Center, typically with a 550 bp insert size and 251 bp paired-
245 end reads (13 specimens were prepared with 350-bp inserts; often these specimens represent
246 older collections [Supporting Information Table S1b]). Sequencing was performed using two

247 flow cells with 48 samples and two lanes each (ten samples either failed quality control or were
248 irrelevant to this study). Mean sequencing depth of each sample ranged from 10.56 to 150.86
249 (Supporting Information Table S1b). Sequence data were filtered using Trim Galore! (v0.4.5)
250 (<https://github.com/FelixKrueger/TrimGalore>). Adapter trimming was set to the highest
251 stringency such that even a single nucleotide of overlap with the adapter sequence was trimmed
252 from a given read. After trimming, reads reduced to 100 bp or shorter, and those with quality
253 scores less than 30 were discarded.

254 A sporocarp from Dunas de Mira, São Jacinto, Portugal (specimen number 10511) was also
255 sequenced on four SMRTcells on a PacBio RS II Sequel platform, also at the University of
256 Wisconsin-Madison Biotechnology Center (Supporting Information Table S1b). This resulted in
257 raw coverage of 47x with N50 read length of 6,310 bp.

258 After troubleshooting of genome assembly pipelines (summarized in Supporting Information
259 Table S2), the final assembly was performed using an in-house hybrid approach. First, Illumina
260 data were subjected to a second round of filtering using Trimmomatic v0.35 (Bolger *et al.*, 2014)
261 with the following parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 CROP:245
262 LEADING:30 TRAILING:30 SLIDINGWINDOW:4:25 MINLEN:100. PacBio data were
263 filtered to remove sequences shorter than 500 bp and error corrected with the Illumina data using
264 FMLRC (Wang *et al.*, 2018) with default settings. Error-corrected PacBio reads were then used
265 to simulate 20x coverage 3 kb insert size libraries with wgsim (<https://github.com/lh3/wgsim>)
266 and parameter setting as follows: -e 0.0 -d 3000 -s 500 -1 100 -2 100 -r 0.0 -R 0.0 -S 123 -N
267 5000000. Illumina data and simulated long-range libraries were then assembled using
268 AllpathsLG v52400 (Gnerre *et al.*, 2011), setting HAPLOIDIFY=True. The resulting assemblies
269 were subjected to further scaffolding using error-corrected PacBio data with the software LINKS
270 v.1.8.5 (Warren *et al.*, 2015) with -d 2000,5000,10000,15000,20000 -t 20,20,5 and a kmer value
271 of 29. Scaffolds were extended and gap-filled using PBJelly v.15.8.24 and finally polished using
272 Pilon v.1.2 (Walker *et al.*, 2014). Polished assemblies were evaluated with QUAST (Gurevich *et*
273 *al.*, 2013) and BUSCO v.2 with the Basidiomycota database v.9 (Simão *et al.*, 2015).

274 After genomes were assembled, single nucleotide polymorphisms (SNPs) and indels were
275 identified using the Genome Analysis Toolkit (GATK) software v3.8-0-ge9d806836 (McKenna
276 *et al.*, 2010), following GATK best practices (Broad Institute 2019). Illumina reads from each of
277 the 86 Illumina genome libraries were first mapped to the hybrid assembly using bwa-0.7.9 (Li

278 2013) with the following parameters: mem -M -t 8 -v 2. Mapping rates for *A. phalloides*
279 specimens ranged from 20.0% - 95.3%, with a median mapping percentage of 86.1% (only older
280 specimens mapped at less than 50%). The mapping rate of 10511's Illumina reads to the 10511
281 hybrid assembly was 93.8%. Duplicate reads were marked, and the GATK program
282 Haplotypecaller was used to call variants simultaneously on all samples, using
283 MODE=DISCOVERY and type=GVCF. This procedure resulted in 212,119 indels and
284 1,580,133 SNPs.

285 To eliminate any variants that may have been called as a result of sequencing errors, the raw
286 VCF file was filtered using VCFtools-0.1.14 (Danecek *et al.*, 2011). We took a conservative
287 approach: loci with quality scores greater than 30 (--minQ 30); with sequencing depths greater
288 than the approximate mean depth across all loci and individuals (60X, or --min-meanDP 60);
289 with a minor allele frequency (MAF) greater than 0.006 (1/2N, where N=86 diploid individuals);
290 and with no more than 50% missing data (--max-missing 0.5), were kept in our dataset. To test
291 how different filtering criteria affected the ability to distinguish genotypes, the raw VCF file was
292 subjected to a variety of alternative filtering parameters (Supporting Information Table **S1b**, Fig.
293 **S1**). To remove any remaining erroneously called variants, we removed loci deviating from
294 Hardy-Weinberg equilibrium, calculated per population using an exact test as defined by
295 Wigginton *et al.*, (2005) (p-value cut-off 0.01; Supporting Information Table **S1b**). A total of ten
296 VCF files were produced: one encompassing all 86 individuals, and the remaining nine
297 containing a given population with loci deviating from Hardy-Weinberg equilibrium removed.
298 Each VCF file was then converted to a .raw file format using PLINK v1.9 (Purcell *et al.*, 2007)
299 for subsequent analyses in R v3.4.4 (R Core Team 2013).

300

301 *Intrapopulation and interpopulation patterns of polymorphism and divergence*

302 Statistical analyses were performed using R v3.4.4 and all scripts are available at
303 <https://github.com/jacobgolan/genets>. To calculate the genetic relationships among sporocarps of
304 both the AFLP and SNP datasets, we quantified the number of AFLP or SNP differences for
305 every pair of sporocarps within a given population, and any sporocarp pair with a difference of
306 zero was considered as belonging to the same genet (Fig. 2, Fig. 3, Fig. 4). Missing data are rare
307 (no AFLP data are missing, and only 0.73% of SNP data are missing), but a SNP locus at which
308 two samples differed by missing data was counted as “not different” so as to facilitate

309 comparisons among pairs of samples: each pairwise comparison using SNP data was scaled to
310 $m(m-x)^{-1}$, where m is the total number of loci and x is the number of missing sites (Kamvar *et*
311 *al.*, 2014). To understand how many markers are required to fully resolve genetic relationships
312 among AFLP and SNP genotypes, we randomly sampled 100 loci 1,000 times without
313 replacement, and calculated the number of unique genotypes for each random sample
314 (Supporting Information Methods S2, Fig. S1). Curves of these data were constructed by
315 adapting the *poppr* command from the package *poppr* v2.8.3 (Kamvar *et al.*, 2014).

316 To understand genetic relationships among sporocarps collected across space and time, we
317 first took an ordination approach. Using *ape* v5.3 (Paradis & Schliep, 2018), we conducted a
318 principle coordinate analysis (PCoA) on pairwise differences of sporocarp AFLP and/or SNP
319 profiles. We plotted individual sporocarps using eigenvalues from the first two principal
320 coordinates. Axes are centered around the mean of eigenvalues per axis and scaled by the
321 standard deviation of eigenvalues per axis. The first two axes capture 27.42% and 16.27% of the
322 variance in the AFLP data, and 16.95% and 9.75% of the variance in the SNP data. Ellipses were
323 drawn to encompass a 0.95 confidence interval for each geographic region for AFLP data (Fig.
324 5), and labelled to highlight specific genetic and spatial clusters for SNP data (Fig. 6).

325 To test whether closely related sporocarps grow near each other, we performed Mantel tests
326 to test for correlations between genetic and physical distances. Analyses were performed using
327 *vegan* 2.5-5 on each population and then for geographic regions (e.g., California) and
328 subpopulation clusters identified from our PCoA analyses (Supporting Information Table S3;
329 Oksanen *et al.*, 2018). To estimate the physical area of each population we first drew a polygon
330 around the perimeter of a population (as defined by sporocarps at the population's edges) and
331 then estimated the smallest four-sided parallelogram that would completely enclose all
332 sporocarps using in-house R scripts and *alphahull* v2.1 (Pateiro-López & Rodríguez-Casal,
333 2010).

334 Finally, to infer population differentiation between adjacent locations sampled in the same
335 year, and between the same location sampled over time (e.g., relationships between Drake 2 and
336 Drake 3, both sampled in 2004, 2014, and 2015), we calculated F_{ST} for every pair of populations
337 and subpopulations with *hierfstat* v0.04-22 (Weir & Cockerham, 1984; Goudet, 2005).

338

339

340 **Results**

341 *AFLP and SNP data*

342 Sequencing resulted in 103 AFLP bands from 221 *A. phalloides* genomes and 1.2 raw
343 Illumina reads (an average of 3.6 M per sporocarp) from 86 *A. phalloides* genomes. The
344 assembled Illumina-PacBio hybrid genome of specimen 10511 (Mira, São Jacinto, Portugal)
345 resulted in a 35.5 Mb assembly covering approximately 77% of the estimated 43 Mb genome.
346 The assembly encompasses 605 scaffolds with an N50 of 320 kb, and gene space completeness is
347 estimated at 94.4%. The 86 full genomes mapped to the 10511 assembly provided 297,133 high
348 quality SNPs. Sporocarps with identical genotypes were found exclusively in the AFLP dataset
349 (Supporting Information Fig S2a,b, Fig. S3). The two most closely related SNP genotypes were
350 collected from Dunas de Mira, São Jacinto, Portugal (specimens 10511 and 10512), and they
351 differed by approximately 24,250 SNPs (scaling for missing data, Fig. 2, Supporting Information
352 Table S1b).

353 While the 221 sporocarps of the AFLP dataset resolve into 160 unique genotypes, a plot of
354 number of loci randomly sampled versus number of genotypes (Supporting Information Fig. S1)
355 suggests 103 AFLP markers do not fully resolve sporocarp identity (Grünwald *et al.*, 2003). SNP
356 data provided greater resolution of genotypes, and both conventional and stringently
357 conservative filtering criteria resolved each sporocarp as a unique genotype (Supporting
358 Information Fig. S1). The different datasets result in different interpretations, for example, SNPs
359 delineate each sporocarp from population Drake 3 2004 as a unique individual whereas AFLP
360 markers resolve only two genets from the same sporocarps (Fig. 2, Fig. 3).

361

362 *Most sporocarps of Amanita phalloides resolve into unique genotypes*

363 Regardless of genotyping strategy, the dominant pattern emerging across California, the
364 Northeast U.S. and Europe is of populations consisting of multiple genets, most of which are
365 made up of a single sporocarp. Thus, we infer that movement across landscapes is mediated by
366 sexual basidiospores, and not asexual vegetative growth and fragmentation (Dahlberg & Stenlid,
367 1994). Moreover, populations sampled over time do not transition from being composed of
368 smaller and more numerous genets to being dominated by larger and less numerous genets (Fig.
369 4). The temporal succession of genotypes suggests individuals are not long lived and reproduce
370 shortly after establishing.

371 In fact, the majority of genets in both the AFLP and SNP datasets consist of a single
372 sporocarp (Table 1). Genets encompassing more than one sporocarp were found only within the
373 AFLP dataset. The 221 sporocarps genotyped by AFLP resolve into 160 unique genotypes,
374 72.40% represent unique genotypes and resolve into small genets consisting of either a single
375 sporocarp, or two to three mushrooms (Fig. 3, Supporting Information Fig. S2a,b, Fig. S3). The
376 longest distance between two identical sporocarps was calculated from Jake's Landing (7.51 m),
377 the longest in California was found in Heart's Desire 2 (5.14 m), and the longest in Europe was
378 found in Serbia (3.20 m). The median length of genets consisting of more than one sporocarp is
379 1.70m (1.12m in European populations, 2.20m in East Coast populations, 1.73m in Californian
380 populations; Table 1). However, we hypothesize any approach with greater resolving power
381 would distinguish many of these sporocarps as distinct genets.

382 Only one genet was found in more than one year: an AFLP genotype found at CESAC in
383 2002 was also found at CESAC in 2006 (specimens CESAC 54 and CESAC 21, separated by
384 0.81 meters; Fig. 4). But once again, we hypothesize any approach with greater resolving power
385 would distinguish these two sporocarps. In Californian populations, genotypes did not persist
386 from year to year and genets were consistently small regardless of genotyping method.

387

388 *Spores of Amanita phalloides are dispersal limited between and within populations*

389 At continental scales, genotypes cluster according to geography (Fig. 5, Fig. 6). However, a
390 subset of the genotypes from Europe, the East Coast, and California appear to be closely related.
391 In particular, AFLP genotypes from the East Coast appear closely related to European genotypes
392 from southern France, and to a lesser extent, a small subset of AFLP genotypes from California
393 (especially from Heart's Desire populations) appear closely related to genotypes from both
394 southern France and the East Coast. There is less overlap among SNP genotypes identified from
395 Europe and California; SNP genotypes from Europe were collected mainly from central
396 Portugal, with a few collections also taken from throughout northern and eastern Europe, and
397 from Sardinia and Corsica, but notably not from southern France. But whether populations of *A.*
398 *phalloides* in North America were in fact introduced from southern France is an hypothesis
399 remaining to be tested.

400 Surprisingly, closely related genotypes also cluster at local spatial scales. Populations appear
401 genetically distinct and sporocarps collected from the same physical location group together and

402 apart from other populations. Moreover, sporocarps collected a few centimeters apart from each
403 other within a single population are often genetically more similar than sporocarps collected
404 meters apart (Fig. 5, Fig. 6). Within Drake 2 there is a clear subpopulation structure and two
405 distinct groups of genetically related sporocarps are apparent.

406 To delineate spatial autocorrelations more fully, we used Mantel tests to probe for
407 relationships between the physical and genetic distances separating sporocarps, asking whether
408 mushrooms found nearer each other are also more closely related. Correlations were significant
409 for seven of the 15 populations from which AFLP data were collected, and for two of the eight
410 populations from which SNP data were collected (Supporting Information Fig. S4a,b, Fig. S5;
411 Table S3). Mantel tests corroborate fine scale isolation by distance as a feature of multiple
412 populations (Fig. 7, Supporting Information Fig. S4a,b, Fig. S5). Moreover, when the data of
413 nearby populations were combined, for example, combining all of the data available from Point
414 Reyes National Seashore (Drake populations), Tomales Bay State Park (Heart's Desire
415 populations), or New York (Rochester populations), correlations were also often significant
416 (Supporting Information Table S3). The physical area of a population did not influence whether
417 or not there was a significant Mantel correlation (linear regression of area versus the calculated
418 Mantel statistic: slope near zero and $P > 0.05$ for both within and between populations).

419 Even across years, closely related genotypes often cluster in space (Fig. 6). For example,
420 individuals of Drake 2 collected in 2004, 2014 and 2015 cluster together and away from
421 individuals of Drake 3 collected in the same years. Subpopulations within single populations
422 persist through time, for example, the subpopulations identified from Drake 2 in 2014 were
423 found again in 2015 (Fig. 6). The data suggest spores fall and germinate within centimeters of
424 their parent sporocarps; even after a decade, Drake 2 and Drake 3 (which are less than 100 m
425 apart) remain genetically distinct.

426 Calculations of F_{ST} (Weir & Cockerham, 1984) confirm populations sustain a relative degree
427 of genetic differentiation across years (Hartl & Clark 2007; Branco *et al.*, 2015; 2017). F_{ST}
428 calculated using the 2004, 2014, and 2015 data of Drake 2 ranges from 0.0054–0.0138, and for
429 Drake 3 ranges from 0.0003–0.0270. The F_{ST} statistic comparing the adjacent populations, Drake
430 2 and Drake 3, in 2004 is 0.0376 (0.021 with AFLP data), in 2014 is 0.0523, and in 2015 is
431 0.0398. F_{ST} comparing Drake 3 to either Drake 2 subpopulation (Cluster 1 or 2) reveals

432 comparable values to those comparing Drake 2 Cluster 1 to Cluster 2 (0.0729 ± 0.0487 vs.
433 0.0763 ± 0.0040 , respectively).

434

435 Discussion

436 The death cap uses sexual basidiospores to spread in both its native European range, as well
437 as in its introduced ranges on the East Coast and California. Vegetative fragmentation appears
438 rare. Populations consist of many small genets and typically each sporocarp is its own genet. But
439 correlations between geographic and genetic distances, even at small spatial scales (tens of
440 meters), suggest spores travel very short distances, falling near to parent sporocarps. In fact,
441 ordination analyses cluster populations in space, even across time: populations from a single
442 location sampled years apart cluster together and away from populations sampled in the same
443 year from nearby locations. Genets appear to be ephemeral, and except for a single pair of
444 sporocarps within the native range of *A. phalloides* (generated using AFLP data and potentially
445 an artifact), the same genotype was never recovered in more than one year (Fig. 4). Data suggest
446 frequent sexual reproduction and a high turnover of genets within populations, suggesting short
447 lifespans.

448 Small body sizes and ephemeral genets are typical of other ECM Basidiomycetes in native
449 ranges, paralleling our findings in an invasive system. The majority of genets of *Hebeloma*
450 *cylindrosporum*, *Laccaria amethystina*, *Tricholoma terreum*, and *Russula cremoricolor* are small
451 and either consist of single sporocarps or are less than a square meter in size (Gryta *et al.*, 1997;
452 Gherbi *et al.*, 1999; Redecker *et al.*, 2001; Huai *et al.*, 2003). A high turnover of genets within
453 populations appears typical of *R. cremoricolor* and *T. sculpturatum* (Redecker *et al.*, 2001;
454 Carrionde *et al.*, 2008).

455 Genet sizes across the genus *Amanita* appear variable. The species *A. franchetii* reaches a
456 maximum size of 4.7m, but populations house many singleton genets as well; populations of *A.*
457 *manginiana* are entirely composed of singleton genets, with no genotype recovered between
458 consecutive years (Sawyer *et al.*, 2003; Liang *et al.*, 2005). By contrast, *A. conicoverrucosa*, *A.*
459 *punctata*, *A. pyramidifera*, and *A. muscaria* appear to form genets made up of multiple
460 sporocarps and may reach tens of meters in size (Sawyer *et al.*, 2001; 2003). However
461 fingerprinting techniques with low resolution may bias inferences by binning unique genetic
462 individuals together, as we discovered by comparing our AFLP and SNP datasets.

463 The example of *A. muscaria* is a particularly interesting comparison; like *A. phalloides*, it has
464 been introduced and is invasive outside of its native range (Richardson *et al.*, 2000; Dickie &
465 Johnston, 2008; Dunk *et al.*, 2012). The fungus now grows in Australia and New Zealand and is
466 invasive in Colombia (Sawyer *et al.*, 2001; Bagley & Orlovitch 2004; Orlovitch & Cairney,
467 2004; Vargas *et al.*, 2019). Colombian populations of *A. muscaria* associate with native *Q.*
468 *humboldtii* and are spreading through Colombian oak forests but Australian populations appear
469 confined to commercial plantations of introduced *Pinus radiata* (Sawyer *et al.*, 2001). In contrast
470 to the death cap, available data suggest *A. muscaria* is found primarily as large genets in
471 Australia and New Zealand, apparently capable of steady vegetative growth below ground
472 (Sawyer *et al.*, 2001). Whether large genets would be detected using modern fingerprinting
473 techniques or at sites outside of Australia and New Zealand remains to be tested, but if *A.*
474 *muscaria* does grow as large genets, data would suggest frequent sexual reproduction and
475 copious spore production are not required to facilitate invasions by ECM fungi.

476 Our nascent understanding of the mode and tempo of the death cap's invasion dynamics is
477 likely to facilitate an understanding of the species elsewhere, and of the genus *Amanita* as a
478 source of invasive ECM species. *A. phalloides* has also been introduced to South America
479 (Singer, 1953; Takacs, 1961), East and South Africa (Walleyn & Rammeloo, 1994), Australia
480 (Talbot, 1976; Shepherd & Totterdell, 1988; Wood, 1997) and New Zealand (Taylor, 1982;
481 Ridley, 1991). Other species in the genus, including *A. rubescens*, *A. thiersii*, and *A. inopinata*,
482 are introduced or invasive elsewhere (Bougher, 1996; Pegler & Shah-Smith, 1997; Sawyer *et al.*,
483 2003; Wolfe *et al.*, 2012). The genus *Amanita* emerges as a developing model for work with
484 invasive ECM fungi, offering the potential for comparisons among closely related species
485 invasive in geographically distant ranges.

486 The life history of *A. phalloides* appears similar to the life history of many herbaceous weeds
487 (Baker, 1965; Grime, 1977; Roché & Thill, 2001). Basidiospores may give rise to relatively
488 small mycelia that persist for short periods of time before reproducing sexually. Life history
489 evolution among fungi is poorly described (a stark contrast to traditions within the plant
490 literature; Harper 1977; Grime 1977) but *A. phalloides* emerges in stark contrast to the
491 "humongous fungus," epitomized by the pathogens *Armillaria gallica* (Anderson *et al.*, 2018)
492 and *A. ostoyae* (Shaw & Roth, 1976; Ferguson *et al.*, 2003). The death cap appears to persist in
493 habitats as a small bodied, ephemeral, potentially ruderal species.

494 However, dispersal is clearly not the only control on *A. phalloides* invasion dynamics. While
495 *A. phalloides* uses spores to establish in both California and on the East Coast, in California *A.*
496 *phalloides* is invasive while in New Jersey *A. phalloides* appears confined within planted forests
497 of *Pinus strobus* (Thompson *et al.*, 2000; Wolfe & Pringle, 2011). In California, *A. phalloides* is
498 spreading in association with a native oak, a distant relative of the oaks in its native range (Hipp
499 *et al.*, 2018). In New Jersey, *A. phalloides* grows at sites slightly outside of the southern range of
500 *P. strobus*. The associations of the death cap with different hosts, within and outside of hosts'
501 ranges, may be a key influence on its spread, but any potential mechanism mediating the
502 dynamic remains unknown (Richardson *et al.*, 2000; Dickie *et al.*, 2017).

503 The paradox of a dispersal limited invasive fungus suggests *A. phalloides* will move slowly
504 as it continues to spread through its habitats in California. An earlier estimate of approximately
505 five km yr⁻¹ is almost certainly wrong (Pringle *et al.*, 2009). Although, establishment from spores
506 does explain the death cap's dominance in local habitats given the magnitude of its spore
507 production: reproduction measured for multiple sporocarps during a 48 hour incubation period
508 ranged from 2.22×10^7 to 1.58×10^8 spores per sporocarp (mean: $8.66 \times 10^7 \pm 1.90 \times 10^7$; Wolfe
509 & Pringle unpublished). At the Drake sites of Point Reyes National Seashore (labeled "Drake's
510 Landing" in Wolfe *et al.*, 2010) sporocarps of *A. phalloides* average more than half (and up to
511 85%) of the total biomass of ectomycorrhizal sporocarps collected in a single season (Wolfe *et*
512 *al.*, 2010). As *A. phalloides* spores germinate and mycelia quickly reproduce to generate more
513 spores, a local feedback likely enables populations to grow rapidly.

514 The potentially ruderal niche of the death cap also suggests an effective management strategy
515 (Dickie *et al.*, 2016). The mushrooms of the death cap are deadly, and each year in California
516 there are poisonings (Zevin *et al.*, 1997; Bonacini *et al.*, 2017; Vo *et al.*, 2017). An increasingly
517 public discussion has focused attention on whether the fungus can be eradicated from local
518 landscapes (Dickie *et al.*, 2016; Quirós 2016; Childs 2019). In fact, our data suggest a control
519 strategy: as a sporocarp of the death cap develops, its spore-bearing surface is covered by a
520 partial veil. As the sporocarp matures, the veil ruptures to release spores. Collecting and
521 destroying immature sporocarps before veil rupture would prevent spore release and the
522 subsequent establishment of mycelia. If spores are also short lived (an untested hypothesis),
523 mycelia would be unable to germinate from a spore bank. Because spores can't travel very far,

524 thoroughly collecting at a site for just a few years would potentially break the life cycle of the
525 fungus and rid a habitat of an invasive and deadly poisonous fungus.

526

527 Acknowledgements

528 We thank the University of Wisconsin–Madison, Human Frontier Science Program and
529 National Science Foundation for funding (and in particular an NSF Graduate Research
530 Fellowship DGE-1747503 to Jacob Golan). Deep thanks to Benjamin Becker, Lynne Boddy, Tom
531 Bruns, Bryn Dentinger, Jeffrey Grass, Hervé Gryta, Thomas R. Horton, David Johnson, Todd
532 Mitchell, Sam Morris and his Trigonometry class at Cary Academy, Sophie Manzi, Zachary
533 Muscavitch, the Mycologists' Association of Serbia (Branislav Uzelac, Goran Milošević and
534 Krstajic Damjan), Karla Sartor, Rod Tulloss, and Natalia Vargas-Estupiñan, for collections,
535 advice, technical assistance, and support in the field. We collected at Tomales Bay State Park and
536 Point Reyes under permits granted to Tom Bruns, Sydney Glassman, and Anne Pringle.

537

538 References

539 **Ammirati JF, Thiers HD, Horgen PA.** 1977. Amatoxin-containing mushrooms: *Amanita*
540 *ocreata* and *A. phalloides* in California. *Mycologia* **69**: 1095–1108.

541 **Anderson JB, Bruhn JN, Kasimer D, Wang H, Rodrigue N, Smith ML.** 2018. Clonal
542 evolution and genome stability in a 2500-year-old fungal individual. *Proceedings. Biological*
543 *Sciences* **285**: 20182233.

544 **Anderson JB, Kohn LM.** 1995. Clonality in soilborne, plant-pathogenic fungi. *Annual Review*
545 *of Phytopathology* **33**: 369–391.

546 **Bagley SJ, Orlovich DA.** 2004. Genet size and distribution of *Amanita muscaria* in a suburban
547 park, Dunedin, New Zealand. *New Zealand Journal of Botany* **42**: 939–947.

548 **Baker H.** 1965. Characteristics and modes of origin of weeds. In: *The Genetics of Colonizing*
549 *Species*. New York: Academic Press, 147–172.

550 **Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM.** 2017. Population genomic
551 analyses reveal a history of range expansion and trait evolution across the native and invaded
552 range of yellow starthistle (*Centaurea solstitialis*). *Molecular Ecology* **26**: 1131–1147.

553 **Berch SM, Kroeger P, Finston T.** 2016. The death cap mushroom (*Amanita phalloides*) moves
554 to a native tree in Victoria, British Columbia. *Botany* **95**: 435–440.

555 **Bergemann SE, Miller SL.** 2002. Size, distribution, and persistence of genets in local
556 populations of the late-stage ectomycorrhizal basidiomycete, *Russula brevipes*. *New*
557 *Phytologist* **156**: 313–320.

558 **Bolger AM, Lohse M, Usadel B.** 2014. Trimmomatic: a flexible trimmer for Illumina sequence
559 data. *Bioinformatics* **30**: 2114–2120.

560 **Bonacini M, Shetler K, Yu I, Osorio RC, Osorio RW.** 2017. Features of patients with severe
561 hepatitis due to mushroom poisoning and factors associated with outcome. *Clinical*

562 *Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American*
563 *Gastroenterological Association* **15**: 776–779.

564 **Booth A.** 2014. Populations and individuals in heterokaryotic fungi: A multilevel perspective.
565 *Philosophy of Science* **81**: 612–632.

566 **Bougher N.** 1996. Diversity of ectomycorrhizal fungi associated with eucalypts in Australia. In:
567 *Mycorrhizas for Plantation Forestry in Asia* (M. Brundrett, B. Dell, N. Malajczuk & G.
568 Minquin, eds) : 8–15. Canberra: Australian Centre for International Agricultural Research.

569 **Branco S, Bi K, Liao H-L, Gladieux P, Badouin H, Ellison CE, Nguyen NH, Vilgalys R,**
570 **Peay KG, Taylor JW, et al.** 2017. Continental-level population differentiation and
571 environmental adaptation in the mushroom *Suillus brevipes*. *Molecular Ecology* **26**: 2063–
572 2076.

573 **Branco S, Gladieux P, Ellison CE, Kuo A, LaButti K, Lipzen A, Grigoriev IV, Liao H-L,**
574 **Vilgalys R, Peay KG, et al.** 2015. Genetic isolation between two recently diverged
575 populations of a symbiotic fungus. *Molecular Ecology* **24**: 2747–2758.

576 **Broad Institute.** 2019. Discover variants with GATK - A GATK Workshop Tutorial. *GATK*.

577 **Carriconde F, Gryta H, Jargeat P, Mouhamadou B, Gardes M.** 2008. High sexual
578 reproduction and limited contemporary dispersal in the ectomycorrhizal fungus *Tricholoma*
579 *sculpturatum*: new insights from population genetics and spatial autocorrelation analysis.
580 *Molecular Ecology* **17**: 4433–4445.

581 **Chapela IH, Osher LJ, Horton TR, Henn MR.** 2001. Ectomycorrhizal fungi introduced with
582 exotic pine plantations induce soil carbon depletion. *Soil Biology and Biochemistry* **33**:
583 1733–1740.

584 **Childs C.** 2019. Death-Cap Mushrooms Are Spreading Across North America. *The Atlantic*.

585 **Dahlberg A, Stenlid J.** 1994. Size, distribution and biomass of genets in populations of *Suillus*
586 *bovinus* (L.: Fr.) Roussel revealed by somatic incompatibility. *New Phytologist* **128**: 225–
587 234.

588 **Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE,**
589 **Lunter G, Marth GT, Sherry ST, et al.** 2011. The variant call format and VCFtools.
590 *Bioinformatics (Oxford, England)* **27**: 2156–2158.

591 **Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, Sache I,**
592 **Rizzo DM.** 2007. The fungal dimension of biological invasions. *Trends in Ecology &*
593 *Evolution* **22**: 472–480.

594 **Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau M-L, Grelet G, Hulme PE, Klironomos**
595 **J, Makiola A, Nuñez MA, Pringle A, et al.** 2017. The emerging science of linked plant–
596 fungal invasions. *New Phytologist* **215**: 1314–1332.

597 **Dickie IA, Johnston P.** 2008. *Invasive fungi research priorities, with a focus on Amanita*
598 *muscaria*. Landcare Research, Lincoln.

599 **Dickie IA, Nuñez MA, Pringle A, Lebel T, Tourtellot SG, Johnston PR.** 2016. Towards
600 management of invasive ectomycorrhizal fungi. *Biological Invasions* **18**: 3383–3395.

601 **Díez J.** 2005. Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt
602 plantations into the Iberian Peninsula. *Biological Invasions* **7**: 3–15.

603 **Dukes JS, Mooney HA.** 1999. Does global change increase the success of biological invaders?
604 *Trends in Ecology & Evolution* **14**: 135–139.

605 **Dunham SM, Kretzer A, Pfrenger ME.** 2003. Characterization of Pacific golden chanterelle
606 (*Cantharellus formosus*) genet size using co-dominant microsatellite markers. *Molecular*
607 *Ecology* **12**: 1607–1618.

608 **Dunk CW, Lebel T, Keane PJ.** 2012. Characterisation of ectomycorrhizal formation by the
609 exotic fungus *Amanita muscaria* with *Nothofagus cunninghamii* in Victoria, Australia.
610 *Mycorrhiza* **22**: 135–147.

611 **Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL.** 2003. Coarse-scale
612 population structure of pathogenic *Armillaria* species in a mixed-conifer forest in the Blue
613 Mountains of northeast Oregon. *Canadian Journal of Forest Research* **33**: 612–623.

614 **Galante TE, Horton TR, Swaney DP.** 2011. 95% of basidiospores fall within 1 m of the cap: a
615 field-and modeling-based study. *Mycologia* **103**: 1175–1183.

616 **Gherbi H, Delaruelle C, Selosse M-A, Martin F.** 1999. High genetic diversity in a population
617 of the ectomycorrhizal basidiomycete *Laccaria amethystina* in a 150-year-old beech forest.
618 *Molecular Ecology* **8**: 2003–2013.

619 **Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall
620 G, Shea TP, Sykes S, et al.** 2011. High-quality draft assemblies of mammalian genomes
621 from massively parallel sequence data. *Proceedings of the National Academy of Sciences*
622 **108**: 1513–1518.

623 **Golan JJ, Pringle A.** 2017. Long-distance dispersal of fungi. *Microbiology Spectrum* **5**.

624 **Goudet J.** 2005. hierfstat, a package for r to compute and test hierarchical F-statistics. *Molecular
625 Ecology Notes* **5**: 184–186.

626 **Grime JP.** 1977. Evidence for the existence of three primary strategies in plants and its
627 relevance to ecological and evolutionary theory. *The American Naturalist* **111**: 1169–1194.

628 **Grünwald NJ, Goodwin SB, Milgroom MG, Fry WE.** 2003. Analysis of genotypic diversity
629 data for populations of microorganisms. *Phytopathology* **93**: 738–746.

630 **Gryta H, Debaud J-C, Effosse A, Gay G, Marmeisse R.** 1997. Fine-scale structure of
631 populations of the ectomycorrhizal fungus *Hebeloma cylindrosporum* in coastal sand dune
632 forest ecosystems. *Molecular Ecology* **6**: 353–364.

633 **Gurevich A, Saveliev V, Vyahhi N, Tesler G.** 2013. QUAST: quality assessment tool for
634 genome assemblies. *Bioinformatics (Oxford, England)* **29**: 1072–1075.

635 **Harper JL.** 1977. *Population Biology of Plants*. Academic Press.

636 **Hartl DL, Clark AG.** 2007. *Principles of population genetics*. Sunderland, Mass.; New York:
637 Sinauer Associates; Oxford University Press.

638 **Hayward J, Horton TR, Pauchard A, Nuñez MA.** 2015. A single ectomycorrhizal fungal
639 species can enable a *Pinus* invasion. *Ecology* **96**: 1438–1444.

640 **Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kiproth M, McVay JD, Avalos SV,
641 Cavender-Bares J.** 2018. Sympatric parallel diversification of major oak clades in the
642 Americas and the origins of Mexican species diversity. *New Phytologist* **217**: 439–452.

643 **Huai W-X, Guo L-D, He W.** 2003. Genetic diversity of an ectomycorrhizal fungus *Tricholoma
644 terreum* in a *Larix principis-rupprechtii* stand assessed using random amplified polymorphic
645 DNA. *Mycorrhiza* **13**: 265–270.

646 **Kamvar ZN, Tabima JF, Grünwald NJ.** 2014. Poppr: an R package for genetic analysis of
647 populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2**.

648 **Li H.** 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
649 *arXiv:1303.3997 [q-bio]*.

650 **Lian C, Narimatsu M, Nara K, Hogetsu T.** 2006. *Tricholoma matsutake* in a natural *Pinus
651 densiflora* forest: correspondence between above- and below-ground genets, association with
652 multiple host trees and alteration of existing ectomycorrhizal communities. *New Phytologist*
653 **171**: 825–836.

654 **Liang Y, Guo L, Ma K. 2005.** Population genetic structure of an ectomycorrhizal fungus
655 *Amanita manginiana* in a subtropical forest over two years. *Mycorrhiza* **15**: 137–142.

656 **Litchman E. 2010.** Invisible invaders: non-pathogenic invasive microbes in aquatic and
657 terrestrial ecosystems. *Ecology Letters* **13**: 1560–1572.

658 **McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,**
659 **Altshuler D, Gabriel S, Daly M, et al. 2010.** The genome analysis toolkit: A MapReduce
660 framework for analyzing next-generation DNA sequencing data. *Genome Research* **20**:
661 1297–1303.

662 **Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN,**
663 **Simberloff D. 2013.** Exotic mammals disperse exotic fungi that promote invasion by exotic
664 trees. *PLOS ONE* **8**: e66832.

665 **Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara**
666 **RB, Simpson GL, Solymos P, et al. 2018.** *vegan: Community Ecology Package. R package*
667 *version 2.5-3.*

668 **Orlovich DA, Cairney JG. 2004.** Ectomycorrhizal fungi in New Zealand: Current perspectives
669 and future directions. *New Zealand Journal of Botany* **42**: 721–738.

670 **Paradis E, Schliep K. 2018.** *ape 5.0: an environment for modern phylogenetics and*
671 *evolutionary analyses in R. Bioinformatics (Oxford, England).*

672 **Pateiro-López B, Rodríguez-Casal A. 2010.** Generalizing the convex hull of a sample: The R
673 package alphahull. *Journal of Statistical Software* **34**: 1–28.

674 **Peakall R, Smouse PE. 2012.** GenAIEx 6.5: genetic analysis in Excel. Population genetic
675 software for teaching and research—an update. *Bioinformatics* **28**: 2537–2539.

676 **Peay KG, Bidartondo MI, Arnold AE. 2010.** Not every fungus is everywhere: scaling to the
677 biogeography of fungal–plant interactions across roots, shoots and ecosystems. *New*
678 *Phytologist* **185**: 878–882.

679 **Peay KG, Bruns TD. 2014.** Spore dispersal of basidiomycete fungi at the landscape scale is
680 driven by stochastic and deterministic processes and generates variability in plant–fungal
681 interactions. *New Phytologist* **204**: 180–191.

682 **Pegler DN, Shah-Smith D. 1997.** The genus *Amanita* (Amanitaceae, Agaricales) in Zambia.
683 *Mycotaxon (USA).*

684 **Pringle A, Adams RI, Cross HB, Bruns TD. 2009.** The ectomycorrhizal fungus *Amanita*
685 *phalloides* was introduced and is expanding its range on the west coast of North America.
686 *Molecular Ecology* **18**: 817–833.

687 **Pringle A, Vellinga EC. 2006.** Last chance to know? Using literature to explore the
688 biogeography and invasion biology of the death cap mushroom *Amanita phalloides* (Vaill. ex
689 Fr. :Fr.) Link. *Biological Invasions* **8**: 1131–1144.

690 **Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P,**
691 **de Bakker PIW, Daly MJ, et al. 2007.** PLINK: a tool set for whole-genome association and
692 population-based linkage analyses. *American Journal of Human Genetics* **81**: 559–575.

693 **Quirós G. 2016.** This mushroom starts killing you before you even realize it. *KQED.*

694 **Ravi S, D’Odorico P, Collins SL, Huxman TE. 2009.** Can biological invasions induce
695 desertification? *The New Phytologist* **181**: 512–515.

696 **Rayner ADM. 1991.** The phytopathological significance of mycelial individualism. *Annual*
697 *Review of Phytopathology* **29**: 305–323.

698 **Redecker D, Szaro TM, Bowman RJ, Bruns TD. 2001.** Small genets of *Lactarius*
699 *xanthogalactus*, *Russula cremoricolor* and *Amanita franchetii* in late-stage ectomycorrhizal
700 successions. *Molecular Ecology* **10**: 1025–1034.

701 **Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmánek M. 2000.** Plant invasions—
702 the role of mutualisms. *Biological Reviews of the Cambridge Philosophical Society* **75**: 65–
703 93.

704 **Ridley GS. 1991.** The New Zealand species of *Amanita* (Fungi: Agaricales). *Australian*
705 *Systematic Botany* **4**: 325–354.

706 **Roché CT, Thill DC. 2001.** Biology of common Crupina and yellow starthistle: Two
707 mediterranean winter annual invaders in western North America. *Weed Science* **49**: 439–447.

708 **Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F. 2011.** *Tuber*
709 *melanosporum*: mating type distribution in a natural plantation and dynamics of strains of
710 different mating types on the roots of nursery-inoculated host plants. *New Phytologist* **189**:
711 723–735.

712 **Sawyer NA, Chambers SM, Cairney JWG. 2001.** Distribution and persistence of *Amanita*
713 *muscaria* genotypes in Australian *Pinus radiata* plantations. *Mycological Research* **105**:
714 966–970.

715 **Sawyer NA, Chambers SM, Cairney JWG. 2003.** Distribution of *Amanita* spp. genotypes
716 under eastern Australian sclerophyll vegetation. *Mycological Research* **107**: 1157–1162.

717 **Shaw CG, Roth LF. 1976.** Persistence and distribution of a clone of *Armillaria mellea* in a
718 ponderosa pine forest [Fungal diseases]. *Phytopathology*.

719 **Shea K, Chesson P. 2002.** Community ecology theory as a framework for biological invasions.
720 *Trends in Ecology & Evolution* **17**: 170–176.

721 **Shepherd CJ, Totterdell CJ. 1988.** *Mushrooms and toadstools of Australia*. Melbourne: Inkata
722 Press.

723 **Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015.** BUSCO:
724 assessing genome assembly and annotation completeness with single-copy orthologs.
725 *Bioinformatics (Oxford, England)* **31**: 3210–3212.

726 **Singer R. 1953.** Four years of mycological work in southern South America. *Mycologia* **45**:
727 865–891.

728 **Smith ML, Bruhn JN, Anderson JD. 1992.** The fungus *Armillaria bulbosa* is among the
729 largest and oldest living organisms. *Nature* **356**: 428–431.

730 **Smith S, Read D. 2008.** *Mycorrhizal symbiosis*. Amsterdam; Boston: Academic Press.

731 **Takacs EA. 1961.** Algunas especies de hongos formadores de micorizas en árboles forestales
732 cultivados en la Argentina. *Revista Forestal Argentina* **3**: 80–82.

733 **Talbot P. 1976.** Notes on some edible and poisonous mushrooms. In: *Toadstools and*
734 *Mushrooms and Other Larger Fungi of South Australia I and II (1934– 1936)* (Photolitho
735 Reprint). South Australia: A. B. James, Government Printer.

736 **Tanghe L. 1983.** Spread of *Amanita phalloides* in North America. *McIlvainea* **6**: 4–8.

737 **Tanghe L, Simons D. 1973.** *Amanita phalloides* in the Eastern United States. *Mycologia* **65**: 99–
738 108.

739 **Taylor M. 1982.** *Mushrooms and Toadstools*. Auckland: Reed Books.

740 **Teste FP, Jones MD, Dickie IA. 2019.** Dual-mycorrhizal plants: their ecology and relevance.
741 *New Phytologist*.

742 **Thompson R, Anderson K, Bartlein P. 2000.** *Atlas of relations between climatic parameters*
743 *and distributions of important trees and shrubs in North America.* Denver, CO: U.S. Dept. of
744 the Interior, U.S. Geological Survey.

745 **Vargas N, Gonçalves SC, Franco-Molano AE, Restrepo S, Pringle A. 2019.** In Colombia the
746 Eurasian fungus *Amanita muscaria* is expanding its range into native, tropical *Quercus*
747 *humboldtii* forests. *Mycologia*: 1–14.

748 **Vellinga EC, Wolfe BE, Pringle A. 2009.** Global patterns of ectomycorrhizal introductions.
749 *New Phytologist* **181**: 960–973.

750 **Vitousek PM, D'Antonio CM, Loope LL, Rejmanek M, Westbrooks RG. 1997.** Introduced
751 species: A significant component of human-caused global change. *New Zealand Journal of*
752 *Ecology* **21**: 116.

753 **Vo KT, Montgomery ME, Mitchell ST, Scheerlinck PH, Colby D, Meier KH, Kim-Katz S,**
754 **Anderson IB, Offerman SR, Olson KR, et al.** 2017. *Amanita phalloides* mushroom
755 poisonings - Northern California, December 2016. *Morbidity and Mortality Weekly Report*
756 **66**: 549–553.

757 **Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J,**
758 **Peleman J, Kuiper M. 1995.** AFLP: a new technique for DNA fingerprinting. *Nucleic Acids*
759 *Research* **23**: 4407–4414.

760 **Walker BJ, Abeel T, Shea T, Priest M, Abouelhail A, Sakthikumar S, Cuomo CA, Zeng Q,**
761 **Wortman J, Young SK, et al.** 2014. Pilon: An integrated tool for comprehensive microbial
762 variant detection and genome assembly improvement. *PLoS ONE* **9**.

763 **Walleyn R, Rammeloo J. 1994.** *The poisonous and useful fungi of Africa south of the Sahara: a*
764 *literature survey.* Meise: National Botanic Garden of Belgium.

765 **Wang JR, Holt J, McMillan L, Jones CD. 2018.** FMLRC: Hybrid long read error correction
766 using an FM-index. *BMC Bioinformatics* **19**: 50.

767 **Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, Birol I. 2015.**
768 **LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads.** *GigaScience*
769 **4**: 35.

770 **Weir BS, Cockerham CC. 1984.** Estimating F-Statistics for the Analysis of Population
771 Structure. *Evolution* **38**: 1358–1370.

772 **Welk E, Schubert K, Hoffmann MH. 2002.** Present and potential distribution of invasive garlic
773 mustard (*Alliaria petiolata*) in North America. *Diversity and Distributions* **8**: 219–233.

774 **Wigginton JE, Cutler DJ, Abecasis GR. 2005.** A note on exact tests of Hardy-Weinberg
775 equilibrium. *American Journal of Human Genetics* **76**: 887–893.

776 **Williams DA, Overholt WA, Cuda JP, Hughes CR. 2005.** Chloroplast and microsatellite DNA
777 diversities reveal the introduction history of Brazilian peppertree (*Schinus terebinthifolius*) in
778 Florida. *Molecular Ecology* **14**: 3643–3656.

779 **Wolfe BE, Kuo M, Pringle A. 2012.** *Amanita thiersii* is a saprotrophic fungus expanding its
780 range in the United States. *Mycologia* **104**: 22–33.

781 **Wolfe BE, Pringle A. 2011.** Geographically structured host specificity is caused by the range
782 expansions and host shifts of a symbiotic fungus. *The ISME Journal* **6**: 745–755.

783 **Wolfe BE, Richard F, Cross HB, Pringle A. 2010.** Distribution and abundance of the
784 introduced ectomycorrhizal fungus *Amanita phalloides* in North America. *The New*
785 *Phytologist* **185**: 803–816.

786 **Zevin S, Dempsey D, Olson K. 1997.** *Amanita phalloides* mushroom poisoning—Northern
787 California, January 1997. *JAMA* **278**: 16–17.

788

789 **Author contributions**

790 JG, CAA, HE, BW, FR, and AP conceived and designed the experiments; JG, CAA, HE, MG,
791 SIG, SCG, FR, BW and AP collected and processed samples; HC generated AFLP data, HE,
792 YWW and JH assembled genomes and generated SNP data. JG wrote a first version of the
793 manuscript in collaboration with AP, and all authors contributed substantially to the last version
794 of the manuscript.

795

796 **Figure Legends**

797 **Fig. 1:** Map of collections. Circles are proportional to the number of sporocarps sampled.
798 Collections used to generate AFLP data are labelled in purple, and collections used to generate
799 SNP data are labelled in orange. If locations were used to generate both AFLP and SNP data,
800 labels are both purple and orange. Singleton collections are marked with an asterisk. Collections
801 are numbered as a guide to the more detailed information found in Table 1.

802

803 **Fig. 2:** Numbers of AFLP markers (top) or SNPs (bottom) differentiating pairs of sporocarps
804 within a given population. Genetically identical sporocarps are marked with an arrow. To
805 accommodate missing data, SNP differences are scaled up proportionally to $m (m-x)^{-1}$, where m
806 is the total number of loci and x is the number of missing sites.

807

808 **Fig. 3:** Sporocarp maps and the genets identified in eight populations (data of all populations
809 found in Fig. S2a,b and Fig. S3). Sporocarps genotyped using AFLP data plotted as squares,
810 sporocarps genotyped using SNP data plotted as circles, and sporocarps genotyped with both
811 plotted as diamonds. Within each map, sporocarps belonging to the same genet are labelled using
812 a single color and surrounded by an arbitrarily shaped, transparent polygon of the same color.
813 Most genets are made up of a single sporocarp, regardless of technology. A dotted green polygon
814 groups sporocarps of Drake 3 2004 identified as a single genet using AFLP data but resolved as
815 distinct genotypes using SNP data. Note that the sporocarp at the top left was not included in the
816 SNP dataset and whether it would resolve into its own genet using SNP data is unknown.

817

818 **Fig. 4:** Sporocarp maps and genets identified from two sites sampled over time: CESAC
819 (France) sampled in 2002 and 2006; and Drake 2 (California) sampled in 2004, 2014 and 2015.
820 Sporocarps genotyped using AFLP data plotted as squares, sporocarps genotyped using SNP data
821 plotted as circles, and sporocarps genotyped with both plotted as rhombuses. Within each map,
822 sporocarps belonging to the same genet are labelled using a single color and surrounded by an
823 arbitrarily shaped, transparent polygon of the same color. Asterisks mark a single AFLP genotype
824 from 2002 found again in 2006.

825

826 **Fig. 5:** Principle coordinate analysis (PCoA) of genetic relationships among sporocarps
827 genotyped using AFLP markers reveals genotypes cluster geographically, with three clusters
828 associated with populations from Europe, the East Coast, and California. Data are color coded by
829 population. Ellipses enclose genotypes from each geographic region within a 0.95 confidence
830 interval.

831

832 **Fig. 6:** Closely related genotypes cluster in space, even through time: for example, a
833 genotype collected from Drake 2 Cluster 1 in 2014 is more closely related to other sporocarps
834 from Cluster 1 collected in 2004, 2014, or 2015, and not to other sporocarps of Drake 2 Cluster 2
835 collected in 2014. a). principle coordinate analysis (PCoA) of genetic relationships among
836 sporocarps genotyped using genome-wide SNPs. b-c) Polygons surrounding clusters of closely
837 related genotypes from Drake 2 2014 and Drake 2 2015 in plot (a) translate to distinct clusters in
838 the physical landscape.

839

840 **Fig. 7:** Mantel correlations between genetic and physical distances for three geographically
841 distinct populations genotyped with AFLP (left), and three populations sampled from the same
842 location in California over time and genotyped with SNPs (right). Grey shading marks a 95%
843 confidence interval around fitted linear models. Plots list the Mantel statistic r using Pearson's
844 correlation method, and asterisks mark significant Mantel correlations ($* = p < 0.05$, $** = p <$
845 0.005). Data for all populations provided in Fig. S4a,b, and Fig. S5.

846

847

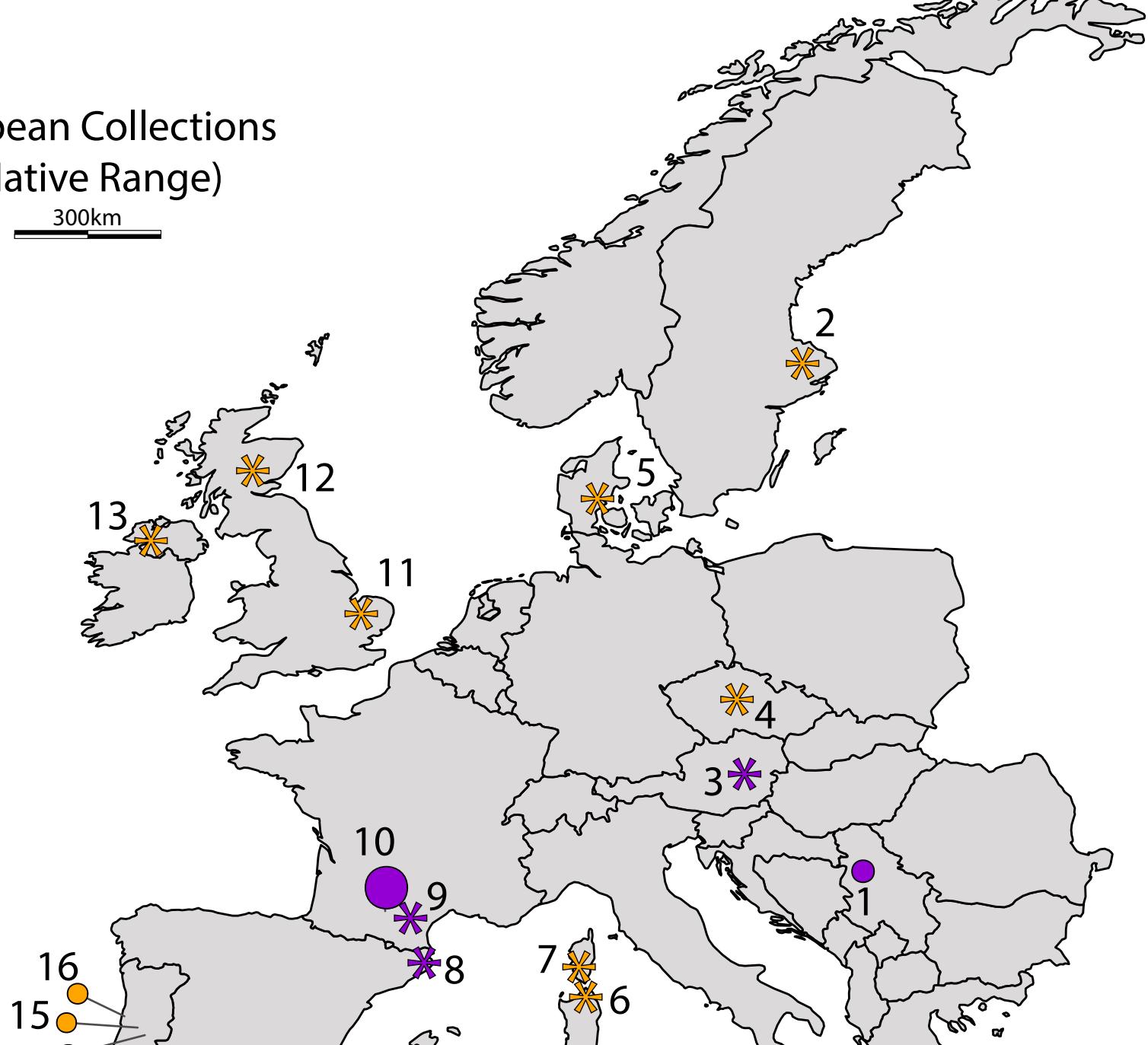
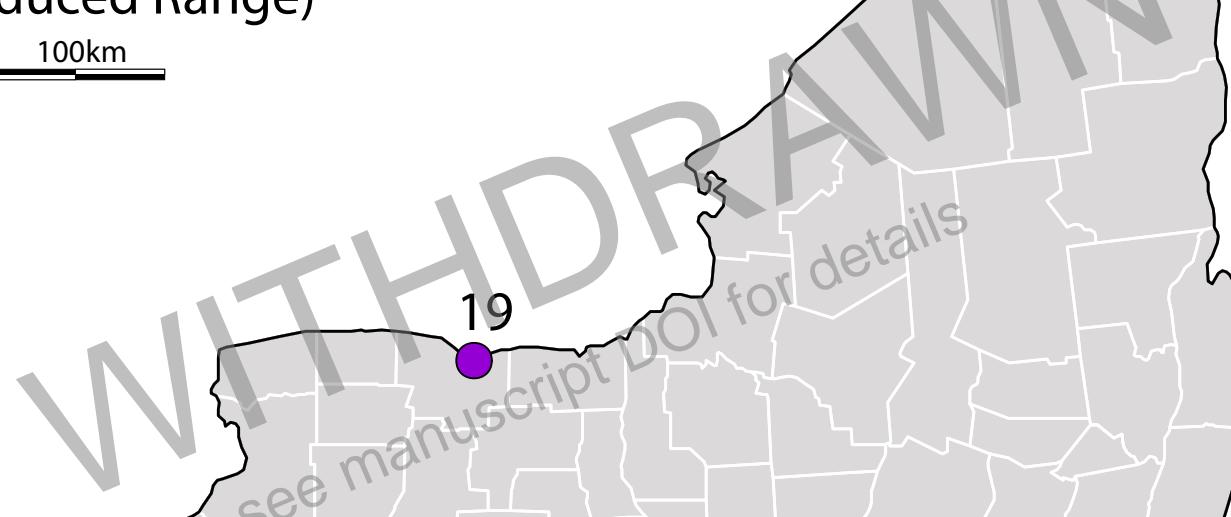

Location	Point on Map (Fig. 1)	Pop. Name	Latitude	Longitude	Collection Date			Technology	No. Mushrooms	No. Individual Genets
Serbia, Obrež, Obrežka Bara Nature Reserve	1	Serbia	44.745700	20.010400	2007	October	6	AFLP	14	7
Sweden, Uppland, Palsundet	2	[singleton]	59.8586	17.6389	1978	September	14	SNP	1	1
Austria	3	[singleton]	N/A	N/A	N/A	N/A		AFLP	1	1
Czech Republic, Český Šternberk Na Stříbrné Nature Reserve	4	[singleton]	49.8109	14.9282	2006	September	29	SNP	1	1
Denmark, Farum, Norreskov	5	[singleton]	55.916667	9.533333	2003	September	17	SNP	1	1
Italy, Catala, Calaniganus	6	[singleton]	40.9211	9.193	2006	November	13	SNP	1	1
France, Corsica, Fango	7	[singleton]	42.0396	9.0129	n/a	November	5	SNP	1	1
Spain, Girona	8	[singleton]	41.9794	2.8214	2006	December	2	AFLP	1	1
France, Arfons	9	[singleton]	43.430054	2.168282	2007	October	7	AFLP	1	1
France, Toulouse, CNRS	10	CESAC	43.578554	1.463026	2002	November	25	AFLP	25	24
France, Toulouse, CNRS	10	CESAC	43.578554	1.463026	2006	November	10-19	AFLP	37	28
England, West Sussex, Mildenhall Woods	11	[singleton]	52.3614	0.4866	2000	October	15	SNP	1	1
Scotland, Pitlochry, Black Sprout Wood	12	[singleton]	56.7044	-3.7297	1991	September	13	SNP	1	1
Northern Ireland, Fermanagh, Inishmackill	13	[singleton]	54.4795	-7.7315	2000	October	14	SNP	1	1
Portugal, Louzã, Vilarinho	14	Vilarinho	40.122204	-8.209709	2015	November	17	SNP	5	5
Portugal, Coimbra, Escola Superior Agrária de Coimbra	15	Agraria	40.2125	-8.450278	2015	November	16	SNP	2	2
Portugal, São Jacinto, Dunas de Mira	16	Mira	40.4575	-8.768611	2015	November	18	SNP	4	4
USA, NJ, Lebanon, Round Valley Reservoir	17	Round Valley	40.6179	-74.8474	2006	October	7	AFLP	11	7
USA, NJ, Dennis, Jake's Landing Rd	18	Jake's Landing	39.189940	-74.853539	2006	November	21	AFLP	44	27
USA, NY, Rochester, Durand Eastman Park	19	Rochester 1	43.233019	-77.554686	2007	September	N/A	AFLP	13	12
USA, NY, Rochester, Durand Eastman Park	19	Rochester 2	43.232747	-77.554917	2007	September	N/A	AFLP	7	5
USA, NY, Rochester, Durand Eastman Park	19	Rochester 3	43.232896	-77.554851	2007	September	N/A	AFLP	2	2
USA, CA, Monterey	20	[singleton]	36.600238	-121.894676	2006	December	14	AFLP	1	1
USA, CA, Point Reyes National Seashore	21	[singleton]	38.0525	-122.852778	1993	October	5	SNP	1	1
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 1	38.0545	-122.83343	2004	November	16	AFLP	19	12
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 2	38.054785	-122.833232	2004	November	16-17	AFLP	13 [AFLP] / 13 [SNP]	13 [AFLP] / 13 [SNP]
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 2	38.054785	-122.833232	2014	November	17	SNP	25	25
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 2	38.054785	-122.833238	2015	December	14	SNP	11	11
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 3	38.055212	-122.834134	2004	November	16-17	AFLP	8 [AFLP] / 5 [SNP]	2 [AFLP] / 5 [SNP]
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 3	38.055212	-122.834134	2014	November	17	SNP	9	9
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 3	38.05514	-122.83418	2015	December	14	SNP	3	3
USA, CA, Point Reyes National Seashore, Limantour Rd	22	Drake 4	38.054675	-122.83645	2004	November	16	AFLP	6	5
USA, CA, Point Reyes National Seashore, Johnstone Trail	23	Heart's Desire 1	38.131216	-122.88885	2004	November	18	AFLP	7	7
USA, CA, Point Reyes National Seashore, Johnstone Trail	23	Heart's Desire 2	38.12871	-122.88869	2004	November	18	AFLP	7	4
USA, CA, Point Reyes National Seashore, Johnstone Trail	23	Heart's Desire 3	38.12513	-122.88891	2004	November	18	AFLP	4	2

Table 1

Fig. 1

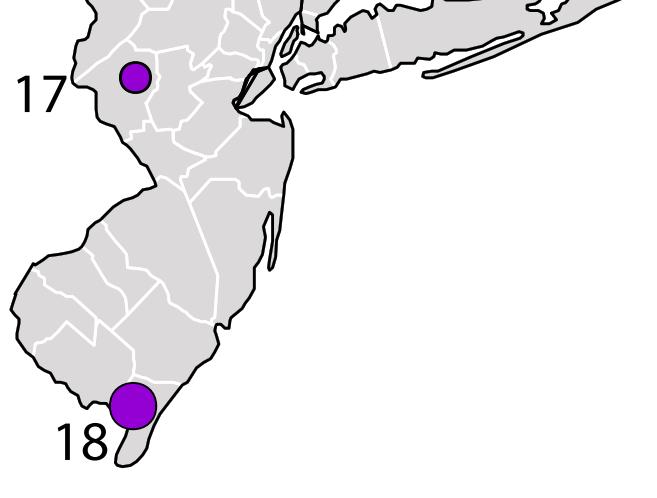
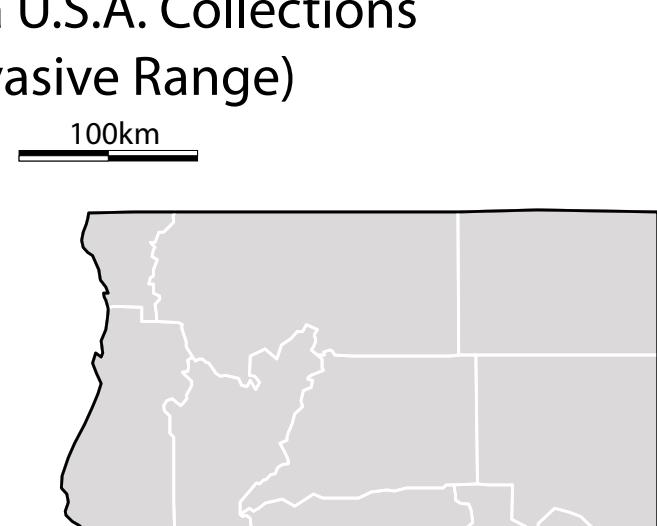
European Collections
(Native Range)


300km

East Coast U.S.A. Collections

(Introduced Range)

100km

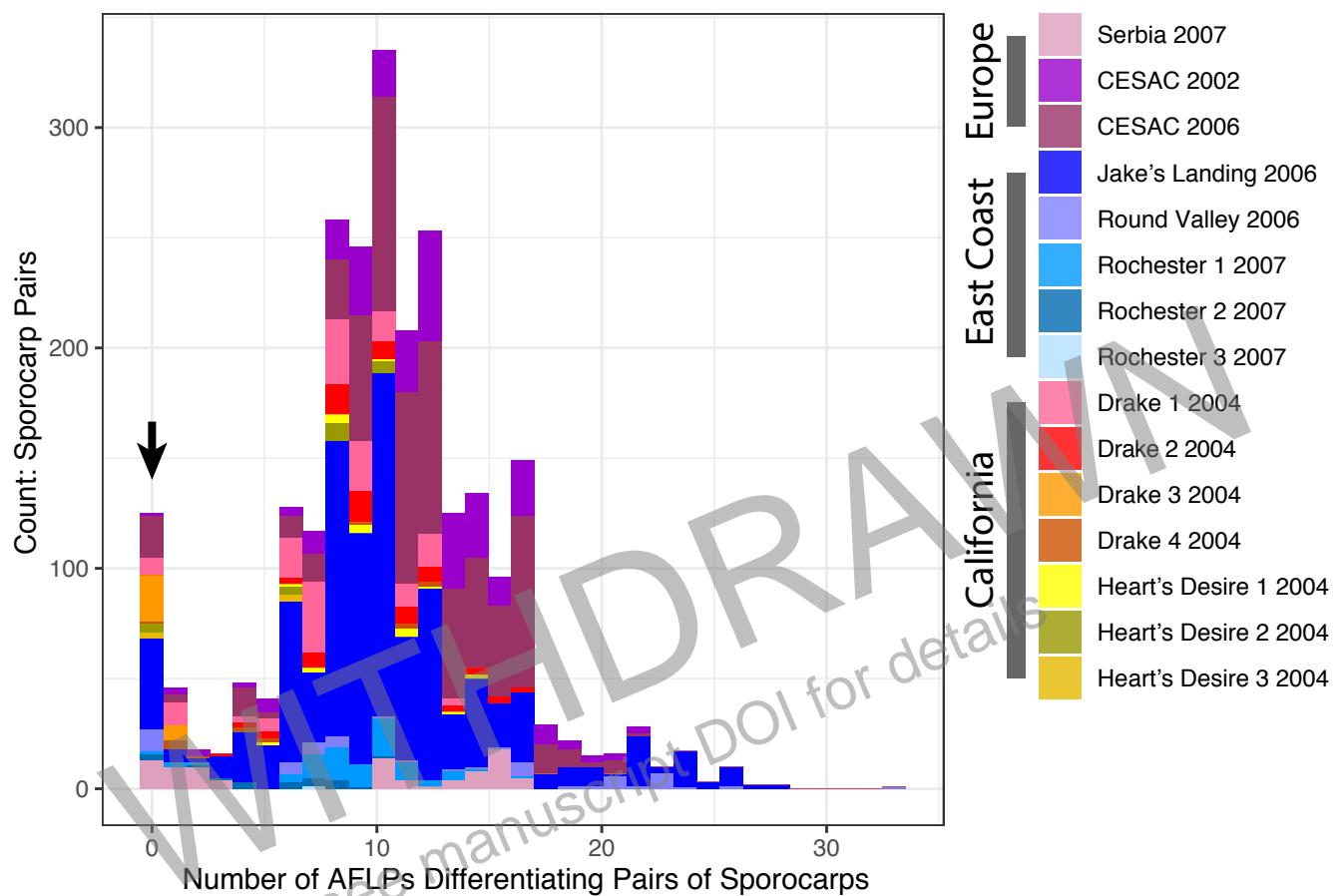



bioRxiv preprint doi: <https://doi.org/10.1101/799254>; this version posted October 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

California U.S.A. Collections

(Invasive Range)

100km


AFLP Data

SNP Data

SNP & AFLP Data

* Collection is a single mushroom

AFLP Data

SNP Data

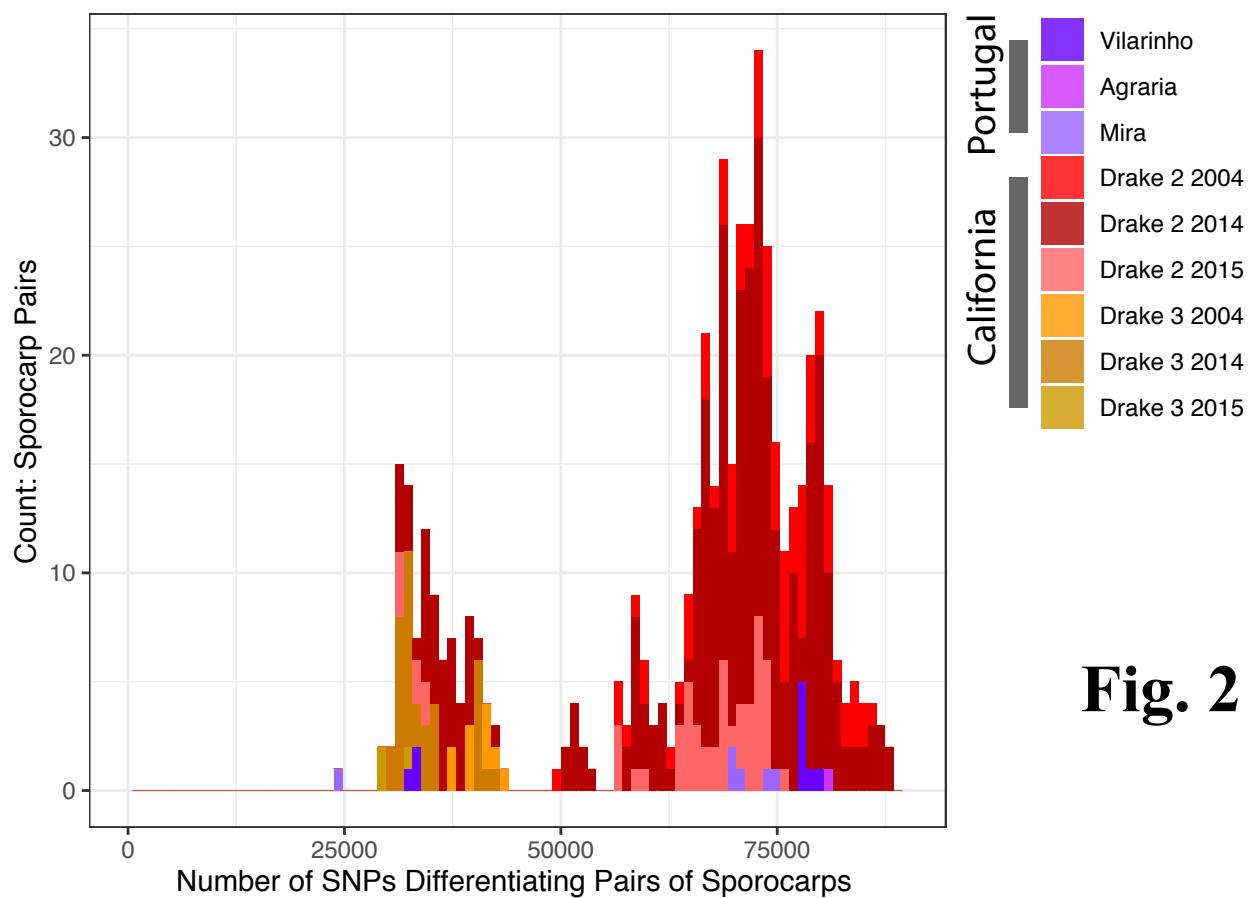


Fig. 2

Fig. 3

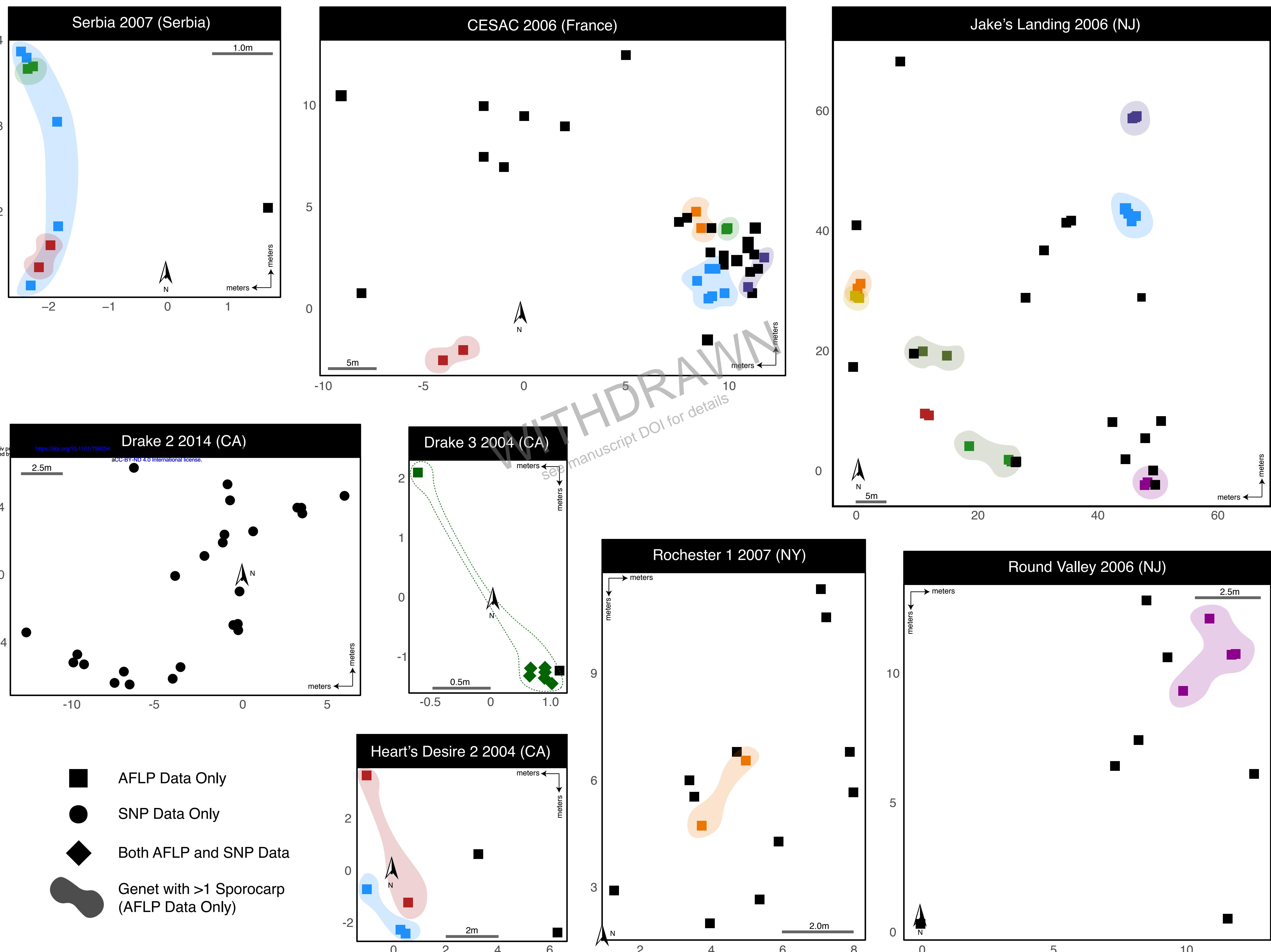
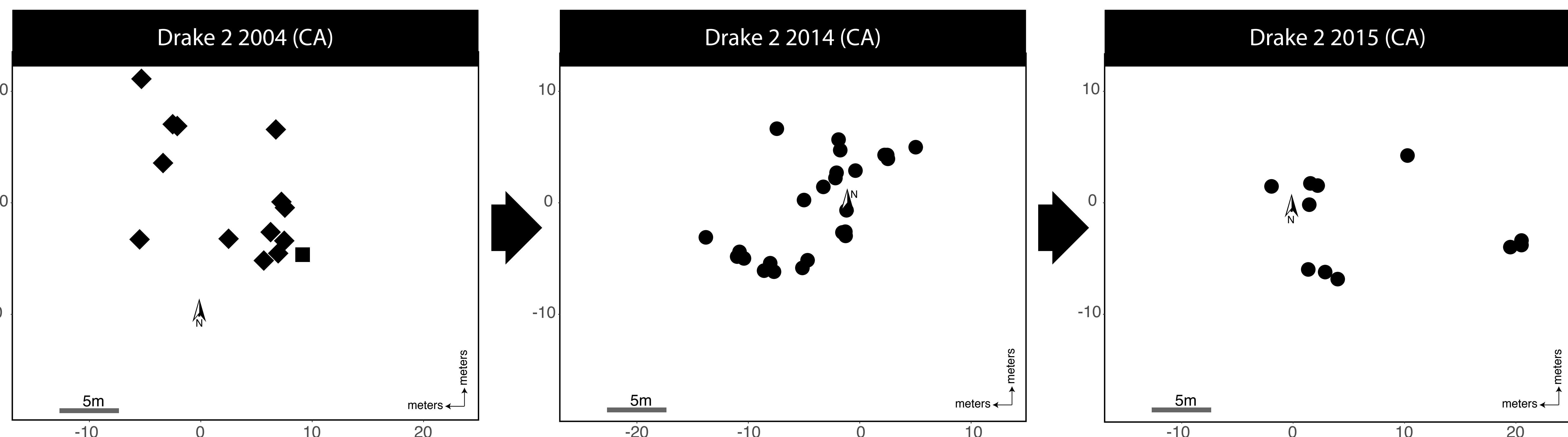
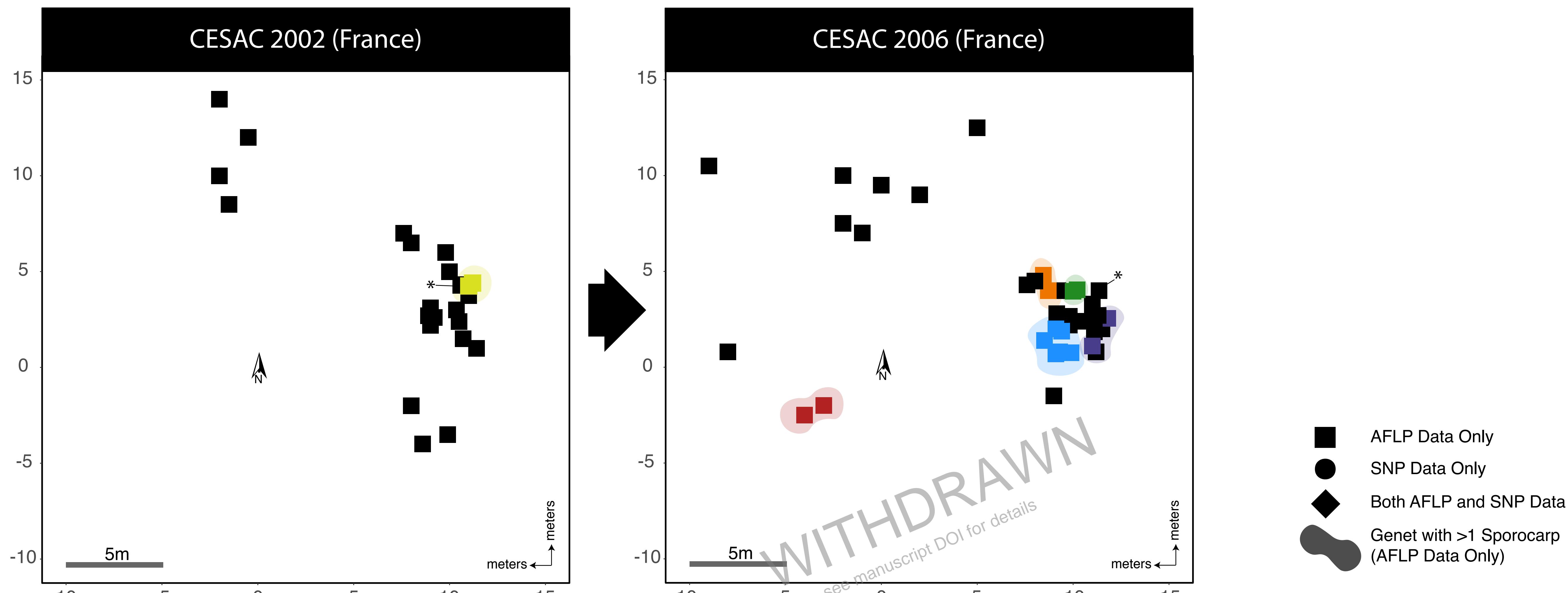




Fig. 4

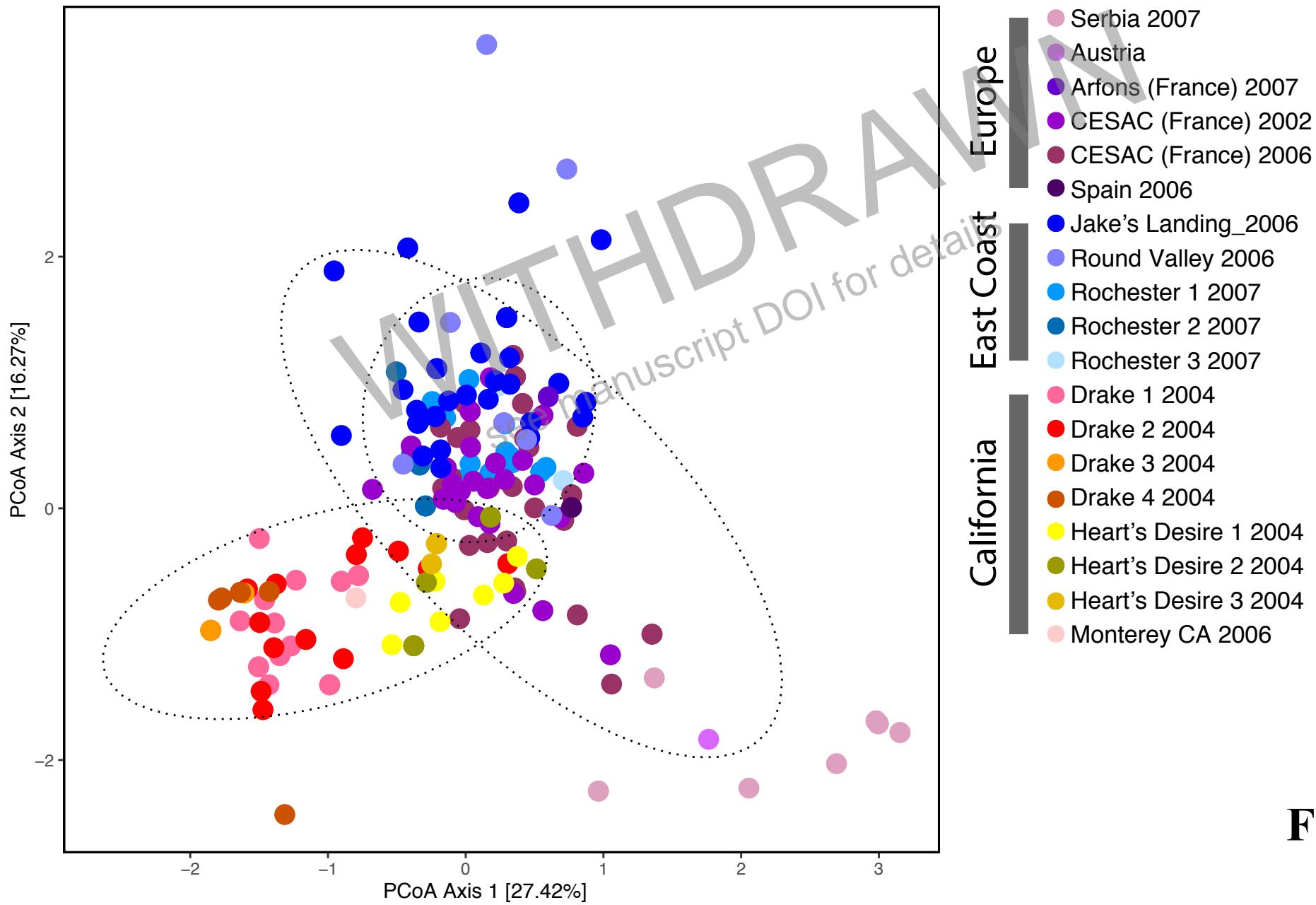
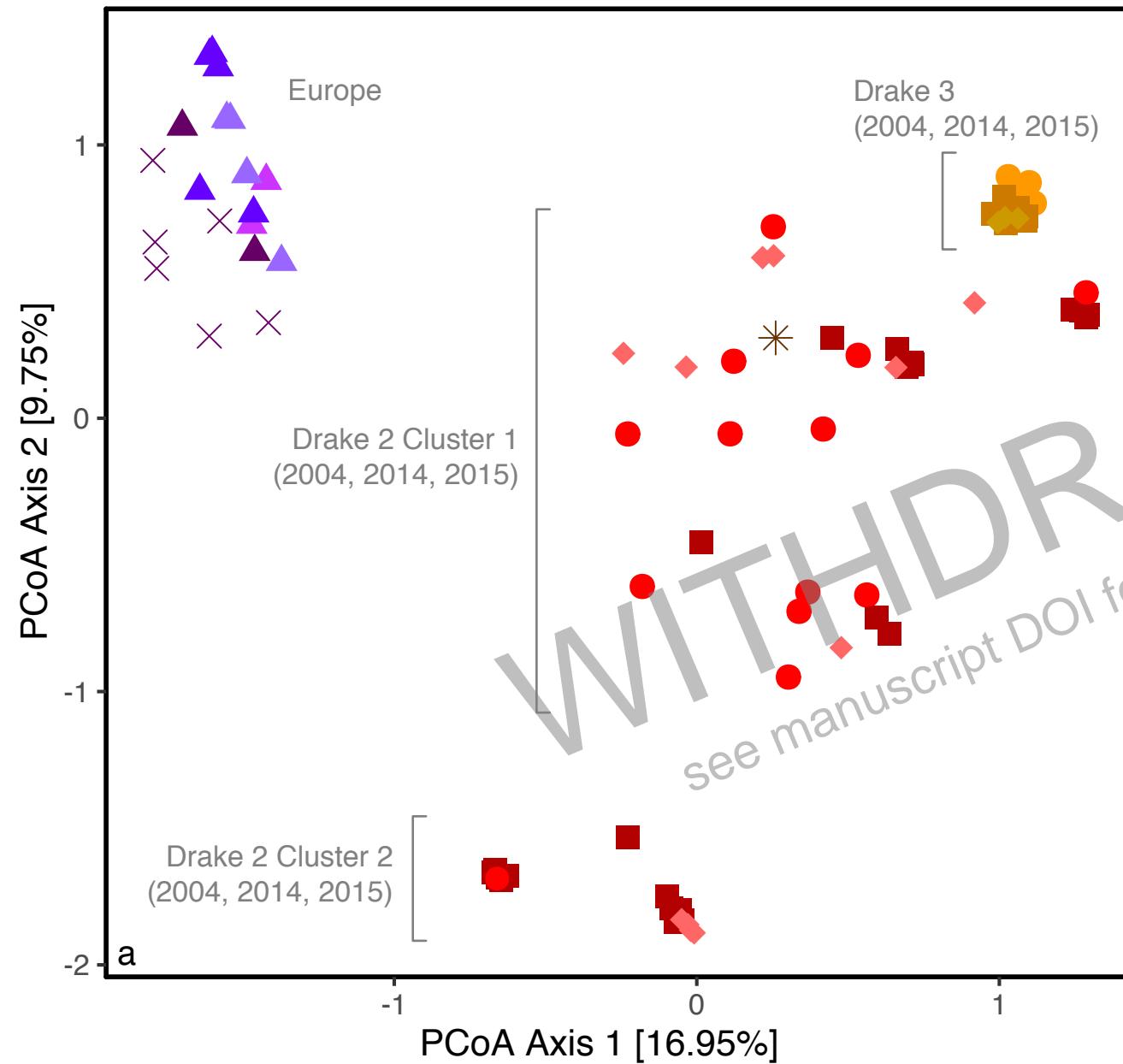
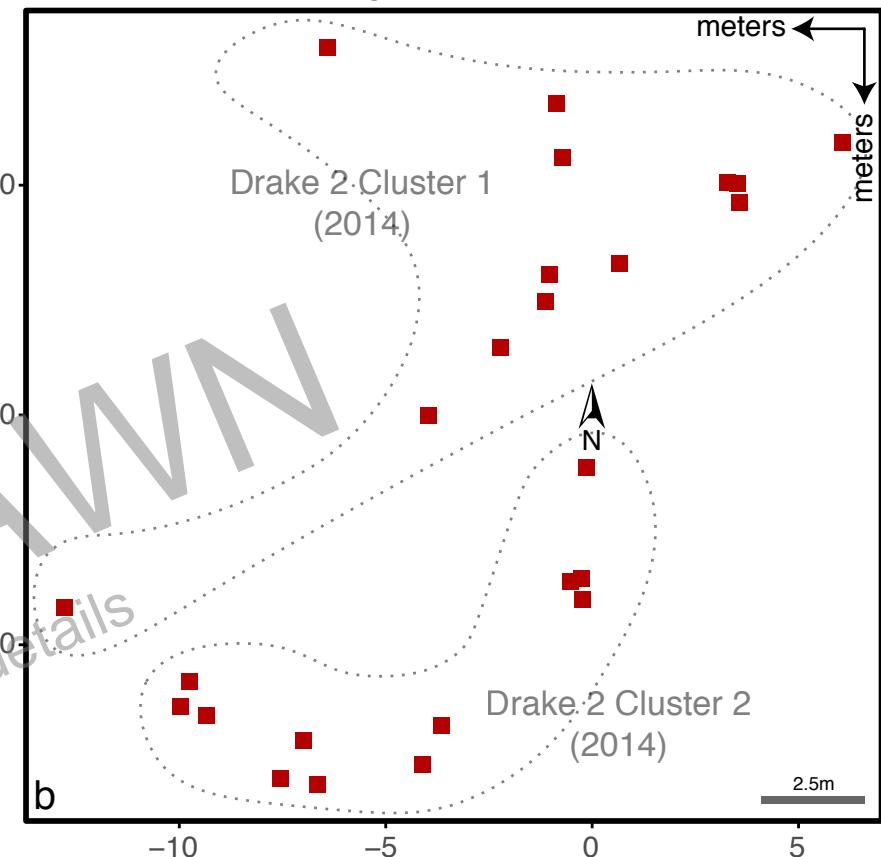




Fig. 5

PCoA: SNP Data

Spatial Mapping: Drake 2 2014

Spatial Mapping: Drake 2 2015

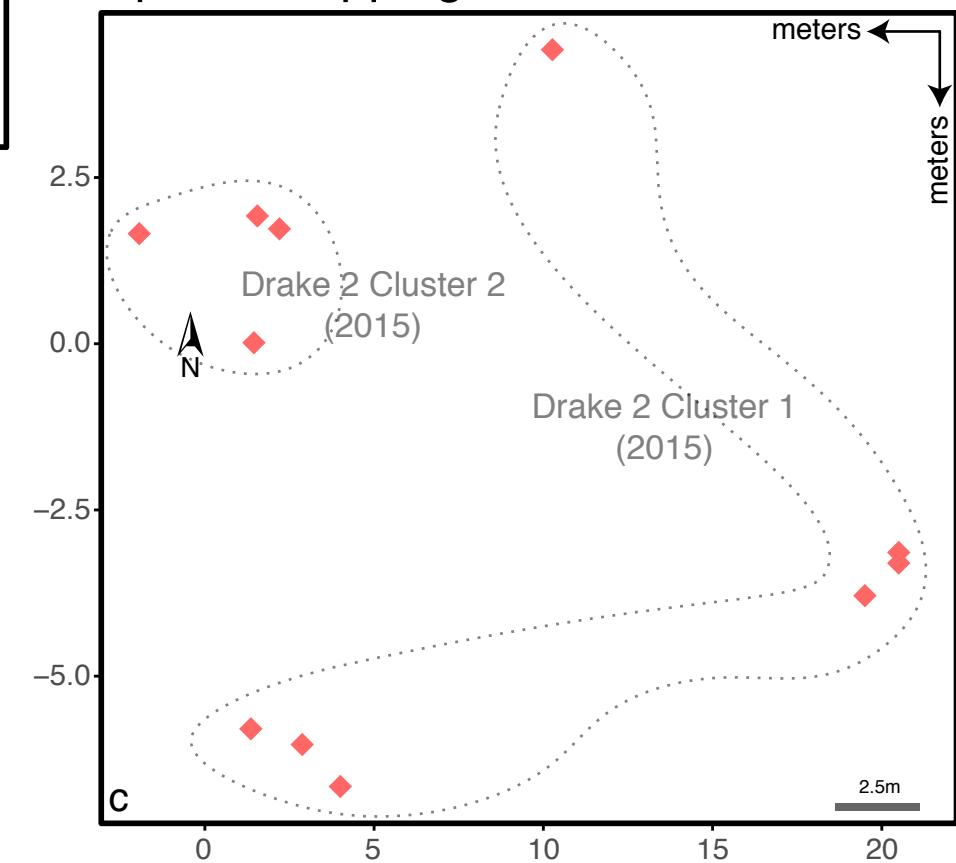
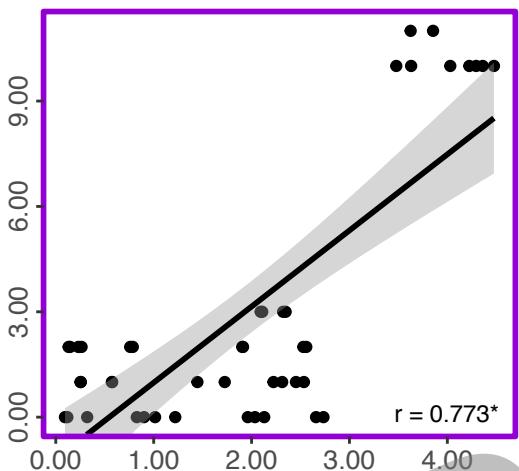
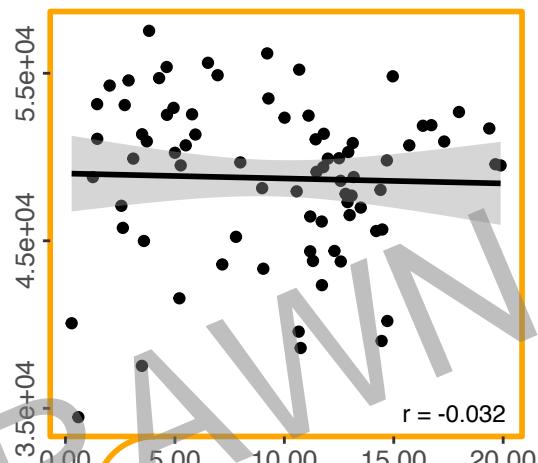
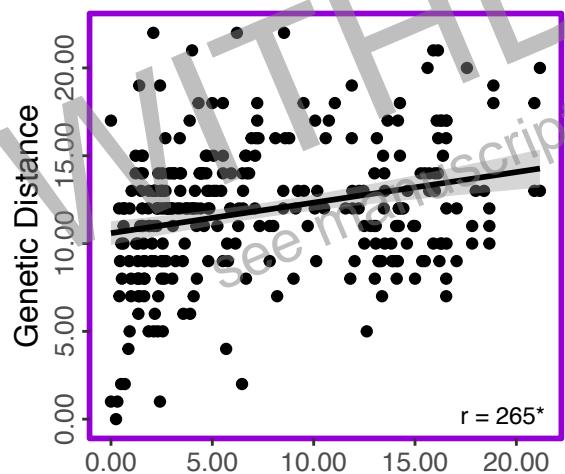
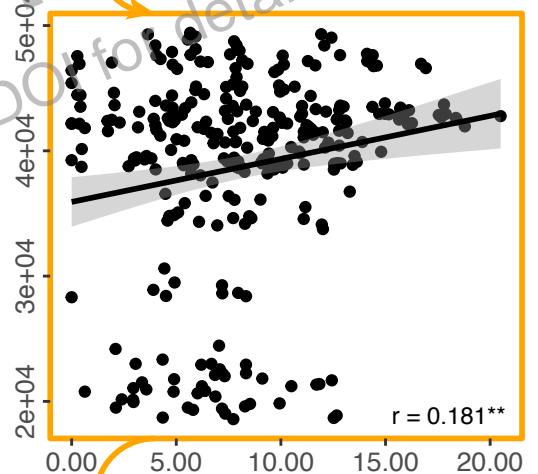
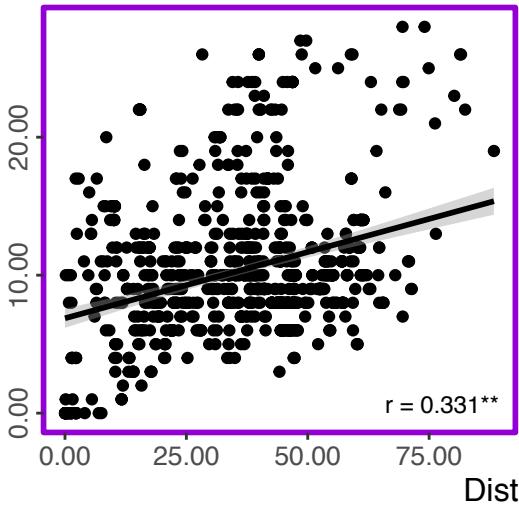




Fig. 6


Serbia 2007


Drake 2 2004


CESAC 2002

Drake 2 2014

Jake's Landing 2006

Drake 2 2015

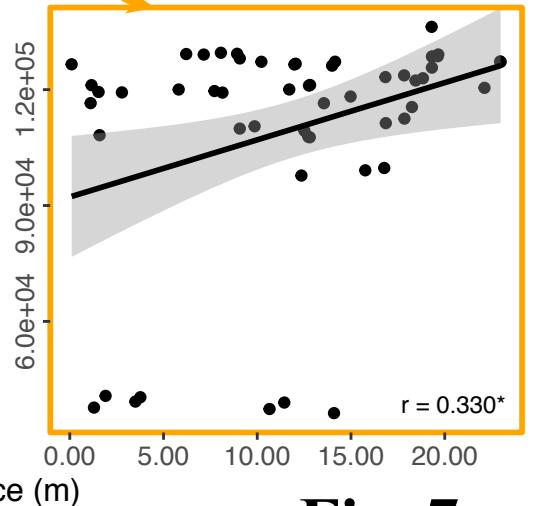


Fig. 7

Supporting Information

Article title: Native and invasive populations of the ectomycorrhizal death cap *Amanita phalloides* are highly sexual but dispersal limited

Authors: Jacob Golan, Catharine Adams, Hugh Cross, Holly Elmore, Monique Gardes, Sydney I. Glassman, Susana C. Gonçalves, Jacqueline Hess, Franck Richard, Yen-Wen Wang, Benjamin Wolfe, Anne Pringle

The following Supporting Information is available for this article:

Methods S1 Sporocarp Mapping Methods

Fig. S1 Genotype accumulation curves of AFLP and SNP data.

Fig. S2 Sporocarp maps and genets of every population genotyped using AFLP fingerprints.

Fig. S3 Sporocarp maps and genets of every population genotyped using genome-wide SNPs.

Fig. S4 AFLP data: Correlations between genetic distances and physical distances (of pairs of sporocarps).

Fig. S5 SNP data: Correlations between genetic distances and physical distances (of pairs of sporocarps).

Table S1 Metadata associated with each sporocarp, including origin, latitude and longitude at source, genome summary statistics (as appropriate) and current specimen location.

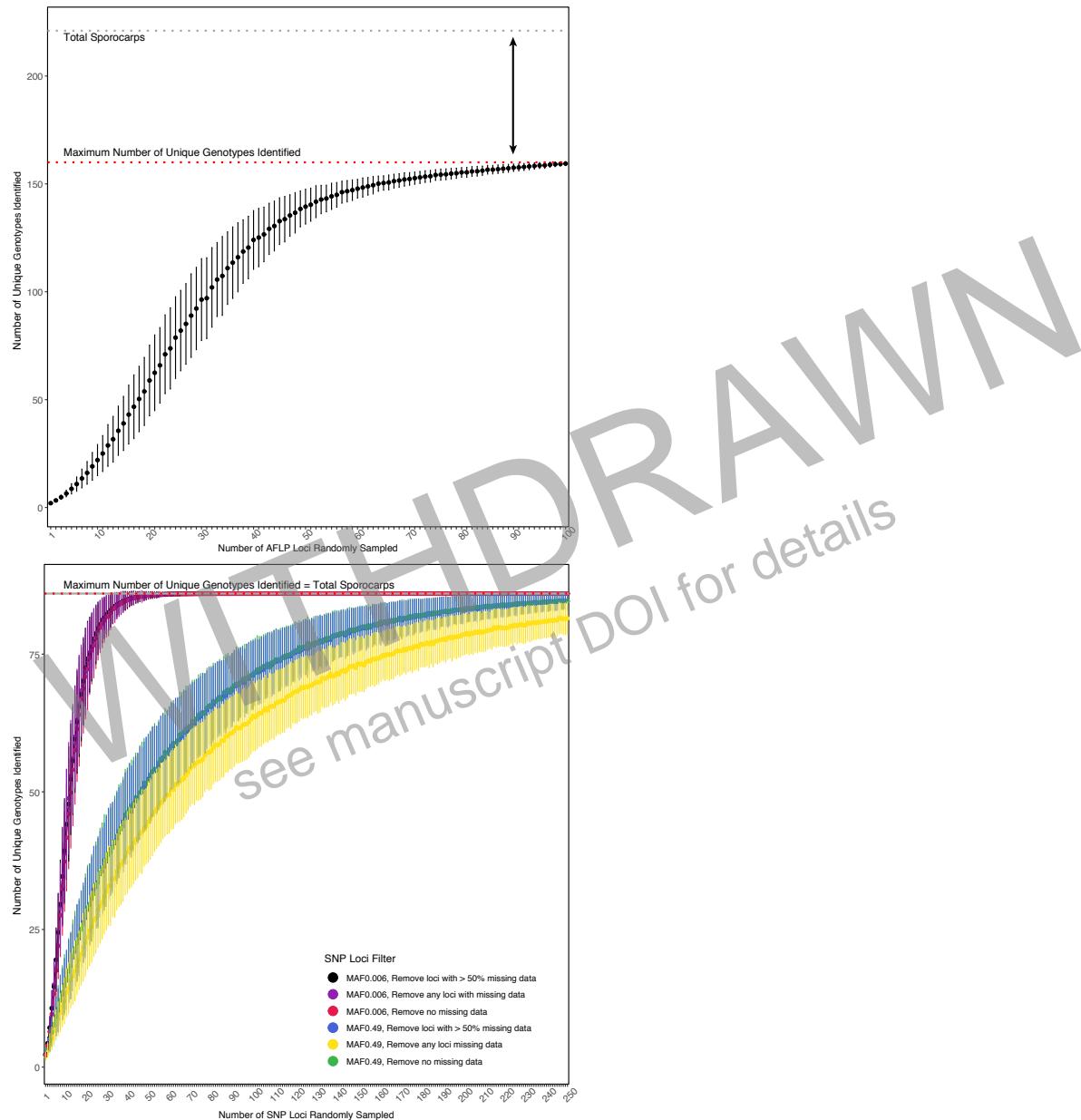
Table S2 Genome assembly summary statistics.

Table S3 Summary of Mantel tests.

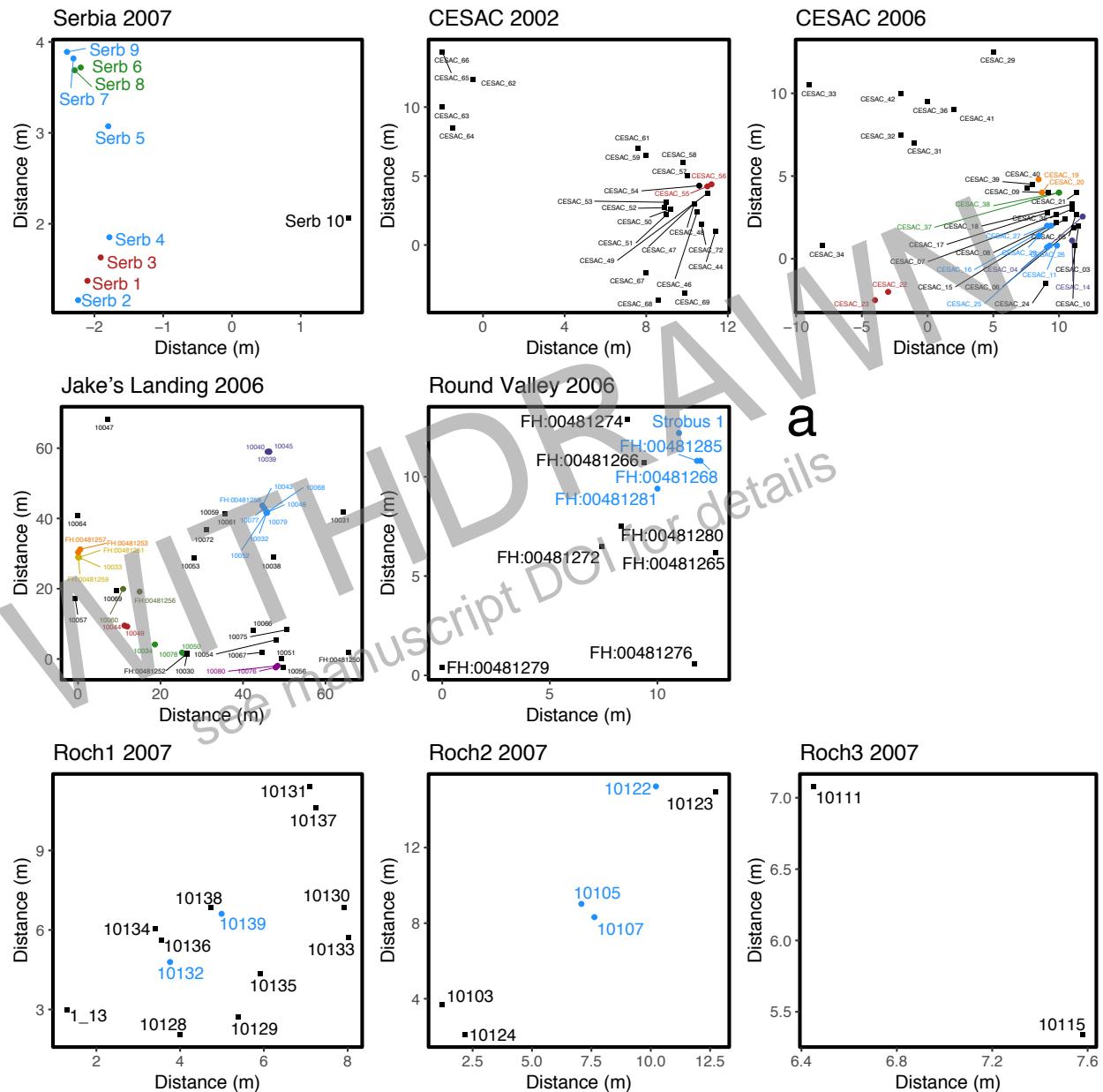
Methods S1 Sporocarp Mapping Methods

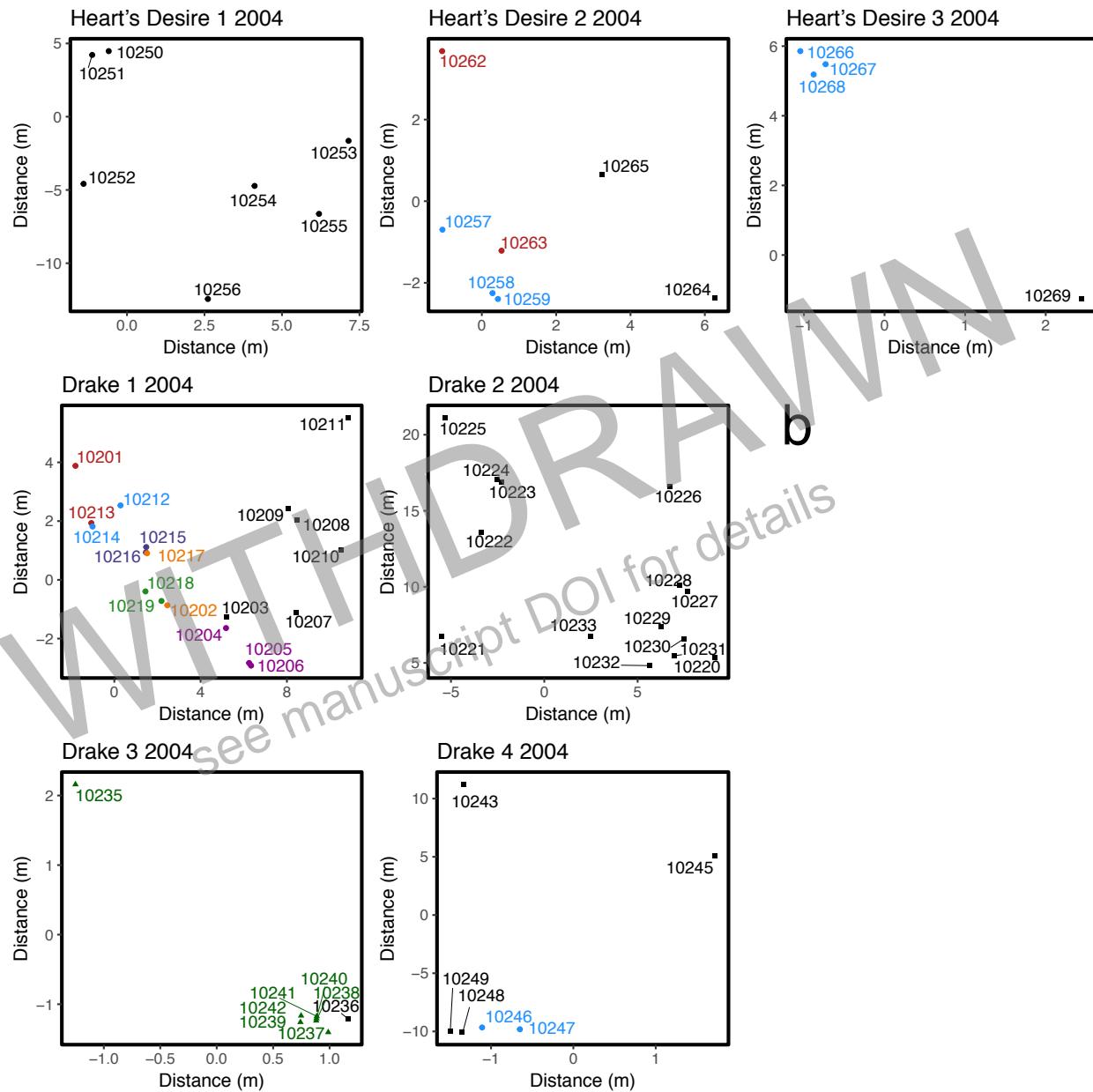
Mapping

At CESAC (in 2002 and 2006) and Drake 2-3 (in 2014 and 2015) transects were measured from an arbitrary center point within each population (at CESAC, a planted *Cedrus libani*) to each sporocarp. The transect angle with respect to north and its distance from the center point were recorded and data later converted to Cartesian coordinates.


Populations from Portugal (Vilarinho, Agraria, and Mira [collected in 2015]) were mapped by measuring the distance between all pairs of sporocarps. Hand drawings of each population were used to arbitrarily choose a single sporocarp as the population center. Cartesian coordinates were then calculated for each sporocarp using the spatial distances between all pairs.

Populations from Drake 1-4 (in 2004), Heart's Desire 1-3 (in 2004), Serbia (in 2007), Round Valley (in 2006), Jake's Landing (in 2006), and Rochester 1-3 (in 2007) were mapped using transect lengths measured from each of two poles placed within each population to each sporocarp. The distance between the two poles was also measured, allowing the length of each transect to be considered as a radius in the mathematical equation of a circle. Using the transect lengths as two intersecting radii, equations for each of two circles were algebraically solved to obtain the Cartesian coordinates of each sporocarp. Using a rough sketch of each population, we identified which point was the correct physical location of any given sporocarp.


After mapping, entire sporocarps were extracted from soil and stored individually in labelled bags. Each sporocarp was assigned a unique five digit specimen number (Table S1a,b) tied to an in-house database named AmanitaBASE.


Within 24 hours of sampling, fresh sporocarps were stored using a variety of protocols including drying on a dehydrator, air drying at approximately 35°C, flash freezing in liquid nitrogen and then lyophilizing, and/or cutting apart and placing in CTAB (Table S1a,b, see "Method of Preservation"). Exact protocols depended on the year, location, and the tools available at the time of sampling. Specimens are stored in the Pringle laboratory herbarium unless otherwise noted (Table S1a,b).

Single sporocarps were also collected opportunistically, sent to us by colleagues or loaned from herbaria. We received permission to destructively sample herbarium specimens whose original herbarium barcodes are listed in Supporting Information Table S1a,b.

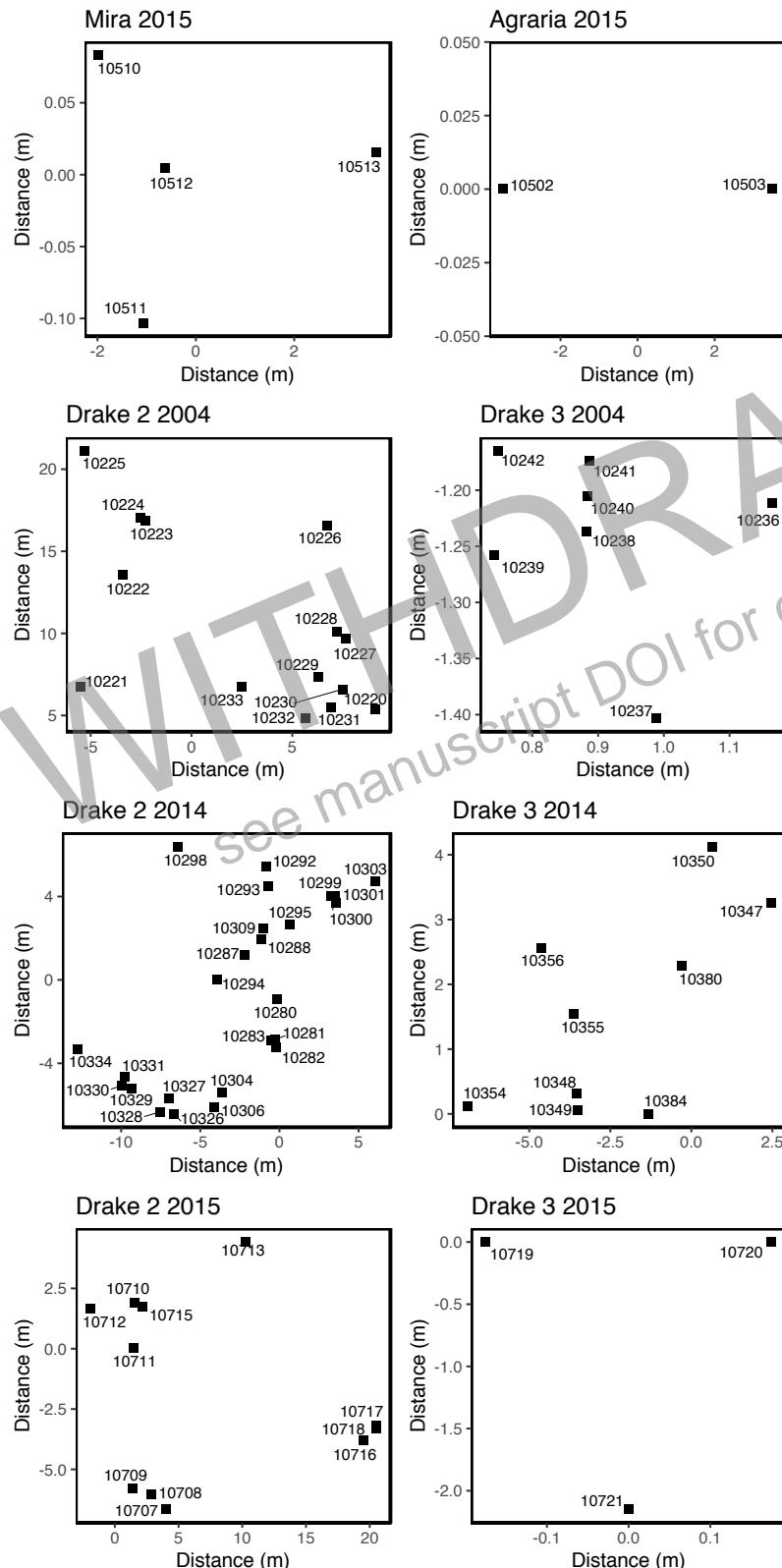
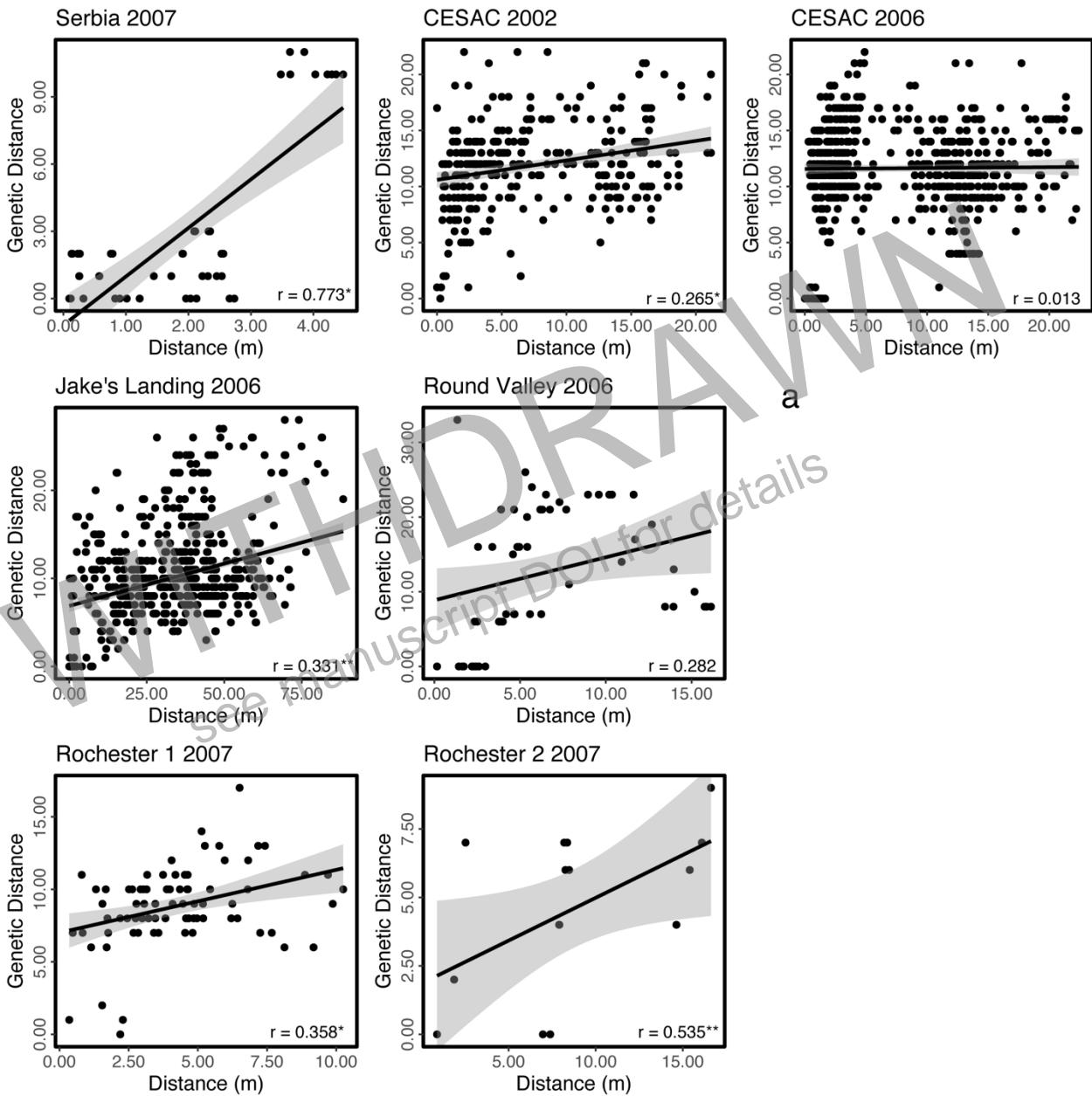


Fig. S1 Genotype accumulation curves are in essence rarefactions of the numbers of genetic markers needed to recover 100% of unique genotypes (Kamvar *et al.*, 2014). One to 100 loci were randomly sampled without replacement 1,000 times, and the raw counts of genotypes observed from each random sampling used to generate means and standard errors. The curve plateaus and variance is minimized at about 90 AFLP markers. Using VCFtools (Danecek *et al.*, 2011) we tested a variety of different VCF filters to gauge how each filter discriminated among unique genotypes. Loci with a minor allele frequency lower than 0.006 ($[2^*N]^{-1}$, where $N = 86$ diploid sporocarps), or 0.49 (as an arbitrary and overly conservative filter), with a sequencing depth below 60 (the approximate mean depth across all loci and individuals), and with missing data thresholds per locus less than 0%, 50%, and 100%, were used in different combinations to filter the raw VCF file. Dotted red lines mark the maximum number of genotypes recovered with either AFLP or SNP data; dotted grey lines mark the total number of sporocarps used to generate either AFLP or SNP datasets.



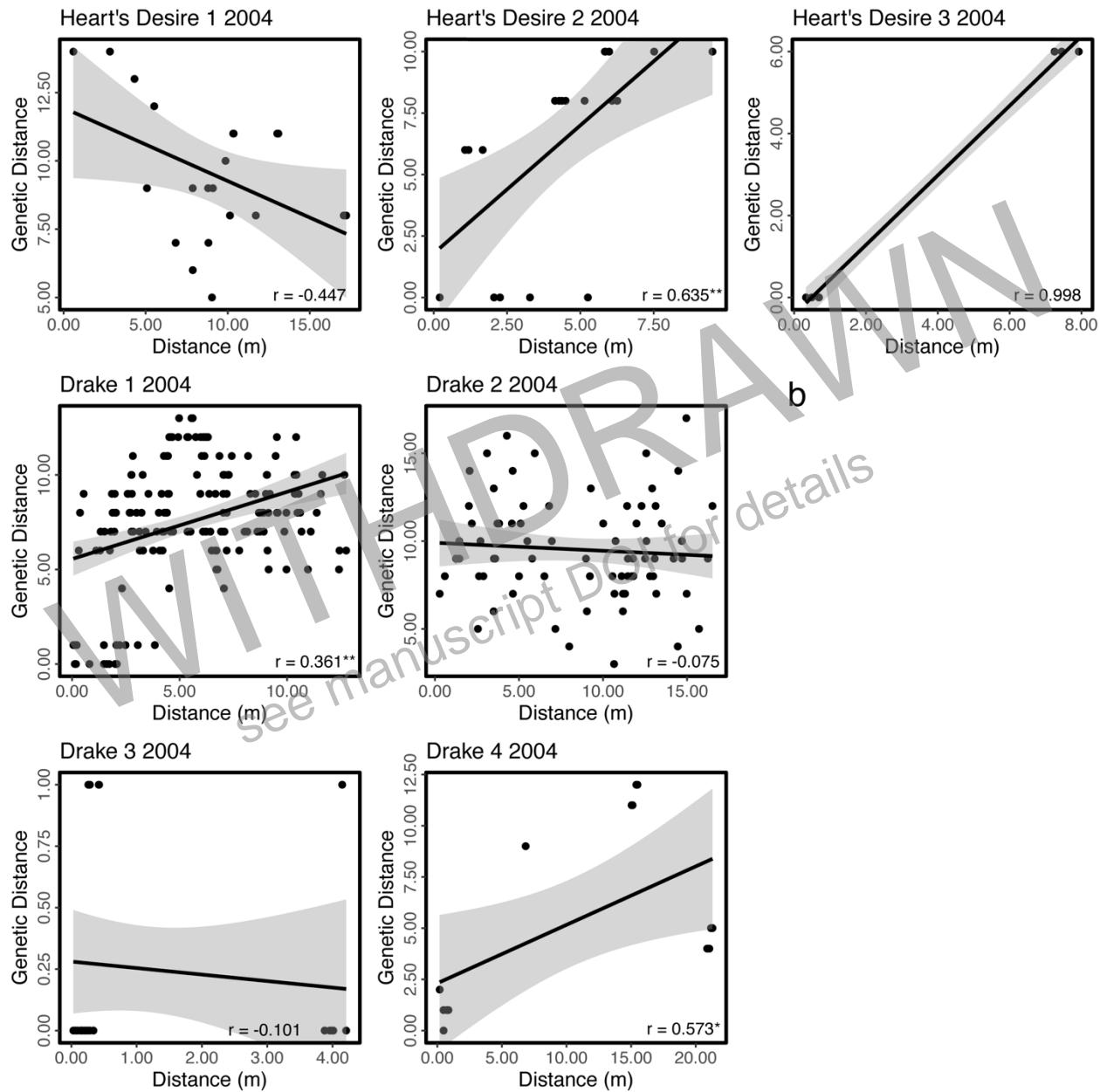


Fig. S2 Sporocarp maps and genets of every population genotyped using AFLP fingerprints. Within each map, sporocarps of the same genotype are labeled using a single color. Black squares mark genotypes represented by a single sporocarp. Panel (a) shows European and East Coast populations, and panel (b) shows Californian populations.

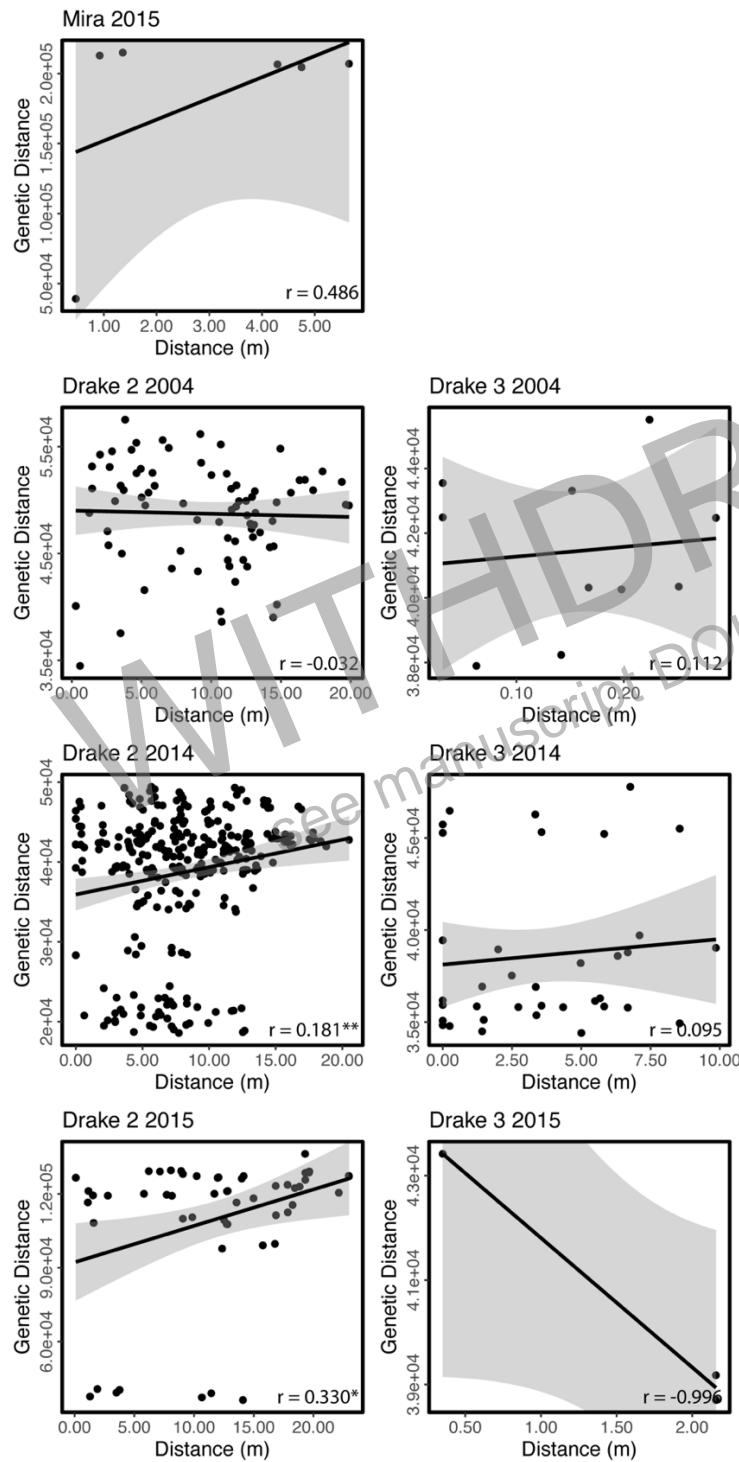


Fig. S3 Sporocarp maps and genets of every population delineated using genome-wide SNPs. Black squares mark genotypes represented by a single sporocarp; no genet encompassed more than one sporocarp.

Fig. S4 AFLP data: Correlations between genetic distances and physical distances. Grey shading marks 95% confidence intervals around fitted linear models. Each plot includes the Mantel statistic r using Pearson's correlation method, and asterisks mark significant Mantel correlations ($* = p < 0.05$, $^{**} = p < 0.005$). Panel (a) shows European and East Coast populations, and panel (b) shows California populations.

Fig. S5 SNP data: Correlations between genetic distances and physical distances. Grey shading marks 95% confidence intervals around fitted linear models. Each plot includes the Mantel statistic r using Pearson's correlation method and asterisks mark significant Mantel correlations ($* = p < 0.05$, $^{**} = p < 0.001$).