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Selection of mutants in a microbial population depends on multiple cellular traits. In serial-
dilution evolution experiments, three key traits are the lag time when transitioning from starvation
to growth, the exponential growth rate, and the yield (number of cells per unit resource). Here
we investigate how these traits evolve in laboratory evolution experiments using a minimal model
of population dynamics, where the only interaction between cells is competition for a single lim-
iting resource. We find that the fixation probability of a beneficial mutation depends on a linear
combination of its growth rate and lag time relative to its immediate ancestor, even under clonal
interference. The relative selective pressure on growth rate and lag time is set by the dilution factor;
a larger dilution factor favors the adaptation of growth rate over the adaptation of lag time. The
model shows that yield, however, is under no direct selection. We also show how the adaptation
speeds of growth and lag depend on experimental parameters and the underlying supply of muta-
tions. Finally, we investigate the evolution of covariation between these traits across populations,
which reveals that the population growth rate and lag time can evolve a nonzero correlation even
if mutations have uncorrelated effects on the two traits. Altogether these results provide useful

guidance to future experiments on microbial evolution.

Laboratory evolution experiments in microbes have
provided insight into many aspects of evolution [1-3],
such as the speed of adaptation [4], nature of epista-
sis [5], the distribution of selection coefficients from spon-
taneous mutations [6], mutation rates [7], the spectrum
of adaptive genomic variants [8], and the preponderance
of clonal interference [9]. Despite this progress, links be-
tween the selection of mutations and their effects on spe-
cific cellular traits have remained poorly characterized.
Growth traits — such as the lag time when transitioning
from starvation to growth, the exponential growth rate,
and the yield (resource efficiency) — are ideal candidates
for investigating this question. Their association with
growth means they have relatively direct connections to
selection and population dynamics. Furthermore, high-
throughput techniques can measure these traits for hun-
dreds of genotypes and environments [10-13]. Numerous
experiments have shown that single mutations can be
pleiotropic, affecting multiple growth traits simultane-
ously [14, 15]. More recent experiments have even mea-
sured these traits at the single-cell level, revealing sub-
stantial non-genetic heterogeneity [10, 13, 16]. Several
evolution experiments have found widespread evidence of
adaptation in these traits [17-20]. This data altogether
indicates that covariation in these traits is pervasive in
microbial populations.

There have been a few previous attempts to de-
velop quantitative models to describe evolution of these
traits. For example, Vasi et al. [17] considered data af-
ter 2000 generations of evolution in Fscherichia coli to
estimate how much adaptation was attributable to differ-
ent growth traits. Smith [21] developed a mathematical
model to study how different traits would allow strains
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to either fix, go extinct, or coexist; Wahl and Zhu [22]
focused on how the fate of different trait-affecting muta-
tions was determined by their time of occurrence during
the growth cycle. However, simple quantitative results
that can be used to interpret experimental data have
remained lacking. More recent work [23, 24] derived a
quantitative relation between growth traits and selection,
showing that selection consists of additive components on
the lag and growth phases. However, this did not address
the consequences of this selection for evolution, especially
the adaptation of trait covariation.

In this work we investigate a model of evolutionary
dynamics with covariation across multiple growth traits.
We consider a minimal model in which different strains
of cells interact only by competition for a single limit-
ing resource. We find that the fixation probability of a
mutation, even in the presence of substantial clonal inter-
ference, is accurately determined by a linear combination
of its change in growth rate and change in lag time rel-
ative to its immediate ancestor; the relative weight of
these two components is determined by the dilution fac-
tor. Yield, on the other hand, is under no direct selec-
tion. We provide quantitative predictions for the speed
of adaptation of growth rate and lag time as well as their
evolved covariation. Specifically, we find that even in the
absence of an intrinsic correlation between growth and
lag due to mutations, these traits can evolve a nonzero
correlation due to selection and variation in number of
fixed mutations.
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7 METHODS
72 Model of population dynamics

7z We consider a model of asexual microbial cells in a
well-mixed batch culture, where the only interaction be-
tween different strains is competition for a single limiting
resource [23, 24]. Each strain ¢ is characterized by a lag
7 time L;, growth rate r;, and yield Y; (see Fig. la for
a two-strain example). Here the yield is the number of
cells per unit resource [17]. Note that some of our nota-
tion differs from related models in previous work, some
of which used g for growth rate and A for lag time [23],
while others used A for growth rate [25]. Although it is
possible to extend the model to account for additional
growth traits such as a death rate or lag and growth on
secondary resources, here we focus on the minimal set
of traits most often measured in microbial phenotyping
experiments [10-12, 14-16, 18, 26].

s When the population has consumed all of the initial re-
source, the population reaches stationary phase with con-
stant size. The time ¢. at which this occurs is determined
by equating the total amount of resources consumed by
the population at that time with the total initial amount
of resources R:
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o where Ny is the total population size and zy is the fre-
quency of each strain k£ at the beginning of the growth
cycle. In Eq. 1 we assume the time t. is longer than
each strain’s lag time L. We define the selection coeffi-
cient between each pair of strains as the change in their
log-ratio over the complete growth cycle [27, 28]:
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100 where N}“itial is the population size of strain ¢ at the
beginning of the growth cycle and Nf"2! is the population
size of strain 7 at the end. After the population reaches
stationary phase, it is diluted by a factor of D into a fresh
medium with amount R of the resource, and the cycle
repeats (Fig. la). We assume the population remains
in the stationary phase for a sufficiently short time such
107 that we can ignore death and other dynamics during this
s phase [29, 30].

Over many cycles of growth, as would occur in a lab-
uo oratory evolution experiment [1, 28, 31], the population
m dynamics of this system are characterized by the set of
uz frequencies {z} for all strains as well as the matrix of se-
us lection coefficients s;; and the total population size Ny at
us the beginning of each cycle. In Supplementary Methods
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FIG. 1. Model of selection on multiple microbial
growth traits. (a) Simplified model of microbial popula-
tion growth characterized by three traits: lag time L, growth
rate r, and yield Y. The total initial population size is No
and the initial frequency of the mutant (strain 2) is z. After
the whole population reaches stationary phase (time t.), the
population is diluted by a factor D into fresh media, and the
cycle starts again. (b) Phase diagram of selection on mutants
in the space of their growth rate v = r2/r1 — 1 and lag time
w = (L2 — L1)ry relative to a wild-type. The slope of the
diagonal line is In D.

we derive explicit equations for the deterministic dynam-
ics of these quantities over multiple cycles of growth for
an arbitrary number of strains. In the case of two strains,
such as a mutant and a wild-type, the selection coefficient
is approximately

115
116
117
118

119

(3)

120 where (ro — r1)/r1 is the growth rate of the mu-
w tant relative to the wild-type and w = (Lg — Lq)ry is the
122 relative lag time. The approximation is valid as long as
123 the growth rate difference between the mutant and the
124 wile-type is small, which is true for most single muta-
s tions [6, 32]. This equation shows that the growth phase
126 and lag phase make distinct additive contributions to the
127 total selection coefficient, with the dilution factor D con-
s trolling their relative magnitudes (Fig. 1b). This is be-
129 cause a larger dilution factor will increase the amount of
130 time the population grows exponentially, hence increas-

sx~vyInD — w,
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1 ing selection on growth rate. Neutral coexistence be-
122 tween multiple strains is therefore possible if these two
13 selection components balance (s = 0), although it re-
134 quires an exact tuning of the growth traits with the di-
s lution factor (Supplementary Methods) [23, 24]. With a
136 fixed dilution factor D, the population size Ny at the be-
137 ginning of each growth cycle changes according to (Sup-
133 plementary Methods):

(4)

where Y = (3, zx/Ys) ! is the effective yield of the
whole population in the current growth cycle. In this
manner the ratio R/D sets the bottleneck size of the
population, which for serial dilution is approximately the
effective population size [31], and therefore determines
the strength of genetic drift.
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145 Model of evolutionary dynamics

us  We now consider the evolution of a population as new
mutations arise that alter growth traits. We start with
a wild-type population having lag time Ly = 100 and
growth rate 7o = (In2)/60 ~ 0.012, which are roughly
consistent with E. coli parameters where time is mea-
sured in minutes [17, 31]; we set the wild-type yield to
be Yy = 1 without loss of generality. As in experiments,
we vary the dilution factor D and the amount of resources
R, which control the relative selection on growth versus
lag (set by D, Eq. 3) and the effective population size (set
by R/D, Eq. 4). We also set the initial population size
to its steady state value of Ny = RYy/D (Supplementary
Methods).

The population grows according to the dynamics in
Fig. 1a. Each cell division can generate a new muta-
tion with probability u, which we set to u = 107%; note
this rate is only for mutations altering growth traits, and
therefore it is lower than the rate of mutations anywhere
in the genome. We therefore generate a random waiting
time 73 for each strain £ until the next mutation with
instantaneous rate urgNg(t). When a mutation occurs,
the growth traits for the mutant are drawn from a dis-
tribution pmut(r2, Lo, Ya|r1, L1, Y1), where r1, L1,Y7 are
the growth traits for the background strain on which
the new mutation occurs and 79, Lo, Y are the traits
for the new mutant. We will assume mutational effects
are not epistatic and scale with the trait values of the
w3 background strain, so that pmut(re, Lo, Yalri, L1,Y7) =
17 Pt (Y, w, ), where v = (rg — 1) /71, w = (L2 — L1771,
and 6 = (Y2 — Y7)/Y1 (Supplementary Methods). For
simplicity, we focus on uniform distributions of muta-
tional effects where —0.02 < v < 0.02, —0.05 < w < 0.05,
and —0.02 < § < 0.02, but in Supplementary Methods
we extend our main results to the case of Gaussian dis-
180 tributions as well. Note that since mutations only arise
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11 during the exponential growth phase, beneficial or dele-
182 terious effects on lag time are not realized until the next
13 growth cycle [20]. After the growth cycle ceases (once
18 the resource is exhausted according to Eq. 1), we ran-
185 domly choose cells, each with probability 1/D, to form
18 the population for the next growth cycle.

RESULTS

187

188 Fixation of mutations

We first consider the fixation statistics of new mu-
tations in our model. In Fig. 2a we show the relative
growth rates v and relative lag times w of fixed muta-
tions, along with contours of constant selection coefficient
103 s from Eq. 3. As expected, fixed mutations all increase
e growth rate (y > 0), decrease lag time (w < 0), or both.
1s In contrast, the yield of fixed mutations is the same as
s the ancestor on average (Fig. 2d); indeed, the selection
coefficient in Eq. 3 does not depend on the yields (Sup-
plementary Methods). If a mutation arises with signif-
icantly higher or lower yield than the rest of the pop-
ulation, the bottleneck population size Ny immediately
adjusts to keep the overall fold-change of the population
during the growth cycle fixed to the dilution factor D.
Therefore mutations that significantly change yield have
no effect on the overall population dynamics.

Figure 2a also suggests that the density of fixed muta-
tions depends only on their selection coefficient s, rather
than their individual combination of traits. We there-
fore plot the fixation probabilities of mutations as func-
tions of their selection coefficients calculated by Eq. 3
(Fig. 2 b,c,e,f). We test this over a range of population
dynamics regimes by varying the dilution factor D and
the amount of resources R. For small populations, mu-
tations generally arise and either fix or go extinct one
at a time, a regime known as “strong-selection weak-
mutation” (SSWM) [33]. In this case, we expect the fix-
ation probability of a beneficial mutation with selection
coefficient s > 0 to be [22, 34, 35]
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This is similar to the standard Wright-Fisher fixation
probability of 2s [36], but with a correction to account
for the fact that the mutation can arise at different times
in the exponential growth phase. Indeed, we see this pre-
dicted dependence matches the simulation results for the
small population size of Ng ~ R/D = 103 (Fig. 2b).

For larger populations, multiple beneficial mutations
will be present simultaneously in the population and in-
26 terfere with each other, an effect known as clonal inter-
27 ference [37, 38]. We find that the fixation probability of
2s & mutant in this clonal interference regime is well fit by

psswm(s) =

218
219
220
221
222
223
224

225

oci(s) = Ase B/s, (6)
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FIG. 2. Selection coefficient determines fixation probability. (a) The relative growth rate v and lag time w of fixed
mutations. Dashed lines mark contours of constant selection coefficient, while the solid line marks s = 0. (d) Same as (a) but
for relative growth rate v and relative yield §. The red dots mark the relative yield of fixed mutations averaged over binned
values of the relative growth rate 4. In (a) and (d), D = 10% and R = 10”. (b,c,e,f) Fixation probability of mutations against
their selection coefficient for different amounts of resource R and dilution factors D as indicated in the titles. The red dashed
line shows the fixation probability predicted in the SSWM regime (Eq. 5), while the black line shows a numerical fit of the data
points to the fixation probability under clonal interference (Eq. 6), with the resulting fitting parameters A and B shown in
the lower right corner of each panel. In all panels mutations randomly arise from a uniform distribution pmus (Supplementary

Methods).

where A and B are two constants that depend on other
parameters of the population; we treat these as empirical
parameters to fit to the simulation results, although Ger-
rish and Lenski [37] predicted A = 2InD/(D — 1), i.e.,
the same constant as in the SSWM case (Eq. 5). Concep-
tually, this means that interference from other beneficial
mutations suppresses the SSWM fixation probability by
an exponential factor, where the 1/s term comes from
the time between the appearance of mutation and its fix-
ation [37]. Equation 6 matches our simulation results well
for larger population sizes Ny ~ R/D > 10* (Fig. 2c,e,f).
Furthermore, the constant A we fit to the simulation data
is indeed close to the predicted value of 2In D/(D — 1),
except in the most extreme case of Ny ~ R/D = 10°
(Fig. 2f).

Altogether Fig. 2 shows that mutations with different
effects on cell growth — for example, a mutant that in-
creases growth rate and a mutant that decreases lag time
— can nevertheless have the same fixation probability as
long as their overall effect on selection is the same ac-
cording to Eq. 3. In Supplementary Methods we show
that these results also hold for a Gaussian distribution of
mutational effects pmut (7, w, 9), including the presence of
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correlated mutational effects (Fig. S1). While the depen-
dence of fixation probability on the selection coefficient is
a classic result of population genetics [39], the existence
of a simple relationship here is nontrivial since, strictly
speaking, selection in this model is not only frequency-
dependent [23] (i.e., selection between two strains de-
pends on their frequencies) but also includes higher-order
effects [24] (i.e., selection between strain 1 and strain 2
is affected by the presence of strain 3). Therefore in
principle, the fixation probability of a mutant may de-
pend on the specific state of the population in which it
is present, while the selection coefficient in Eq. 3 only
describes selection on the mutant in competition with its
immediate ancestor. However, we see that, at least for
the parameters considered in our simulations, these ef-
fects are negligible in determining the eventual fate of a
mutation.

Adaptation of growth traits

As Fig. 3a shows, many mutations arise and fix over
the timescale of our simulations, which lead to pre-
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FIG. 3. Dynamics of evolving populations. (a) Fre-
quencies of new mutations as a function of the number n
of growth cycles. Example trajectories of (b) the fitness of
the evolved population relative to the ancestral population,
(c) the evolved population growth rate, (d) the evolved pop-
ulation lag time, and (e) the evolved population yield. In all
panels the dilution factor is D = 102, the amount of resource
at the beginning of each cycle is R = 107, and mutations ran-
domly arise from a uniform distribution pmut (Supplementary
Methods).

dictable trends in the quantitative traits of the popu-
lation. We first determine the relative fitness of the pop-
ulation against the ancestral strain by simulating compe-
tition between an equal number of evolved and ancestral
cells for one cycle, analogous to common experimental
measurements [1, 31]. The resulting fitness trajectories
are shown in Fig. 3b. To see how different traits con-
tribute to the fitness increase, we also calculate the av-
erage population traits at the beginning of each cycle,
e.g., Tpop(n) = >, 7i/No(n) (where the sum is over all
cells), as a function of the number n of growth cycles. As
expected from Eq. 3, the average growth rate increases
(Fig. 3c) and the average lag time decreases (Fig. 3d)
for all simulations. In contrast, the average yield evolves
without apparent trend (Fig. 3e), since Eq. 3 indicates
no direct selection on yield.

Figure 3 suggests relatively constant speeds of adapta-
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tion for relative fitness, growth rate, and lag time. For
example, we can calculate the adaptation speed of growth
rate as the average change in population growth rate per
cycle:

(7)

where the bracket denotes an average over replicate pop-
ulations and cycle number. In Supplementary Methods
we calculate the adaptation speeds of these traits in the
SSWM regime to be

Wgrowth = <Tp0p (TL + 1) - rpop(n»v

WRY,In D
Wgrowth = 0'3’]"0(11’1 D) <D 1 ,
o2 (uRYyIn D
Wiag TO( 51 ) (8)
W TOwW
Whtness = grioth InD — I/VlaugTOa
0

where o, and o,, are the standard deviations of the un-
derlying distributions of v and w for single mutations
(Pmut (7, w, d)), and rg is the ancestral growth rate and
Yy the ancestral yield (which we assume does not change
on average according to Fig. 3e). Note the adaptation
speeds are proportional to the variances of the traits,
which is formally similar to the multivariate breeder’s
equation [40], Fisher’s fundamental theorem of natural
selection [41], and the Price equation [42]; however, in
our case these are variances across single mutants in the
SSWM regime, rather than variances of traits within a
population. Furthermore, the ratio of growth and lag
adaptation rates is independent of the amount of resource
and mutation rate in the SSWM regime:

Wgrowth 2 J'zy

Wiw S = InD. (9)

Equation 8 predicts that the adaptation speeds of
growth rate, lag time, and relative fitness should all in-
crease with the amount of resources R and decrease with
the dilution factor D (if D is large); even though this
prediction assumes the SSWM regime (relatively small
Ny ~ R/D), it nevertheless holds across a wide range
of R and D values (Fig. 4a,b,c), except for R = 108
where the speed of fitness increase is non-monotonic with
D (Fig. 4c¢). The predicted adaptation speeds in Eq. 8
also quantitatively match the simulated trajectories in
the SSWM case (Fig. 4d,e,f); even outside of the SSWM
regime, the relative rate in Eq. 9 remains a good predic-
tion at early times (Fig. S2).

Evolved covariation between growth traits

We now turn to investigating how the covariation be-
tween traits evolves. We have generally assumed that in-
dividual mutations have uncorrelated effects on different
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FIG. 4. Speed of adaptation. The average per-cycle adaptation speed of (a) growth rate, (b) lag time, and (c) fitness relative
to the ancestral population as functions of the dilution factor D and total amount of resources R. The adaptation speeds are
averaged over growth cycles and independent populations. Average population values of (d) growth rate, (e) lag time, and
(f) fitness relative to the ancestral population as functions of the number n of growth cycles. The dilution factor is D = 10*
and the total resource is R = 107, so the population is in the SSWM regime. The blue solid lines are simulation results,
while the dashed lines show the mathematical predictions in Eq. 8. All panels show averages over 500 independent simulated
populations, with mutations randomly arising from a uniform distribution pmyut in which —0.02 < v < 0.02, —0.05 < w < 0.05,

—0.02 < § < 0.02 (Supplementary Methods).

traits (Supplementary Methods). Nevertheless, selection
may induce a correlation between these traits in evolved
populations. In Fig. ba we schematically depict how the
raw variation of traits from mutations is distorted by se-
lection and fixation of multiple mutations. Specifically,
for a single fixed mutation, selection induces a positive
(i.e., antagonistic) correlation between growth rate and
lag time. Figure 2a shows this for single fixed mutations,
while Fig. 5b, ¢ shows this positive correlation for popu-
lations that have accumulated the same number of fixed
mutations. We can calculate the Pearson correlation co-
efficient from the covariation of growth effects v and lag
effects w for a single fixed mutation:

<’7w>ﬁxed - <’7>ﬁxed <w>ﬁxed

e T e — o) (e — () )

(10)

where (-)fixed 18 an average over the distribution of sin-

gle fixed mutations (Supplementary Methods). We can

explicitly calculate this quantity in the SSWM regime,

which confirms that it is positive for uncorrelated muta-
tional effects (Supplementary Methods).

However, in evolution experiments we typically observe
populations at a particular snapshot in time, such that
the populations may have a variable number of fixed mu-
tations but the same number of total mutations that
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arose (and either fixed or went extinct). Interestingly,
the variation in number of fixed mutations at a snapshot
in time causes the distribution of growth rates and lag
times across populations to stretch into a negative cor-
relation; this is an example of Simpson’s paradox from
statistics [43]. Figure 5a shows this effect schematically,
while Fig. 5d,e show explicit results from simulations.
In Supplementary Methods, we calculate this evolved
Pearson correlation coefficient across populations in the
SSWM regime to be approximately

(VW) fixed
<72 > fixed <w2>ﬁxed

(1)

pevo ~

That is, the correlation of traits across populations with
multiple mutations is still a function of the distribution
of single fixed mutations, but it is not equal to the corre-
lation of single fixed mutations (Eq. 10). Indeed, in Sup-
plementary Methods we explicitly calculate this quantity
in the SSWM regime and show that it must be negative
for uncorrelated mutational effects.

The predicted correlations in Egs. 10 and 11 quantita-
tively match the simulations well in the SSWM regime
(Fig. 5¢,e). While they are less accurate outside of the
SSWM regime, they nevertheless still produce the correct
sign of the evolved correlation (Fig. S3a,b,c). However,
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FIG. 5. Evolved patterns of covariation among growth traits. (a) Schematic of how selection and fixation of multiple
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rate and lag time depends on whether we consider an ensemble of populations with the same number of fixed mutations or the
same number of total mutation events. (b) Distribution of average growth rate and lag time for 1000 independent populations
with the same number of fixed mutations. Each color corresponds to a different number of fixed mutations (ny) indicated in
the legend. (c) Pearson correlation coefficient of growth rate and lag time for distributions in panel (b) as a function of the
number of fixed mutations. The dashed line is the prediction from Eq. 10 (Supplementary Methods). (d) Same as (b) except
each color corresponds to a set of populations at a snapshot in time with the same number of total mutation events. Each
color corresponds to a different number of total mutations events (n;) indicated in the legend. (e) Same as (c) but for the
set of populations shown in (d). The dashed line is the prediction from Eq. 11 (Supplementary Methods). In (c) and (e) the
error-bars represent 95% confidence intervals. In both (b) and (d), we consider the SSWM regime with D = 10°.

the signs of the correlations can indeed change depend- 6 lag time, exponential growth rate, and yield (Fig. 1la) —
ing on the underlying distribution of mutational effects s since these three traits are widely measured for micro-
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we explore the effects of varying the mean mutational s expression (Eq. 3) for the selection coefficient of a mu-
effects (Fig. S3d) — e.g., whether an average mutation o tation in terms of its effects on growth and lag and a

has positive, negative, or zero effect on growth rate — . single environmental parameter, the dilution factor D.
as well as the intrinsic mutational correlation between > While previous work showed that this selection coeffi-
growth and lag (Fig. S3e). w03 cient determines the fixation probability of a single mu-

aq tation in the SSWM regime [23], here we have shown

w05 that this holds even in the presence of clonal interference
DISCUSSION ws (Fig. 2b,c,e,f), which appears to be widespread in these
a7 experiments [9, 28, 46]. Our result is therefore valuable
ws for interpreting the abundant experimental data on mu-
w0 tant growth traits. We have also calculated the adapta-
a0 tion rates of growth traits per cycle in the SSWM regime,
a1 which turn out to increase with the amount of resource
a2 R and decrease with the dilution factor D. These results
a3 are confirmed by numerical simulations and remain good
aa predictions even outside of the SSWM regime.

We have investigated a model of microbial evolution
under serial dilution, which is both a common protocol
for laboratory evolution experiments [1, 6, 31, 44, 45]
as well as a rough model of evolution in natural envi-
ronments with feast-famine cycles. While there has been
extensive work to model population and evolutionary dy-
namics in these conditions [2, 34, 35, 37], these models
have largely neglected the physiological links connecting «s  An important difference with the previous work on this
mutations to selection. However, models that explicitly s model is that here we used a fixed dilution factor D,
incorporate these features are necessary to interpret ex- a7 which requires that the bottleneck population size Ny
perimental evidence that mutations readily generate vari- s fluctuates. In contrast, previous work used a fixed Ny
ation in multiple cellular traits, and that this variation as and variable D [23, 24]. We observed two important dif-
is important to adaptation [17-20]. 0 ferences between these regimes. First, in the case of fixed

In this paper, we have studied a model where muta- 1 Ny and variable D, the fold-change of the population dur-
tions can affect three quantitative growth traits — the «» ing a single growth cycle (RY /Ny) determines the rela-
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23 tive selection between growth and lag, since it determines
222 how long the population undergoes exponential growth.
a5 Therefore one can experimentally tune this relative selec-
w6 tion by varying either the total amount of resources R or
27 the fixed bottleneck size Ny. However, when the dilution
ws factor D is fixed, the population fold-change is always
constrained to exactly equal D (Eq. 4; Supplementary
Methods), and therefore D alone determines the relative
selection on growth and lag (Eq. 3). The second differ-
ence is that, with fixed Ny and variable D, the selection
coefficient depends explicitly on the effective yield Y and
is therefore frequency-dependent (Supplementary Meth-
ods), which enables the possibility of stable coexistence
between two strains [23, 24]. However, for the fixed D
case, the frequency dependence of Y is exactly canceled
by No (Eq. 4). Therefore there is only neutral coexis-
tence in this case, requiring the growth and lag traits of
the strains to follow an exact constraint set by D (Sup-
plementary Methods).

A major result of our model is a prediction on the
evolution of covariation between growth traits. In par-
ticular, we have shown that correlations between traits
can emerge from selection and accumulation of multiple
mutations even without an intrinsic correlation between
traits from individual mutations (Figs. 5 and S3). We
have also shown that selection alone produces no corre-
lation between growth and yield, in the absence of corre-
lated mutational effects (Figs. 2d and 3e). This is impor-
tant for interpreting evolved patterns of traits in terms
of selective or physiological tradeoffs. Specifically, it em-
phasizes that the evolved covariation between traits con-
flates both the underlying supply of variation from muta-
tions as well as the action of selection and other aspects
of population dynamics (e.g., genetic drift, spatial struc-
ture, recombination), and therefore it is difficult to make
clear inferences about either aspect purely from the out-
come of evolution alone. For example, simply observing a
negative correlation between two traits from evolved pop-
ulations is insufficient to infer whether that correlation
is due to a physiological constraint on mutations (e.g.,
mutations cannot improve both traits simultaneously) or
due to a selective constraint (e.g., selection favors spe-
cialization in one trait or another).

These questions, of course, have been the foundation of
quantitative trait genetics [47]. Historically this field has
emphasized polymorphic populations with abundant re-
combination as are applicable to plant and animal breed-
ing. However, this regime is quite different from micro-
bial populations which, at least under laboratory con-
a2 ditions, are often asexual and dominated by linkage be-
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a3 tween competing mutations [9, 28, 46]. We therefore need
aa a quantitative description of both between-population as
well as within-population covariation of traits of micro-
bial populations in this regime. Recent work has de-
veloped some mathematical and simulation results along
these lines [48-51], but so far it has not been applied to
specific microbial traits.

Microbial growth traits should indeed be an ideal set-
ting for this approach due to abundant data, but con-
clusions on the nature of trait covariation have remained
elusive. Physiological models have predicted a negative
correlation between growth rate and lag time across geno-
types [52, 53], while models of single-cell variation in lag
times also suggests there should be a negative correla-
tion at the whole-population level [54]. However, ex-
perimental evidence has been mixed, with some stud-
ies finding a negative correlation [13, 16], while others
found no correlation [10, 11, 14]. Studies of growth-yield
correlations have long been motivated by r/K selection
theory, which suggests there should be tradeoffs between
growth rate and yield [55]. For instance, metabolic mod-
els make this prediction [56-58]. However, experimental
evidence has again been mixed, with some data show-
ing a tradeoff [26, 59, 60], while others show no correla-
tion [15, 18, 19, 61] or even a positive correlation [11, 44].
Some of this ambiguity may have to do with dependence
on the environmental conditions [19] or the precise defini-
tion of yield. We define yield as the proportionality con-
stant of population size to resource (Eq. 1) and neglect
any growth rate dependence on resource concentration.
Under these conditions, we predict no direct selection
on yield, which means that the only way to generate a
correlation of yield with growth rate is if the two traits
are constrained at the physiological level, so that muta-
tional effects are correlated. In such cases higher yield
could evolve but only as a spandrel [62, 63]. Ultimately,
we believe more precise single-cell measurements of these
traits, both across large unselected mutant libraries as
well as evolved strains, are necessary to definitively test
si2 these issues.
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