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Selection of mutants in a microbial population depends on multiple cellular traits. In serial-
dilution evolution experiments, three key traits are the lag time when transitioning from starvation
to growth, the exponential growth rate, and the yield (number of cells per unit resource). Here
we investigate how these traits evolve in laboratory evolution experiments using a minimal model
of population dynamics, where the only interaction between cells is competition for a single lim-
iting resource. We find that the fixation probability of a beneficial mutation depends on a linear
combination of its growth rate and lag time relative to its immediate ancestor, even under clonal
interference. The relative selective pressure on growth rate and lag time is set by the dilution factor;
a larger dilution factor favors the adaptation of growth rate over the adaptation of lag time. The
model shows that yield, however, is under no direct selection. We also show how the adaptation
speeds of growth and lag depend on experimental parameters and the underlying supply of muta-
tions. Finally, we investigate the evolution of covariation between these traits across populations,
which reveals that the population growth rate and lag time can evolve a nonzero correlation even
if mutations have uncorrelated effects on the two traits. Altogether these results provide useful
guidance to future experiments on microbial evolution.

Laboratory evolution experiments in microbes have9

provided insight into many aspects of evolution [1–3],10

such as the speed of adaptation [4], nature of epista-11

sis [5], the distribution of selection coefficients from spon-12

taneous mutations [6], mutation rates [7], the spectrum13

of adaptive genomic variants [8], and the preponderance14

of clonal interference [9]. Despite this progress, links be-15

tween the selection of mutations and their effects on spe-16

cific cellular traits have remained poorly characterized.17

Growth traits — such as the lag time when transitioning18

from starvation to growth, the exponential growth rate,19

and the yield (resource efficiency) — are ideal candidates20

for investigating this question. Their association with21

growth means they have relatively direct connections to22

selection and population dynamics. Furthermore, high-23

throughput techniques can measure these traits for hun-24

dreds of genotypes and environments [10–13]. Numerous25

experiments have shown that single mutations can be26

pleiotropic, affecting multiple growth traits simultane-27

ously [14, 15]. More recent experiments have even mea-28

sured these traits at the single-cell level, revealing sub-29

stantial non-genetic heterogeneity [10, 13, 16]. Several30

evolution experiments have found widespread evidence of31

adaptation in these traits [17–20]. This data altogether32

indicates that covariation in these traits is pervasive in33

microbial populations.34

There have been a few previous attempts to de-35

velop quantitative models to describe evolution of these36

traits. For example, Vasi et al. [17] considered data af-37

ter 2000 generations of evolution in Escherichia coli to38

estimate how much adaptation was attributable to differ-39

ent growth traits. Smith [21] developed a mathematical40

model to study how different traits would allow strains41

to either fix, go extinct, or coexist; Wahl and Zhu [22]42

focused on how the fate of different trait-affecting muta-43

tions was determined by their time of occurrence during44

the growth cycle. However, simple quantitative results45

that can be used to interpret experimental data have46

remained lacking. More recent work [23, 24] derived a47

quantitative relation between growth traits and selection,48

showing that selection consists of additive components on49

the lag and growth phases. However, this did not address50

the consequences of this selection for evolution, especially51

the adaptation of trait covariation.52

In this work we investigate a model of evolutionary53

dynamics with covariation across multiple growth traits.54

We consider a minimal model in which different strains55

of cells interact only by competition for a single limit-56

ing resource. We find that the fixation probability of a57

mutation, even in the presence of substantial clonal inter-58

ference, is accurately determined by a linear combination59

of its change in growth rate and change in lag time rel-60

ative to its immediate ancestor; the relative weight of61

these two components is determined by the dilution fac-62

tor. Yield, on the other hand, is under no direct selec-63

tion. We provide quantitative predictions for the speed64

of adaptation of growth rate and lag time as well as their65

evolved covariation. Specifically, we find that even in the66

absence of an intrinsic correlation between growth and67

lag due to mutations, these traits can evolve a nonzero68

correlation due to selection and variation in number of69

fixed mutations.70
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METHODS71

Model of population dynamics72

We consider a model of asexual microbial cells in a73

well-mixed batch culture, where the only interaction be-74

tween different strains is competition for a single limiting75

resource [23, 24]. Each strain i is characterized by a lag76

time Li, growth rate ri, and yield Yi (see Fig. 1a for77

a two-strain example). Here the yield is the number of78

cells per unit resource [17]. Note that some of our nota-79

tion differs from related models in previous work, some80

of which used g for growth rate and λ for lag time [23],81

while others used λ for growth rate [25]. Although it is82

possible to extend the model to account for additional83

growth traits such as a death rate or lag and growth on84

secondary resources, here we focus on the minimal set85

of traits most often measured in microbial phenotyping86

experiments [10–12, 14–16, 18, 26].87

When the population has consumed all of the initial re-88

source, the population reaches stationary phase with con-89

stant size. The time tc at which this occurs is determined90

by equating the total amount of resources consumed by91

the population at that time with the total initial amount92

of resources R:93

∑
strain k

N0xke
rk(tc−Lk)

Yk
= R, (1)

where N0 is the total population size and xk is the fre-94

quency of each strain k at the beginning of the growth95

cycle. In Eq. 1 we assume the time tc is longer than96

each strain’s lag time Lk. We define the selection coeffi-97

cient between each pair of strains as the change in their98

log-ratio over the complete growth cycle [27, 28]:99

sij = ln

(
Nfinal
i

Nfinal
j

)
− ln

(
N initial
i

N initial
j

)
= ri(tc − Li)− rj(tc − Lj),

(2)

where N initial
i is the population size of strain i at the100

beginning of the growth cycle and Nfinal
i is the population101

size of strain i at the end. After the population reaches102

stationary phase, it is diluted by a factor of D into a fresh103

medium with amount R of the resource, and the cycle104

repeats (Fig. 1a). We assume the population remains105

in the stationary phase for a sufficiently short time such106

that we can ignore death and other dynamics during this107

phase [29, 30].108

Over many cycles of growth, as would occur in a lab-109

oratory evolution experiment [1, 28, 31], the population110

dynamics of this system are characterized by the set of111

frequencies {xk} for all strains as well as the matrix of se-112

lection coefficients sij and the total population size N0 at113

the beginning of each cycle. In Supplementary Methods114
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FIG. 1. Model of selection on multiple microbial
growth traits. (a) Simplified model of microbial popula-
tion growth characterized by three traits: lag time L, growth
rate r, and yield Y . The total initial population size is N0

and the initial frequency of the mutant (strain 2) is x. After
the whole population reaches stationary phase (time tc), the
population is diluted by a factor D into fresh media, and the
cycle starts again. (b) Phase diagram of selection on mutants
in the space of their growth rate γ = r2/r1 − 1 and lag time
ω = (L2 − L1)r1 relative to a wild-type. The slope of the
diagonal line is lnD.

we derive explicit equations for the deterministic dynam-115

ics of these quantities over multiple cycles of growth for116

an arbitrary number of strains. In the case of two strains,117

such as a mutant and a wild-type, the selection coefficient118

is approximately119

s ≈ γ lnD − ω, (3)

where γ = (r2 − r1)/r1 is the growth rate of the mu-120

tant relative to the wild-type and ω = (L2−L1)r1 is the121

relative lag time. The approximation is valid as long as122

the growth rate difference between the mutant and the123

wile-type is small, which is true for most single muta-124

tions [6, 32]. This equation shows that the growth phase125

and lag phase make distinct additive contributions to the126

total selection coefficient, with the dilution factor D con-127

trolling their relative magnitudes (Fig. 1b). This is be-128

cause a larger dilution factor will increase the amount of129

time the population grows exponentially, hence increas-130
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ing selection on growth rate. Neutral coexistence be-131

tween multiple strains is therefore possible if these two132

selection components balance (s = 0), although it re-133

quires an exact tuning of the growth traits with the di-134

lution factor (Supplementary Methods) [23, 24]. With a135

fixed dilution factor D, the population size N0 at the be-136

ginning of each growth cycle changes according to (Sup-137

plementary Methods):138

N0 =
RȲ

D
, (4)

where Ȳ = (
∑
k xk/Yk)−1 is the effective yield of the139

whole population in the current growth cycle. In this140

manner the ratio R/D sets the bottleneck size of the141

population, which for serial dilution is approximately the142

effective population size [31], and therefore determines143

the strength of genetic drift.144

Model of evolutionary dynamics145

We now consider the evolution of a population as new146

mutations arise that alter growth traits. We start with147

a wild-type population having lag time L0 = 100 and148

growth rate r0 = (ln 2)/60 ≈ 0.012, which are roughly149

consistent with E. coli parameters where time is mea-150

sured in minutes [17, 31]; we set the wild-type yield to151

be Y0 = 1 without loss of generality. As in experiments,152

we vary the dilution factor D and the amount of resources153

R, which control the relative selection on growth versus154

lag (set by D, Eq. 3) and the effective population size (set155

by R/D, Eq. 4). We also set the initial population size156

to its steady state value of N0 = RY0/D (Supplementary157

Methods).158

The population grows according to the dynamics in159

Fig. 1a. Each cell division can generate a new muta-160

tion with probability µ, which we set to µ = 10−6; note161

this rate is only for mutations altering growth traits, and162

therefore it is lower than the rate of mutations anywhere163

in the genome. We therefore generate a random waiting164

time τk for each strain k until the next mutation with165

instantaneous rate µrkNk(t). When a mutation occurs,166

the growth traits for the mutant are drawn from a dis-167

tribution pmut(r2, L2, Y2|r1, L1, Y1), where r1, L1, Y1 are168

the growth traits for the background strain on which169

the new mutation occurs and r2, L2, Y2 are the traits170

for the new mutant. We will assume mutational effects171

are not epistatic and scale with the trait values of the172

background strain, so that pmut(r2, L2, Y2|r1, L1, Y1) =173

pmut(γ, ω, δ), where γ = (r2 − r1)/r1, ω = (L2 − L1)r1,174

and δ = (Y2 − Y1)/Y1 (Supplementary Methods). For175

simplicity, we focus on uniform distributions of muta-176

tional effects where −0.02 < γ < 0.02, −0.05 < ω < 0.05,177

and −0.02 < δ < 0.02, but in Supplementary Methods178

we extend our main results to the case of Gaussian dis-179

tributions as well. Note that since mutations only arise180

during the exponential growth phase, beneficial or dele-181

terious effects on lag time are not realized until the next182

growth cycle [20]. After the growth cycle ceases (once183

the resource is exhausted according to Eq. 1), we ran-184

domly choose cells, each with probability 1/D, to form185

the population for the next growth cycle.186

RESULTS187

Fixation of mutations188

We first consider the fixation statistics of new mu-189

tations in our model. In Fig. 2a we show the relative190

growth rates γ and relative lag times ω of fixed muta-191

tions, along with contours of constant selection coefficient192

s from Eq. 3. As expected, fixed mutations all increase193

growth rate (γ > 0), decrease lag time (ω < 0), or both.194

In contrast, the yield of fixed mutations is the same as195

the ancestor on average (Fig. 2d); indeed, the selection196

coefficient in Eq. 3 does not depend on the yields (Sup-197

plementary Methods). If a mutation arises with signif-198

icantly higher or lower yield than the rest of the pop-199

ulation, the bottleneck population size N0 immediately200

adjusts to keep the overall fold-change of the population201

during the growth cycle fixed to the dilution factor D.202

Therefore mutations that significantly change yield have203

no effect on the overall population dynamics.204

Figure 2a also suggests that the density of fixed muta-205

tions depends only on their selection coefficient s, rather206

than their individual combination of traits. We there-207

fore plot the fixation probabilities of mutations as func-208

tions of their selection coefficients calculated by Eq. 3209

(Fig. 2 b,c,e,f). We test this over a range of population210

dynamics regimes by varying the dilution factor D and211

the amount of resources R. For small populations, mu-212

tations generally arise and either fix or go extinct one213

at a time, a regime known as “strong-selection weak-214

mutation” (SSWM) [33]. In this case, we expect the fix-215

ation probability of a beneficial mutation with selection216

coefficient s > 0 to be [22, 34, 35]217

φSSWM(s) =
2 lnD

D − 1
s. (5)

This is similar to the standard Wright-Fisher fixation218

probability of 2s [36], but with a correction to account219

for the fact that the mutation can arise at different times220

in the exponential growth phase. Indeed, we see this pre-221

dicted dependence matches the simulation results for the222

small population size of N0 ∼ R/D = 103 (Fig. 2b).223

For larger populations, multiple beneficial mutations224

will be present simultaneously in the population and in-225

terfere with each other, an effect known as clonal inter-226

ference [37, 38]. We find that the fixation probability of227

a mutant in this clonal interference regime is well fit by228

φCI(s) = Ase−B/s, (6)
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FIG. 2. Selection coefficient determines fixation probability. (a) The relative growth rate γ and lag time ω of fixed
mutations. Dashed lines mark contours of constant selection coefficient, while the solid line marks s = 0. (d) Same as (a) but
for relative growth rate γ and relative yield δ. The red dots mark the relative yield of fixed mutations averaged over binned
values of the relative growth rate γ. In (a) and (d), D = 102 and R = 107. (b,c,e,f) Fixation probability of mutations against
their selection coefficient for different amounts of resource R and dilution factors D as indicated in the titles. The red dashed
line shows the fixation probability predicted in the SSWM regime (Eq. 5), while the black line shows a numerical fit of the data
points to the fixation probability under clonal interference (Eq. 6), with the resulting fitting parameters A and B shown in
the lower right corner of each panel. In all panels mutations randomly arise from a uniform distribution pmut (Supplementary
Methods).

where A and B are two constants that depend on other229

parameters of the population; we treat these as empirical230

parameters to fit to the simulation results, although Ger-231

rish and Lenski [37] predicted A = 2 lnD/(D − 1), i.e.,232

the same constant as in the SSWM case (Eq. 5). Concep-233

tually, this means that interference from other beneficial234

mutations suppresses the SSWM fixation probability by235

an exponential factor, where the 1/s term comes from236

the time between the appearance of mutation and its fix-237

ation [37]. Equation 6 matches our simulation results well238

for larger population sizes N0 ∼ R/D > 104 (Fig. 2c,e,f).239

Furthermore, the constant A we fit to the simulation data240

is indeed close to the predicted value of 2 lnD/(D − 1),241

except in the most extreme case of N0 ∼ R/D = 106
242

(Fig. 2f).243

Altogether Fig. 2 shows that mutations with different244

effects on cell growth — for example, a mutant that in-245

creases growth rate and a mutant that decreases lag time246

— can nevertheless have the same fixation probability as247

long as their overall effect on selection is the same ac-248

cording to Eq. 3. In Supplementary Methods we show249

that these results also hold for a Gaussian distribution of250

mutational effects pmut(γ, ω, δ), including the presence of251

correlated mutational effects (Fig. S1). While the depen-252

dence of fixation probability on the selection coefficient is253

a classic result of population genetics [39], the existence254

of a simple relationship here is nontrivial since, strictly255

speaking, selection in this model is not only frequency-256

dependent [23] (i.e., selection between two strains de-257

pends on their frequencies) but also includes higher-order258

effects [24] (i.e., selection between strain 1 and strain 2259

is affected by the presence of strain 3). Therefore in260

principle, the fixation probability of a mutant may de-261

pend on the specific state of the population in which it262

is present, while the selection coefficient in Eq. 3 only263

describes selection on the mutant in competition with its264

immediate ancestor. However, we see that, at least for265

the parameters considered in our simulations, these ef-266

fects are negligible in determining the eventual fate of a267

mutation.268

Adaptation of growth traits269

As Fig. 3a shows, many mutations arise and fix over270

the timescale of our simulations, which lead to pre-271
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FIG. 3. Dynamics of evolving populations. (a) Fre-
quencies of new mutations as a function of the number n
of growth cycles. Example trajectories of (b) the fitness of
the evolved population relative to the ancestral population,
(c) the evolved population growth rate, (d) the evolved pop-
ulation lag time, and (e) the evolved population yield. In all
panels the dilution factor is D = 102, the amount of resource
at the beginning of each cycle is R = 107, and mutations ran-
domly arise from a uniform distribution pmut (Supplementary
Methods).

dictable trends in the quantitative traits of the popu-272

lation. We first determine the relative fitness of the pop-273

ulation against the ancestral strain by simulating compe-274

tition between an equal number of evolved and ancestral275

cells for one cycle, analogous to common experimental276

measurements [1, 31]. The resulting fitness trajectories277

are shown in Fig. 3b. To see how different traits con-278

tribute to the fitness increase, we also calculate the av-279

erage population traits at the beginning of each cycle,280

e.g., rpop(n) =
∑
i ri/N0(n) (where the sum is over all281

cells), as a function of the number n of growth cycles. As282

expected from Eq. 3, the average growth rate increases283

(Fig. 3c) and the average lag time decreases (Fig. 3d)284

for all simulations. In contrast, the average yield evolves285

without apparent trend (Fig. 3e), since Eq. 3 indicates286

no direct selection on yield.287

Figure 3 suggests relatively constant speeds of adapta-288

tion for relative fitness, growth rate, and lag time. For289

example, we can calculate the adaptation speed of growth290

rate as the average change in population growth rate per291

cycle:292

Wgrowth = 〈rpop(n+ 1)− rpop(n)〉, (7)

where the bracket denotes an average over replicate pop-293

ulations and cycle number. In Supplementary Methods294

we calculate the adaptation speeds of these traits in the295

SSWM regime to be296

Wgrowth = σ2
γr0(lnD)

(
µRY0 lnD

D − 1

)
,

Wlag = −σ
2
ω

r0

(
µRY0 lnD

D − 1

)
,

Wfitness =
Wgrowth

r0
lnD −Wlagr0,

(8)

where σγ and σω are the standard deviations of the un-297

derlying distributions of γ and ω for single mutations298

(pmut(γ, ω, δ)), and r0 is the ancestral growth rate and299

Y0 the ancestral yield (which we assume does not change300

on average according to Fig. 3e). Note the adaptation301

speeds are proportional to the variances of the traits,302

which is formally similar to the multivariate breeder’s303

equation [40], Fisher’s fundamental theorem of natural304

selection [41], and the Price equation [42]; however, in305

our case these are variances across single mutants in the306

SSWM regime, rather than variances of traits within a307

population. Furthermore, the ratio of growth and lag308

adaptation rates is independent of the amount of resource309

and mutation rate in the SSWM regime:310

Wgrowth

Wlag
= −r2

0

σ2
γ

σ2
ω

lnD. (9)

Equation 8 predicts that the adaptation speeds of311

growth rate, lag time, and relative fitness should all in-312

crease with the amount of resources R and decrease with313

the dilution factor D (if D is large); even though this314

prediction assumes the SSWM regime (relatively small315

N0 ∼ R/D), it nevertheless holds across a wide range316

of R and D values (Fig. 4a,b,c), except for R = 108
317

where the speed of fitness increase is non-monotonic with318

D (Fig. 4c). The predicted adaptation speeds in Eq. 8319

also quantitatively match the simulated trajectories in320

the SSWM case (Fig. 4d,e,f); even outside of the SSWM321

regime, the relative rate in Eq. 9 remains a good predic-322

tion at early times (Fig. S2).323

Evolved covariation between growth traits324

We now turn to investigating how the covariation be-325

tween traits evolves. We have generally assumed that in-326

dividual mutations have uncorrelated effects on different327
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FIG. 4. Speed of adaptation. The average per-cycle adaptation speed of (a) growth rate, (b) lag time, and (c) fitness relative
to the ancestral population as functions of the dilution factor D and total amount of resources R. The adaptation speeds are
averaged over growth cycles and independent populations. Average population values of (d) growth rate, (e) lag time, and
(f) fitness relative to the ancestral population as functions of the number n of growth cycles. The dilution factor is D = 104

and the total resource is R = 107, so the population is in the SSWM regime. The blue solid lines are simulation results,
while the dashed lines show the mathematical predictions in Eq. 8. All panels show averages over 500 independent simulated
populations, with mutations randomly arising from a uniform distribution pmut in which −0.02 < γ < 0.02, −0.05 < ω < 0.05,
−0.02 < δ < 0.02 (Supplementary Methods).

traits (Supplementary Methods). Nevertheless, selection328

may induce a correlation between these traits in evolved329

populations. In Fig. 5a we schematically depict how the330

raw variation of traits from mutations is distorted by se-331

lection and fixation of multiple mutations. Specifically,332

for a single fixed mutation, selection induces a positive333

(i.e., antagonistic) correlation between growth rate and334

lag time. Figure 2a shows this for single fixed mutations,335

while Fig. 5b, c shows this positive correlation for popu-336

lations that have accumulated the same number of fixed337

mutations. We can calculate the Pearson correlation co-338

efficient from the covariation of growth effects γ and lag339

effects ω for a single fixed mutation:340

ρfixed =
〈γω〉fixed − 〈γ〉fixed〈ω〉fixed√

(〈γ2〉fixed − 〈γ〉2fixed)(〈ω2〉fixed − 〈ω〉2fixed)
,

(10)
where 〈·〉fixed is an average over the distribution of sin-341

gle fixed mutations (Supplementary Methods). We can342

explicitly calculate this quantity in the SSWM regime,343

which confirms that it is positive for uncorrelated muta-344

tional effects (Supplementary Methods).345

However, in evolution experiments we typically observe346

populations at a particular snapshot in time, such that347

the populations may have a variable number of fixed mu-348

tations but the same number of total mutations that349

arose (and either fixed or went extinct). Interestingly,350

the variation in number of fixed mutations at a snapshot351

in time causes the distribution of growth rates and lag352

times across populations to stretch into a negative cor-353

relation; this is an example of Simpson’s paradox from354

statistics [43]. Figure 5a shows this effect schematically,355

while Fig. 5d,e show explicit results from simulations.356

In Supplementary Methods, we calculate this evolved357

Pearson correlation coefficient across populations in the358

SSWM regime to be approximately359

ρevo ≈
〈γω〉fixed√

〈γ2〉fixed〈ω2〉fixed

. (11)

That is, the correlation of traits across populations with360

multiple mutations is still a function of the distribution361

of single fixed mutations, but it is not equal to the corre-362

lation of single fixed mutations (Eq. 10). Indeed, in Sup-363

plementary Methods we explicitly calculate this quantity364

in the SSWM regime and show that it must be negative365

for uncorrelated mutational effects.366

The predicted correlations in Eqs. 10 and 11 quantita-367

tively match the simulations well in the SSWM regime368

(Fig. 5c,e). While they are less accurate outside of the369

SSWM regime, they nevertheless still produce the correct370

sign of the evolved correlation (Fig. S3a,b,c). However,371
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FIG. 5. Evolved patterns of covariation among growth traits. (a) Schematic of how selection and fixation of multiple
mutations shape the observed distribution of traits. The sign of the Pearson correlation coefficient between the average growth
rate and lag time depends on whether we consider an ensemble of populations with the same number of fixed mutations or the
same number of total mutation events. (b) Distribution of average growth rate and lag time for 1000 independent populations
with the same number of fixed mutations. Each color corresponds to a different number of fixed mutations (nf ) indicated in
the legend. (c) Pearson correlation coefficient of growth rate and lag time for distributions in panel (b) as a function of the
number of fixed mutations. The dashed line is the prediction from Eq. 10 (Supplementary Methods). (d) Same as (b) except
each color corresponds to a set of populations at a snapshot in time with the same number of total mutation events. Each
color corresponds to a different number of total mutations events (nt) indicated in the legend. (e) Same as (c) but for the
set of populations shown in (d). The dashed line is the prediction from Eq. 11 (Supplementary Methods). In (c) and (e) the
error-bars represent 95% confidence intervals. In both (b) and (d), we consider the SSWM regime with D = 103.

the signs of the correlations can indeed change depend-372

ing on the underlying distribution of mutational effects373

pmut(γ, ω, δ). For example, in Supplementary Methods374

we explore the effects of varying the mean mutational375

effects (Fig. S3d) — e.g., whether an average mutation376

has positive, negative, or zero effect on growth rate —377

as well as the intrinsic mutational correlation between378

growth and lag (Fig. S3e).379

DISCUSSION380

We have investigated a model of microbial evolution381

under serial dilution, which is both a common protocol382

for laboratory evolution experiments [1, 6, 31, 44, 45]383

as well as a rough model of evolution in natural envi-384

ronments with feast-famine cycles. While there has been385

extensive work to model population and evolutionary dy-386

namics in these conditions [2, 34, 35, 37], these models387

have largely neglected the physiological links connecting388

mutations to selection. However, models that explicitly389

incorporate these features are necessary to interpret ex-390

perimental evidence that mutations readily generate vari-391

ation in multiple cellular traits, and that this variation392

is important to adaptation [17–20].393

In this paper, we have studied a model where muta-394

tions can affect three quantitative growth traits — the395

lag time, exponential growth rate, and yield (Fig. 1a) —396

since these three traits are widely measured for micro-397

bial populations. In particular, we have derived a simple398

expression (Eq. 3) for the selection coefficient of a mu-399

tation in terms of its effects on growth and lag and a400

single environmental parameter, the dilution factor D.401

While previous work showed that this selection coeffi-402

cient determines the fixation probability of a single mu-403

tation in the SSWM regime [23], here we have shown404

that this holds even in the presence of clonal interference405

(Fig. 2b,c,e,f), which appears to be widespread in these406

experiments [9, 28, 46]. Our result is therefore valuable407

for interpreting the abundant experimental data on mu-408

tant growth traits. We have also calculated the adapta-409

tion rates of growth traits per cycle in the SSWM regime,410

which turn out to increase with the amount of resource411

R and decrease with the dilution factor D. These results412

are confirmed by numerical simulations and remain good413

predictions even outside of the SSWM regime.414

An important difference with the previous work on this415

model is that here we used a fixed dilution factor D,416

which requires that the bottleneck population size N0417

fluctuates. In contrast, previous work used a fixed N0418

and variable D [23, 24]. We observed two important dif-419

ferences between these regimes. First, in the case of fixed420

N0 and variable D, the fold-change of the population dur-421

ing a single growth cycle (RȲ /N0) determines the rela-422
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tive selection between growth and lag, since it determines423

how long the population undergoes exponential growth.424

Therefore one can experimentally tune this relative selec-425

tion by varying either the total amount of resources R or426

the fixed bottleneck size N0. However, when the dilution427

factor D is fixed, the population fold-change is always428

constrained to exactly equal D (Eq. 4; Supplementary429

Methods), and therefore D alone determines the relative430

selection on growth and lag (Eq. 3). The second differ-431

ence is that, with fixed N0 and variable D, the selection432

coefficient depends explicitly on the effective yield Ȳ and433

is therefore frequency-dependent (Supplementary Meth-434

ods), which enables the possibility of stable coexistence435

between two strains [23, 24]. However, for the fixed D436

case, the frequency dependence of Ȳ is exactly canceled437

by N0 (Eq. 4). Therefore there is only neutral coexis-438

tence in this case, requiring the growth and lag traits of439

the strains to follow an exact constraint set by D (Sup-440

plementary Methods).441

A major result of our model is a prediction on the442

evolution of covariation between growth traits. In par-443

ticular, we have shown that correlations between traits444

can emerge from selection and accumulation of multiple445

mutations even without an intrinsic correlation between446

traits from individual mutations (Figs. 5 and S3). We447

have also shown that selection alone produces no corre-448

lation between growth and yield, in the absence of corre-449

lated mutational effects (Figs. 2d and 3e). This is impor-450

tant for interpreting evolved patterns of traits in terms451

of selective or physiological tradeoffs. Specifically, it em-452

phasizes that the evolved covariation between traits con-453

flates both the underlying supply of variation from muta-454

tions as well as the action of selection and other aspects455

of population dynamics (e.g., genetic drift, spatial struc-456

ture, recombination), and therefore it is difficult to make457

clear inferences about either aspect purely from the out-458

come of evolution alone. For example, simply observing a459

negative correlation between two traits from evolved pop-460

ulations is insufficient to infer whether that correlation461

is due to a physiological constraint on mutations (e.g.,462

mutations cannot improve both traits simultaneously) or463

due to a selective constraint (e.g., selection favors spe-464

cialization in one trait or another).465

These questions, of course, have been the foundation of466

quantitative trait genetics [47]. Historically this field has467

emphasized polymorphic populations with abundant re-468

combination as are applicable to plant and animal breed-469

ing. However, this regime is quite different from micro-470

bial populations which, at least under laboratory con-471

ditions, are often asexual and dominated by linkage be-472

tween competing mutations [9, 28, 46]. We therefore need473

a quantitative description of both between-population as474

well as within-population covariation of traits of micro-475

bial populations in this regime. Recent work has de-476

veloped some mathematical and simulation results along477

these lines [48–51], but so far it has not been applied to478

specific microbial traits.479

Microbial growth traits should indeed be an ideal set-480

ting for this approach due to abundant data, but con-481

clusions on the nature of trait covariation have remained482

elusive. Physiological models have predicted a negative483

correlation between growth rate and lag time across geno-484

types [52, 53], while models of single-cell variation in lag485

times also suggests there should be a negative correla-486

tion at the whole-population level [54]. However, ex-487

perimental evidence has been mixed, with some stud-488

ies finding a negative correlation [13, 16], while others489

found no correlation [10, 11, 14]. Studies of growth-yield490

correlations have long been motivated by r/K selection491

theory, which suggests there should be tradeoffs between492

growth rate and yield [55]. For instance, metabolic mod-493

els make this prediction [56–58]. However, experimental494

evidence has again been mixed, with some data show-495

ing a tradeoff [26, 59, 60], while others show no correla-496

tion [15, 18, 19, 61] or even a positive correlation [11, 44].497

Some of this ambiguity may have to do with dependence498

on the environmental conditions [19] or the precise defini-499

tion of yield. We define yield as the proportionality con-500

stant of population size to resource (Eq. 1) and neglect501

any growth rate dependence on resource concentration.502

Under these conditions, we predict no direct selection503

on yield, which means that the only way to generate a504

correlation of yield with growth rate is if the two traits505

are constrained at the physiological level, so that muta-506

tional effects are correlated. In such cases higher yield507

could evolve but only as a spandrel [62, 63]. Ultimately,508

we believe more precise single-cell measurements of these509

traits, both across large unselected mutant libraries as510

well as evolved strains, are necessary to definitively test511

these issues.512
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E. Fernandez-Parada, E. Ländström, L. Fernandez-563

Ricaud, P. Kaferle, A. Skyman, S. Stenberg, S. Omholt,564

U. Petrovic, J. Warringer, and A. Blomberg, “Scan-o-565

matic: High-resolution microbial phenomics at a massive566

scale,” G3 6, 3003–3014 (2016).567

[13] N. Ziv, B. M. Shuster, M. L. Siegal, and D. Gresham,568

“Resolving the complex genetic basis of phenotypic vari-569

ation and variability of cellular growth,” Genetics 206,570

1645–1657 (2017).571

[14] B. V. Adkar, M. Manhart, S. Bhattacharyya, J. Tian,572

M. Musharbash, and E. I. Shakhnovich, “Optimization573

of lag phase shapes the evolution of a bacterial enzyme,”574

Nat Ecol Evol 1, 0149 (2017).575

[15] J. M. Fitzsimmons, S. E. Schoustra, J. T. Kerr, and576

R. Kassen, “Population consequences of mutational577

events: effects of antibiotic resistance on the r/K trade-578

off,” Evol Ecol 24, 227–236 (2010).579

[16] N. Ziv, M. L. Siegal, and D. Gresham, “Genetic and580

Nongenetic Determinants of Cell Growth Variation As-581

sessed by High-Throughput Microscopy,” Molecular Bi-582

ology and Evolution 30, 2568–2578 (2013).583

[17] F. Vasi, M. Travisano, and R. E. Lenski, “Long-term584

experimental evolution in Escherichia coli. II. changes in585

life-history traits during adaptation to a seasonal envi-586

ronment,” Am Nat 144, 432–456 (1994).587

[18] M. Novak, T. Pfeiffer, R. E. Lenski, U. Sauer, and588

S. Bonhoeffer, “Experimental tests for an evolutionary589

trade-off between growth rate and yield in E. coli,” Am590

Nat 168, 242–251 (2006).591

[19] C. Reding-Roman, M. Hewlett, S. Duxbury, F. Gori,592

I. Gudelj, and R. Beardmore, “The unconstrained evo-593

lution of fast and efficient antibiotic-resistant bacterial594

genomes,” Nat Ecol Evol 1, 0050 (2017).595

[20] Y. Li, S. Venkataram, A. Agarwala, B. Dunn, D. A.596

Petrov, G. Sherlock, and D. S. Fisher, “Hidden complex-597

ity of yeast adaptation under simple evolutionary condi-598

tions,” Current Biology 28, 515–525 (2018).599

[21] H. L. Smith, “Bacterial competition in serial transfer cul-600

ture,” Math Biosci 229, 149–159 (2011).601

[22] L. M. Wahl and A. D. Zhu, “Survival probability of bene-602

ficial mutations in bacterial batch culture,” Genetics 200,603

309–320 (2015).604

[23] M. Manhart, B. V. Adkar, and E. I. Shakhnovich,605

“Trade-offs between microbial growth phases lead to606

frequency-dependent and non-transitive selection,” Proc607

R Soc B 285 (2018).608

[24] M. Manhart and E. I. Shakhnovich, “Growth tradeoffs609

produce complex microbial communities on a single lim-610

iting resource,” Nat Commun 9, 3214 (2018).611

[25] J. Lin and A. Amir, “The effects of stochasticity at the612

single-cell level and cell size control on the population613

growth,” Cell Systems 5, 358–367 (2017).614

[26] J.-N. Jasmin and C. Zeyl, “Life-history evolution and615

density-dependent growth in experimental populations of616

yeast,” Evolution 66, 3789–3802 (2012).617

[27] L.-M. Chevin, “On measuring selection in experimental618

evolution,” Biol Lett 7, 210–213 (2011).619

[28] B. H. Good, M. J. McDonald, J. E. Barrick, R. E. Lenski,620

and M. M. Desai, “The dynamics of molecular evolution621

over 60,000 generations,” Nature 551, 45–50 (2017).622

[29] S. E. Finkel, “Long-term survival during stationary623

phase: evolution and the gasp phenotype,” Nature Re-624

views Microbiology 4, 113 (2006).625

[30] Sarit Avrani, Evgeni Bolotin, Sophia Katz, and Ruth626

Hershberg, “Rapid genetic adaptation during the first627

four months of survival under resource exhaustion,”628

Molecular Biology and Evolution 34, 1758–1769 (2017).629

[31] R. E. Lenski, M. R. Rose, S. C. Simpson, and S. C.630

Tadler, “Long-term experimental evolution in escherichia631

coli. i. adaptation and divergence during 2,000 genera-632

tions,” The American Naturalist 138, 1315–1341 (1991).633
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