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We present methods that detect three types of aberrations in single-particle cryo-
EM data sets: symmetrical and antisymmetrical optical aberrations and magni-
fication anisotropy. Because our methods only depend on the availability of a
preliminary 3D reconstruction from the data, they can be used to correct for these
aberrations for any given cryo-EM data set, a posteriori. Using five publicly avail-
able data sets, we show that considering these aberrations improves the resolution
of the 3D reconstruction when the effects are present. The methods are imple-
mented in version 3.1 of our open-source software package RELION.

1. Introduction

Structure determination of biological macromolecules using
electron cryo-microscopy (cryo-EM) is primarily limited by the
radiation dose to which samples can be exposed before they are
destroyed. As a consequence of the low electron dose, cryo-
EM has to rely on very noisy images. In recent years, advances
in electron-detector technology and processing algorithms have
enabled the reconstruction of molecular structures at reso-
lutions sufficient for de novo atomic modelling (Fernandez-
Leiro & Scheres, 2016). With increasing resolutions, limitations
imposed by the optical system of the microscope are becoming
more important. In this paper, we propose methods to estimate
three optical effects — symmetrical and antisymmetrical aberra-
tions and magnification anisotropy — which, when considered
during reconstruction, increase the attainable resolution.

In order to increase contrast, cryo-EM images are typically
collected out of focus, which introduces a phase shift between
the scattered and unscattered components of the electron beam.
This phase shift varies with spatial frequency and gives rise
to the contrast-transfer function (CTF). Since the electron-
scattering potential of the sample corresponds to a real-valued
function, its Fourier-space representation exhibits Friedel sym-
metry, i.e. the amplitude of the complex structure factor at spa-
tial frequency k is the complex-conjugate of the structure fac-
tor at frequency —k. In an ideal microscope, the phase shift of
those two frequencies would be identical, and the CTF could be
expressed as a real-valued function. In reality, however, imper-
fections of the optical system can produce asymmetrical phase-
shifts that break the Friedel symmetry of the scattered wave.
The effect of this is that the CTF becomes a complex-valued
function, which not only affects the amplitudes of the structure
factors, but also their phases.

The phase-shifts of a pair of corresponding spatial frequen-
cies can be separated into a symmetrical component (i.e. their
average shift) and an antisymmetrical one (i.e. their deviation
from that average). In this paper, we will refer to the antisym-
metrical component as antisymmetrical aberrations. The sym-

metrical component of the phase shift sometimes also devi-
ates from the one predicted by the aberration-free CTF model
(Hawkes & Kasper, 1996). The effect of this is that the CTF is
not always adequately represented by a set of elliptical rings
of alternating sign, but the so-called Thon rings can take on
slightly different shapes. We will refer to this deviation from
the traditional CTF model as symmetrical aberrations.

In addition to the antisymmetrical and symmetrical aber-
rations, the recorded image itself can be distorted by a dif-
ferent magnification in two perpendicular directions. This is
called anisotropic magnification. Anisotropic magnification can
be detected by measuring the ellipticity of the power spectra
of multi-crystalline test samples (Grant & Grigorieff, 2015).
Provided the microscope objective lens astigmatism is small,
systematic differences between the defoci in two perpendicu-
lar directions have also been proposed as a means to detect
anisotropic magnification (Zhao et al., 2015).

Because the antisymmetrical and symmetrical aberrations
and the anisotropic magnification produce different effects, we
propose three different and independent methods to estimate
them. We recently proposed a method to estimate a specific
type of antisymmetrical aberration that arises from a tilted elec-
tron beam (Zivanov et al., 2018). In this paper, we propose an
extension of that method that allows us to estimate arbitrary
antisymmetrical aberrations expressed as linear combinations
of Zernike polynomials. The methods to estimate symmetri-
cal aberrations and anisotropic magnification are novel. Simi-
lar to the method for antisymmetrical aberration correction, the
method for symmetrical aberration correction also uses Zernike
polynomials to model the estimated aberrations. The choice of
Zernike polynomials as a basis is to some degree arbitrary, and
the methods described here could be trivially altered to use any
other function as a basis.

Optical aberrations in the electron microscope have been
studied extensively in the material science community (Batson
et al., 2002; Krivanek et al., 2008; Saxton, 1995; Saxton, 2000;
Meyer et al., 2002). However, until now, their estimation has
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required specific test samples of known structure and of greater
radiation resistance than biological samples. The methods pre-
sented in this paper work directly on cryo-EM single-particle
data sets of biological samples, making it possible to estimate
the effects after the data have been collected, and without per-
forming additional experiments on specific test samples. Using
data sets that are publicly available from the EMPIAR data
base (Tudin et al., 2016), we illustrate that when these optical
effects are present, their correction leads to reconstruction with
increased resolution.

2. Materials and Methods

2.1. Observation Model

We are working on a single-particle cryo-EM data set con-
sisting of a large number of particle images. We assume that we
already have a preliminary 3D reference map of the particle up
to a certain resolution, and that we know the approximate view-
ing parameters of all observed particles. This allows us to pre-
dict each particle image, which in turn allows us to estimate the
parameters of the optical effects by comparing those predicted
images to the observed ones.

Let X,x € C be the complex amplitude of the observed
image of particle p € N for 2D spatial frequency k € Z?. With-
out loss of generality, we can assume that the observed image
is shifted so that the centre of the particle appears at the ori-
gin of the image. We can obtain the corresponding predicted
image by integrating over the 3D reference along the appropri-
ate viewing direction. According to the central-slice theorem,
the corresponding complex amplitude V), € C of the predicted
particle image is given by

Vo = W(A,k), ey

where W : R?® — C is the 3D reference map in Fourier space
and A, is a 3 x 2 projection matrix arising from the viewing
angles. Since the backprojected positions of the 2D pixels k
mostly fall between the 3D voxels of the reference map, we
determine the values of W (A k) using linear interpolation.

Further, we assume that we have an estimate of the defocus
and astigmatism of each particle, as well as the spherical aber-
ration of the microscope, allowing us to also predict the CTFs.
We can therefore write:

ka = exp(i¢k)CTFp7kVpﬁk + npx, 2)

where ¢ is the phase shift angle induced by the antisymmet-
rical aberration, CTF, is the real part of the CTF, and n,x
represents the noise.

The three methods presented in the following all aim to esti-
mate the optical effects by minimizing the squared difference
between X, x and exp(i¢x)CTF,xV, k. This is equivalent to a
maximum-likelihood estimate under the assumption that all n,, x
are drawn from the same normal distribution.

2.2. Antisymmetrical Aberrations

Antisymmetrical aberrations shift the phases in the observed
images and they are expressed by the angle ¢k in Eq. 2. We

assume that ¢k is constant for a sufficiently large number of
particles. This assumption is necessary since, in the presence of
typically strong noise, we require the information from a large
number of images to obtain a reliable estimate.

We model ¢ using antisymmetrical Zernike polynomials as

a basis:
d(e) = cpZy(k), 3
b

where ¢, € R are the unknown coefficients describing the aber-
ration and Z,(k) are a subset of the antisymmetrical Zernike
polynomials. The usual two-index ordering of those polynomi-
als is omitted for the sake of clarity. The coefficients ¢, are
determined by minimizing the following sum of squared dif-
ferences over all particles:

2

Easymm = ka‘xp,k - CXp(i¢k (c))CTFp.,kVp,k 5 (4)

pk

where fi is a heuristical weighting term given by the FSC of the
reconstruction — its purpose is to suppress the contributions of
frequencies |K| for which the reference is less reliable.

Since typical data sets contain between 10* and 10° parti-
cles, and each particle image typically consists of more than
10* Fourier pixels, optimizing the non-linear expression in
Eq. 4 directly would be prohibitive. Instead, we apply a two-
step approach. First, we reduce the above sum over sums of
quadratic functions to a single sum over quadratic functions,
one for each Fourier-space pixel k:

Easymm = Y _ | explig(c)) — qi|* + K, Q)
k

where K is a constant that does not influence the optimum of cy,.
The per-pixel optimal phase shifts gx € C and weights wy € R
are given by:

a =Y _(XpxCTE, V)1 > CTF, [V, (6)

p p

wi = fi > CTE, |V, . (7)
p

This is the same transformation that we have applied for the
beam-tilt estimation in RELION 3.0 (Zivanov et al., 2018) —
beam tilt is in fact only one of the possible sources of antisym-
metrical aberrations. The computation of gk and wy requires
only one iteration over all the images in the data set, and it usu-
ally takes on the order of one hour of CPU time.

Once the gk and wg are known, the optimal ¢, are determined
by minimizing the following sum of squared differences using
the Nelder-Mead downhill simplex (Nelder & Mead, 1965)
method:

2
¢ = argmin Z wk’ exp(igk(c)) — qgx| - )
¢/ K

This step requires only seconds of computation time. In addi-
tion to making the problem tractable, this separation into two
steps also allows us to inspect the phase angles of the per-pixel

2


https://doi.org/10.1101/798066
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/798066; this version posted October 29, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

optima gk visually and to determine the type of antisymmetrical
aberration present in the data set.

After the optimal antisymmetrical aberration coefficients ¢
have been determined, they are used to invert the phase shift of
all observed images X when a 3D map is being reconstructed
from them.

2.3. Symmetrical Aberrations

Unlike the antisymmetrical aberrations, the symmetrical ones
act on the CTF. In the presence of such aberrations, the CTF
no longer consists of strictly elliptical rings of alternating sign,
but it can take on a more unusual form. In our experiments, we
have specifically observed the ellipses deforming into slightly
square-like shapes. In order to estimate the symmetrical aber-
ration, we need to determine the most likely deformations of
the CTFs hidden underneath the measured noisy pixels. Since
the micrographs in a cryo-EM data set are usually collected
under different defoci, it is not sufficient to measure the col-
lective power spectrum of the entire data set — instead, we need
to determine one deformation applied to different CTFs.

In RELION-3.1, the CTF is defined as:

CTF,x = —sin(7,x), )
™
Yok =KDk + ZCXk[* = x, (10)

where D, is the real symmetrical 2 x 2 astigmatic-defocus
matrix for particle p, C; is the spherical aberration of the micro-
scope, A is the electron wavelength and x, is a constant offset
given by the amplitude contrast and the phase shift due to a
phase plate (if one is used). We chose this formulation of astig-
matism because it is both more concise and also more practical
when dealing with anisotropic magnification, as shown in sec-
tion 2.4. In Appendix A, we define D, and we show that this is
equivalent to the more common formulation (Mindell & Grig-
orieff, 2003).

We model the deformation of the CTF under symmetrical
aberrations by offsetting ~:

CTka = — sin('ypyk + ’L/Jk(d)), (] ])

where ¢ (d) is modelled using symmetrical Zernike polynomi-
als combined with a set of coefficients d € R? that describe the
aberration:

Yi(d) =Y dpZ, (k). (12)
b

The optimal values of dj, are determined by minimizing
another sum of squared differences:

Esymm = ka’xpﬁk - C’-l-‘l'_"IJA,ksz,k’2 (]3)
p.k
= AlXou + sin(pu + o@)Voi S (14)
p.k

where the predicted complex amplitude V,,_,k contains the phase
shift induced by the antisymmetrical aberration (if it is known):

Vpx = exp(ip(K))V, k. (15)

This is again a non-linear equation with a large number of
terms. In order to make its minimization tractable, we perform
the following substitution:

sin(ypx + ¥i(d)) = r7 t(d), (16)

with the known column vector r, i € R? given by

_ [cos(px)
I'pk = |:Sll’l(")/;’k>:| ; (]7)

and the unknown ti(d) € R? by

in(ys(d))
(@) = [cs:os(«,bk(d))} ' (18

This allows us to transform the one-dimensional non-linear term
for each pixel k into a two-dimensional linear one:

-~ 2
Esymm = ka‘xp,k + Vp,kr;ﬁktk(d) ) (19)

pk

In this form, we can decompose Egymy, into a sum of quadratic
functions over all pixels k. This is equivalent to the transforma-
tion in Eq. 5, only in two real dimensions instead of one com-
plex one:

Esymm = ka [tk(d) _/t\k]TRk [tk(d) _/t\k] +K, (20)
k

where the real symmetrical 2 x 2 matrix Ry is given by

Rk = Z |‘7p,k|2rpﬁkr;’k (2])
p

and the corresponding per-pixel optima 1t € R? by

o= —R ' (22)
=Y _ Re(X;Vpu)rpk. (23)

p

Again, computing Ry and Tt only requires one iteration over
the data set, where for each pixel k, five numbers need to be
updated for each particle p: the three distinct elements of Ry
(the matrix is symmetrical) and the two of 7. Once R and fk
are known, the optimal Zernike coefficients d are determined
by minimizing Egymm in Eq. 20 using the Nelder-Mead downhill
simplex algorithm. Analogously to the case of the antisymmet-
rical aberrations, a visual inspection of the optimal i (d) for
each pixel allows us to examine the type of aberration without
projecting it into the Zernike basis. The CTF phase-shift esti-
mate for pixel k is given by tan—!(7{"//2{”)), where 7.’ and 7.
refer to the two components of tj.

Once the coefficients d of the symmetrical aberration are
known, they are used to correct any CTF that is computed in

RELION-3.1.
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2.4. Anisotropic Magnification

To determine the anisotropy of the magnification, we again
compare predicted images to the observed ones. We assume
that the 3D reference map W has been obtained by averaging
views of the particle at in-plane rotation angles drawn from a
uniform distribution. This is a realistic assumption, since, unlike
the angle between the particle and the ice surface where the par-
ticle often shows a preferred orientation, the particle is oblivious
to the orientation of the camera pixel-grid. Thus, for a data set
of a sufficient size, the anisotropy in the individual images aver-
ages out and the resulting reference map depicts an isotropically
scaled 3D image of the particle (although the high-frequency
information on the periphery of the particle is blurred out by the
averaging). We can therefore estimate the anisotropy by deter-
mining the optimal deformation that has to be applied to the
predicted images in order to best fit the observed ones.

We are only looking for linear distortions of the image. Such
a distortion can be equivalently represented in real space or in
Fourier space: if the real-space image is distorted by a 2 x 2
matrix M, then the corresponding Fourier-space image is dis-
torted by M—'. We choose to operate in Fourier space since this
allows us to determine the deformation of the predicted image
without also distorting the CTF. We assume that the CTF is rep-
resented correctly in the distorted coordinates because it has
been estimated from the original images before the distortion
was known.

Formally, we define the complex amplitude V, k(M) of the
predicted image deformed by a 2 x 2 matrix M by:

Vox(M) = W(A,MKk), 24

and we aim to determine such a matrix M that minimizes:

Emag = Z

Pk

~ 2
Xpx — CTF,xV,ox(M)| , (25)

where V again refers to the phase shifted complex amplitudes
as defined in Eq. 15. We are not assuming that M is neces-
sarily symmetrical, which allows it to express a skew compo-
nent in addition to the anisotropic magnification. Such skew-
ing effects are considered by the models commonly used in
computer vision applications (Hartley, 1994; Hartley & Zisser-
man, 2003), but not in cryo-EM. We have decided to model the
skew component as well, in case it should manifest in a data set.

The expression given in Eq. 25 is yet another sum over a
large number of non-linear terms. In order to obtain a sum over
squares of linear terms, we first express the deformation by M
as a set of per-pixel displacements §y € R:

MK =K + &, (26)

Next, we perform a first-order Taylor expansion of W around
A, K. We know that this linear approximation of W is reasonable
for all frequencies k at which the reference map contains any
information, because the displacements dy are smaller than one
voxel there. If they were significantly larger, then they would
prevent a successful computation of the complex amplitudes of

the reference map at those frequencies. The linear approxima-
tion is given as follows:

Vp(k + 8) ~ Vo + 87 10, 27)

where the gradient g, € C? is a column vector that is com-
puted by forward projecting the 3D gradient of W (which is
given by the linear interpolation):

gpx = exp(ip(k))A;VIW (A, k). (28)

It is essential to compute g, in this way, since computing it
numerically from the already projected image V), x would lead
to a systematic underestimation of the gradient (due to the inter-
polation) and thus to a systematic overestimation of the dis-
placement. Note also that the change in ¢(k) as a result of the
displacement is being neglected. This is due to the fact that the
phase shift, like the CTF, has also been computed from the dis-
torted images, so that we can assume it to be given correctly in
the distorted coordinates.

Using the terms transformed in this way, the sum of squared
errors can be approximated by:

-~ 2
Emag ~ ka’xp,k - CTFp,k (Vp.,k + g;ﬁkék) ’ (29)
p.k
~ 2
- fk‘x,,,k — CTFk (Vi + &1, (M — D) ‘ 30)

pk

This corresponds to two linear systems of equations to be solved
in a least-squares sense, either for the per-pixel displacements
Ok (Eq. 29) or for the global deformation matrix M (Eq. 30).
Analogously to the aberrations methods, we solve for both.
Knowing the per-pixel solutions again allows us to confirm
visually whether the observed deformations are consistent with
a linear distortion: if they are, then the per-pixel displacements
O will follow a linear functionAof k.
The optimal displacements J € R? are equal to:

Ok = Sy 'ex 31)
ex = > CTF,xRe(g) i [Xpx — Vyul)- (32)
p

with the real symmetrical 2 X 2 matrix Sk given by:

Sk =Y CTF, Re(g} 8] ). (33)
P

Note that this is equivalent to treating the real and imaginary
components of Eq. 29 as separate equations, since Re(z*w) =
Re(z)Re(w) 4+ Im(z)Im(w) for all z, w € C. Analogously to the
estimation of the symmetrical aberrations, Sx and ek are com-
puted in one iteration by accumulating five numbers for each
pixel k over the entire data set.

The optimal 2 x 2 deformation matrix M is determined by
first reshaping it into a column vector m € R*:

M=1",0 14

(34)
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The expression in Eq. 30 can then be written as

Emag = Z

pk

~ 2
ka — CTFF,’kVpA’k — a;vkm (35)

with the column vector a,x € C* given by

)
N
kg

a,x = CTF, KD (pzl;l : (36)

8 p2,1;

2 g;k

We can now compute the optimal m:

m="T""1 37)

where the real symmetrical 4 x 4 matrix 7 and the column vec-
tor 1 € R* are equal to

T =) fuRe(a},al,), (38)
p.k

1= ARe(@)[X,x — CTF,iV,x]). (39)
p.k

There is no need to compute 7 and 1 explicitly by iterat-
ing over all particles p again, since all the necessary sums are
already available as part of Sk and e. Instead, we only need to
sum up the corresponding values over all pixels k. This is shown
in Appendix B.

In order to correct for the anisotropy after M has been esti-
mated, we never resample the observed images. When we com-
pute a 3D map from a set of observed images, we do so by
inserting 2D slices into the 3D Fourier-space volume. Since this
process requires the insertion of 2D pixels at fractional 3D coor-
dinates (and thus interpolation), we can avoid any additional
resampling of the observed images by instead inserting pixel k
into the 3D map at position A,Mk instead of at A k. Analo-
gously, if the methods described in 2.2 and 2.3 are applied after
the distortion matrix M is known, then the predicted images are
generated by reading the complex amplitude from W at 3D posi-
tion A,MK. This has been omitted from the description of those
methods to aid readability.

Furthermore, when dealing with anisotropic magnification
in RELION, we have chosen to always define the CTF in the
undistorted 2D coordinates. The primary motivation behind
this is the assumption that the spherical aberration (second
summand in Eq. 10) should only be radially symmetrical if
the image is not distorted. For this reason, once the distor-
tion matrix M is known, we need to transform the astigmatic-
defocus matrix D into the new undistorted coordinate system.
This is done by conjugating D under M~ ':

D =M '"DM!. (40)

When a CTF value is computed after this transformation has
been performed, it is always computed as CTF(MK) instead of
as CTF(k).

The Zernike polynomials that are used as a basis for the sym-
metrical and antisymmetrical aberrations are also defined in the
undistorted coordinates, i.e. the Zernike polynomials are also
evaluated at Z,(MK). Note that these coefficients cannot be triv-
ially corrected after estimating M. Instead, we propose that the
aberrations be estimated only after M is known. In severe cases,
a better estimate of M can be obtained by repeating the magnifi-
cation refinement after determining optimal defocus and astig-
matism estimates using the initial estimate of M. We illustrate
this scenario on a synthetic example in section 3.4.

2.5. Implementation Details

The three methods described above need to be applied to a
large number of particles in order to obtain a reliable estimate.
Nevertheless, we allow the three effects to vary within a data
set in RELION-3.1. To facilitate this, we have introduced the
concept of optics groups: partitions of the particle set that share
the same optical properties, such as the voltage or pixel size (or
the aberrations and the magnification matrix). As of RELION-
3.1, those optical properties are allowed to vary between optics
groups, while particles from different groups can still be refined
together. This makes it possible to merge data sets collected on
different microscopes with different magnifications and aberra-
tions without the need to resample the images. The anisotropic
magnification refinement can then be used to measure the rela-
tive magnification between the optics groups, by refining their
magnification against a common reference map.

Since most of the optical properties of a particle are now
defined through the optics group to which it belongs, each par-
ticle STAR file written out by RELION-3.1 now contains two
tables: one listing the optics groups and one listing the particles.
The particles table is equivalent to the old one, except that cer-
tain optical properties are no longer listed. Those are typically
the voltage, the pixel and image sizes, the spherical aberration
and the amplitude contrast, and they are instead specified in the
optics groups list. This reduces the overall file size, and it makes
manual editing of those properties easier.

A number of other optical properties are still stored in the
particles list, allowing for different values for different particles
in the same group. These properties make up the per-particle
part of the symmetrical aberration, i.e. the coefficient v,k in
Eq. 10. The specific parameters that can vary per particle are
the following: the phase shift, defocus, astigmatism, the spheri-
cal aberration and the B-factor envelope.

We have developed a new CTF refinement program that con-
siders all particles in a given micrograph, and locally opti-
mises all of the above five parameters, while each parameter
can be modelled either per particle, per micrograph or remain
fixed. The program then uses the L-BFGS algorithm (Liu &
Nocedal, 1989) to find the least-squares optimal parameter con-
figuration given all the particles in the micrograph. This allows
the user to find for example the most likely phase shift of a
micrograph while simultaneously finding the most likely defo-
cus value of each particle in it.

Note that the terms defocus and astigmatism above refer
specifically to ¢z (defocus) and a; and a, (astigmatism), where
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the astigmatic defocus matrix D, of particle p in Eq. 10 is com-
posed as follows:

0z + ay a
Dp B [ an 6Z — Cl1:|
As an example, this would allow the defocus to be expressed
per particle, by allocating a separate dz for each particle, while
the astigmatism could be estimated per micrograph by requiring
a; and a; to be identical for all particles.

Like the astigmatism, the B-factor envelope is also a two
dimensional parameter, and it consists of a scale factor S and
the B factor itself. It corresponds to a Gaussian envelope over
the CTF (given by Se~*8 Iklz) and it provides a means of weight-
ing different particles against each other. Specifically, a greater
B factor means that the particle will contribute less to the higher
frequencies of the reconstruction. Although B factors on the
CTF have been available in earlier releases of RELION, the
method to estimate them is new in version 3.1.

3. Results

To validate our methods and to illustrate their usefulness, we
describe four experiments using publicly available data sets.
First, we assess aberration correction on two data sets that were
collected on a 200 keV Thermo Fischer Talos Arctica micro-
scope. Second, we illustrate a limitation of our method for
modelling aberrations using a data set that was collected on a
300 keV Thermo Fischer Titan Krios microscope with a Volta
phase-plate with defocus (Danev et al., 2017). Third, we apply
our methods to one of the highest-resolution cryo-EM struc-
tures published so far, collected on a Titan Krios without a
phase plate. Finally, we determine the precision to which the
magnification matrix M can be recovered in a controlled exper-
iment, using artificially distorted images, again from a Titan
Krios microscope.

3.1. Aberrations Experiment at 200 keV

We re-processed two publicly available data sets: one on the
rabbit muscle aldolase (EMPIAR-10181), the other on the T.
acidophilum 208 proteasome (EMPIAR-10185). Both data sets
were collected on the same 200 keV Talos Arctica microscope,
which was equipped with a Gatan K2 Summit direct elec-
tron camera. At the time of the original publication (Herzik Jr
et al., 2017), the aldolase could be reconstructed to 2.6 A and
the proteasome to 3.1 A using RELION-2.0.

We picked 159,352 particles for the aldolase data set, and
74,722 for the proteasome. For both data sets, we performed
five steps and measured the resolution at each step. First, we
refined the particles without considering the aberrations. The
resulting 3D maps were then used to perform an initial CTF
refinement in which the per-particle defoci and the aberrations
were estimated. The particles were then subjected to Bayesian
polishing (Zivanov et al., 2019), followed by another itera-
tion of CTF refinement. In order to disentangle the effects of
improved Bayesian polishing from the aberration correction,
we also performed a refinement with the same polished parti-
cles, but assuming all aberrations to be zero. We measured the

Fourier-shell correlation (FSC) between the two independent
half sets and against known reference structures (PDB-1ZAH
and PDB-6BDF, respectively (St-Jean et al., 2005; Campbell
et al., 2015)). The plots are shown in Fig. 1, and the resolutions
measured by the half-set method, using a threshold of 0.143, in
Table 1. Plots of the aberration estimates are shown in Fig. 2.

Fig. 2 indicates that both data sets exhibit antisymmetri-
cal as well as symmetrical aberrations. For both data sets, the
shapes of both types of aberrations are well visible in the per-
pixel plots, and the parametric Zernike fits capture those shapes
well. The antisymmetrical aberrations correspond to a trefoil
(or three-fold astigmatism) combined with a slight axial coma
and they are more pronounced than the symmetrical ones. The
trefoil is visible as three alternating areas of positive and neg-
ative phase difference, with approximate three-fold symmetry,
in the images for the antisymmetrical aberration estimation (on
the left in Fig. 2). The axial coma breaks the three-fold sym-
metry, by making one side of the image more positive and the
opposite side more negative. The apparent four-fold symmetry
in the images for the symmetrical aberrations (on the right in
Fig. 2) correspond to four-fold astigmatism and are strongest
for the proteasome data set. The proteasome also shows the
stronger antisymmetrical aberrations, which even exceed 180°
at the higher frequencies. Note that because the per-pixel plots
show the phase angle of 1y from Eq. 20, they wrap around once
they reach 180°. This has no effect on the estimation of the
parameters, however, since fk itself, which is a 2D point on a
circle, is used in the optimisation and not its phase angle.

The FSC plots (Fig. 1) indicate that aberration correction
leads to higher resolution, as measured by both the FSC
between independently refined half-maps and the FSC against
the reference structure. Comparing the result of the second CTF
refinement and its equivalent run without aberration correction
(lower two lines in Table 1), the resolution increased from 2.5 A
to 2.1 A for the aldolase data set, and from 3.1 A to 2.3 A for
the proteasome. In addition, aberration correction also allows
for more effective Bayesian polishing and defocus estimation,
which is the reason for performing the CTF refinement twice.

3.2. Phase-Plate Experiment

We also analysed a second data set on a T. acidophilum
20S proteasome (EMPIAR-10078). This data set was collected
using a Volta phase-plate (VPP) (Danev et al., 2017) under
defocus. We picked 138,080 particles and processed them anal-
ogously to the previous experiment, except that the CTF refine-
ment now included the estimation of anisotropic magnification.
The estimated aberrations are shown in Fig. 4 and the FSCs in
Fig. 6.

The purpose of a VPP is to shift the phase of the unscat-
tered beam in order to increase the contrast against the scattered
beam. This is accomplished by placing a heated film of amor-
phous carbon (the VPP) at the back-focal plane of the micro-
scope and letting the electron beam pass through it after it has
been scattered by the specimen. The central, unscattered beam —
which exhibits much greater intensity than the unscattered com-
ponents — then spontaneously creates a spot of negative electric
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potential on the VPP (Danev et al., 2014). It is this spot which
then causes the phase shift in the unscattered beam. After being
used for a certain amount of time, the spot charges up even
more and develops imperfections. At that point, the user will
typically switch to a different position on the carbon film. The
charge at the previous position will decay, although some charge
may remain for an extended period. If the VPP is shifted by an
insufficient distance, the old spot will reside in a position tra-
versed by scattered rays corresponding to some higher image
frequency. We hypothesize that we can observe these spots in
our symmetrical aberration plots.

The symmetrical plots show a positive phase shift at the
center of frequency space (Fig. 4). We hypothesize that this
spot is caused by the size of the charge built-up at the cur-
rently used position on the phase-plate (Danev & Baumeis-
ter, 2016). Moreover, this plot shows four additional spots at
higher spatial frequencies. We hypothesize that these may arise
from residual charges on previously used phase-plate positions.
These charges would then interfere with the diffracted rays at
higher spatial frequency from the current position, resulting in
the observed spots in the aberration image. The absence of the
vertical neighbor-spots from the antisymmetrical plot suggests
that the spots were scanned in a vertically alternating but hori-
zontally unidirectional sense. This is illustrated in Fig. 5.

Because these types of aberrations do not satisfy our smooth-
ness assumptions, they cannot be modelled well using a small
number of Zernike basis polynomials. Although increasing
the number of Zernike polynomials would in principle allow
expressing any arbitrary aberration function, it also decreases
the system’s ability to extrapolate the aberration into the
unseen high-frequency regions. As a consequence, our aberra-
tion model cannot be used to neutralise the effects of the phase-
plate positions, which is confirmed by the FSC plots in Fig. 6. In
practice, this problem can be avoided experimentally, by spac-
ing the phase plate positions further apart and thus arbitrarily
increasing the affected frequencies.

The estimated magnification anisotropy for this data set is
relatively weak. The final magnification matrix M we recovered
was:

M= 1.006 0.005
~10.006 0.998]°

which corresponds to 1.35% anisotropy along two perpendicu-
lar axes rotated by 66°.

3.3. High-Resolution Experiment

We applied our methods to a mouse heavy-chain apoferritin
data set (EMPIAR-10216) collected on a 300 keV Titan Krios
fitted with a Falcon 3 camera. At the time of its publication, the
particle could be reconstructed to a resolution of 1.62 A using
RELION-3.0 (Danev et al., 2019). This data set thus offers us
a means to examine the effects of higher-order aberrations and
anisotropic magnification at higher resolutions.

We compared the following three reconstructions. First, the
original, publicly available map. Since it had been estimated
using RELION-3.0, only the effects of beam tilt could be cor-
rected for, but none of the other high-order aberrations or

anisotropic magnification. Second, the aberrations alone: for
this, we proceeded from the previous refinement, and we first
estimated the higher order aberrations and then, simultaneously,
per-particle defoci and per-micrograph astigmatism. Third, we
performed the same procedure, but only after first estimating
the anisotropic magnification. For the third case, the entire pro-
cedure was repeated after a round of refinement. For all three
cases, we calculated the FSC between the independently refined
half-maps and the FSC against an atomic model, PDB-6S61,
that was built in an independently reconstructed cryo-EM map
of mouse apoferritin at a resolution of 1.84 A. In the absence of
a higher-resolution reference structure, comparison with PDB-
6S61 relies on the assumption that the geometrical restraints
applied during atomic modelling resulted in predictive power
at resolutions beyond 1.84 A. We used the same mask as in
the original publication for correction of the solvent-flattening
effects on the FSC between the independent half-maps, and we
used the same set of 147,637 particles throughout.

The aberration plots in Fig. 7 show that this data set exhibits
a trefoil aberration and faint four-fold astigmatism. In the mag-
nification plot in Fig. 8, we can see a clear linear relationship
between the displacement of each pixel k and its coordinates.
This indicates that the measured displacements stem from a lin-
early distorted image and that the implied distortion is a hor-
izontal dilation and a vertical compression. This is consistent
with anisotropic magnification, since the average magnifica-
tion has to be close to 1 because the reference map itself has
been obtained from the same images under random in-plane
angles. The smoothness of the per-pixel plot suggest that the
large number of particles allows us to measure the small amount
of anisotropy reliably. The magnification matrix we estimated
was:

M {1.003 0.001}
0.001 0.998|"

which corresponds to 0.54% anisotropy. As can be seen in the
FSC curves in Fig. 9, considering either of these effects is ben-
eficial, while considering both yields a resolution of 1.57 A, an
improvement of three shells over the reconstruction obtained
using RELION-3.0.

3.4. Simulated Anisotropic Magnification Experiment

To measure the performance of our anisotropic magnifica-
tion estimation procedure in the presence of a larger amount
of anisotropy, we also performed an experiment on synthetic
data. For this experiment, we used a small subset (9, 487 parti-
cles from 29 movies) taken from a human apoferritin data set
(EMPIAR-10200), which we had processed before (Zivanov
et al., 2018). We distorted the micrographs by applying a
known anisotropic magnification using MotionCor2 (Zheng
etal.,2017). The relative scales applied to the images were 0.95
and 1.05, respectively, along two perpendicular axes rotated at
a 20° angle. In this process, about 4% of the particles were
mapped outside the images, so the number of distorted parti-
cles is slightly smaller, 9,093.

We then performed 4 rounds of refinement on particle images
extracted from the distorted micrographs in order to recover
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the anisotropic magnification. Each round consisted of a CTF
refinement followed by an autorefinement. The CTF refine-
ment itself was performed twice each time, once to estimate the
anisotropy, and then again to determine the per-particle defoci
and per-micrograph astigmatism. The FSC curves for the dif-
ferent rounds can be seen in Fig. 10. We observe that the FSC
approaches that of the undistorted particles already after the sec-
ond round. In the first round, the initial 3D reference map is not
precise enough to allow for a reliable recovery of anisotropy.

The magnification matrix M recovered in the final round
looks as follows:

M= [ 1.060

—0.032
—0.032 '

0.984

It corresponds to the relative scales of 0.951 and 1.049,
respectively, along two perpendicular axes rotated by 19.939°,
although it also contains an additional uniform scaling by a fac-
tor of 1.022. The uniform scaling factor has no influence on
the refinement, but it does change the pixel size of the result-
ing map. We therefore note that caution must be taken to either
enforce the product of the two relative scales to be 1, or to oth-
erwise calibrate the pixel size of the map against an external
reference.

This experiment shows that the anisotropy of the magnifi-
cation can be estimated to 3 significant digits, even from a
relatively small number of particles. Since the estimate arises
from adding up contributions from all particles, the precision
increases with their number.

4. Discussion

Although we previously described a method to estimate and cor-
rect for beam-tilt-induced axial coma (Zivanov et al., 2019), no
methods to detect and correct for higher-order optical aberra-
tions were available until now. It is therefore not yet clear how
often these aberrations are a limiting factor in cryo-EM struc-
ture determination of biological macromolecules. The obser-
vation that we have already encountered several examples of
strong three- and four-fold astigmatism on two different types
of microscopes suggests that these aberrations may be relatively
common.

Our results with the aldolase and 20S proteasome data sets
illustrate than when antisymmetrical and/or symmetrical aber-
rations are present in the data, our methods lead to an impor-
tant increase in achievable resolution. Both aldolase and the
20S proteasome could be considered as “easy” targets from
cryo-EM structure determination — they have both been used
to test the performance of cryo-EM hardware and software,
e.g. (Li et al., 2013; Danev & Baumeister, 2016; Herzik Jr
et al., 2017; Kim et al., 2018). However, our methods are not
limited to standard test samples, and have already been used
to obtain biological insights on much more challenging data.
Images on brain-derived tau filaments from an ex-professional
American football player with chronic traumatic encephalopa-
thy that we recorded on a 300keV Titan Krios microscope
showed severe three- and four-fold astigmatism. Correction for
these aberrations led to an increase in resolution from 2.7 A to

2.3 A, which allowed visualisation of alternative side chain con-
formations and of ordered water molecules inside the amyloid
filaments (Falcon et al., 2019).

Titan Krios microscopes come equipped with hexapole lenses
that can be tuned to correct for three-fold astigmatism, although
this operation is typically only performed by engineers. The
Titan Krios microscope that was used to image the tau fila-
ments from the American football player is part of the UK
national cryo-EM facility at Diamond (Clare et al., 2017). After
measuring the severity of the aberrations, its lenses were re-
adjusted, and no higher-order aberrations have been detected on
it since (Peijun Zhang, personal communication). Talos Arctica
microscopes do not have lenses to correct for trefoil, and the
microscope that was used to collect the aldolase and the 20S
proteasome data sets at the Scripps Research Institute contin-
ues to yield data sets with fluctuating amounts of aberrations
(Gabriel Lander, personal communication). Until the source of
these aberrations are determined or better understood, the cor-
rections proposed here will be important for processing of data
acquired on these microscopes.

To what extent higher-order aberrations are limiting will
depend on the amount of three- and four-fold astigmatism, as
well as on the target resolution of the reconstruction. We have
only observed noticeable increases in resolution for data sets
that yielded reconstructions with resolutions beyond 3.0-3.5 A
before the aberration correction. However, the effects of the
aberrations are more pronounced for lower-energy electrons.
Therefore, our methods may become particularly relevant for
data from 100 keV microscopes, the development of which is
envisioned to yield better images for thin specimens and to
bring down the elevated costs of modern cryo-EM structure
determination (Peet et al., 2019; Naydenova et al., 2019).

The effects of anisotropic magnification on cryo-EM struc-
ture determination of biological samples have been described
previously (Grant & Grigorieff, 2015; Zhao et al., 2015).
This has resulted in awareness of this problem in the field,
and several methods to estimate and correct for the presence
of anisotropic magnification. However, measuring anisotropic
magnification from the difference between defoci in two per-
pendicular directions depend on the astigmatism being small
compared to the anisotropy in the magnification, while mea-
suring the ellipticity of rings in power spectra from multi-
crystalline test specimens requires additional experiments. By
accumulating the differences between reference projections
with high signal-to-noise ratios and the particle images of an
entire data set, our method has the potential to detect smaller
deviations than the existing methods. Such small deviations
may be imperceptible at lower spatial frequencies, but will
become increasingly important at higher spatial frequencies, as
we demonstrate for the mouse apoferritin data set. In addition,
our method is, in principle, capable of detecting and modeling
skew components in the magnification.

In addition to modeling anisotropic magnification, our
method can also be used for the combination of different data
sets with unknown relative magnifications. In cryo-EM imag-
ing, the magnification is often not exactly known. Again, it is
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possible to accurately measure the magnification using crys-
talline test specimens with known diffraction geometry, but in
practice, errors of up to a few percent in the nominal pixel size
are often observed. When processing data from a single data set,
such errors can be absorbed, to some extent, in the defoci val-
ues. Therefore, a small error in pixel size only becomes a prob-
lem at the atomic modeling stage, where it leads to overall con-
tracted or expanded models with bad stereochemistry. (Please
note that this is no longer true at high spatial frequencies due
to the absolute value of the Cj; e.g. beyond 2.5 A for non-C,-
corrected 300kV microscopes.) When data sets from different
sessions are combined, however, errors in their relative magni-
fication will affect the 3D reconstruction at much lower resolu-
tions. Our method can directly be used to correct for such errors.
In addition, to provide further convenience, our new implemen-
tation allows for the combination of particle images with dif-
ferent pixel and box sizes into a single refinement. The per-
formance of our methods under these conditions remains to be
illustrated.

Our results illustrate that antisymmetrical and symmetrical
aberrations, as well as anisotropic magnification, can be accu-
rately estimated and modelled a posteriori from a set of noisy
projection images of biological macromolecules. No additional
test samples or experiments at the microscope are necessary; all
that is needed is a 3D reconstruction of sufficient resolution that
the optical effects become noticeable. Our methods could there-
fore in principle be used in a “shoot first, ask questions later”
type of approach, where speed of image acquisition is priori-
tised over exhaustively optimising the microscope’s settings. In
this context, we caution that while the boundaries of applicabil-
ity of our methods remain to be explored, it may be better to
reserve their use for unexpected effects in data from otherwise
carefully conducted experiments.
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Table 1

Half-set resolutions obtained at different stages of our processing pipeline in
the aberration experiment on aldolase and 20S proteasome at 200 keV.

aldolase  proteasome
initial 2.7 A 32A
first CTF refinement 24A 25A
Bayesian polishing 23A 234
second CTF refinement 2.1 A 234
no aberrations 25A 3.1A
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Figure 1

FSC plots from the aberration experiments on aldolase and 20S proteasome
at 200 keV. The top plot shows the half-set FSC and the bottom one the FSC
against the respective reference structure (see text for details). Note that estimat-
ing the aberrations during the initial CTF refinement already produces a signifi-
cant increase in resolution (red line). It also allows for more effective Bayesian
polishing and defocus refinement, increasing the resolution further (black line).
Neglecting the aberrations while keeping the remainder of the parameters the
same (dashed line) allows us to isolate the effects of aberration correction. For
the proteasome, it also exposes a slight (false) positive peak in the half-set FSC
around 2.7A which corresponds to a negative peak in the reference FSC. This
indicates that the phases of the complex amplitudes of the 3D map are, on aver-
age, flipped at that frequency band due to the strong aberrations.

aldolase:

antisymmetrical symmetrical

per-pixel optima

parametric fit

proteasome:

180°

00

-180°

Figure 2

Antisymmetrical and symmetrical aberration experiments on aldolase and 20S
proteasome at 200 keV. The upper image of each pair shows the independent
phase-angle estimates for each pixel, while the lower shows the parametric fit
using Zernike polynomials. These types of aberrations are referred to as tre-
foil or three-fold astigmatism (left) and four-fold astigmatism (right). The pro-
teasome trefoil exceeds 180° at the very high frequencies, so the sign in the
per-pixel plot wraps around. This has no impact on the parametric fit.
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no higher-order terms considering four-fold astigmatism

Figure 3

Effects of the symmetrical aberrations on the CTF of the 20S proteasome as
part of the aberration experiment at 200 keV. The image on the left shows a
CTF expressed by the traditional model, while the one on the right shows the fit
of our new model which considers higher-order symmetrical aberrations. Note
that the slightly square-like shape that arises from four-fold astigmatism cannot
be expressed by the traditional model. The aberrations correspond to the bottom
right image in Fig. 2

57.3°

-57.3°

Figure 4

Antisymmetrical (left) and symmetrical (right) aberrations measured on the
phase plate data set. The upper image shows independent per-pixel estimates
and the lower the parametric fits. Note the four afterimages of previously used
phase-plate spots in the upper right image. They cannot be represented by our
model.
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Figure 5

Our interpretation of the aberration plots in Fig. 4. The presence of all four
neighbouring spots in the symmetrical plot, together with the absence of the
vertical neighbours from the antisymmetrical plot, indicates that the VPP spots
were scanned in a vertically alternating and horizontally unidirectional sense, as
shown in the first image. This partitions a majority of the spots into two classes,
a and b, in which the direct vertical neighbour is located on opposite sides. The
total phase shift induced by the neighboring spots is decomposed into an anti-
symmetrical and a symmetrical part. Both of them are averaged over particles
from both classes during estimation, so the vertical neighbor partially cancels
out in the antisymmetrical plot, but not in the symmetrical one.

L —— initial
- | — first CTF refinement
05} Bayesian polishing
. | — second CTF refinement
[ - without higher-order aberrations
0.143 |-
Us L ! !
10A 5A 4R
1
0.5
0 L | | |
10A 5A 4R 3R
Figure 6

Half-set (top) and reference (bottom) FSC plots for the phase plate data set. The
reference structure used was again PDB-6BDF. Note that considering the aber-
rations does not improve the resolution, since these types of aberrations cannot
be expressed by our model. Nevertheless, the CTF refinement does improve the
resolution due to the new micrograph-global defocus and phase-shift estimation
and due to considering the slightly anisotropic magnification.
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Figure 7

Higher-order aberrations measured on the high-resolution mouse apoferritin
data set. The antisymmetrical plot (left) shows a significant trefoil aberra-
tion, while the symmetrical plot (right) shows a faint four-fold astigmatism.
Although the aberrations are comparatively weak, they are clearly measurable
and considering them does lead to a small improvement in resolution (see Fig.
9).
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Figure 8

Anisotropic magnification plots for the high-resolution mouse apoferritin data
set. The top row shows the estimated displacement for each pixel (i in Eq. 31)
while the bottom row shows the displacement corresponding to the estimated
magnification matrix M (i.e., Mk — k). Note that the per-pixel estimates fol-
low a linear relationship, indicating that the displacements are indeed caused
by a linear transformation of the image. The horizontal coordinate is defined as
increasing to the right and the vertical as increasing downward, so the two plots
indicate a horizontal dilation and a vertical compression.
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Figure 9

Half-set (top) and reference (bottom) FSC plots for the high-resolution mouse
apoferritin data set. Considering the anisotropic magnification (black line) pro-
duces a further improvement in terms of resolution beyond what is attainable
by considering the aberrations alone (blue line). The reference map used was
PDB-6S61, another publicly availably cryo-EM structure. The resolution indi-
cated by the bottom plot is limited by the fact that the resolution of the reference
structure is only 1.84A.
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Figure 10

Half-set (top) and reference (bottom) FSC plots for the simulated anisotropic
magnification experiment on human apoferritin. The reference structure used
was PDB-5N27 (Ferraro et al., 2017). From the second iteration onward, the
curves lie close to their final position. Note that the resolution of the undis-
torted reconstruction cannot be reached by the distorted ones, since particles
have been lost along the way and since the image pixels have been degraded by
resampling.
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5. Appendix A

In the following, we show that our formulation of the
astigmatic-defocus term as a quadratic form is equivalent to the
traditional one as defined in RELION, which in turn was based
on the model in CTFFIND (Mindell & Grigorieff, 2003). Let
the two defoci be given by Z; and Z,, the azimuthal angle of
astigmatism by ¢4 and the wavelength of the electron by A\. We
then wish to show that:

kTDK = 7\ (ZM +7 cos(26¢k)) kP, (1)
1
Z, = *E(Zl +2), (42)
1
Zy = _E(Zl _ZZ)a (43)
k()
Sy = tan™! (W) — P4 (44)
for the astigmatic-defocus matrix D defined as:
D = 71AQTAQ, (45)
| cos(pa) sin(¢a)
Q= { sin(¢4) cos(ngA)} ’ (46)
|-z 0
A= [ 0 Zz], @7)

The multiplication by Q rotates k into the coordinate system
of the astigmatism:

B
Ok = {Zi’;((&‘g:;] K|, (48)

Multiplying out the quadratic form and applying the defini-
tions of Z,, and Z, yields:

K™Dk = (Qk)TA(Qk) (49)
- fm(zl cos?(5¢) + Z» sin2(5¢k)) k| (50)

= 7\ (ZM + Zy cos* (5¢k) — Zy sin2(5¢k)) kP 6D

By substituting cos(28¢y ) for cos?(d¢y ) —sin’ (¢ ) we see that
this is equivalent to the original formulation.

In order to convert a given D into the traditional formulation,
we perform an eigenvalue decomposition of —D/(7 ). The two
eigenvalues are then equal to Z; and Z,, respectively, while the
azimuthal angle of the eigenvector corresponding to Z; is equal
to ¢a.

6. Appendix B

Computing T and I explicitly through Eq. 38 would require iter-
ating over all particles p in the data set. Since we have already
accumulated the terms in S; and e; over all p, we can avoid this
by instead performing the following summation over all pixels
k:

T=Y fiSi® kkTl, (52)
k

1= fit @k (53)
k

where ® indicates element-NWise multiplication, and thg real
symmetrical 4 x 4 matrix Sk and the column vectors k and
€x € R* are given by the reshaping of Sk, k and ey:

Mo(1,1) (1,1) (1,2) (1,2)
S S S S
Sl((l.,l) Sl((l.,l) Sl((l,Z) Sl((l.,2)
Sk= | o o ) 64
Y S N Y N rl B
b o ) )
_Sk Sk Sk Sk
k() el
- @] e
k2 e'<‘2>
- k
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