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Abstract 14 

Background: Malaria continues to be a disease of massive burden in Africa, and the public 15 

health resources targeted at surveillance, prevention, control, and intervention comprise large 16 

outlays of expense. Malaria transmission is largely constrained by the suitability of the climate 17 

for Anopheles mosquitoes and Plasmodium parasite development. Thus, as climate changes, we 18 

will see shifts in geographic locations suitable for transmission, and differing lengths of seasons 19 

of suitability, which will require changes in the types and amounts of resources. 20 

Methods: We mapped the shifting geographic risk of malaria transmission, in context of 21 

changing seasonality (i.e. endemic to epidemic, and vice-versa), and the number of people 22 

affected. We applied a temperature-dependent model of malaria transmission suitability to 23 

continental gridded climate data for multiple future climate model projections. We aligned the 24 

resulting outcomes with programmatic needs to provide summaries at national and regional 25 

scales for the African continent. Model outcomes were combined with population projections to 26 

estimate the population at risk at three points in the future, 2030, 2050, and 2080, under two 27 

scenarios of greenhouse gas emissions (RCP4.5 and RCP8.5).  28 

Results: Geographic shifts in endemic and seasonal suitability for malaria transmission were 29 

observed across all future scenarios of climate change. The worst-case regional scenario 30 

(RCP8.5) of climate change places an additional 75.9 million people at risk from endemic (10-12 31 

months) exposure to malaria transmission in Eastern and Southern Africa by the year 2080, with 32 

the greatest population at risk in Eastern Africa. Despite a predominance of reduction in season 33 

length, a net gain of 51.3 million additional people will be put at some level of risk in Western 34 

Africa by midcentury. 35 
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Conclusions: This study provides an updated view of potential malaria geographic shifts in 36 

Africa under climate change for the more recent climate model projections (AR5), and a tool for 37 

aligning findings with programmatic needs at key scales for decision makers. In describing 38 

shifting seasonality, we can capture transitions between endemic and epidemic risk areas, to 39 

facilitate the planning for interventions aimed at year-round risk versus anticipatory surveillance 40 

and rapid response to potential outbreak locations. 41 

 42 
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Background 45 

Malaria causes an estimated 435,000 deaths per year, with the majority of cases occurring 46 

in Sub-Saharan Africa, affecting children under 5 disproportionately [1]. Recent advances in 47 

reducing case burdens in sub-Saharan Africa through bed net distribution, household level 48 

spraying, and rapid clinical diagnostic and treatment responses appeared to slow down in 2017 49 

and 2018, leaving reduction, and eradication goals unmet, and an estimated 219 million cases in 50 

2018 [1]. The WHO reported that for 10 high burden African countries, there was an increase of 51 

3.5 million cases in 2017 over the prior year. This stall in reduction was largely attributed to a 52 

stall in investments in global responses to malaria. The U.S. remained the single largest 53 

international donor in 2017, contributing $1.2 billion (39% of the overall investment); it is 54 

projected that roughly $6.6 billion annually by 2020 will be needed for the global malaria 55 

strategy, underscoring the importance of knowing how much and where to invest.  56 

Geospatial modeling approaches provide a flexible framework in which to explore 57 

possible future scenarios of malaria risk as a function of changing climate [2]. Mordecai et al. 58 

introduced a mechanistic nonlinear physiological temperature-driven malaria transmission 59 

suitability model in 2013, via incorporating temperature dependent traits of boththe mosquito 60 

and parasite, based on laboratory data [3]. This demonstrated that transmissibility of malaria is 61 

constrained between 17-34C, which will therefore limit the spatial distribution of malaria on the 62 

landscape. In addition, this model updated the optimum temperature for malaria transmission 63 

from 31C to 25C, and the model was well validated using 40 years of field observation data 64 

matched to specific location month and temperature [3]. Temperature has also been shown to be 65 

an important predictor of incidence in many locations [4], and the potential effects of climate-66 

induced temperature shifts as an impact on intervention and vector control efforts have been 67 
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noted [5]. In previous work, we found that the top quantile of predicted transmission suitability 68 

from the Mordecai et al. model, that is, the top 25% of the transmission or R0 curve, best 69 

captured spatial and seasonal risk for Africa, from independent models of malaria risk prediction, 70 

based on statistical models of spatial case data from the Mapping Malaria Risk in Africa 71 

(MARA) and Malaria Atlas Project (MAP) projects [2,6–8].  72 

Climate change threatens to the alter the nature of future malaria exposure across Sub-73 

Saharan Africa [2,6,7]. Many countries with a high burden of malaria now have weak 74 

surveillance systems and are not well positioned to assess disease distribution and trends, making 75 

it difficult to optimize responses and respond to outbreaks [9]. To date, knowledge on how 76 

climate driven changes in malaria risk will manifest at regional and national scales is limited, 77 

though such knowledge is critical to designing responses. Changes in both the areas and 78 

populations exposed to malaria risk will necessitate adaptive responses to address them. To 79 

inform these responses, we explored six scenarios of changing suitability, aligned to potential 80 

management strategies to address the changing risks. We provide an updated view of climate-81 

driven malaria shifts in Africa from the 2015 mapping paper by Ryan et al [2], using the newer 82 

IPCC AR5 climate change scenario framework, explicitly defining season length to align with 83 

policy language, and including a sub-continental approach, aligning changes to regional scale 84 

planning.  85 

The goals of this study were to (1) identify new areas that will emerge as suitable for 86 

malaria transmission under different scenarios of change; (2) identify areas that may experience 87 

reductions in transmission suitability season length; and (3) provide an estimate of the human 88 

population at risk under each scenario. These are presented in the language of malaria 89 

seasonality risk, to align with surveillance and intervention targeting goals, and summarized as 90 
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regional scale outcomes, broadly aligned with USAID’s planning scales, as the parent aid 91 

organization of much of the US investment in the global malaria strategy.  92 

 93 

Methods 94 

Malaria Transmission 95 

The model for temperature-dependent malaria transmission presented in Mordecai et al. (2013) 96 

used this expression for R0, the basic reproductive rate of the disease, in order to account for the 97 

fitting of these rates to laboratory measurements: 98 

rp

bcmpa
R

T

)ln(

2

0 −
=

 99 

The temperature-dependent parameters are the mosquito biting rate (a), vector competence (b*c), 100 

mosquito density (m), the mosquito survival rate (p), and the parasite’s extrinsic incubation 101 

period (T), all of which are measurable empirical parameters.  102 

The model incorporated temperature response curves fit for the mosquito species 103 

Anopheles gambiae and the malaria pathogen Plasmodium falciparum, with additional 104 

information used for related Anopheles and Plasmodium species. Transmission, R0 was scaled 105 

from 0–1, to describe relative transmission across the range of temperature. In Ryan et al [2] this 106 

curve was described this in quantiles, where the top quantile (upper 25 percent) of the curve was 107 

selected to represent the range of temperatures in which transmission suitability is expected. This 108 

conservative measure of the overall temperature curve was used as it corresponds to existing 109 

maps of ongoing transmission under current temperatures [2].  110 

 111 

Climate Data 112 
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Current temperature data is represented by globally gridded 5 arc-minute WorldClim 113 

(version 1) monthly mean temperature data [10]. This represents a long term average, or 114 

baseline, which has been used to project future climate scenarios, and therefore serves as our 115 

baseline.  116 

General Circulation Models (GCMs) are the primary source of information about 117 

potential future climate. GCMs comprise simplified but systematically rigorous mathematical 118 

descriptions of physical and chemical processes governing climate, including the role of the 119 

atmosphere, land, oceans, and biological processes. They allow for modeling the expected 120 

climate response to increasing greenhouse gas concentrations. The direct application of GCM 121 

output to adaptation decision making, however, has been relatively limited due to GCMs’ coarse 122 

spatial resolution (100 to 500 km2). For strategic planning in malaria prevention and control, 123 

information is required on a much more local scale than GCMs can provide. Here, a statistically 124 

downscaled multi-model ensemble product is used for this analysis, compiled at a resolution of 5 125 

arc-minutes (~10 km2) from 6 downscaled GCMs. The climate projection data used in this study 126 

consisted of the median value for the multimodel ensemble representing future climate, compiled 127 

from the Coupled Model Intercomparison Project (CMIP5) archive, downscaled using a Change 128 

Factor (CF) approach and sourced from Navarro-Racines, Tarapues-Montenegro, and Ramírez-129 

Villegas [11]. This ensemble approach allows exploration of the range of uncertainty across 130 

climate projections under two greenhouse gas emissions scenarios, or Representative 131 

Concentration Pathways (RCPs) – RCP 4.5 and RCP 8.5 – for three future time periods: the 132 

2030s, 2050s, and 2080s.  133 

 134 

Aridity Masking 135 
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Anopheles mosquitoes (i.e., malaria-transmitting mosquitoes) require an appropriate level of 136 

moisture in their environment to provide breeding habitat with which to complete their lifecycle. 137 

Humidity or moisture is thus another component in the climate–transmission relationship. While 138 

several models use rainfall as a predictor for malaria occurrence, it is complicated to generalize 139 

how precipitation measures, such as monthly rainfall totals, cumulative rainfall, or relative 140 

humidity, actually manifest as breeding habitat for mosquitos at large scales [12–15]. 141 

Precipitation may not be a good indicator of standing water, and in a world of increasingly 142 

extreme precipitation events, the difference between a month’s rainfall occurring in a single day 143 

versus gradual accumulation over that month becomes more relevant. Mosquito habitat can wash 144 

away, “flushing” away eggs and disrupting the lifecycle, meaning that more rain does not 145 

necessarily translate into more habitat [16]. In addition, much of the world is subject to 146 

agricultural irrigation, redirecting precipitation in nonlinear ways at local level, or even creating 147 

piped water environments in the absence of precipitation. To generalize habitat suitability for 148 

mosquito breeding, a remotely sensed proxy is used: the normalized difference vegetation index 149 

(NDVI), which measures the photosynthetic activity of growing plant matter, on a 0-1 scale. The 150 

NDVI is thus a useful descriptor of the type of habitat conducive to Anopheles breeding. The 151 

threshold of “too dry” is based on prior work conducted by Suzuki et al. [17] to exclude locations 152 

where the NDVI drops below a critical minimum level for two months of the year, thereby 153 

cutting off breeding and the transmission cycle [17]. We followed a modified version of the 154 

methods of Ryan et al. [2] to limit projected models to those geographic areas capable of 155 

supporting mosquito survival. Monthly NDVI values were derived from post-processed MODIS 156 

data, available from FEWS-Net (Famine Early Warning System Network) [18]and month-to-157 

month thresholding was calculated [17]. That is, if the NDVI value for two consecutive months 158 
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fall below 0.125, it is assumed that an aridity boundary is crossed, indicating that that area 159 

(pixel) is considered too arid for malaria transmission to occur. We chose the 2016-2017 period 160 

of NDVI as an average climate year for the current decade. As NDVI cannot be projected into 161 

future scenarios, we use this as an average current aridity mask, which is a conservative 162 

approach.  163 

 164 

Population Data 165 

We downloaded global gridded population products, the Gridded Population of the World 166 

(GPW), at a 30 arc-second (~1 km2) resolution. Population data for Africa used as input for 167 

calculating population at risk (PAR) under the various transmission scenarios were derived from 168 

the Gridded Population of the World, Version 4 (GPWv4) [19], with baseline estimates derived 169 

from 2015 GPW data, while projected future populations were extracted from the 2020 layers.  170 

 171 

Geospatial projections of transmission 172 

The gridded temperature data (current and future climate scenarios, month-wise) were 173 

constrained to the temperature range of the optimal quantile of transmission, and the resulting 174 

number of months of transmission suitability in each pixel recorded for all of Africa. The aridity 175 

mask was applied, and pixels falling in masked areas were given no value.  176 

 177 

Seasons of transmission were defined based on the numbers of months of suitability, and 178 

criteria established by MARA were followed in defining malaria transmission suitability, with 179 

very slight additional granularity to better illustrate the impact of changing climate (Table 1). 180 

 181 
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Table 1. Definitions of malaria transmission suitability used in summarizing areas and 182 

population at risk.  183 

Malaria Suitability Definition 

Endemic Malaria transmission suitability for 10-12 months of the year 

Seasonal Malaria transmission suitability for 7-9 months of the year 

Moderate Malaria transmission suitability for 4-6 months of the year 

Marginal Malaria transmission suitability for 1-3 months of the year 

 184 

In order to estimate the population at risk (PAR) for each geospatial research question, 185 

the suitability data were aggregated by a factor of 10 and aligned to the climate data, such that all 186 

analyses were conducted at 5 arc-minute resolution (approximately 10 km2 at the equator). 187 

Population data for each scenario were summarized by region, shown in Figure 1. We defined 188 

five regions of Africa; these align with the policy scale, but not definition of countries for 189 

USAID’s four African regions. We chose to delineate Eastern Africa and Central Africa to align 190 

with physical geography – while USAID defines Eastern Africa to include the Democratic 191 

Republic of Congo and Congo, and Central African Republic, Cameroon, Gabon and Equatorial 192 

Guinea are all included in the USAID West African Region, we chose to define a Central Africa 193 

region, comprising these countries (Figure 1). We present results of our analyses for four of our 194 

regions, excluding Northern Africa from this study.  195 
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 196 

Fig. 1. Map of the five regional definitions of Africa used in this study. Note that the Northern 197 

Africa region was excluded from analyses in this study. 198 

 199 

All calculations and analyses were conducted in R [R version 3.3.3 2017-03-06 “Another 200 

Canoe”] using the “raster,” “rgdal,” “sp,” and “maptools” packages, and mapped output was 201 

produced in ArcGIS [Version 10.5.1]. 202 

 203 

Results 204 

Regional impacts of climate change scenarios 205 
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Increases in temperature by region, from baseline, for the future climate scenarios, are 206 

synthesized in Table 2. Higher future temperatures are projected under all models and time 207 

periods evaluated for the continent. 208 

 209 

Table 2. Average annual temperature increases (°C) from baseline (1960–1990) by region, RCP, 210 

and time period. 211 

 212 

Region 
2030s 2050s 2080s 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

West Africa 1.32 1.57 2.29 2.32 2.84 4.38 

East Africa 1.32 1.63 1.90 2.32 2.96 4.38 

Central Africa 1.10 1.42 1.63 2.07 2.69 4.04 

Southern Africa 0.94 1.28 1.33 2.01 2.51 4.08 

 213 

Current and Future Suitability Risk 214 

Under baseline conditions, we see the current distribution of endemic (10-12 months) 215 

transmission suitability for malaria is concentrated in the Central African region, with additional 216 

areas along the southern coast of Western Africa, and along the eastern coast of Eastern Africa, 217 

and in the north of Madagascar (Figure 2). Seasonal transmission (7-9 months of the year) 218 

suitability is predicted along a band through Western and Eastern Africa, south of the areas too 219 

arid for mosquito life cycles, and in parts of Southern Africa, particularly through Mozambique.  220 
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 221 

Fig. 2. Modeled endemic (10-12 months) and seasonal (7-9 months) transmission suitability for 222 

malaria under current climate conditions. 223 

 224 

The projected future climate impacts on malaria transmission suitability are shown for 225 

both RCP 4.5 and 8.5, for the three time horizons modeled, in Figure 3. Hotspots of endemic 226 

suitability will begin to emerge in the center of the continent, the East African highlands, the 227 

Lake Victoria region, and northern Zambia, becoming more pronounced in the latter part of the 228 

21st century. A significant portion of these areas are located in Eastern Africa including Uganda, 229 

Kenya, and Tanzania, a region with currently lower suitability for endemic malaria transmission 230 

compared to Central and Western Africa. Additionally, areas predicted to have limited current 231 

suitability for Anopheles transmission may become seasonally suitable under conditions of a 232 
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changing climate, including the Southern Africa region, which will see marked increases in areas 233 

suitable for seasonal and endemic malaria transmission (Figs. 2 and 3).  234 

 235 
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 236 

Fig. 3. Modeled output of malaria transmission indicates shifting future endemic (dark red) and 237 

seasonal (light red) transmission suitability under two representative concentration pathways, 238 

RCP 4.5 (A, B, C) and RCP 8.5 (D, E, F), for the years 2030, 2050, and 2080. 239 

 240 
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Concentrated hotspots of seasonal suitability will begin to emerge in central Angola, 241 

northwestern Zambia, northern Tanzania, and the southern coast and northern part of 242 

Mozambique by 2030. This includes large portions of Zambia, Malawi, and Tanzania, eastern 243 

South Africa, Botswana, the highlands of Zimbabwe, northern Mozambique, and the Zambezi 244 

River Basin. Hotspots of seasonal malaria transmission suitability will either continue to 245 

concentrate, or will migrate both northward and southward into the highlands of Ethiopia and 246 

Southern Africa toward the latter part of the 21st century.  247 

 248 

Shifting burden of transmission suitability – people at risk 249 

An additional 196–198 million people in Eastern and Southern Africa will be burdened 250 

with some degree of malaria transmission risk in the future due to shifting suitability by the 251 

2080s. Regionally, by the year 2080 the worst-case scenario (RCP 8.5) places an additional 73.4 252 

million people at risk from year-round exposure to transmission in Eastern Africa (Fig. 4). In 253 

spite of currently low endemic suitability, shifting seasonality in Southern Africa will place over 254 

2.5 million additional people at risk for endemic transmission by the 2080s. In the short term, 255 

these changes are predicted to put the lives of 50.6–62.1 additional people at increased risk for 256 

endemic transmission, and 37.2–48.2 million people at risk for seasonal transmission, throughout 257 

Central, Eastern, and Southern Africa by the 2030s (Figs. 4 & 5). Given the strong empirical 258 

relationship between vector survival and temperature, as temperatures rise, exposure to malaria 259 

transmission is also expected to increase in previously unsuitable regions, such as those in the 260 

higher elevation regions of Southern and Eastern Africa. Countries likely to be impacted by these 261 

changes include northern Angola, southern DRC, western Tanzania, and central Uganda in 2030; 262 
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by 2080 these changes will extend into western Angola, the upper Zambezi River Basin, and 263 

northeastern Zambia, and will become more concentrated along the East African highlands. 264 

 265 

 266 

 267 

Fig. 4. Population at risk (PAR) for exposure to endemic malaria transmission will change in the 268 

future as geographic suitability shifts under two scenarios of climate change, RCP 4.5 (A) and 269 

RCP 8.5 (B). Eastern Africa will regionally see dramatic increases PAR by the year 2080, while 270 

shifting suitability will largely relieve the burden of endemic transmission in Western Africa.  271 

 272 

 273 

e 
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 274 

Fig. 5. Population at risk (PAR) for exposure to seasonal malaria transmission will change in the 275 

future as geographic suitability shifts under two scenarios of climate change, RCP 4.5 (A) and 276 

RCP 8.5 (B). Southern Africa is predicted to have increased seasonal transmission, while shifting 277 

suitability will largely decrease seasonal transmission in Western Africa.  278 

 279 

These shifts in the geographic range of malaria suitability, broadly consistent across both 280 

scenarios of future climate, suggest both decreases and increases in the number of people 281 

exposed, depending on the climate scenario. The geographic and temporal evolution of future 282 

suitability of areas for malaria-transmitting Anopheles mosquitoes is closely tied to expected 283 

temperature changes under both RCP scenarios (Fig. 3). As temperatures rise, even within the 284 

next 12 years (by 2030), important changes are anticipated. Shifting suitability due to climate 285 

change will place additional people at risk despite reductions endemic and seasonal malaria 286 

e 

ng 

th 
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transmission, resulting in a net gain of 58.7 to 60.4 million people who experience some level of 287 

malaria risk in Western Africa by the 2030s. Large areas of coastal Western Africa and the Horn 288 

of Africa will likely exceed mosquitoes’ thermal tolerance, with suitability disappearing. At the 289 

same time, rising temperatures will likely increase the southern range of seasonal suitability for 290 

Anopheles mosquitoes into Southern and Central Africa, into western Tanzania. As temperatures 291 

continue to rise (2050s), both endemic and seasonal zones will continue to exhibit an eastward 292 

shift, with thermal threshold exceedance again apparent under the worst-case scenario (RCP 8.5), 293 

eliminating suitability across Central Africa. The end-of-the-century scenarios (2080) 294 

concentrate areas of endemism in previously unsuitable or marginally suitable areas, namely the 295 

highlands of East Africa and Southern Africa. Where the number of months of suitability for 296 

Anopheles survival decrease, opportunities will emerge to alter and define more targeted 297 

seasonal responses, either reducing the cost of interventions or providing a window into potential 298 

eradication to malaria exposure. Targets of opportunity include Central Africa (the Central 299 

African Republic, western Congo, Cameroon, and Equatorial Guinea) and coastal East Africa 300 

(Tanzania and Kenya).  301 

 302 

Novel Endemic and Seasonal Risk  303 

Some parts of Sub-Saharan Africa currently predicted to experience no malaria 304 

transmission suitability risk will experience shifting suitability, resulting in novel areas with no 305 

history of malaria transmission becoming suitable for endemic and seasonal transmission in the 306 

future. As seen in Figure 6, for RCP 4.5, this exposes populations along an arc extending into 307 

East Africa, leading to dramatic PAR increases for regional exposures, particularly novel 308 
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endemic exposure increase in East Africa, and novel seasonal exposures in Southern Africa 309 

(Figure 7).   310 

 311 

Figure 6: New areas of endemic (A-C) and seasonal (D-F) suitability, under RCP 4.5 for 2030, 312 

2050, and 2080. Red shading intensity indicates current malaria suitability season.  313 

 314 
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 315 
Figure 7: The number of people at risk (PAR) in A. newly endemic (10-12 month) suitable 316 

areas, and B. newly seasonal (7-9 month) suitable areas, for RCP 4.5 and RCP 8.5, in 2030, 317 

2050, 2080 318 

 319 

Discussion 320 

The changes in the geographic range of malaria suitability, broadly consistent across both 321 

scenarios of future climate, suggest that the number of people exposed to conditions of malaria 322 
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suitability will both increase and decrease in Sub-Saharan Africa, depending on the region. Thus, 323 

as some populations experience reduced burden of malaria risk in the future, shifting suitability 324 

will increasingly place naïve populations at risk for outbreaks, particularly in Southern and 325 

Central Africa. Malaria outbreaks that occur where people have little or no immunity to the 326 

disease can lead to epidemic conditions, especially among vulnerable groups such as women and 327 

children [1,20]. This research identifies “hotspots” where current exposure, and therefore 328 

immunity, is nonexistent; these areas could see epidemic “flares” as climate conditions affect 329 

vector survival and reproduction. This effect may be further exacerbated in novel areas with no 330 

previous history of malaria exposure, where both immunity and knowledge regarding malaria 331 

prevention are lacking [21–23]. Malaria outbreaks occurring where people have acquired 332 

immunity due to prolonged and repeated malaria exposure trigger management actions 333 

employing a cadre of tools, including vector control and case management approaches to prevent 334 

or reduce transmission [23,24].  335 

These results enable us to pinpoint regions where interventions need to be revisited to 336 

consider how climate will alter risk profiles in the future. The strong seasonal cycle of malaria 337 

across Southern Africa is related to climate and weather conditions [25,26]. Thus, during some 338 

periods of the year, climate conditions are not conducive to spread of the disease. Given the 339 

strong empirical relationship between vector survival and temperature, as temperatures rise 340 

exposure to malaria transmission is expected to increase in previously unsuitable regions, such as 341 

those in the higher elevation regions of Southern and East Africa. A key concern with climate 342 

change impacts is whether climate change will lengthen the period of the year during which 343 

diseases can establish and be transmitted. For example, areas where spring and autumn are now 344 

too cold for the reproduction of malaria vectors may become more suitable in the future. In these 345 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797050doi: bioRxiv preprint 

https://doi.org/10.1101/797050
http://creativecommons.org/licenses/by-nc-nd/4.0/


areas, increases in temperature may not impact midsummer malaria incidence greatly, but may 346 

result in a longer season, extending into both spring and autumn, during which malaria 347 

incidences will occur. In some cases, malaria may shift from being a seasonal disease burden to a 348 

year-round burden. This will necessitate different types of management and control interventions 349 

than those currently in place for short-season malaria [27,28]. Where the number of months of 350 

suitability for Anopheles survival decreases, opportunities will emerge to alter and define more 351 

targeted seasonal responses – either reducing the cost of interventions or providing a window 352 

into potential eradication to malaria exposure. An increase in the number of months where 353 

conditions are suitable for mosquito survival will require responses to be extended for longer 354 

periods of time, increasing resource needs (e.g. staff time, medicines) as well as costs [29]. In 355 

examining areas where malaria suitability is currently considered seasonally restricted, but will 356 

likely become more prevalent throughout the year, public health planners can anticipate which 357 

regions may require an extended investment pipeline. 358 

A fundamental underpinning of modeling the response of vector-borne diseases to 359 

climate and ecology is the choice of model process. Previous approaches, such as that of the 360 

Malaria Atlas Project (MAP) and the Mapping Malaria Risk in Africa (MARA) project, are 361 

essentially top-down, wherein empirical data collected on the ground are matched to local 362 

climate conditions, and suitability established via geostatistical methods. In contrast, the 363 

modeling approach used here is mechanistic and “bottom-up,” wherein the life history of 364 

mosquitoes and pathogens, and their responses to temperature, are explicitly quantified based on 365 

empirical, laboratory-based data and incorporated into the model to predict where suitability for 366 

transmission is likely to occur. A mechanistic model, built independently of case outcome data, 367 
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allows for validation with empirical, field-collected data, and obviates the bias of modeling data 368 

while intervention is ongoing, as is inevitably the case with previous approaches [30].  369 

While substantial progress has been made in recent years in the provision and use of 370 

climate projections, considerable uncertainties remain with their use [31]. Using climate science 371 

research results to inform the decision process about which policies or specific measures are 372 

needed to tackle climate impacts requires acknowledging the uncertainties inherent in climate 373 

projections. These uncertainties may arise from mathematical reductions (parameterizations) of 374 

climate phenomena; potential socioeconomic technological pathways and attendant carbon cycle 375 

feedbacks that influence atmospheric concentrations of key greenhouse gases; imperfect 376 

scientific knowledge and the computational constraints of modelling regional detail while still 377 

incorporating relevant large-scale climate patterns; and the relationship between climate models 378 

and their relative impacts on key sectors and resources [31–33]. Furthermore, uncertainty can 379 

arise over the chance of a single event (for example, crossing a threshold), recurrent events (the 380 

return period of a flood, for example), discrete events (hurricane frequency), and complex events 381 

(for example, the interplay of different factors that lead to drought) [34]. Recognizing this, good 382 

practice is followed by incorporating a multimodel range of climate projections rather than a 383 

single model, as performed in this study [31,35,36]. For the population data specifically, it is 384 

important to recognize that the projected population for 2020 is used to calculate the numbers of 385 

people potentially affected by changing suitability conditions across all future time periods. As 386 

with climate models, these projections do not necessarily capture all of the factors that drive 387 

population movement and growth and should be taken as best modelled estimates rather than 388 

exact values. 389 
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The study results are based on the temperature response curves of both Anopheles 390 

mosquitoes and malaria pathogens. Nevertheless, many studies point to the critical role that 391 

rainfall plays in vector survival across Sub-Saharan Africa [12,14,15]. For example, single, 392 

intense rainfall events can wash away critical breeding sites, leading to a reduction in 393 

transmission potential [16,37]. Similarly, too little rainfall can limit mosquito survival as 394 

moisture is a prerequisite for breeding habitat [38]. The approach herein addresses this second 395 

issue by masking out areas that are too arid for mosquito survival. While the relationship 396 

between rainfall and Anopheles survival is critical, the available projections of rainfall are 397 

uncertain at the geographic scale of this work and therefore are not considered in this analysis. 398 

Geographically projected model outputs are a useful component of a planning and 399 

intervention framework, providing a means of communicating key areas of risk and affected 400 

populations to decisionmakers. Anticipation of not only the location and time, but the duration of 401 

potential outbreak events will facilitate the development of efficient and timely agency 402 

responses. Moreover, this framework serves as a foundation for scenario analysis, explicitly 403 

modeling risk of exposure for different climate scenarios and time horizons.  The range of 404 

potential outcomes allows governments and agencies the flexibility needed to reasonably 405 

anticipate resource use and funding needs, enabling the development of adaptive intervention 406 

strategies for both near and long-term outcomes.  407 

 408 

Conclusions 409 

Addressing the changing risk profiles projected in this suitability analysis will require 410 

modifying current interventions and programs and implementing new ones to explicitly consider 411 

climate variability and change. Opportunities for improved responses also exist, including 412 
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detailed geographic targeting, optimizing strategies and seasonal alignment with interventions. 413 

Identifying high risks in new areas of suitability present opportunities for informed action. 414 

Where malaria suitability is currently nonexistent to newly suitable, whether seasonal or 415 

endemic, the risks are critical, especially given that local populations’ immunity will be low. 416 

This could lead to the potential emergence of novel strains, rapid resistance, and untimely 417 

identification, translating into epidemic outbreaks. To respond, targeted and informed geographic 418 

surveillance in these regions could help to prepare timely responses before epidemic outbreaks 419 

occur. Knowing where and when more people will potentially be exposed offers an opportunity 420 

to increase the investment timeframe (seasonal to year-round), optimize vector control, and 421 

improve case management, with the evidence base to support these actions. Moving down the 422 

path toward elimination for some regions, where malaria transmission suitability decreases, 423 

opportunities will arise to focus resources on making surveillance and response systems 424 

increasingly sensitive and focused to identify, track, and respond to malaria cases and any 425 

remaining transmission foci. 426 

 427 
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