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Abstract

Background: Malaria continuesto be a disease of massive burden in Africa, and the public
health resources targeted at surveillance, prevention, control, and intervention comprise large
outlays of expense. Malariatransmission is largely constrained by the suitability of the climate
for Anopheles mosguitoes and Plasmodium parasite devel opment. Thus, as climate changes, we
will see shifts in geographic locations suitable for transmission, and differing lengths of seasons
of suitability, which will require changes in the types and amounts of resources.

M ethods: We mapped the shifting geographic risk of malaria transmission, in context of
changing seasonality (i.e. endemic to epidemic, and vice-versa), and the number of people
affected. We applied atemperature-dependent model of malaria transmission suitability to
continental gridded climate data for multiple future climate model projections. We aligned the
resulting outcomes with programmatic needs to provide summaries at national and regional
scales for the African continent. Model outcomes were combined with population projections to
estimate the population at risk at three pointsin the future, 2030, 2050, and 2080, under two
scenarios of greenhouse gas emissions (RCP4.5 and RCP8.5).

Results: Geographic shiftsin endemic and seasonal suitability for malaria transmission were
observed across all future scenarios of climate change. The worst-case regional scenario
(RCP8.5) of climate change places an additional 75.9 million people at risk from endemic (10-12
months) exposure to malaria transmission in Eastern and Southern Africa by the year 2080, with
the greatest population at risk in Eastern Africa. Despite a predominance of reduction in season
length, anet gain of 51.3 million additional people will be put at some level of risk in Western

Africaby midcentury.
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Conclusions: This study provides an updated view of potential malaria geographic shiftsin
Africaunder climate change for the more recent climate model projections (AR5), and atool for
aligning findings with programmeatic needs at key scales for decision makers. In describing
shifting seasonality, we can capture transitions between endemic and epidemic risk areas, to
facilitate the planning for interventions aimed at year-round risk versus anticipatory surveillance

and rapid response to potential outbreak locations.
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Background

Malaria causes an estimated 435,000 deaths per year, with the majority of cases occurring
in Sub-Saharan Africa, affecting children under 5 disproportionately [1]. Recent advancesin
reducing case burdensin sub-Saharan Africa through bed net distribution, household level
spraying, and rapid clinical diagnostic and treatment responses appeared to slow down in 2017
and 2018, leaving reduction, and eradication goals unmet, and an estimated 219 million casesin
2018 [1]. The WHO reported that for 10 high burden African countries, there was an increase of
3.5 million casesin 2017 over the prior year. This stall in reduction was largdly attributed to a
stall ininvestmentsin global responses to malaria. The U.S. remained the single largest
international donor in 2017, contributing $1.2 billion (39% of the overall investment); itis
projected that roughly $6.6 billion annually by 2020 will be needed for the global malaria
strategy, underscoring the importance of knowing how much and where to invest.

Geospatial modeling approaches provide aflexible framework in which to explore
possible future scenarios of malariarisk as afunction of changing climate[2]. Mordecai et al.
introduced a mechanistic nonlinear physiological temperature-driven malaria transmission
suitability model in 2013, viaincorporating temperature dependent traits of boththe mosquito
and parasite, based on laboratory data[3]. This demonstrated that transmissibility of malariais
constrained between 17-34C, which will therefore limit the spatial distribution of malaria on the
landscape. In addition, this model updated the optimum temperature for malaria transmission
from 31C to 25C, and the model was well validated using 40 years of field observation data
matched to specific location month and temperature [3]. Temperature has also been shown to be
an important predictor of incidencein many locations [4], and the potential effects of climate-

induced temperature shifts as an impact on intervention and vector control efforts have been
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noted [5]. In previous work, we found that the top quantile of predicted transmission suitability
from the Mordecai et a. modd, that is, the top 25% of the transmission or Ry curve, best
captured spatial and seasonal risk for Africa, from independent models of malariarisk prediction,
based on statistical models of spatial case datafrom the Mapping Malaria Risk in Africa
(MARA) and Malaria Atlas Project (MAP) projects[2,6-8].

Climate change threatens to the alter the nature of future malaria exposure across Sub-
Saharan Africa[2,6,7]. Many countries with a high burden of malaria now have weak
surveillance systems and are not well positioned to assess disease distribution and trends, making
it difficult to optimize responses and respond to outbreaks [9]. To date, knowledge on how
climate driven changes in malaria risk will manifest at regional and national scalesis limited,
though such knowledge s critical to designing responses. Changes in both the areas and
populations exposed to malaria risk will necessitate adaptive responses to address them. To
inform these responses, we explored six scenarios of changing suitability, aligned to potential
management strategies to address the changing risks. We provide an updated view of climate-
driven malaria shiftsin Africafrom the 2015 mapping paper by Ryan et a [2], using the newer
IPCC ARS climate change scenario framework, explicitly defining season length to align with
policy language, and including a sub-continental approach, aligning changes to regional scale
planning.

The goals of this study were to (1) identify new areas that will emerge as suitable for
malaria transmission under different scenarios of change; (2) identify areas that may experience
reductions in transmission suitability season length; and (3) provide an estimate of the human
population at risk under each scenario. These are presented in the language of malaria

seasonality risk, to align with surveillance and intervention targeting goals, and summarized as
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91 regional scale outcomes, broadly aligned with USAID’ s planning scales, asthe parent aid

92  organization of much of the US investment in the global malaria strategy.

93

94  Methods

95 Malaria Transmission

96 Themode for temperature-dependent malaria transmission presented in Mordecai et al. (2013)
97 usedthisexpression for Ry, the basic reproductive rate of the disease, in order to account for the

98 fitting of these rates to laboratory measurements:

99

100  Thetemperature-dependent parameters are the mosqguito biting rate (a), vector competence (b*c),
101  mosquito density (m), the mosquito survival rate (p), and the parasite’ s extring ¢ incubation

102 period (T), al of which are measurable empirical parameters.

103 The model incorporated temperature response curves fit for the mosquito species

104  Anopheles gambiae and the malaria pathogen Plasmodium fal ciparum, with additional

105  information used for related Anopheles and Plasmodium species. Transmission, Ry was scaled
106  from 0-1, to describe relative transmission across the range of temperature. In Ryan et al [2] this
107  curve was described thisin quantiles, where the top quantile (upper 25 percent) of the curve was
108  selected to represent the range of temperatures in which transmission suitability is expected. This
109  conservative measure of the overall temperature curve was used asit corresponds to existing

110  maps of ongoing transmission under current temperatures [2].

111

112  Climate Data
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Current temperature data is represented by globally gridded 5 arc-minute WorldClim
(version 1) monthly mean temperature data[10]. This represents a long term average, or
basaline, which has been used to project future climate scenarios, and therefore serves as our
basdline.

General Circulation Models (GCMs) are the primary source of information about
potential future climate. GCMs comprise simplified but systematically rigorous mathematical
descriptions of physical and chemical processes governing climate, including the role of the
atmosphere, land, oceans, and biological processes. They allow for modeling the expected
climate response to increasing greenhouse gas concentrations. The direct application of GCM
output to adaptation decision making, however, has been relatively limited due to GCMS' coarse
spatial resolution (100 to 500 km?). For strategic planning in malaria prevention and control,
information is required on a much more local scale than GCMs can provide. Here, a statistically
downscaled multi-model ensemble product is used for this analysis, compiled at a resolution of 5
arc-minutes (~10 km?) from 6 downscaled GCMs. The climate projection data used in this study
consisted of the median value for the multimodel ensemble representing future climate, compiled
from the Coupled Mode Intercomparison Project (CMIP5) archive, downscaled using a Change
Factor (CF) approach and sourced from Navarro-Racines, Tarapues-Montenegro, and Ramirez-
Villegas[11]. This ensemble approach allows exploration of the range of uncertainty across
climate projections under two greenhouse gas emissions scenarios, or Representative
Concentration Pathways (RCPs) — RCP 4.5 and RCP 8.5 —for three future time periods. the

2030s, 2050s, and 2080s.

Aridity Masking
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Anopheles mosquitoes (i.e., malaria-transmitting mosquitoes) require an appropriate level of
moisture in their environment to provide breeding habitat with which to complete their lifecycle.
Humidity or moisture is thus another component in the climate—transmission relationship. While
several models use rainfall as a predictor for malaria occurrence, it is complicated to generalize
how precipitation measures, such as monthly rainfall totals, cumulative rainfall, or relative
humidity, actually manifest as breeding habitat for mosquitos at large scales [12-15].
Precipitation may not be a good indicator of standing water, and in aworld of increasingly
extreme precipitation events, the difference between a month’s rainfall occurring in a single day
versus gradual accumulation over that month becomes more relevant. Mosquito habitat can wash
away, “flushing” away eggs and disrupting the lifecycle, meaning that more rain does not
necessarily tranglate into more habitat [16]. In addition, much of the world is subject to
agricultural irrigation, redirecting precipitation in nonlinear ways at local level, or even creating
piped water environments in the absence of precipitation. To generalize habitat suitability for
mosquito breeding, a remotely sensed proxy is used: the normalized difference vegetation index
(NDV1), which measures the photosynthetic activity of growing plant matter, on a0-1 scale. The
NDVI isthus a useful descriptor of the type of habitat conducive to Anopheles breeding. The
threshold of “too dry” isbased on prior work conducted by Suzuki et al. [17] to exclude locations
where the NDV | drops below a critical minimum level for two months of the year, thereby
cutting off breeding and the transmission cycle [17]. We followed a modified version of the
methods of Ryan et al. [2] to limit projected models to those geographic areas capabl e of
supporting mosquito survival. Monthly NDV | values were derived from post-processed MODIS
data, available from FEWS-Net (Famine Early Warning System Network) [18]and month-to-

month thresholding was calculated [17]. That is, if the NDV1 value for two consecutive months
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fall below 0.125, it is assumed that an aridity boundary is crossed, indicating that that area
(pixdl) is consdered too arid for malaria transmission to occur. We chose the 2016-2017 period
of NDVI as an average climate year for the current decade. As NDV I cannot be projected into
future scenarios, we use this as an average current aridity mask, which is a conservative

approach.

Population Data

We downloaded global gridded population products, the Gridded Population of the World
(GPW), at a 30 arc-second (~1 km?) resolution. Population data for Africaused as input for
calculating population at risk (PAR) under the various transmission scenarios were derived from
the Gridded Population of the World, Version 4 (GPWv4) [19], with baseline estimates derived

from 2015 GPW data, while projected future populations were extracted from the 2020 layers.

Geogpatial projections of transmission

The gridded temperature data (current and future climate scenarios, month-wise) were
constrained to the temperature range of the optimal quantile of transmission, and the resulting
number of months of transmission suitability in each pixel recorded for all of Africa. The aridity

mask was applied, and pixels falling in masked areas were given no value.

Seasons of transmission were defined based on the numbers of months of suitability, and
criteria established by MARA were followed in defining malaria transmission suitability, with

very slight additional granularity to better illustrate the impact of changing climate (Table 1).
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Table 1. Definitions of malaria transmission suitability used in summarizing areas and

population at risk.

Malaria Suitability Definition

Endemic Malariatransmission suitability for 10-12 months of the year
Seasonal Malariatransmission suitability for 7-9 months of the year
Moderate Malariatransmission suitability for 4-6 months of the year
Marginal Malariatransmission suitability for 1-3 months of the year

In order to estimate the population at risk (PAR) for each geospatial research question,
the suitability data were aggregated by a factor of 10 and aligned to the climate data, such that all
analyses were conducted at 5 arc-minute resolution (approximately 10 km? at the equator).
Population data for each scenario were summarized by region, shown in Figure 1. We defined
five regions of Africa; these align with the policy scale, but not definition of countries for
USAID’sfour African regions. We chose to delineate Eastern Africaand Central Africato align
with physical geography —while USAID defines Eastern Africato include the Democratic
Republic of Congo and Congo, and Central African Republic, Cameroon, Gabon and Equatorial
Guinea are al included in the USAID West African Region, we chose to define a Central Africa
region, comprising these countries (Figure 1). We present results of our analyses for four of our

regions, excluding Northern Africa from this study.
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196

197  Fig. 1. Map of thefiveregional definitions of Africa used in this study. Note that the Northern
198  Africaregion was excluded from analysesin this study.

199

200  All calculations and analyses were conducted in R [R version 3.3.3 2017-03-06 “ Another

201 Cano€’] using the “raster,” “rgdal,” “sp,” and “maptools’ packages, and mapped output was
202 produced in ArcGIS [Version 10.5.1].

203

204  Results

205  Regional impacts of climate change scenarios
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Increases in temperature by region, from baseline, for the future climate scenarios, are
synthesized in Table 2. Higher future temperatures are projected under all models and time

periods evaluated for the continent.

Table 2. Average annual temperature increases (°C) from baseline (1960-1990) by region, RCP,
and time period.

2030s 2050s 2080s
Region
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP45 | RCP85
West Africa 1.32 157 2.29 2.32 2.84 4.38
East Africa 1.32 1.63 1.90 2.32 2.96 4.38
Centra Africa 1.10 1.42 1.63 2.07 2.69 4.04
Southern Africa 0.94 1.28 1.33 201 251 4.08

Current and Future SQuitability Risk

Under basdline conditions, we see the current distribution of endemic (10-12 months)
transmission suitability for malariais concentrated in the Central African region, with additional
areas along the southern coast of Western Africa, and along the eastern coast of Eastern Africa,
and in the north of Madagascar (Figure 2). Seasonal transmission (7-9 months of the year)
suitability is predicted along a band through Western and Eastern Africa, south of the areas too

arid for mosquito life cycles, and in parts of Southern Africa, particularly through Mozambique.
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221

222 Fig. 2. Modeled endemic (10-12 months) and seasonal (7-9 months) transmission suitability for
223 malariaunder current climate conditions.

224

225 The projected future climate impacts on malaria transmission suitability are shown for
226 both RCP 4.5 and 8.5, for the three time horizons modeled, in Figure 3. Hotspots of endemic

227  suitability will begin to emerge in the center of the continent, the East African highlands, the
228  Lake Victoriaregion, and northern Zambia, becoming more pronounced in the latter part of the
229 21« century. A significant portion of these areas are located in Eastern Africaincluding Uganda,
230 Kenya, and Tanzania, aregion with currently lower suitability for endemic malaria transmission

231 compared to Central and Western Africa. Additionally, areas predicted to have limited current

232 suitability for Anopheles transmission may become seasonally suitable under conditions of a
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233 changing climate, including the Southern Africaregion, which will see marked increasesin areas
234  suitable for seasona and endemic malariatransmission (Figs. 2 and 3).

235
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Fig. 3. Modeled output of malaria transmission indicates shifting future endemic (dark red) and
seasonal (light red) transmission suitability under two representative concentration pathways,
RCP4.5 (A, B, C) and RCP 8.5 (D, E, F), for the years 2030, 2050, and 2080.
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241 Concentrated hotspots of seasonal suitability will begin to emergein central Angola,

242  northwestern Zambia, northern Tanzania, and the southern coast and northern part of

243  Mozambique by 2030. Thisincludes large portions of Zambia, Malawi, and Tanzania, eastern
244  South Africa, Botswana, the highlands of Zimbabwe, northern Mozambique, and the Zambezi
245  River Basin. Hotspots of seasonal malaria transmission suitability will either continue to

246 concentrate, or will migrate both northward and southward into the highlands of Ethiopia and
247  Southern Africatoward the latter part of the 21st century.

248

249  Shifting burden of transmission suitability — people at risk

250 An additional 196-198 million people in Eastern and Southern Africawill be burdened
251  with some degree of malaria transmission risk in the future due to shifting suitability by the

252 2080s. Regionally, by the year 2080 the worst-case scenario (RCP 8.5) places an additional 73.4
253 million people at risk from year-round exposure to transmission in Eastern Africa(Fig. 4). In
254  gpite of currently low endemic suitability, shifting seasonality in Southern Africawill place over
255 2.5 million additional people at risk for endemic transmission by the 2080s. In the short term,
256  these changes are predicted to put the lives of 50.6-62.1 additional people at increased risk for
257  endemic transmission, and 37.2-48.2 million people at risk for seasonal transmission, throughout
258  Central, Eastern, and Southern Africa by the 2030s (Figs. 4 & 5). Given the strong empirical

259  relationship between vector survival and temperature, as temperatures rise, exposure to malaria
260  transmission isalso expected to increase in previously unsuitable regions, such asthosein the
261  higher elevation regions of Southern and Eastern Africa. Countries likely to be impacted by these

262  changesinclude northern Angola, southern DRC, western Tanzania, and central Ugandain 2030;
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263 by 2080 these changes will extend into western Angola, the upper Zambezi River Basin, and

264  northeastern Zambia, and will become more concentrated along the East African highlands.
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268  Fig. 4. Population at risk (PAR) for exposure to endemic malaria transmission will change in the
269  future as geographic suitability shiftsunder two scenarios of climate change, RCP 4.5 (A) and
270 RCP8.5 (B). Eastern Africawill regionally see dramatic increases PAR by the year 2080, while
271 shifting suitability will largely relieve the burden of endemic transmission in Western Africa.
272

273
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275  Fig. 5. Population at risk (PAR) for exposure to seasonal malaria transmission will changein the
276  future as geographic suitability shifts under two scenarios of climate change, RCP 4.5 (A) and
277  RCP 8.5 (B). Southern Africais predicted to have increased seasonal transmission, while shifting
278  suitability will largely decrease seasonal transmission in Western Africa.

279

280 These shifts in the geographic range of malaria suitability, broadly consistent across both
281  scenarios of future climate, suggest both decreases and increases in the number of people

282  exposed, depending on the climate scenario. The geographic and temporal evolution of future
283  suitability of areas for malaria-transmitting Anopheles mosquitoesis closaly tied to expected

284  temperature changes under both RCP scenarios (Fig. 3). Astemperatures rise, even within the

285  next 12 years (by 2030), important changes are anticipated. Shifting suitability due to climate

286  change will place additional people at risk despite reductions endemic and seasonal malaria
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287  transmission, resulting in anet gain of 58.7 to 60.4 million people who experience some level of
288 malariarisk in Western Africa by the 2030s. Large areas of coastal Western Africa and the Horn
289  of Africawill likely exceed mosquitoes’ thermal tolerance, with suitability disappearing. At the
290 sametime, rising temperatures will likely increase the southern range of seasonal suitability for
291  Anopheles mosguitoes into Southern and Central Africa, into western Tanzania. As temperatures
292 continue to rise (2050s), both endemic and seasonal zones will continue to exhibit an eastward
293 shift, with thermal threshold exceedance again apparent under the worst-case scenario (RCP 8.5),
294  eiminating suitability across Central Africa. The end-of-the-century scenarios (2080)

295  concentrate areas of endemism in previously unsuitable or marginally suitable areas, namely the
296  highlands of East Africa and Southern Africa. Where the number of months of suitability for

297  Anopheles survival decrease, opportunities will emerge to alter and define more targeted

298  seasonal responses, either reducing the cost of interventions or providing awindow into potential
299  eradication to malaria exposure. Targets of opportunity include Central Africa (the Central

300  African Republic, western Congo, Cameroon, and Equatorial Guinea) and coastal East Africa
301 (Tanzaniaand Kenya).

302

303  Nove Endemic and Seasonal Risk

304 Some parts of Sub-Saharan Africa currently predicted to experience no malaria

305  transmission suitability risk will experience shifting suitability, resulting in novel areas with no
306  history of malaria transmission becoming suitable for endemic and seasonal transmission in the
307 future. Asseenin Figure 6, for RCP 4.5, this exposes populations along an arc extending into

308  East Africa, leading to dramatic PAR increases for regional exposures, particularly novel
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309 endemic exposure increase in East Africa, and novel seasonal exposuresin Southern Africa

310 (Figure7).

311

312  Figure6: New areas of endemic (A-C) and seasonal (D-F) suitability, under RCP 4.5 for 2030,
313 2050, and 2080. Red shading intensity indicates current malaria suitability season.
314
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320 Discussion
321 The changes in the geographic range of malaria suitability, broadly consistent across both

322 scenarios of future climate, suggest that the number of people exposed to conditions of malaria
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323 suitability will both increase and decrease in Sub-Saharan Africa, depending on the region. Thus,
324  assome populations experience reduced burden of malariarisk in the future, shifting suitability
325  will increasingly place naive populations at risk for outbreaks, particularly in Southern and

326  Central Africa. Malaria outbreaks that occur where people have little or no immunity to the

327  disease can lead to epidemic conditions, especially among vulnerable groups such as women and
328  children[1,20]. Thisresearch identifies “hotspots’ where current exposure, and therefore

329  immunity, is nonexistent; these areas could see epidemic “flares’ as climate conditions affect
330  vector survival and reproduction. This effect may be further exacerbated in novel areas with no
331 previous history of malaria exposure, where both immunity and knowledge regarding malaria
332 prevention are lacking [21-23]. Malaria outbreaks occurring where people have acquired

333  immunity due to prolonged and repeated malaria exposure trigger management actions

334 employing acadre of tools, including vector control and case management approaches to prevent
335  or reduce transmission [23,24].

336 These results enable us to pinpoint regions where interventions need to be revisited to
337  consider how climate will alter risk profiles in the future. The strong seasonal cycle of malaria
338  across Southern Africais related to climate and weather conditions[25,26]. Thus, during some
339  periods of the year, climate conditions are not conducive to spread of the disease. Given the

340  strong empirical relationship between vector survival and temperature, as temperatures rise

341  exposure to malariatransmission is expected to increase in previously unsuitable regions, such as
342  thosein the higher elevation regions of Southern and East Africa. A key concern with climate
343  change impactsis whether climate change will lengthen the period of the year during which

344  diseases can establish and be transmitted. For example, areas where spring and autumn are now

345  too cold for the reproduction of malaria vectors may become more suitable in the future. In these


https://doi.org/10.1101/797050
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/797050; this version posted October 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

346  areas, increases in temperature may not impact midsummer malaria incidence greatly, but may
347  result in alonger season, extending into both spring and autumn, during which malaria

348  incidences will occur. In some cases, malaria may shift from being a seasonal disease burden to a
349  year-round burden. Thiswill necessitate different types of management and control interventions
350 than those currently in place for short-season malaria[27,28]. Where the number of months of
351  suitability for Anopheles survival decreases, opportunities will emerge to alter and define more
352  targeted seasonal responses — either reducing the cost of interventions or providing a window
353 into potential eradication to malaria exposure. An increase in the number of months where

354  conditions are suitable for mosquito survival will require responses to be extended for longer
355  periods of time, increasing resource needs (e.g. staff time, medicines) as well as costs[29]. In
356  examining areas where malaria suitability is currently considered seasonally restricted, but will
357  likely become more prevalent throughout the year, public health planners can anticipate which
358  regions may require an extended investment pipeline.

359 A fundamental underpinning of modeling the response of vector-borne diseases to

360  climate and ecology is the choice of model process. Previous approaches, such as that of the

361 Malaria Atlas Project (MAP) and the Mapping MalariaRisk in Africa (MARA) project, are

362  essentially top-down, wherein empirical data collected on the ground are matched to local

363  climate conditions, and suitability established via geostatistical methods. In contrast, the

364  modeling approach used here is mechanistic and “bottom-up,” wherein the life history of

365  mosquitoes and pathogens, and their responses to temperature, are explicitly quantified based on
366  empirical, laboratory-based data and incorporated into the model to predict where suitability for

367 transmissionislikely to occur. A mechanistic model, built independently of case outcome data,
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allows for validation with empirical, field-collected data, and obviates the bias of modeling data
while intervention is ongoing, asisinevitably the case with previous approaches [30].

While substantial progress has been made in recent yearsin the provision and use of
climate projections, considerable uncertainties remain with their use [31]. Using climate science
research results to inform the decision process about which policies or specific measures are
needed to tackle climate impacts requires acknowledging the uncertainties inherent in climate
projections. These uncertainties may arise from mathematical reductions (parameterizations) of
climate phenomena; potential socioeconomic technological pathways and attendant carbon cycle
feedbacks that influence atmospheric concentrations of key greenhouse gases; imperfect
scientific knowledge and the computational constraints of modelling regional detail while still
incorporating relevant large-scale climate patterns; and the relationship between climate models
and their relative impacts on key sectors and resources [31-33]. Furthermore, uncertainty can
arise over the chance of asingle event (for example, crossing athreshold), recurrent events (the
return period of aflood, for example), discrete events (hurricane frequency), and complex events
(for example, the interplay of different factors that lead to drought) [34]. Recognizing this, good
practiceis followed by incorporating a multimodel range of climate projections rather than a
single model, as performed in this study [31,35,36]. For the population data specificaly, it is
important to recognize that the projected population for 2020 is used to calculate the numbers of
people potentially affected by changing suitability conditions across all future time periods. As
with climate models, these projections do not necessarily capture all of the factors that drive
population movement and growth and should be taken as best modelled estimates rather than

exact values.
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The study results are based on the temperature response curves of both Anopheles
mosguitoes and malaria pathogens. Nevertheless, many studies point to the critical role that
rainfall playsin vector survival across Sub-Saharan Africa[12,14,15]. For example, single,
intense rainfall events can wash away critical breeding sites, leading to areduction in
transmission potential [16,37]. Similarly, too little rainfall can limit mosguito survival as
moistureis aprerequisite for breeding habitat [38]. The approach herein addresses this second
issue by masking out areas that are too arid for mosquito survival. While the relationship
between rainfall and Anopheles survival is critical, the available projections of rainfall are
uncertain at the geographic scale of this work and therefore are not considered in this analysis.

Geographically projected modd outputs are a useful component of a planning and
intervention framework, providing a means of communicating key areas of risk and affected
populations to decisionmakers. Anticipation of not only the location and time, but the duration of
potential outbreak events will facilitate the development of efficient and timely agency
responses. Moreover, this framework serves as a foundation for scenario analysis, explicitly
modeling risk of exposure for different climate scenarios and time horizons. The range of
potential outcomes allows governments and agencies the flexibility needed to reasonably
anticipate resource use and funding needs, enabling the development of adaptive intervention

strategies for both near and long-term outcomes.

Conclusions
Addressing the changing risk profiles projected in this suitability analysis will require
modifying current interventions and programs and implementing new ones to explicitly consider

climate variability and change. Opportunities for improved responses also exist, including
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detailed geographic targeting, optimizing strategies and seasonal alignment with interventions.
Identifying high risks in new areas of suitability present opportunities for informed action.
Where malaria suitability is currently nonexistent to newly suitable, whether seasonal or
endemic, therisks are critical, especially given that local populations’ immunity will be low.
This could lead to the potential emergence of novel strains, rapid resistance, and untimely
identification, tranglating into epidemic outbreaks. To respond, targeted and informed geographic
surveillance in these regions could help to prepare timely responses before epidemic outbreaks
occur. Knowing where and when more people will potentially be exposed offers an opportunity
to increase the investment timeframe (seasonal to year-round), optimize vector control, and
improve case management, with the evidence base to support these actions. Moving down the
path toward elimination for some regions, where malaria transmission suitability decreases,
opportunities will arise to focus resources on making surveillance and response systems
increasingly sensitive and focused to identify, track, and respond to malaria cases and any

remaining transmission foci.
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