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Abstract 
Test-retest reliability is critical for individual differences research. Thus, recent reports that 

found low test-retest reliability in fMRI have raised concern among researchers who aim to use 

brain imaging to predict psychologically- and clinically-important differences across people. 

These previous studies, however, have mostly focused on reliability of individual fMRI features 

(e.g., individual connections in resting state connectivity maps). Meanwhile researchers are 

increasingly employing multivariate predictive models that aggregate information across a large 

number of features to predict outcomes of interest, but the test-retest reliability of predicted 

outcomes of these models has not previously been systematically studied. Here we apply four 

kinds of predictive modeling methods to resting state connectivity maps from the Human 

Connectome Project dataset to predict 62 outcome variables. In contrast to reliability of 

individual resting state connections, we find reliability of the predicted outcomes of predictive 

models is much higher for two methods: Brain Basis Set (BBS) and Connectome Predictive 

Modeling (CPM). BBS had the overall highest reliability, with a mean reliability across predicted 

outcomes of 0.79 and a reliability of 0.75 or better (conventionally considered excellent) for 56 

out of 62 outcome variables. We additionally identified three mechanisms that help to explain 

why predictive models have higher reliability than individual features. These results suggest at 

least one path forward for researchers aiming to utilize resting state connectivity for individual 

differences research: These researchers can potentially achieve higher test-retest reliability by 

making greater use of predictive models. 

 

Introduction 
Recent studies report troublingly low test-retest reliability of functional magnetic resonance 

imaging (fMRI) metrics including resting state functional connectivity
1
 and task activation

2
. 

These studies have attracted substantial attention from clinical and translational 

neuroscientists because adequate test-retest reliability of fMRI is critical for its use in 

individual-differences research. If differences in functional imaging features (e.g., connectivity, 

activation, or other features) across individuals are not stable across scanning sessions, that is, 

if values of these imaging features lack consistency and/or agreement across sessions, then 

these features cannot serve as a basis for constructing predictively useful objective markers 

(i.e., “biomarkers”) of traits of interest.
3
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The current literature examining reliability in fMRI has been mostly focused on the reliability of 

single imaging features: individual connections in resting state connectivity maps and individual 

voxels or regions of interest in task activation maps. Neuroimaging researchers studying 

individual-differences are, however, increasingly moving away from univariate tests performed 

separately on each imaging feature and are instead utilizing multivariate predictive models
4–7

 

(hereafter “predictive models”). These methods aggregate information across thousands of 

distributed brain features, yielding a single overall “best guess” about the outcome of interest. 

Predictive models are now widespread in the field, and have been used to predict a range of 

psychologically- and clinically-relevant outcomes including cognitive skills
8–10

, pain ratings
11–13

, 

sustained attention
14,15

, schizophrenia status
16

, and depression subtype/treatment response
17

, 

among many others. To date, however, the test-retest reliability of predicted outcomes derived 

from predictive models has not been evaluated. 

 

This question is particularly interesting in light of well-known results from psychometrics that 

establish that aggregation of features, for example by taking sum scores or applying a weighting 

function, can yield a composite variable that is much more reliable than the individual items 

that make up the composite.
3,18

 Standard predictive models widely used in the imaging field 

work in just this way: They aggregate features through application of a weighting function.
4
 

Thus, it is possible that like composite scores in psychology, predicted outcomes from such 

models will exhibit meaningfully higher reliability than individual features. 

 

To test this hypothesis, we turned to the Human Connectome Project (HCP) dataset
19

, which 

has two sessions of resting state fMRI data for a large sample of subjects. This dataset also has 

a large number of phenotypic outcome variables, allowing us to train predictive models across a 

number of psychological domains, including cognition, emotion, personality, and 

psychopathology. We examined four predictive modeling methods widely used in the 

neuroimaging field: lasso, elastic net, connectome predictive modeling (CPM)
20

, and brain basis 

set (BBS)
21

. Results from our systematic comparison showed that two predictive modeling 

methods, BBS and CPM, yielded substantially higher test-retest reliability of predicted 

outcomes compared to individual connectivity features, with BBS showing the overall highest 

reliability.  

 

2. Methods 
 

2.1 Subjects and Data Acquisition 

All subjects and data were from the HCP-1200 release19,22. Study procedures were approved by 

the Washington University institutional review board, and all subjects provided informed 

consent. Four resting state runs were performed (14.5 minutes each run) across two days, with 

two runs the first day and two runs the second day. Data was acquired on a modified Siemens 

Skyra 3T scanner using multiband gradient-echo EPI (TR=720ms, TE=33ms, flip angle = 52°, 
multiband acceleration factor = 8, 2mm isotropic voxels, FOV = 208x180mm, 72 slices, 

alternating RL/LR phase encode direction).  T1 weighted scans were acquired with 3D MPRAGE 
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sequence (TR=2400ms, TE=2.14ms, TI=1000ms, flip angle = 8, 0.7mm isotropic voxels, 

FOV=224mm, 256 sagittal slices). T2 weighted scans were acquired with a Siemens SPACE 

sequence (TR=3200ms, TE=565ms, 0.7mm isotropic voxels, FOV=224mm, 256 sagittal slices).  

 

2.2 Data Preprocessing 

Processed volumetric data from the HCP minimal preprocessing pipeline that included ICA-FIX 

denoising were used. Full details of these steps can be found in Glasser23 and Salimi-Korshidi24. 

Briefly, T1w and T2w data were corrected for gradient-nonlinearity and readout distortions, 

inhomogeneity corrected, and registered linearly and non-linearly to MNI space using FSL’s 

FLIRT and FNIRT. BOLD fMRI data were also gradient-nonlinearity distortion corrected, rigidly 

realigned to adjust for motion, fieldmap corrected, aligned to the structural images, and then 

registered to MNI space with the nonlinear warping calculated from the structural images. Then 

FIX was applied on the data to identify and remove motion and other artifacts in the timeseries. 

These files were used as a baseline for further processing and analysis (e.g. 

MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_clean.nii.gz from released 

HCP data). Images were smoothed with a 6mm FWHM Gaussian kernel, and then resampled to 

3mm isotropic resolution.  

 

The smoothed images then went through a number of resting state processing steps, including 

a motion artifact removal steps comparable to the type B (i.e., recommended) stream of Siegel 

et al.25. These steps include linear detrending, CompCor26 to extract and regress out the top 5 

principal components of white matter and CSF, bandpass filtering from 0.1-0.01Hz, and motion 

scrubbing of frames that exceed a framewise displacement of 0.5mm. Subjects with more than 

10% of frames censored were excluded from further analysis, leaving 966 subjects.  

 

2.3 Connectome Generation 

We calculated spatially-averaged time series for each of 264 4.24mm radius ROIs from the 

parcellation of Power et al.27. We then calculated Pearson’s correlation coefficients between 

each ROI. These were then transformed using Fisher’s r to z-transformation.  

 

2.4  Inclusion/Exclusion Criteria 

Subjects were eligible to be included if they had: 1) structural T1 data and had 4 complete 

resting state fMRI runs (14m 24s each); 2) full necessary behavioral data; 3) no more than 10% 

of frames censored. To avoid confounding due to intra-familial similarity, we additionally 

randomly selected one individual from each sibship. This left 389 unrelated individuals to enter 

our main analysis. 

 

2.5. ICC for Individuals Connections 

Test-retest reliability for each connection of the connectome was assessed with intra-class 

correlation (ICC) statistic, specifically type (2,1) according to the scheme of Shrout and Fleiss28. 

 

2.6. Training Predictive Models 
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Lasso 

Lasso is a form of regularized linear regression using an L
1
-norm penalty that tends to shrink 

coefficients to 0. In this way it can act as both a regularization and feature selection method. 

The amount of regularization is controlled via the lambda term in the objective function: 

�� � argmin
�


��
� � �������

���

� ������	

���

� 

 

Lambda is typically chosen via cross validation to select a value that minimizes the cross 

validated error. On each fold of our 10-fold cross validation (see below), we used 5-fold cross 

validation within the training data to select the best lambda value for lasso regression. 

 

Elastic Net 

Elastic net is a mix between an L
1
 penalized regression (i.e. lasso above) and an L

2
 penalized 

regression (i.e. ridge regression). It attempts to balance the sometimes overly aggressive 

feature selection of lasso by mixing it with ridge regression. There is an additional 

hyperparameter, alpha, that controls the balance of the lasso and ridge penalties. The objective 

function for Elastic Net is: 

  

�� � argmin
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As before, within our overall 10-fold cross-validation (see below), we performed 5-fold cross-

validation in the training data to select the best values for alpha and lambda for elastic net.  

 

Both elastic net and lasso were performed using the MATLAB lasso function with 40 values of 

lambda automatically generated from a geometric sequence by MATLAB. The values of alpha 

tested were [0.01, 0.1, 0.325, 0.55, 0.775, 1].  

 

Connectome Predictive Modeling (CPM) 

Connectome predictive modeling (CPM)20 is a predictive modeling method that has been used 

widely in fMRI with a variety of outcome variables
29,14,30–32

. In brief, CPM is first trained with 

every edge of the connectome to identify edges that are predictive of the phenotype of interest 

above some prespecified level (e.g., Pearson’s correlation with significance of p < 0.01). The 

sum of connectivity values for these specified edges is then calculated for each test subject, and 

these sums serve as predicted outcome scores that are correlated with the actual outcome 

scores. CPM typically treats positively and negatively predictive edges differently, fitting 

separate models for each, and so we follow this practice as well.  

 

Brain Basis Set (BBS)  

Brain Basis Set (BBS)  is a predictive modeling approach developed and validated in our 

previous studies
21,15,8,9

 (see also studies
11–13

 by Wager and colleagues for a broadly similar 
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approach). BBS is similar to principal component regression
33,34

, with an added predictive 

element. In a training partition, PCA is performed on a subjects x connections matrix using the 

pca function in MATLAB, yielding components ordered by descending eigenvalues. Expression 

scores are then calculated for each of k components for each subject by projecting each 

subject’s connectivity matrix onto each component. A linear regression model is then fit with 

these expression scores as predictors and the phenotype of interest as the outcome, saving B, 

the k x 1 vector of fitted coefficients, for later use. In a test partition, the expression scores for 

each of the k components for each subject are again calculated. The predicted phenotype for 

each test subject is the dot product of B learned from the training partition with the vector of 

component expression scores for that subject. The parameter k was set at 75 because prior 

studies
21

 showed that larger values tend to result in overfitting and worse performance.  

 

2.7. HCP Outcome Variables 

We used a total of 62 outcome variables from the HCP dataset (choice of these variables was 

guided by 
35

, and a list of these variables is available in the Supplement). Two outcome 

variables were derived from factor analysis of HCP variables, and they are discussed in detail in 

our previous report
21

. In brief, a general executive factor was created based on overall accuracy 

for three tasks: n-back working memory fMRI task, relational processing fMRI task, and Penn 

Progressive Matrices task. A speed of processing factor was created based on three NIH toolbox 

tasks: processing speed, flanker task, and card sort task (all age-adjusted performance), similar 

to a previous report36.  

 

2.8 Train/Test Split and Calculation of ICC for Predictive Models 

All predictive models were trained and tested in a 10-fold cross validation scheme. We 

calculated ICCs for predicted outcomes for these predictive models as follows: On each fold, we 

trained a predictive model on the train partition for session 1 data. We then used this trained 

model to generate predicted outcomes for the test partition in both session 1 and session 2, 

and we calculated the ICC of this pair of predicted outcomes. We next did this same procedure 

in the other direction: We trained the predictive model on the train partition for session 2 data, 

generated predicted outcomes for the test partition in both session 2 and session 1, and 

calculated their ICC. We repeated this process on all 10 folds and averaged over all 20 ICCs (2 

for each fold). We used ICC type (2,1) according to the scheme of Shrout and Fleiss28. 

 

For elastic net and lasso, which have an additional tunable parameter, we tuned this parameter 

in an embedded cross-validation procedure within the train partition. But otherwise, we 

followed the procedure described above.  

 

3. Results 
 

3.1  For Two Predictive Modeling Methods, BBS and CPM, Mean Reliability of 

Predicted Outcomes Across 62 Phenotypes Was Substantially Higher Than Mean 

Reliability for Individual Connections 
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The left side of Figure 1 shows test-retest reliabilities for individual connections of the 

connectome (in red). Mean reliability was 0.44, but the spread was remarkably wide (standard 

deviation 0.19). The next five plots (in blue) show test-retest reliabilities for the predicted 

outcomes of predictive models trained on 62 HCP outcome variables. BBS and CPM (both 

positive and negative) have notably higher mean reliabilities than elastic net and lasso (see also 

Table 1). 

Figure 1: Distribution of Test-Retest Reliabilities for Individual Connections and for Predicted 

Outcomes of Predictive Models. Reliabilities for individual connections were calculated over all 

connections in the resting state connectome. Mean reliability for individual connections was 

relatively low, but the range was wide. Reliabilities for predictive models were calculated over 

62 different outcome variables available in the HCP dataset. Mean reliabilities for BBS and CPM 

(both positive and negative) were notably higher than for elastic net and lasso. 

 

 

Table 1 shows summary statistics for test-retest reliability as well as predictive accuracy for the 

predictive models. Two points are noteworthy. First, BBS and CPM had higher predictive 

accuracy than Elastic Net and Lasso. Second, we divided the 62 cognitive tasks into two 

categories: 1) Cognitive tasks, which were tasks from NIH Toolbox and Penn Neurocognitive 

Battery, as well as fMRI tasks of working memory (N-back), abstract reasoning (Relational Task),

and math calculation (math condition of the Language Task); and 2) All the other tasks. For all 

four predictive modeling methods, predictive accuracy was notably higher for cognitive tasks. 
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BBS 

CPM 

Positive 

CPM 

Negative 

Elastic 

Net 
Lasso 

Mean Reliability 0.79 0.71 0.69 0.45 0.45 

SD 0.04 0.06 0.06 0.14 0.14 

Min 0.63 0.44 0.52 0.05 0.05 

Max 0.90 0.83 0.83 0.65 0.68 

Mean Accuracy (r) 0.10 0.08 0.07 0.03 0.02 

 cognitive tasks 0.17 0.14 0.10 0.12 0.10 

all other tasks  0.08 0.06 0.06 0.00 -0.02 

Table 1: Summary Statistics for Test-Retest Reliability and Accuracy of Predicted Outcomes of 

Predictive Models. Reliability is measured with the intraclass correlation (ICC) statistic. 

Reliability was higher for BBS and CPM compared to elastic net and lasso. Accuracy is measured 

with Pearson’s correlation between predicted and actual outcome variable. Interestingly 

cognitive tasks, mostly from the NIH Toolbox and Penn Neurocognitive Battery, yielded better 

accuracy than all other (non-cognitive) tasks.  

 

3.2  BBS Had the Highest and Most Consistent Test-Retest Reliabilities Across 

Outcome Variables 
 

Figure 2 shows test-retest reliabilities across the 62 outcome variables for BBS, CPM-positive, 

and Elastic Net. For BBS, performance was consistently high, and the method had higher ICCs 

than CPM-positive, the next best performer, for 61 out of 62 phenotypes. Reliability is 

conventionally classified as excellent when it exceeds 0.75
37

, and BBS exceeded this value for 56 

out of 62 outcome variables.  
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Figure 2: Performance of BBS, CPM, and Elastic Net Across the 62 Outcome Variables. 

Reliability is conventionally classified as excellent when it exceeds 0.75, and BBS exceeded this 

value for 56 out of 62 outcome variables. Dashed lines show the mean reliability for the 

associated predictive modeling method. 

 

 

3.3.  Multiple Mechanisms Likely Explain Why BBS and CPM Have a Large Boost

in Reliability 

 

We examined several mechanisms that could help to explain why predicted outcomes of 

predictive models are more reliable than individual features, focusing specifically on BBS and 

CPM. 

 

Selection of High Variance Features 

One mechanism that could improve reliability specifically in BBS is that it leverages features 

with high inter-subject variance, and test-retest reliability is positively related to inter-subject 

variance
3,38

. BBS uses dimensionality reduction with PCA, and the PCA algorithm finds 

components in descending order of variance explained, with the first component explaining the

most variance in the data.
39

 Consistent with this idea, we found the mean variance of the 

individual connections in the connectome was 0.04. But mean variance of expression scores of 

the first 75 PCA components is 4.4, more than 100 times larger. 

 

 

t 
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Selection of Correlated Features 

Another mechanism that could improve reliability in both BBS and CPM is selecting correlated 

features and aggregating over them. It is well known from classical test theory that the sum of a 

set of positively correlated features will have higher reliability than the features themselves
3
 

(see the Supplement for a general equation linking reliability of a weighted sum to the 

statistical properties of the individual features). BBS selects correlated features through the use 

of PCA: Each component consists of a weighted set of features that are jointly co-expressed 

across subjects (in proportion to the loadings), and thus these features are correlated across 

subjects.
39

 Supporting this idea, we found that the mean test-retest reliability of the first 75 

PCA components is 0.66, much higher than the mean reliability of individual features (which is 

0.44). Of note, this boost in reliability for components likely reflects both the operation of this 

second mechanism (selecting correlated features) as well as the first (selecting high variance 

features). 

 

CPM also selects correlated features, but in a different way. CPM performs a search for features 

that are correlated with the outcome variable up to a desired level of statistical significance 

(e.g., p< 0.01). Since these features are all correlated with the behavioral variable of interest, 

they will also tend to be correlated with each other as well. Consistent with this idea, we found 

that mean pairwise intercorrelation of all features across the connectome is 0.005, while the 

mean pairwise intercorrelation of CPM-selected feature set is 0.05 for CPM positive and 0.05 

for CPM negative.   

 

Selection of Valid Features 

Assume that there is true variance in the connectome that relates to an outcome variable of 

interest (that is, there are stable, non-noise connectomic differences that correlate with an 

outcome variable). Both BBS and CPM select features that are correlated with the specified 

outcome variable. Given our assumption, then, features selected by BBS and CPM will 

correspondingly be enriched with respect to these valid, stable connectomic differences. This 

enrichment with respect to true variance will boost test-retest reliability.  

 

To demonstrate the role of this third mechanism for boosting reliability, we permuted subject 

labels for the 62 outcome variables 100 times, in effect creating random outcome variables for 

each subject. We then computed test-retest reliability for BBS and CPM trained on these 

randomized outcome variables. We found mean reliability for BBS and CPM in predicting the 

randomized outcome variables was 0.65 and 0.54, respectively. This is notably lower than their 

respective mean reliabilities in predicting real outcome variables (0.79 for BBS and 0.72 for 

CPM). This result suggests selection of valid features does in fact play a role in boosting 

reliabilities for both BBS and CPM.  

 

4. Discussion 
 

This is the first study to systematically investigate test-retest reliability of multivariate 

predictive models applied to resting state connectivity maps. We found that in contrast to 
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reliability of individual resting state connections, reliability of the predicted outcomes of 

predictive models is much higher for two modeling methods, BBS and CPM. We also found that 

BBS was the overall best performer: For 56 out of 62 outcome variables, reliability of BBS 

predicted outcomes was better than 0.75, conventionally considered excellent. Test-retest 

reliability is critical for the use of fMRI in individual differences research. Our results suggest 

more widespread use of predictive models can help address questions about reliability that 

have been raised in recent reports and that remain a serious concern for the neuroimaging 

field.  

 

Test-Retest Reliability and Units of Analysis 

Previous studies of reliability in resting state fMRI have mostly examined individual 

connections.
40–42

 While results have varied, a recent meta-analysis
1
 found reliability was 

typically relatively low at 0.29. Broadly consistent with this result, we found mean reliability of 

individual connections in the HCP dataset was 0.44. Several studies examined larger, more 

complex units of analysis and found higher levels of reliability. For example, Noble and 

colleagues
40

 examined mean connectivity within intrinsic connectivity networks such as default 

mode network and fronto-parietal network. They found reliabilities were modestly higher for 

networks than for individual connections (range 0.35 to 0.60 for networks). Similarly, a modest 

boost in reliability appears to be observed with higher-order metrics such as graph theory 

metrics
43,44

. Predictive models, which aggregate across a still wider range of features using 

trained feature weights arguably represent a still higher, more complex unit of analysis. In the 

present study, we found clear evidence of substantially higher test-retest reliability for 

predicted outcomes of predictive models (for BBS and CPM in particular). Overall, these results 

suggest that test-retest reliability differs substantially across units of analysis, as well as the 

types of aggregation methods that were utilized to generate the higher-level units.  

 

Should We Be Pessimistic or Optimistic About Using Resting State Connectivity for Individual 

Differences Research? 

Given high mean reliability for predicted outcomes of predictive models and much lower mean 

reliability for individual connections, should we be an optimistic or pessimistic about reliability 

of resting state connectivity? While we acknowledge both perspectives capture part of the 

overall picture, we briefly suggest there is more reason for optimism. 

 

Test-retest reliability is most critical for research that seeks to use imaging features to predict 

individual differences, for example, translational neuroimaging research that aims to construct 

brain-based biomarkers. This is because reliability is mathematically related to predictive 

validity, the ability of measures to predict an outcome. According to an important formula in 

classical test theory, reliability sets a ceiling on predictive validity, and as reliability falls, the 

maximum achievable predictive validity drops with it.
3
  

 

But, critically, if one’s goal is in fact prediction of individual differences of some outcome 

variable of interest (e.g., behaviors or symptoms), focusing on individual connections of the 

connectome is unlikely to be a fruitful approach. This is because for most constructs of 

interest—general cognitive ability, neuroticism, pain, autism, it is unlikely that any single 
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connection contains much discriminative information about the construct. Rather, it is likely 

that this discriminative information resides in distributed changes across widespread network 

connections. To capture this diffuse, distributed information, univariate tests are less effective 

than multivariate methods such as predictive models
4,45

. Consistent with this idea, Wager, 

Woo, Chang and their colleagues have shown in a series of studies with task-based fMRI that 

effect sizes are generally substantially larger with predictive models than with univariate 

statistical tests applied to individual imaging features
12,13,38,45

.  

 

In short, then, predictive models are arguably a more important tool for individual differences 

research in fMRI than univariate tests applied to individual imaging features. If this is correct, 

then poor reliability of individual imaging features may not be a major concern. Rather, a more 

optimistic interpretation is available: Predictive models, which are the critically important tools 

we need for individual differences research in neuroimaging, do appear to have adequate levels 

of test-retest reliability (at least with certain methods such as BBS and CPM).   

 

Why Predictive Models Have Better Test-Retest Reliability 

We examined several factors that can explain why predictive models such as BBS and CPM have 

better reliability compared to individual connections. One mechanism is that these predictive 

models select valid features, i.e., features that vary due to stable underlying differences across 

individuals. Moreover, we showed reliability of predictive models suffers when outcome 

variables are randomized (and thus this mechanism is blocked). A second mechanism is that 

BBS and CPM both select and then aggregate correlated features, but in different ways: BBS 

selects correlated features directly as part of its PCA procedure, while CPM selects them 

indirectly through the fact that the features it selects are all correlated with the behavioral 

outcome of interest. A third mechanism that boosts reliability that is more unique to BBS is 

selection of high variance features. These three mechanisms interact in complex ways. 

Moreover, the relative roles of these three mechanisms in boosting reliability for any particular 

dataset and outcome variable appear to be hard to specify. The size of the boost depends in 

complex ways on the variance/covariance structure of the imaging features and the precise 

patterns with which these features correlate with the outcome variable. 

 

Implications for Test-Retest Reliability of Task fMRI 

Recent reports also find poor reliability in task fMRI
2
. This result may be seen as particularly 

discouraging because many researchers have thought that tasks, because they involve carefully 

controlled manipulations of psychological constructs, might be an especially effective way of 

detecting differences in these constructs across individuals.
46

 Could predictive models play a 

similar role in boosting reliability with task-based fMRI? We believe the answer is likely to be 

yes. The three mechanisms we identified for why predictive models boost reliability are quite 

general and reflect basic statistical properties of these models. There is no obvious reason to 

expect that they will operate only with resting state connectivity maps and not with task 

activation maps. Moreover, one study found initial evidence that predictive models do in fact 

produce a boost in reliability in the task setting: Woo and Wager
38

 report that model-based 

predictions of pain ratings during a nociceptive stimulation task had higher reliability (ICC=0.72) 

than three regions of interest known to be associated with pain (ICCs: 0.54 to 0.59). To further 
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investigate this issue, in a companion report, we perform a systematic comparison with task 

activation maps of voxel- and region of interest-level reliability versus reliability of predicted 

outcomes of predictive models.  

 

Limitations 

This study has several limitations. First, we assessed four popular predictive modeling methods, 

and we found sizable differences in their test-retest reliabilities for predicted outcomes (with 

the starkest differences between BBS and CPM on the one hand and elastic net and lasso on 

the other). There are a large number of other predictive modeling methods that we did not 

study and future work can systematically compare them. Second, while we examined a large 

number of outcome variables (62 in total), there are of course a vast number of outcome 

variables that we could not test with the HCP dataset (e.g., pain ratings, schizophrenia status, 

depression-treatment response, etc.). As more comprehensive data sets become available, it 

would be useful to extend these results to a still broader range of outcome variables. Third, it 

bears emphasis that test-retest reliability is a statistic that is specific to a given population. 

Most relevant for the present purposes, it is highly sensitive to the inter-individual variance in 

imaging features.
3
 The HCP dataset consists of a fairly homogenous sample of psychologically 

healthy young adults. It is possible that reliability will be higher in fMRI, at both the individual 

feature-level as well as the predictive model-level, if more heterogenous samples are 

considered, as this could potentially boost inter-individual variance in imaging features.
38

  

 

Conclusion 

In sum, this study is the first to systematically assess the test-retest reliability of predicted 

outcomes of predictive models applied to resting state connectivity maps. In contrast to the 

somewhat bleak conclusions of recent studies about reliability of individual imaging features, 

we found that least some predictive modeling methods, specifically BBS and CPM, demonstrate 

consistently high test-retest reliability. 
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Supplement 
 

 

Composite Reliability Formula (relates test-retest reliability of a composite variable to 

statistical properties of the variables that are summed; based on He and colleagues
18

). 
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�       = reliability of the composite variable 

��     = assigned weight to feature i 

��,��

�   = error variance of feature i 

���

�      = variance of feature i 

���,��
 = covariance between feature i and feature j 

 

Outcome Variables from HCP Dataset 

Number Variable Name Description  
1 GenExec General Executive Factor 
2 ProcSpeed Processing Speed Factor 
3 PMAT24_A_CR Fluid Intelligence (PMAT)  
4 ASR_Extn_T Adult Self Report - Externalizing 
5 ASR_Intn_T Adult Self Report - Internalizing 
6 ASR_Attn_T Adult Self Report - Attention 
7 NEOFAC_O Openness (NEO)  
8 NEOFAC_C Conscientiousness (NEO)  
9 NEOFAC_E Extraversion (NEO)  

10 NEOFAC_A Agreeableness (NEO)  
11 NEOFAC_N Neuroticism (NEO)  
12 DDisc_AUC_40K Delay Discounting  
13 ProcSpeed_AgeAdj Processing Speed  
14 PicSeq_AgeAdj Visual Episodic Memory  
15 CardSort_AgeAdj Cognitive flexibility (DCCS)  
16 Flanker_AgeAdj Inhibition (Flanker task)  
17 ListSort_AgeAdj Working Memory (list sorting)  
18 ReadEng_AgeAdj Reading (pronounciation)  
19 PicVocab_AgeAdj Vocabulary (picture matching)  
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20 SCPT_SEN Sustained Attention - Sens.  
21 SCPT_SPEC Sustained Attention - Spec.  
22 IWRD_TOT Verbal Episodic Memory  
23 VSPLOT_TC Spatial orientation  
24 MMSE_Score Cognitive status (MMSE)  
25 PSQI_Score Sleep quality (PSQI)  
26 Endurance_Unadj Walking endurance  
27 GaitSpeed_Comp Walking Speed  
28 Dexterity_Unadj Manual dexterity  
29 Strength_Unadj Grip strength  
30 Odor_Unadj Odor identificaiton  
31 PainInterf_Tscore Pain Interference Survey  
32 Taste_Unadj Taste intensity  
33 Mars_Final Contrast Sensitivity  
34 Emotion_Task_Face_Acc Emotional Face Matching  
35 Language_Task_Math_Avg_Difficulty_Level Arithmetic  
36 Language_Task_Story_Avg_Difficulty_Level Story comprehension  
37 Social_Task_Perc_Random Social Cognition - random  
38 Social_Task_Perc_TOM Social Cognition - interaction  
39 WM_Task_Acc Working Memory (n-back)  
40 ER40_CR Emot. Recog. - Total  
41 ER40ANG Emot. Recog. - Angry  
42 ER40FEAR Emot. Recog. - Fear  
43 ER40HAP Emot. Recog. - Happy  
44 ER40NOE Emot. Recog. - Neutral  
45 ER40SAD Emot. Recog. - Sad  
46 AngAffect_Unadj Anger - Affect  
47 AngHostil_Unadj Anger - Hostility  
48 AngAggr_Unadj Anger - Aggression  
49 FearAffect_Unadj Fear - Affect  
50 FearSomat_Unadj Fear - Somatic Arousal  
51 Sadness_Unadj Sadness  
52 LifeSatisf_Unadj Life Satisfication  
53 MeanPurp_Unadj Meaning & Purpose  
54 PosAffect_Unadj Positive Affect  
55 Friendship_Unadj Friendship  
56 Loneliness_Unadj Loneliness  
57 PercHostil_Unadj Perceived Hostility  
58 PercReject_Unadj Perceived Rejection  
59 EmotSupp_Unadj Emotional Support  
60 InstruSupp_Unadj Instrument Support  
61 PercStress_Unadj Perceived Stress  
62 SelfEff_Unadj Self-Efficacy  
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