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Abstract

Test-retest reliability is critical for individual differences research. Thus, recent reports that
found low test-retest reliability in fMRI have raised concern among researchers who aim to use
brain imaging to predict psychologically- and clinically-important differences across people.
These previous studies, however, have mostly focused on reliability of individual fMRI features
(e.g., individual connections in resting state connectivity maps). Meanwhile researchers are
increasingly employing multivariate predictive models that aggregate information across a large
number of features to predict outcomes of interest, but the test-retest reliability of predicted
outcomes of these models has not previously been systematically studied. Here we apply four
kinds of predictive modeling methods to resting state connectivity maps from the Human
Connectome Project dataset to predict 62 outcome variables. In contrast to reliability of
individual resting state connections, we find reliability of the predicted outcomes of predictive
models is much higher for two methods: Brain Basis Set (BBS) and Connectome Predictive
Modeling (CPM). BBS had the overall highest reliability, with a mean reliability across predicted
outcomes of 0.79 and a reliability of 0.75 or better (conventionally considered excellent) for 56
out of 62 outcome variables. We additionally identified three mechanisms that help to explain
why predictive models have higher reliability than individual features. These results suggest at
least one path forward for researchers aiming to utilize resting state connectivity for individual
differences research: These researchers can potentially achieve higher test-retest reliability by
making greater use of predictive models.

Introduction

Recent studies report troublingly low test-retest reliability of functional magnetic resonance
imaging (fMRI) metrics including resting state functional connectivity’ and task activation®.
These studies have attracted substantial attention from clinical and translational
neuroscientists because adequate test-retest reliability of fMRI is critical for its use in
individual-differences research. If differences in functional imaging features (e.g., connectivity,
activation, or other features) across individuals are not stable across scanning sessions, that is,
if values of these imaging features lack consistency and/or agreement across sessions, then
these features cannot serve as a basis for constructing predictively useful objective markers
(i.e., “biomarkers”) of traits of interest.?
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The current literature examining reliability in fMRI has been mostly focused on the reliability of
single imaging features: individual connections in resting state connectivity maps and individual
voxels or regions of interest in task activation maps. Neuroimaging researchers studying
individual-differences are, however, increasingly moving away from univariate tests performed
separately on each imaging feature and are instead utilizing multivariate predictive models*”’
(hereafter “predictive models”). These methods aggregate information across thousands of
distributed brain features, yielding a single overall “best guess” about the outcome of interest.
Predictive models are now widespread in the field, and have been used to predict a range of
psychologically- and clinically-relevant outcomes including cognitive skills*°, pain ratings** ™,
sustained attention***°, schizophrenia status'®, and depression subtype/treatment response”,
among many others. To date, however, the test-retest reliability of predicted outcomes derived
from predictive models has not been evaluated.

This question is particularly interesting in light of well-known results from psychometrics that
establish that aggregation of features, for example by taking sum scores or applying a weighting
function, can yield a composite variable that is much more reliable than the individual items
that make up the composite.>'® Standard predictive models widely used in the imaging field
work in just this way: They aggregate features through application of a weighting function.*
Thus, it is possible that like composite scores in psychology, predicted outcomes from such
models will exhibit meaningfully higher reliability than individual features.

To test this hypothesis, we turned to the Human Connectome Project (HCP) dataset®, which
has two sessions of resting state fMRI data for a large sample of subjects. This dataset also has
a large number of phenotypic outcome variables, allowing us to train predictive models across a
number of psychological domains, including cognition, emotion, personality, and
psychopathology. We examined four predictive modeling methods widely used in the
neuroimaging field: lasso, elastic net, connectome predictive modeling (CPM)*°, and brain basis
set (BBS)*". Results from our systematic comparison showed that two predictive modeling
methods, BBS and CPM, yielded substantially higher test-retest reliability of predicted
outcomes compared to individual connectivity features, with BBS showing the overall highest
reliability.

2. Methods

2.1 Subjects and Data Acquisition

All subjects and data were from the HCP-1200 release!?22, Study procedures were approved by
the Washington University institutional review board, and all subjects provided informed
consent. Four resting state runs were performed (14.5 minutes each run) across two days, with
two runs the first day and two runs the second day. Data was acquired on a modified Siemens
Skyra 3T scanner using multiband gradient-echo EPI (TR=720ms, TE=33m:s, flip angle = 52°,
multiband acceleration factor = 8, 2mm isotropic voxels, FOV = 208x180mm, 72 slices,
alternating RL/LR phase encode direction). T1 weighted scans were acquired with 3D MPRAGE
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sequence (TR=2400ms, TE=2.14ms, TI=1000ms, flip angle = 8, 0.7mm isotropic voxels,
FOV=224mm, 256 sagittal slices). T2 weighted scans were acquired with a Siemens SPACE
sequence (TR=3200ms, TE=565ms, 0.7mm isotropic voxels, FOV=224mm, 256 sagittal slices).

2.2 Data Preprocessing

Processed volumetric data from the HCP minimal preprocessing pipeline that included ICA-FIX
denoising were used. Full details of these steps can be found in Glasser23? and Salimi-Korshidi24.
Briefly, Tlw and T2w data were corrected for gradient-nonlinearity and readout distortions,
inhomogeneity corrected, and registered linearly and non-linearly to MNI space using FSL’s
FLIRT and FNIRT. BOLD fMRI data were also gradient-nonlinearity distortion corrected, rigidly
realigned to adjust for motion, fieldmap corrected, aligned to the structural images, and then
registered to MNI space with the nonlinear warping calculated from the structural images. Then
FIX was applied on the data to identify and remove motion and other artifacts in the timeseries.
These files were used as a baseline for further processing and analysis (e.g.
MNINonLinear/Results/rfMRI_REST1 RL/rfMRI_REST1 RL _hp2000_clean.nii.gz from released
HCP data). Images were smoothed with a 6mm FWHM Gaussian kernel, and then resampled to
3mm isotropic resolution.

The smoothed images then went through a number of resting state processing steps, including
a motion artifact removal steps comparable to the type B (i.e., recommended) stream of Siegel
et al.25. These steps include linear detrending, CompCor2¢ to extract and regress out the top 5
principal components of white matter and CSF, bandpass filtering from 0.1-0.01Hz, and motion
scrubbing of frames that exceed a framewise displacement of 0.5mm. Subjects with more than
10% of frames censored were excluded from further analysis, leaving 966 subjects.

2.3 Connectome Generation

We calculated spatially-averaged time series for each of 264 4.24mm radius ROIs from the
parcellation of Power et al.2”. We then calculated Pearson’s correlation coefficients between
each ROI. These were then transformed using Fisher’s r to z-transformation.

2.4 Inclusion/Exclusion Criteria

Subjects were eligible to be included if they had: 1) structural T1 data and had 4 complete
resting state fMRI runs (14m 24s each); 2) full necessary behavioral data; 3) no more than 10%
of frames censored. To avoid confounding due to intra-familial similarity, we additionally
randomly selected one individual from each sibship. This left 389 unrelated individuals to enter
our main analysis.

2.5. ICC for Individuals Connections
Test-retest reliability for each connection of the connectome was assessed with intra-class

correlation (ICC) statistic, specifically type (2,1) according to the scheme of Shrout and Fleiss28,

2.6. Training Predictive Models
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Lasso

Lasso is a form of regularized linear regression using an L'-norm penalty that tends to shrink
coefficients to 0. In this way it can act as both a regularization and feature selection method.
The amount of regularization is controlled via the lambda term in the objective function:

n 4
B = argmind > (i~ xiB)* + 2 ) |5
b i=1 j=1

Lambda is typically chosen via cross validation to select a value that minimizes the cross
validated error. On each fold of our 10-fold cross validation (see below), we used 5-fold cross
validation within the training data to select the best lambda value for lasso regression.

Elastic Net

Elastic net is a mix between an L' penalized regression (i.e. lasso above) and an L penalized
regression (i.e. ridge regression). It attempts to balance the sometimes overly aggressive
feature selection of lasso by mixing it with ridge regression. There is an additional
hyperparameter, alpha, that controls the balance of the lasso and ridge penalties. The objective
function for Elastic Net is:

14

n 14
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As before, within our overall 10-fold cross-validation (see below), we performed 5-fold cross-
validation in the training data to select the best values for alpha and lambda for elastic net.

Both elastic net and lasso were performed using the MATLAB lasso function with 40 values of
lambda automatically generated from a geometric sequence by MATLAB. The values of alpha
tested were [0.01, 0.1, 0.325, 0.55, 0.775, 1].

Connectome Predictive Modeling (CPM)

Connectome predictive modeling (CPM)20 is a predictive modeling method that has been used
widely in fMRI with a variety of outcome variables®3%22 |, brief, CPM is first trained with
every edge of the connectome to identify edges that are predictive of the phenotype of interest
above some prespecified level (e.g., Pearson’s correlation with significance of p < 0.01). The
sum of connectivity values for these specified edges is then calculated for each test subject, and
these sums serve as predicted outcome scores that are correlated with the actual outcome
scores. CPM typically treats positively and negatively predictive edges differently, fitting
separate models for each, and so we follow this practice as well.

Brain Basis Set (BBS)
Brain Basis Set (BBS) is a predictive modeling approach developed and validated in our
previous studies”*>®° (see also studies' ™ by Wager and colleagues for a broadly similar
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approach). BBS is similar to principal component regression®**, with an added predictive

element. In a training partition, PCA is performed on a subjects x connections matrix using the
pca function in MATLAB, yielding components ordered by descending eigenvalues. Expression
scores are then calculated for each of kK components for each subject by projecting each
subject’s connectivity matrix onto each component. A linear regression model is then fit with
these expression scores as predictors and the phenotype of interest as the outcome, saving B,
the k x 1 vector of fitted coefficients, for later use. In a test partition, the expression scores for
each of the k components for each subject are again calculated. The predicted phenotype for
each test subject is the dot product of B learned from the training partition with the vector of
component expression scores for that subject. The parameter k was set at 75 because prior
studies®’ showed that larger values tend to result in overfitting and worse performance.

2.7. HCP Outcome Variables

We used a total of 62 outcome variables from the HCP dataset (choice of these variables was
guided by > and a list of these variables is available in the Supplement). Two outcome
variables were derived from factor analysis of HCP variables, and they are discussed in detail in
our previous report™. In brief, a general executive factor was created based on overall accuracy
for three tasks: n-back working memory fMRI task, relational processing fMRI task, and Penn
Progressive Matrices task. A speed of processing factor was created based on three NIH toolbox
tasks: processing speed, flanker task, and card sort task (all age-adjusted performance), similar
to a previous report3°,

2.8  Train/Test Split and Calculation of ICC for Predictive Models

All predictive models were trained and tested in a 10-fold cross validation scheme. We
calculated ICCs for predicted outcomes for these predictive models as follows: On each fold, we
trained a predictive model on the train partition for session 1 data. We then used this trained
model to generate predicted outcomes for the test partition in both session 1 and session 2,
and we calculated the ICC of this pair of predicted outcomes. We next did this same procedure
in the other direction: We trained the predictive model on the train partition for session 2 data,
generated predicted outcomes for the test partition in both session 2 and session 1, and
calculated their ICC. We repeated this process on all 10 folds and averaged over all 20 ICCs (2
for each fold). We used ICC type (2,1) according to the scheme of Shrout and Fleiss?8.

For elastic net and lasso, which have an additional tunable parameter, we tuned this parameter
in an embedded cross-validation procedure within the train partition. But otherwise, we
followed the procedure described above.

3. Results

3.1 For Two Predictive Modeling Methods, BBS and CPM, Mean Reliability of
Predicted Outcomes Across 62 Phenotypes Was Substantially Higher Than Mean
Reliability for Individual Connections
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The left side of Figure 1 shows test-retest reliabilities for individual connections of the
connectome (in red). Mean reliability was 0.44, but the spread was remarkably wide (standard
deviation 0.19). The next five plots (in blue) show test-retest reliabilities for the predicted
outcomes of predictive models trained on 62 HCP outcome variables. BBS and CPM (both
positive and negative) have notably higher mean reliabilities than elastic net and lasso (see also

Table 1).
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Figure 1: Distribution of Test-Retest Reliabilities for Individual Connections and for Predicted
Outcomes of Predictive Models. Reliabilities for individual connections were calculated over all
connections in the resting state connectome. Mean reliability for individual connections was
relatively low, but the range was wide. Reliabilities for predictive models were calculated over
62 different outcome variables available in the HCP dataset. Mean reliabilities for BBS and CPM
(both positive and negative) were notably higher than for elastic net and lasso.

Table 1 shows summary statistics for test-retest reliability as well as predictive accuracy for the
predictive models. Two points are noteworthy. First, BBS and CPM had higher predictive
accuracy than Elastic Net and Lasso. Second, we divided the 62 cognitive tasks into two
categories: 1) Cognitive tasks, which were tasks from NIH Toolbox and Penn Neurocognitive
Battery, as well as fMRI tasks of working memory (N-back), abstract reasoning (Relational Task),
and math calculation (math condition of the Language Task); and 2) All the other tasks. For all
four predictive modeling methods, predictive accuracy was notably higher for cognitive tasks.


https://doi.org/10.1101/796714
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/796714; this version posted October 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

BBS P;::'Ic\il:le Necgzll,ilve Ell\alzttlc Lasso

Mean Reliability 0.79 0.71 0.69 0.45 0.45
sb| 004 006 006 0.14  0.14

Min| 063 044 0.52 005  0.05

Max| 0.90 083 083 065  0.68

Mean Accuracy (r) ' 0.10 0.08 0.07 003  0.02
cognitive tasks 0.17 | 0.14 0.10 0.12 | 0.10

all other tasks 0.08 0.06 0.06 0.00 | -0.02

Table 1: Summary Statistics for Test-Retest Reliability and Accuracy of Predicted Outcomes of
Predictive Models. Reliability is measured with the intraclass correlation (ICC) statistic.
Reliability was higher for BBS and CPM compared to elastic net and lasso. Accuracy is measured
with Pearson’s correlation between predicted and actual outcome variable. Interestingly
cognitive tasks, mostly from the NIH Toolbox and Penn Neurocognitive Battery, yielded better
accuracy than all other (non-cognitive) tasks.

3.2 BBS Had the Highest and Most Consistent Test-Retest Reliabilities Across
Outcome Variables

Figure 2 shows test-retest reliabilities across the 62 outcome variables for BBS, CPM-positive,
and Elastic Net. For BBS, performance was consistently high, and the method had higher ICCs
than CPM-positive, the next best performer, for 61 out of 62 phenotypes. Reliability is
conventionally classified as excellent when it exceeds 0.75%, and BBS exceeded this value for 56
out of 62 outcome variables.
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Figure 2: Performance of BBS, CPM, and Elastic Net Across the 62 Outcome Variables.
Reliability is conventionally classified as excellent when it exceeds 0.75, and BBS exceeded this
value for 56 out of 62 outcome variables. Dashed lines show the mean reliability for the
associated predictive modeling method.

3.3. Multiple Mechanisms Likely Explain Why BBS and CPM Have a Large Boost
in Reliability

We examined several mechanisms that could help to explain why predicted outcomes of
predictive models are more reliable than individual features, focusing specifically on BBS and
CPM.

Selection of High Variance Features

One mechanism that could improve reliability specifically in BBS is that it leverages features
with high inter-subject variance, and test-retest reliability is positively related to inter-subject
variance®*®. BBS uses dimensionality reduction with PCA, and the PCA algorithm finds
components in descending order of variance explained, with the first component explaining the
most variance in the data.?® Consistent with this idea, we found the mean variance of the
individual connections in the connectome was 0.04. But mean variance of expression scores of
the first 75 PCA components is 4.4, more than 100 times larger.
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Selection of Correlated Features

Another mechanism that could improve reliability in both BBS and CPM is selecting correlated
features and aggregating over them. It is well known from classical test theory that the sum of a
set of positively correlated features will have higher reliability than the features themselves®
(see the Supplement for a general equation linking reliability of a weighted sum to the
statistical properties of the individual features). BBS selects correlated features through the use
of PCA: Each component consists of a weighted set of features that are jointly co-expressed
across subjects (in proportion to the loadings), and thus these features are correlated across
subjects.>® Supporting this idea, we found that the mean test-retest reliability of the first 75
PCA components is 0.66, much higher than the mean reliability of individual features (which is
0.44). Of note, this boost in reliability for components likely reflects both the operation of this
second mechanism (selecting correlated features) as well as the first (selecting high variance
features).

CPM also selects correlated features, but in a different way. CPM performs a search for features
that are correlated with the outcome variable up to a desired level of statistical significance
(e.g., p< 0.01). Since these features are all correlated with the behavioral variable of interest,
they will also tend to be correlated with each other as well. Consistent with this idea, we found
that mean pairwise intercorrelation of all features across the connectome is 0.005, while the
mean pairwise intercorrelation of CPM-selected feature set is 0.05 for CPM positive and 0.05
for CPM negative.

Selection of Valid Features

Assume that there is true variance in the connectome that relates to an outcome variable of
interest (that is, there are stable, non-noise connectomic differences that correlate with an
outcome variable). Both BBS and CPM select features that are correlated with the specified
outcome variable. Given our assumption, then, features selected by BBS and CPM will
correspondingly be enriched with respect to these valid, stable connectomic differences. This
enrichment with respect to true variance will boost test-retest reliability.

To demonstrate the role of this third mechanism for boosting reliability, we permuted subject
labels for the 62 outcome variables 100 times, in effect creating random outcome variables for
each subject. We then computed test-retest reliability for BBS and CPM trained on these
randomized outcome variables. We found mean reliability for BBS and CPM in predicting the
randomized outcome variables was 0.65 and 0.54, respectively. This is notably lower than their
respective mean reliabilities in predicting real outcome variables (0.79 for BBS and 0.72 for
CPM). This result suggests selection of valid features does in fact play a role in boosting
reliabilities for both BBS and CPM.

4. Discussion

This is the first study to systematically investigate test-retest reliability of multivariate
predictive models applied to resting state connectivity maps. We found that in contrast to
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reliability of individual resting state connections, reliability of the predicted outcomes of
predictive models is much higher for two modeling methods, BBS and CPM. We also found that
BBS was the overall best performer: For 56 out of 62 outcome variables, reliability of BBS
predicted outcomes was better than 0.75, conventionally considered excellent. Test-retest
reliability is critical for the use of fMRI in individual differences research. Our results suggest
more widespread use of predictive models can help address questions about reliability that
have been raised in recent reports and that remain a serious concern for the neuroimaging
field.

Test-Retest Reliability and Units of Analysis

Previous studies of reliability in resting state fMRI have mostly examined individual
connections.**™** While results have varied, a recent meta-analysis' found reliability was
typically relatively low at 0.29. Broadly consistent with this result, we found mean reliability of
individual connections in the HCP dataset was 0.44. Several studies examined larger, more
complex units of analysis and found higher levels of reliability. For example, Noble and
colleagues™® examined mean connectivity within intrinsic connectivity networks such as default
mode network and fronto-parietal network. They found reliabilities were modestly higher for
networks than for individual connections (range 0.35 to 0.60 for networks). Similarly, a modest
boost in reliability appears to be observed with higher-order metrics such as graph theory
metrics***. Predictive models, which aggregate across a still wider range of features using
trained feature weights arguably represent a still higher, more complex unit of analysis. In the
present study, we found clear evidence of substantially higher test-retest reliability for
predicted outcomes of predictive models (for BBS and CPM in particular). Overall, these results
suggest that test-retest reliability differs substantially across units of analysis, as well as the
types of aggregation methods that were utilized to generate the higher-level units.

Should We Be Pessimistic or Optimistic About Using Resting State Connectivity for Individual
Differences Research?

Given high mean reliability for predicted outcomes of predictive models and much lower mean
reliability for individual connections, should we be an optimistic or pessimistic about reliability
of resting state connectivity? While we acknowledge both perspectives capture part of the
overall picture, we briefly suggest there is more reason for optimism.

Test-retest reliability is most critical for research that seeks to use imaging features to predict
individual differences, for example, translational neuroimaging research that aims to construct
brain-based biomarkers. This is because reliability is mathematically related to predictive
validity, the ability of measures to predict an outcome. According to an important formula in
classical test theory, reliability sets a ceiling on predictive validity, and as reliability falls, the
maximum achievable predictive validity drops with it.?

But, critically, if one’s goal is in fact prediction of individual differences of some outcome
variable of interest (e.g., behaviors or symptoms), focusing on individual connections of the
connectome is unlikely to be a fruitful approach. This is because for most constructs of
interest—general cognitive ability, neuroticism, pain, autism, it is unlikely that any single
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connection contains much discriminative information about the construct. Rather, it is likely
that this discriminative information resides in distributed changes across widespread network
connections. To capture this diffuse, distributed information, univariate tests are less effective
than multivariate methods such as predictive models**. Consistent with this idea, Wager,
Woo, Chang and their colleagues have shown in a series of studies with task-based fMRI that
effect sizes are generally substantially larger with predictive models than with univariate
statistical tests applied to individual imaging features'>**3%*.

In short, then, predictive models are arguably a more important tool for individual differences
research in fMRI than univariate tests applied to individual imaging features. If this is correct,
then poor reliability of individual imaging features may not be a major concern. Rather, a more
optimistic interpretation is available: Predictive models, which are the critically important tools
we need for individual differences research in neuroimaging, do appear to have adequate levels
of test-retest reliability (at least with certain methods such as BBS and CPM).

Why Predictive Models Have Better Test-Retest Reliability

We examined several factors that can explain why predictive models such as BBS and CPM have
better reliability compared to individual connections. One mechanism is that these predictive
models select valid features, i.e., features that vary due to stable underlying differences across
individuals. Moreover, we showed reliability of predictive models suffers when outcome
variables are randomized (and thus this mechanism is blocked). A second mechanism is that
BBS and CPM both select and then aggregate correlated features, but in different ways: BBS
selects correlated features directly as part of its PCA procedure, while CPM selects them
indirectly through the fact that the features it selects are all correlated with the behavioral
outcome of interest. A third mechanism that boosts reliability that is more unique to BBS is
selection of high variance features. These three mechanisms interact in complex ways.
Moreover, the relative roles of these three mechanisms in boosting reliability for any particular
dataset and outcome variable appear to be hard to specify. The size of the boost depends in
complex ways on the variance/covariance structure of the imaging features and the precise
patterns with which these features correlate with the outcome variable.

Implications for Test-Retest Reliability of Task fMRI

Recent reports also find poor reliability in task fMRI’. This result may be seen as particularly
discouraging because many researchers have thought that tasks, because they involve carefully
controlled manipulations of psychological constructs, might be an especially effective way of
detecting differences in these constructs across individuals.*® Could predictive models play a
similar role in boosting reliability with task-based fMRI? We believe the answer is likely to be
yes. The three mechanisms we identified for why predictive models boost reliability are quite
general and reflect basic statistical properties of these models. There is no obvious reason to
expect that they will operate only with resting state connectivity maps and not with task
activation maps. Moreover, one study found initial evidence that predictive models do in fact
produce a boost in reliability in the task setting: Woo and Wager® report that model-based
predictions of pain ratings during a nociceptive stimulation task had higher reliability (ICC=0.72)
than three regions of interest known to be associated with pain (ICCs: 0.54 to 0.59). To further
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investigate this issue, in a companion report, we perform a systematic comparison with task
activation maps of voxel- and region of interest-level reliability versus reliability of predicted
outcomes of predictive models.

Limitations

This study has several limitations. First, we assessed four popular predictive modeling methods,
and we found sizable differences in their test-retest reliabilities for predicted outcomes (with
the starkest differences between BBS and CPM on the one hand and elastic net and lasso on
the other). There are a large number of other predictive modeling methods that we did not
study and future work can systematically compare them. Second, while we examined a large
number of outcome variables (62 in total), there are of course a vast number of outcome
variables that we could not test with the HCP dataset (e.g., pain ratings, schizophrenia status,
depression-treatment response, etc.). As more comprehensive data sets become available, it
would be useful to extend these results to a still broader range of outcome variables. Third, it
bears emphasis that test-retest reliability is a statistic that is specific to a given population.
Most relevant for the present purposes, it is highly sensitive to the inter-individual variance in
imaging features.? The HCP dataset consists of a fairly homogenous sample of psychologically
healthy young adults. It is possible that reliability will be higher in fMRI, at both the individual
feature-level as well as the predictive model-level, if more heterogenous samples are
considered, as this could potentially boost inter-individual variance in imaging features.*®

Conclusion

In sum, this study is the first to systematically assess the test-retest reliability of predicted
outcomes of predictive models applied to resting state connectivity maps. In contrast to the
somewhat bleak conclusions of recent studies about reliability of individual imaging features,
we found that least some predictive modeling methods, specifically BBS and CPM, demonstrate
consistently high test-retest reliability.
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Supplement

Composite Reliability Formula (relates test-retest reliability of a composite variable to

statistical properties of the variables that are summed; based on He and colleagues™®).
n
r=1-—
n
E . W O'X Z WinO-XifXj
t=1 J#i
r  =reliability of the composite variable

w; =assigned weight to feature i

ajxi = error variance of feature i

ox, =variance of feature i

Ox,x; = covariance between feature i and feature j

Outcome Variables from HCP Dataset

Number Variable Name Description
1 GenExec General Executive Factor
2 ProcSpeed Processing Speed Factor
3 PMAT24 A CR Fluid Intelligence (PMAT)
4 ASR_Extn_ T Adult Self Report - Externalizing
5 ASR Intn_T Adult Self Report - Internalizing
6 ASR Attn T Adult Self Report - Attention
7 NEOFAC_O Openness (NEO)
8 NEOFAC_C Conscientiousness (NEO)
9 NEOFAC_E Extraversion (NEO)
10 NEOFAC_A Agreeableness (NEO)
11 NEOFAC_N Neuroticism (NEO)
12 DDisc_AUC_40K Delay Discounting
13 ProcSpeed_AgeAd] Processing Speed
14 PicSeq_AgeAd| Visual Episodic Memory
15 CardSort_AgeAd; Cognitive flexibility (DCCS)
16 Flanker_AgeAd; Inhibition (Flanker task)
17 ListSort_AgeAd; Working Memory (list sorting)
18 ReadEng_AgeAd; Reading (pronounciation)
19 PicVocab_AgeAd; Vocabulary (picture matching)
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20 SCPT_SEN Sustained Attention - Sens.
21 SCPT_SPEC Sustained Attention - Spec.
22 IWRD_TOT Verbal Episodic Memory
23 VSPLOT_TC Spatial orientation

24 MMSE_Score Cognitive status (MMSE)
25 PSQI_Score Sleep quality (PSQI)

26 Endurance_Unadj Walking endurance

27 GaitSpeed_Comp Walking Speed

28 Dexterity_Unadj Manual dexterity

29 Strength_Unad; Grip strength

30 Odor_Unadj Odor identificaiton

31 Paininterf_Tscore Pain Interference Survey
32 Taste_Unadj Taste intensity

33 Mars_Final Contrast Sensitivity

34 Emotion_Task_Face_Acc Emotional Face Matching

35
36
37
38

Language_Task_Math_Avg_Difficulty Level
Language_Task_Story Avg_Difficulty Level

Social_Task Perc_Random
Social_Task Perc_TOM

Arithmetic

Story comprehension

Social Cognition - random
Social Cognition - interaction

39 WM Task Acc Working Memory (n-back)
40 ER40 _CR Emot. Recog. - Total

41 ER40ANG Emot. Recog. - Angry

42 ERA40FEAR Emot. Recog. - Fear

43 ER40HAP Emot. Recog. - Happy

44 ER40ONOE Emot. Recog. - Neutral
45 ER40SAD Emot. Recog. - Sad

46
47
48

AngAffect_Unadj
AngHostil_Unadj
AngAggr_Unadj

Anger - Affect
Anger - Hostility
Anger - Aggression

49 FearAffect_Unad] Fear - Affect

50 FearSomat_Unad] Fear - Somatic Arousal
51 Sadness_Unadj Sadness

52 LifeSatisf_Unadj Life Satisfication

53 MeanPurp_Unadj Meaning & Purpose
54 PosAffect_Unadj Positive Affect

55 Friendship_Unad;j Friendship

56 Loneliness_Unadj Loneliness

57 PercHostil_Unadj Perceived Hostility
58 PercReject_Unad;j Perceived Rejection
59 EmotSupp_Unadj Emotional Support
60 InstruSupp_Unadj Instrument Support
61 PercStress_Unad] Perceived Stress
62 SelfEff_Unadj Self-Efficacy
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