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Abstract

The observation of recurrent fibroblast growth factor receptor 1 (FGFR1) amplification in
small cell lung cancer (SCLC) raised the possibility of targeting the FGFR1 pathway to
treat this aggressive disease. However, in vivo evidence for the significance of FGFRI in
SCLC development is lacking, and previous studies indicate a need for additional
biomarkers to stratify patient tumours for anti-FGFR1 therapeutics. Here, we found that
ectopic Fgfrl expression in precancerous neuroendocrine cells (preSCs) increased cell
growth in vitro and tumour formation in immune-compromised mice, results that
coincided with transcriptomic changes indicative of altered differentiation and enhanced
proliferation. Interestingly, Fgfrl deletion suppressed tumour development in
Rb1/Trp53/Rbl2-mutant mice but not in Rb//Trp53-mutant mice. This Rbl2-dependent
difference in phenotype suggests a functional link between this well-known tumour
suppressor and FGFR1 signalling during SCLC development. Rbl2 knockout in preSCs
selectively increased Fgfrl expression while promoting tumour formation. Rbl2 loss also
correlated with Fgfrl induction in allograft tumours generated from preSCs carrying
oncogenic mutations and primary tumours developed in the Rb1/Trp53-mutant mouse
model. These results demonstrate the importance of enhanced FGFRI1 and the

vulnerability of the RBL2-FGFR1 axis for SCLC development.
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Introduction

Small cell lung cancer (SCLC) accounts for 13% of all lung cancers yet remains
the deadliest type. The standard chemotherapy regimen of cisplatin and etoposide fails to
improve overall patient survival, and the development of new therapies has been limited
largely due to barriers and challenges inherent to SCLC research that recent advances are
beginning to address [1, 2]. The recent discovery of recurrent alterations in the SCLC
genome may lead to novel strategies for effective and early intervention [3-5]. While few
of these genomic alterations are directly actionable, they are connected to molecular
pathways that are targets of existing small molecule inhibitors. For instance, SCLC with
MYC alterations demonstrated sensitivity to the aurora kinase inhibitor alisertib [6]. The
link between MYC and the bromodomain and external family (BET) of bromodomain-
containing proteins prompted clinical trials of a BET inhibitor that included SCLC

patients [7].

FGFRI amplification has been of significant interest among numerous alterations
in the SCLC genome largely because the receptor tyrosine kinase critical for cell
proliferation and survival can be modulated with small molecule inhibitors [4, 8-11]. It
correlated with poor survival in SCLC patients with limited disease or following first-line
chemotherapy; however, this correlation was weak due to the small sample sizes
analyzed [8, 10]. Preclinical evidence suggests efficacy of inhibiting FGFR1 in SCLC
cells with FGFRI copy number gain; however, high copy number and high mRNA and

protein expression do not appear to be a strong predictor of drug response [12-14]. While
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consistently pointing to a role for FGFR1 in SCLC, these studies highlight major gaps in
the knowledge required to translate the concept of targeting the receptor tyrosine kinase
to intervene in SCLC, including the absence of in vivo evidence for the significance of
receptor signaling in tumor development and predictive biomarkers for response to

receptor inhibition.

To characterize FGFR1 in SCLC development, we utilized genetically engineered
mouse models (GEMM) in which adenoviral Cre (Ad-Cre)-driven conditional deletion of
both RbI and Trp53, mimicking the same set of alterations found in more than 90% of
SCLC patient tumors, recapitulates most of the pathophysiological features of the human
disease [15]. GEMMs facilitated determining the roles for SCLC recurrent alterations,
including MYCL1, MYC, RBL2, and PTEN [6, 16-23]. In this study, we tested a model
of FGFR1 amplification in precancerous neuroendocrine cells (preSCs) that transform
into SCLC upon activation of oncogenic drivers [19, 24]. We tested the requirement of
FGFR1 for SCLC development using genetically engineered mouse models. Our findings
suggest an oncogenic role for FGFR1 in development and continuing expansion of a

subset of SCLC.
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Results and Discussion

FGFRI, despite its recurrent amplification in SCLC patient tumors, is not
amplified in the GEMMs of SCLC [3, 20]. Instead, Affymetrix gene-chip revealed a
significant increase in Fgfrl transcript levels in murine SCLC cells relative to preSCs
[19]. RT-qPCR validated the increased level of Fgfrl transcript, and immunoblot
confirmed the increase at the protein level in murine SCLC cells and primary tumors
relative to preSCs and normal lung (Fig. 1A). This increased Fgfrl expression in tumor
cells relative to precancerous cells suggest a role for the growth factor receptor-mediated
signaling in SCLC development. To determine whether increased Fgfrl promotes tumor
development, we tested its ability to transform preSCs. Lentiviral expression of Fgfrl,
mimicking gene amplification, in preSC (Fgfr1-preSCs) increased the number of colonies
formed in soft agar compared to control preSCs infected with an empty lentiviral vector
(Fig. 1B, C). Immunoblot showing increased phosphorylation of both Erk1/2 and Akt,
two of main signaling mediators downstream of Fgfrl, in Fgfr1-preSC relative to control
preSCs upon Fgf2 treatment suggest that amplified Fgfrl render the cells more
responsive to the ligand (Fig. 1B). Fgfrl-preSC formed tumors in the flanks of immune-
compromised nude mice at a faster rate than control preSC (Fig. 1D). The allograft
tumors generated from Fgfr1-preSC showed histological features of SCLC including high
nuclear/cytoplasmic ratio in hematoxylin and eosin (H&E) staining and positive staining
for neuroendocrine markers including Calcitonin gene-related peptide (CGRP) (Fig. 1E).
These findings demonstrated that Fgfrl overexpression drives SCLC development by

promoting neoplastic transformation of precursors.
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To gain insight into the mechanism of increased Fgfrl-driven tumorigenesis, we
examined a large-scale change in the molecular network using RNA-sequencing to
compare Fgfrl-preSCs versus control. To identify pathways and gene sets related to
increased Fgfrl in preSCs, we performed gene set enrichment analysis (GSEA) of the
whole gene expression profile for the 40 “Hallmark” genes sets from MSigDB [25].
E2F TARGETS, G;M CHECKPOINT, MYC TARGETS vl and v2, and MITOTIC
SPINDLE were significantly enriched in Fgfr1l-preSC (nominal p<0.05, FDR-adjusted g-
value <0.2) (Fig. 1F; Supplementary Fig. 1). This enrichment of proliferation-related
gene sets may underlie the increased colony-forming ability of cells in vitro and the
accelerated tumor formation in the allograft model. We identified a set of 2369
differentially expressed (DE) genes (FDR-adjusted g-value <0.05) (Fig. 1G;
Supplementary Fig. 2; Supplementary Table 1). Gene ontology (GO) analysis of these
DE genes using DAVID Bioinformatics Resources [26] indicated not only enrichment of
cell proliferation-related changes, including mitosis, but also of neuronal development
and differentiation (Fig. 1H; Supplementary Table 2). Notably, altered neural
differentiation was the main indication of annotated functions for top 199 DE genes
whose expression changes two-fold or higher in Fgfrl-preSC relative to control preSCs
as four of five GO terms enriched are ‘axon genesis’, ‘neuron projection
development/morphogenesis’, ‘cell morphogenesis involved in neuronal differentiation’
(FDR<0.2) (Supplementary Table 2). This molecular state reflects the downregulation of
genes involved in neural differentiated and synapse formation, including Nefl, Thr1, Dcx,
and Chll (Supplementary Table 2). The other GO term ‘positive regulation of protein

kinase cascade’ reflects the up-regulation of receptor signaling and intracellular
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mediators, including Fgfirl, Prex2, and Rhoa. These and other up-regulated DE genes,
including Sox21 and GIli3, may also be involved in altering differentiation of preSCs
because they are implicated in neural progenitor cells and neurogenesis (Fig. 1G;
Supplementary Fig. 2) [27-32]. Sox21 is a mediator of Sox2-driven cellular
reprogramming and upregulated in SCLC [5, 33, 34]. Gli3 is a mediator of hedgehog
signaling that is important for SCLC [35, 36]. Together, these findings suggest that
increased Fgfrl promotes SCLC development by altering differentiation of precancerous

precursor cells, in addition to enhancing cell proliferation.

Inhibition of FGFRI1 decreased the viability of several human SCLC cells
(Supplementary Fig. 3) [13]. However, it remains unknown whether or not FGFR1 is
important for SCLC development in vivo. To address this, we tested the effect of deleting
Fgfrl on Rb1/Trp53-mutant model of SCLC development [15]. We infected RbI1/Trp53
mice carrying additional floxed or wild type alleles of Fgfi-l (RbI™"; Trp53°7;
Fgfir1' or Fgfir1”") using intratracheal instillation of Ad-Cre and eight months later
analyzed the lungs of the infected mice. Both groups of mice formed lung tumors with
similar tumor burden (tumor area/lung area) and incidence (Fig. 2A), indicating that
Fgfrl did not influence SCLC development. However, the considerable variability in
tumor incidence and latency in the Rb1/Trp53 model could mask a moderate impact of
Fgfrl loss on tumor development. To further validate the impact of deleting Fgfrl, we
repeated the in vivo experiment using Rb1/Trp53/RbI2-mutant model in which a RbI
homolog, RbI2 (previously pl30), is deleted together with RbI and Trp53 loss. This

model mimics the loss or reduced expression of Rb/2 in a subset of human SCLC tumors
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[3, 37]. Deletion of RbI2 increased tumor incidence and shortened tumor latency
compared to those of the RbI/Trp53 model, making RbI1/Trp53/Rbl2 robust in
determining potential tumor suppressive effects of genetic factor [3, 19, 21, 35]. Six
months after Ad-Cre infection of these RbI/Trp53/RbI2 mice with Fgfi-1™”* or Fgfir1"*
alleles, we compared tumor development in the lungs. Interestingly, unlike the findings in
the Rb1/Trp53 model, the lungs of Fgfi-I*“ RbI1/Trp53/RbI2 mice had reduced tumor
burden compared to those of Fgfi-i™* Rb1/Trp53/RbI2 mice (Fig. 2B). To determine
whether this tumor-suppressive effect is specifically related to Fgfrl, we tested the effect
of deleting Fgfr2 on tumor development using the Rb1/Trp53/RbI2 model and did not
find significant phenotypic difference between the mice with or without Fgfi2 (Fig. 2C).
Furthermore, to exclude the possibility of incomplete recombination of the floxed alleles
as a contributing factor to the phenotypes observed, genotyping PCR and immunoblot on
four tumors randomly selected from three cohorts helped to verify the complete knockout
of Rb1, Trp53, RbI2, and Fgfrl in primary cells from all tumors but one tumor that
retained one copy of Fgfrl floxed allele and expressed the protein at the level comparable
to Fgfirl™”" tumor cells (Supplementary Fig. 4A). We acutely deleted Fgfrl in these
primary tumor cells with Fgfi-/”* by infecting them with Ad-Cre and tested their
capacity for in vitro expansion and allograft formation (Fig. 3A, B). The infected
Fgfir1'™ cells completely lost Fgfrl expression (Supplementary Fig. 4B) and formed
fewer colonies in soft agar culture and smaller tumors in the flanks of immune-competent
mice than uninfected Fgfi-"* cells or Cre-infected Fgfiri™" cells (Fig. 3A, B).
Immunoblot verified reduced expression of Fgfrl in the allograft tumors and its complete

loss in the primary cells (Supplementary Fig. 4C). These findings suggest that Fgfrl is
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important for SCLC tumors specifically driven by Rbl2 loss and the continuing expansion

of SCLC tumor cells.

The differential impact of inhibiting Fgfrl in the presence or absence of RbI2
suggests a mechanistic link between Fgfrl and Rbl2. While the mechanism of the tumor-
selective increase of Fgfrl is not known, the relationship between Rbl2 and Fgfrl during
SCLC development may be similar to the mechanistic link between them in the context
of muscle cell differentiation in which Rbl2 represses Fgfir/ expression by binding E2F
transcription factors at the gene promoter [38]. To test whether Rb/2 loss increases Fgfrl
expression in RbI1/Trp53 cells, we inactivated RbI2 in preSCs using CRISPR/Cas9-
mediated gene targeting and injected targeted cells subcutaneously in the flanks of
athymic nude mice (Fig. 4A). RbI2-targeted preSCs, despite the near complete loss of
RbI2, did not readily increase Fgfrl compared to non-targeted control in culture.
Intriguingly, however, the primary cells from the subcutaneous tumors, generated from
RbI2-targeted preSCs, drastically induced Fgfrl expression compared to those derived
from non-targeted preSCs (Fig. 4B). To determine whether this relationship between
RbI2 and Fgfrl is limited to Rbl2-mutant cells, we surveyed various subcutaneous tumors
driven by different oncogenic alterations and lung primary tumors, and found that Fgfrl
expression is specifically induced in the cells lacking RbI2 (Fig. 4C, D). Likewise, RbI2
expression was inversely correlated with Fgfrl expression. These findings suggest that
the inactivation of Rbl2 plays a role in activating Fgfrl-driven pathway for SCLC

development.
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In conclusion, this study for the first time demonstrates the role of FGFR1 in
promoting SCLC development in vivo and the continuing growth of tumor cells and
suggests a mechanistic link between RBL2 and FGFR1. The concept of targeting FGFR1
has been tested on human SCLC lines in culture and xenograft model; however, the
tumor-suppressive effects of FGFR1 inhibitors on SCLC lines varied [13]. For instance, a
recent comprehensive drug screening also showed that only one out of 63 SCLC lines
responded to three FGFR1 inhibitors. This finding and others alike suggest that the gene
amplification, copy number gain, and mRNA/protein overexpression generally correlate
with response to inhibitors but may not necessarily be a robust predictor for therapeutic
effect. Therefore, the selective induction of FGFR1 and the specificity of the tumor-
suppressive effect of its inhibition in RbI2 null background raises an intriguing possibility
that RBL2 status could be a potential biomarker for predicting response to FGFR1-

targeted therapy [39].
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Materials and Methods

This section is described in Supplementary Information.
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Figure Legends

Figure 1. Increased Fgfr1 promotes SCLC development

A, RT-qPCR data showing expression of Fgfrl transcript normalized to ARBP P0 in
SCLC cells or in preSCs (n=3). Right, Immunoblot for Fgfrl in whole and different cell
types. Gapdh blot verifies equal loading of total proteins. B, immunoblot for total and
phosphorylated Erk1/2 and Akt as well as Fgfrl in control and Fgfr1-preSCs treated with
FGF2 (20ng/mL) for 36 hours. B-actin immunoblot verifies equal loading of total
proteins. C, Representative images of control and Fgfr1-preSCs in soft agar 4 weeks after
seeding 1x10* cells per well (12 well). Right, quantification of colonies (>0.2mm) in
diameter (n=3). Scale bar: 0.5mm. D, Image of athymic nude mice (n=5), 40 days after
subcutaneous injection of cells; Arrow points to tumor. Right, quantification of tumor
development at end-point (>1.5cm), measured by tumor weight (mg) divided by latency
(day). E, Images of the subcutaneous tumors derived from Fgfrl-preSC stained with
hematoxylin-eosin (H&E) and, right, with antibodies for calcitonin gene-related peptide
(CGRP) and DAPI for nuclei. Asterisk indicates non-tumor area negative for CGRP. F, A
summary of top 4 gene sets enriched in Fgfrl-preSC, identified in Gene Set Enrichment
Analysis (GSEA). G, Volcano plot showing differential gene expression between control
and Fgfrl-preSC; red horizontal line indicates adjusted p-value 0.05, and red dots are
genes whose changes are 2-fold or higher). H, A summary of 38 gene ontology (GO)
terms enriched in the set of genes upregulated in Fgfrl-preSC relative to control
(FDR<0.05). Scale bars: C, Smm; D, 2cm; E, left: 200um, right: 50um. NES: normalized

enrichment score; FDR: false discovery rate.
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Figure 2. Deletion of Fgfr1 suppresses SCLC development in vivo

A-C, Representative images of H&E stained sections of different SCLC models and,
right, quantification of tumor burden (tumor area/lung area). (A) Fgfirl " vs. Fgfir1**
Rb1/Trp53 (n=7 and n=5, respectively) (B) Fgfi-l """ vs. Fgfiri** Rb1/Trp53/RbI2 (n=7
and n=9, respectively) (C) Fgfi2"" vs. Fgfi2** RbI1/Trp53/Rbl2 (n=8 and n=4,
respectively). Arrows and arrowheads indicate tumors and small lesions, respectively.

n.s.: not significant. Scale bars: Smm.

Figure 3. Fgfrl is important for the continuing growth of SCLC cells.

A and B, Representative images of Fgfi-1'"* and Fgfir1™* Rb1/Trp53/Rbi2 cells in soft
agar 3 weeks after being infected with Ad-Cre and seeded at a density of 1x10" cells per
well (12 well). Right, quantification of colonies (>0.2mm in diameter; n=3). C, Plot of
volumes of tumors (n=6) generated from subcutaneous injection of Fgfi-l"™"™

Rb1/Trp53/RbI2 cells with or without Ad-Cre infection. Right, quantification of tumor

weights at the end point (tumor size >1.5cm in any dimension).

Figure 4. Fgfr1 is selectively induced by Rbl2 loss.

A, Schematic of CRISPR-mediated targeting of preSCs and generation of subcutaneous
tumors from targeted preSCs or control. B, Immunoblots for Fgfrl and Rbl2 in control
preSC and Rbi2-targeted preSC in culture and, right, in the primary cells of subcutaneous
tumors. C and D, Immunoblots for Fgfrl and Rbl2 in the subcutaneous tumors generated

from control and various targeted preSCs (C) and in the primary lung tumors (D)
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developed in the Rb1/Trp53-mutant GEMM. Asterisk in D indicates a non-specific band.

B-actin blot verifies equal loading of total proteins.
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