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Abstract	

	

Background:	Current	theories	of	psychosis	highlight	the	role	of	abnormal	learning	signals,	i.e.,	

prediction	errors	(PEs)	and	uncertainty,	in	the	formation	of	delusional	beliefs.	We	employed	

computational	analyses	of	behaviour	and	functional	magnetic	resonance	 imaging	(fMRI)	 to	

examine	whether	such	abnormalities	are	evident	in	at-risk	mental	state	(ARMS)	individuals.	

Methods:	Non-medicated	ARMS	individuals	(n=13)	and	control	participants	(n=13)	performed	

a	 probabilistic	 learning	 paradigm	 during	 fMRI	 data	 acquisition.	 We	 used	 a	 hierarchical	

Bayesian	model	to	infer	subject-specific	computations	from	behaviour	–	with	a	focus	on	PEs	

and	 uncertainty	 (or	 its	 inverse,	 precision)	 at	 different	 levels,	 including	 environmental	

‘volatility’	–	and	used	these	computational	quantities	for	analyses	of	fMRI	data.	

Results:	 Computational	 modelling	 of	 ARMS	 individuals’	 behaviour	 indicated	 volatility	

estimates	 converged	 to	 significantly	 higher	 levels	 than	 in	 controls.	 Model-based	 fMRI	

demonstrated	 increased	 activity	 in	 prefrontal	 and	 insular	 regions	 of	 ARMS	 individuals	 in	

response	 to	 precision-weighted	 low-level	 outcome	 PEs,	 while	 activations	 of	 prefrontal,	

orbitofrontal	and	anterior	 insula	cortex	by	higher-level	PEs	(that	serve	to	update	volatility	

estimates)	were	reduced.	Additionally,	prefrontal	cortical	activity	in	response	to	outcome	PEs	

in	ARMS	was	negatively	associated	with	clinical	measures	of	global	functioning.		

Conclusions:	 Our	 results	 suggest	 a	multi-faceted	 learning	 abnormality	 in	ARMS	 individuals	

under	 conditions	 of	 environmental	 uncertainty,	 comprising	 higher	 levels	 of	 volatility	

estimates	 combined	 with	 reduced	 cortical	 activation,	 and	 abnormally	 high	 activations	 in	

prefrontal	and	insular	areas	by	precision-weighted	outcome	PEs.	This	atypical	representation	

of	high-	and	low-level	learning	signals	might	reflect	a	predisposition	to	delusion	formation.	

	

	

Keywords:	at-risk	mental	state,	clinical	high	risk,	computational	psychiatry,	decision-making,	

hierarchical	Bayesian	learning,	prodromal,	uncertainty,	prediction	error,	volatility	

	

Short	title:	Uncertainty	processing	and	at-risk	mental	state	
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Introduction	

In	 standard	classification	 schemes	such	as	 the	Diagnostic	 and	Statistical	Manual	of	Mental	

Disorders	(DSM)	and	the	International	Statistical	Classification	of	Diseases	and	Related	Health	

Problems	(ICD),	schizophrenia	and	related	psychotic	disorders	are	defined	as	syndromes,	i.e.,	

combinations	 of	 clinical	 symptoms	 and	 signs.	 It	 is	 widely	 acknowledged	 that	 this	

phenomenological	 definition	 of	 schizophrenia	 (and	 other	 mental	 disorders)	 amalgamates	

heterogeneous	 groups	 of	 patients	 with	 possibly	 different	 pathophysiological	 mechanisms	

(van	Os	and	Tamminga,	2007;	Insel,	2010;	Owen,	2014;	Stephan	et	al.,	2016).	This	may	explain	

the	diversity	of	clinical	trajectories	and	treatment	responses	across	patients	and	calls	for	new	

approaches	to	dissect	the	schizophrenia	spectrum	into	subgroups	or	dimensions	(Stephan	et	

al.,	2009a;	Insel	et	al.,	2010;	Kapur	et	al.,	2012;	Cuthbert	and	Insel,	2013).	One	potential	avenue	

to	obtaining	a	formal	understanding	of	differences	in	disease	mechanisms	across	patients	is	

the	deployment	of	mathematical	(specifically:	generative)	models	that	can	be	applied	to	non-

invasive	measures	of	behaviour	and	brain	activity	 (Frässle	et	 al.,	 2018);	 in	psychiatry,	 the	

clinical	 application	 of	 this	 translational	 neuromodeling	 approach	 is	 referred	 to	 as	

“computational	psychiatry”	(Montague	et	al.,	2012;	Wang	and	Krystal,	2014;	Stephan	et	al.,	

2015;	Adams	et	al.,	2016).	A	computational	approach	to	phenotyping	patients	in	a	more	fine-

grained	manner	may	be	particularly	relevant	for	the	early	detection	of	individuals	at	risk,	an	

increasingly	important	domain	of	psychosis	research	(Klosterkotter	et	al.,	2011;	Fusar-Poli	et	

al.,	2013a,	2015;	Moorhead	et	al.,	2013;	Koutsouleris	et	al.,	2015;	McGuire	et	al.,	2015;	Nieman	

and	McGorry,	2015).	

	

The	at-risk	mental	state	 (ARMS)	 is	defined	by	 the	presence	of	 either	attenuated	psychotic	

symptoms,	brief	and	self-limiting	psychotic	symptoms,	or	a	significant	reduction	of	function	

under	a	family	history	of	schizophrenia	(Fusar-Poli	et	al.,	2013a).	It	is	a	construct	pertaining	

to	the	pre-psychotic	phase,	before	a	formal	diagnosis	(according	to	DSM	or	ICD)	can	be	made	

(Yung	 et	 al.,	 2005).	 Experimental	 studies	 and	 clinical	 trials	 of	 ARMS	 individuals	 are	 often	

logistically	 challenging,	 due	 to	 several	 reasons.	 For	 example,	 a	 diversity	 of	 strategies	 for	

diagnosis	 and	 clinical	 management	 exists	 across	 centres,	 and	 the	 unresolved	 question	 of	

whether	ARMS	symptoms	mandate	the	use	of	antipsychotics	(Wood	et	al.,	2011;	Kahn	and	

Sommer,	2015;	Nieman	and	McGorry,	2015)	 limits	 the	availability	of	non-medicated	ARMS	

individuals	for	research.	Furthermore,	not	all	ARMS	individuals	seek	medical	help	and,	if	they	
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do,	they	may	not	always	be	recognised	due	to	frequent	comorbidity,	e.g.,	mood	impairments	

may	overshadow	psychotic	symptoms	(Falkenberg	et	al.,	2015a).	

	

These	 issues	 lead	 to	 considerable	 difficulties	 in	 recruiting	 sufficiently	 large,	 homogeneous	

samples	 of	 medication-free	 (particularly	 antipsychotic-naïve)	 patients	 for	 clinical	 studies	

(Ruhrmann	et	al.,	2010;	Klosterkotter	et	al.,	2011;	Fusar-Poli	et	al.,	2013a,	2013b;	Nieman	and	

McGorry,	 2015).	 As	 a	 consequence,	 we	 still	 have	 a	 very	 limited	 understanding	 of	 the	

neurobiological	mechanisms	that	produce	ARMS	symptoms	and	the	subsequent	transition	to	

full-blown	psychosis	(Tsuang	et	al.,	2013).	A	formal	computational	account	of	the	cognitive	

and	neurophysiological	aberrancies	underlying	the	ARMS	would	be	highly	beneficial,	both	for	

future	research	on	pathophysiology	and	clinical	studies.	

	

In	recent	years,	theories	on	the	development	and	maintenance	of	psychotic	symptoms	have	

become	increasingly	enriched	by	testable	computational	mechanisms	and	are	beginning	to	

converge	on	a	few	central	themes	(Corlett	et	al.,	2010).	One	major	theory	postulates	that	the	

attribution	 of	 “aberrant	 salience”	 to	 objectively	 uninformative	 or	 neutral	 events	 fuels	 the	

formation	of	delusions	(Kapur,	2003).	This	framework	posits	a	key	role	for	dopamine	(DA)	in	

mediating	the	misattribution	of	salience	in	psychosis,	consistent	with	longstanding	theories	

of	dopaminergic	dysfunction	in	schizophrenia	(Grace,	1993;	Laruelle	et	al.,	1996;	Howes	and	

Kapur,	 2009)	 and	 specifically	 the	 idea	 that	 contextually	 inappropriate	 phasic	 DA	 release	

triggers	maladaptive	plasticity	and	learning	(King	et	al.,	1984;	Heinz	and	Schlagenhauf,	2010;	

Roiser	et	al.,	2013;	Winton-Brown	et	al.,	2014).	This	notion	 is	consistent	with	a	number	of	

experimental	 findings	 in	 schizophrenia,	 most	 of	 which	 correlate	 with	 positive	 symptoms,	

including	 enhanced	 learning	 for	 neutral	 cues	 (assessed	 via	 behavioural	 and	 autonomic	

responses)	and	increased	activation	of	dopaminergic	and	dopaminoceptive	regions,	including	

the	ventral	striatum	and	midbrain,	in	response	to	neutral	cues	(Jensen	et	al.,	2008;	Murray	et	

al.,	2008;	Roiser	et	al.,	2009;	Romaniuk	et	al.,	2010;	Diaconescu	et	al.,	2011).	

	

Computational	treatments	of	aberrant	salience	have	examined	this	phenomenon	in	relation	

to	 prediction	 errors	 (PEs)	 about	 rewarding	 or	 novel	 outcomes.	 This	 is	 motivated	 by	 the	

putative	relation	of	outcome-related	PEs	to	phasic	DA	release	and	possible	 involvement	 in	

dysfunctional	learning	in	psychosis	and	schizophrenia	(Schultz	et	al.,	1997;	Pessiglione	et	al.,	

2006;	Corlett	et	al.,	2007,	2009a,	2010;	Murray	et	al.,	2008;	Gradin	et	al.,	2011;	Adams	et	al.,	
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2013;	Ermakova	et	al.,	2018).	The	dopaminergic	PE	signal	 is	 thought	 to	represent	a	neural	

response	 to	 deviation	 from	 an	 expected	 outcome	 (of	 rewards	 but	 also	 sensory	 features;	

Iglesias	et	al.,	2013;	Gardner	et	al.,	2018;	Suarez	et	al.,	2019)	and	likely	supports	updating	of	

beliefs	about	the	environment	by	induction	of	synaptic	plasticity	(Montague	et	al.,	2004),	for	

example,	via	modulation	of	NMDA	receptors	(Gu,	2002).	However,	predictions	are	inevitably	

uncertain,	 and	 PEs	 should	 carry	 different	 weight,	 depending	 on	 the	 precision	 (the	

mathematical	inverse	of	uncertainty)	of	the	underlying	prediction.	Computationally,	Bayesian	

frameworks	offer	a	 formal	account	of	 this	 intuitive	notion	(Rao	and	Ballard,	1999;	Friston,	

2008).	These	theories	view	perception	and	learning	as	a	hierarchically	organised	process,	in	

which	beliefs	at	multiple	levels,	from	concrete	(e.g.,	specific	stimuli)	to	more	abstract	aspects	

of	the	environment	(e.g.,	probabilities	and	volatility),	are	updated	based	on	level-specific	PEs	

and	 precisions.	 Specifically,	 under	 fairly	 general	 assumptions	 (i.e.,	 for	 all	 probability	

distributions	from	the	exponential	family)	a	ratio	of	precisions	(of	bottom-up	input	vs.	prior	

beliefs)	serves	to	scale	the	amplitude	of	PE	signals	and	thus	their	impact	on	belief	updates	

(Mathys	et	al.,	2011;	Mathys,	2013);	see	Eq.	1	below.	

	

Recent	theories	of	perceptual	abnormalities	in	schizophrenia	have	built	on	Bayesian	accounts	

of	 this	 sort,	 enriching	 traditional	 concepts	 of	 aberrant	 salience	 with	 the	 crucial	 role	 of	

uncertainty	(Stephan	et	al.,	2006;	Corlett	et	al.,	2009a,	2010;	Fletcher	and	Frith,	2009;	Adams	

et	al.,	2013).	One	specific	suggestion	from	these	accounts	is	that	chronically	over-precise	low-

level	PE	signals	may	be	the	starting	point	of	delusion	formation,	as	they	continue	to	induce	

unusual	belief	updates,	without	diminishing	over	time.	Put	differently,	persistently	surprising	

events	may	eventually	require	adoption	of	extraordinary	higher-order	beliefs	to	be	explained	

away	(Corlett	et	al.,	2007,	2010).	Alternatively,	high-order	beliefs	may	be	of	abnormally	low	

precision	(Adams	et	al.,	2013;	Sterzer	et	al.,	2018;	Diaconescu	et	al.,	2019),	leading	to	lack	of	

regularisation,	 which	 renders	 the	 environment	 seemingly	 unpredictable	 (e.g.,	 extremely	

volatile)	 and	 enhances	 the	 weight	 of	 low-level	 precision-weighted	 PE.	 Notably,	 these	

explanations	are	not	exclusive	but	could	co-exist	(specifically,	they	relate	to	the	numerator	

and	denominator	of	the	precision	ratio	in	Eq.	1	below).	

	

Here	 we	 investigated	 the	 presence	 of	 these	 putative	 abnormalities	 during	 learning	 and	

decision-making	 under	 environmental	 uncertainty	 (volatility)	 in	 the	 behaviour	 and	 brain	

activity	of	ARMS	individuals.	To	this	end,	we	combined	fMRI	of	a	probabilistic	learning	task	
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under	volatility	with	computational	modelling,	hierarchical	Gaussian	 filtering	(HGF),	which	

emphasises	the	importance	of	uncertainty	for	updating	a	hierarchy	of	beliefs	via	precision-

weighted	PE	signals	(Mathys	et	al.,	2011,	2014).	
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Methods	and	Materials	

	

Participants	

Thirteen	ARMS	individuals	(mean	age	21.1	years	±	3.0	s.d.;	4	 female)	and	thirteen	healthy	

controls	 (mean	 age	 29.2	 ±	 3.2;	 7	 female)	 were	 included	 in	 the	 study.	 Given	 the	 slight	

differences	in	group	composition,	all	statistical	comparisons	between	the	ARMS	participants	

and	 controls	 in	 the	 fMRI	 analyses	 described	 below	 were	 conducted	 with	 age	 and	 sex	 as	

covariates,	in	order	to	control	for	possible	confounding	influences.	Notably,	none	of	the	ARMS	

individuals	had	yet	been	exposed	to	any	antipsychotic	medications	at	the	time	of	testing.	Four	

of	 the	 ARMS	 individuals	 (2	 female)	 had	 previously	 received	 medication	 for	 other	 mental	

health	 issues	unrelated	 to	psychosis.	No	ARMS	 individuals	had	any	history	of	neurological	

disorder,	 and	 none	 of	 the	 healthy	 controls	 had	 any	 history	 of	 neurological	 or	 psychiatric	

disorder.	A	summary	of	demographic	and	clinical	data	is	provided	in	Table	1.	All	participants	

provided	written,	informed	consent	to	participate	in	the	experiment,	which	was	approved	by	

the	 local	 ethics	 committee	 of	 the	 Medical	 Faculty	 of	 the	 University	 of	 Cologne	 (Cologne,	

Germany).	

	

The	clinical	status	of	ARMS	individuals	was	established	via	a	checklist	of	inclusion	criteria	and	

clinical	tests	including	the	Structured	Interview	for	Prodromal	Symptoms	(SIPS;	Miller	et	al.,	

2002,	2003).	One	male	individual	in	the	patient	group	did	not	have	his	ARMS	status	upheld	

upon	further	clinical	examinations;	his	data	were	thus	excluded	from	all	between-group	fMRI	

analyses.	Scores	on	sub-scales	of	the	SIPS	assessing	positive	symptoms	and	global	assessment	

of	 functioning	 (SIPS-GAF)	were	 compared	with	data	 from	 the	behavioural	 task	and	with	a	

representative	fMRI	measure	of	aberrant	PE	encoding	in	ARMS,	described	below,	via	Pearson	

correlation	analyses	with	one-tailed	hypothesis	testing,	due	to	the	explicit	directionality	of	our	

predictions	 that	 atypical	neural	 representation	of	PEs	would	be	associated	with	worsened	

clinical	functioning	in	ARMS.	

	

Behavioural	task	

While	undergoing	 fMRI,	 each	participant	 completed	a	probabilistic	 learning	 task	 (Fig.	1A),	

which	required	trial-wise	binary	decisions	between	two	fractal	stimuli.	On	each	trial,	the	same	

pair	of	fractal	stimuli	were	presented,	each	paired	with	a	reward	value	(points)	that	varied	

independently	of	the	task	contingency	structure.	Accrued	points	were	converted	to	monetary	
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reward	at	the	end	of	the	experiment.	During	cue	presentation,	participants	had	a	maximum	of	

4	seconds	to	make	a	decision,	 followed	by	a	5-second	delay	displaying	the	choice	and	a	2-

second	presentation	of	the	decision	outcome	(correct	or	incorrect).	If	no	response	was	made	

during	 the	 decision	 period,	 a	 time-out	 occurred	 and	 a	 blank	 screen	 was	 displayed	 for	 8	

seconds,	 instead	 of	 the	 delay	 and	 outcome	 screens.	 The	 inter-trial	 interval	 was	 jittered	

between	5	and	7	seconds.	The	across-trial	task	structure	incorporated	‘switches’,	or	reversals,	

in	a	block-wise	fashion	in	terms	of	which	of	the	cues	was	most	likely	(80%	probability)	or	least	

likely	(20%)	to	be	the	correct,	rewarded	choice	on	that	trial.	It	also	incorporated	a	change	of	

contingencies	 over	 time;	 this	 volatility	 (or	 variance	 per	 unit	 time)	 induces	 higher-order	

(environmental)	 uncertainty	 –	 about	 the	 probabilistic	 structure	 of	 the	 task,	 in	 addition	 to	

informational	uncertainty	by	trial-wise	outcomes	–	and	determines	the	temporal	evolution	of	

a	subject’s	learning	rate	(Behrens	et	al.,	2007;	Mathys	et	al.,	2014).	The	task	consisted	of	160	

trials,	 with	 contingency	 blocks	 comprising	 between	 14	 and	 46	 trials	 depending	 on	which	

volatility	pseudo-block	 they	were	 contained	within	 (Fig.	1B).	The	 task	 structure	was	 fixed	

across	all	participants	 in	 terms	of	 the	 correct,	rewarded	choice	on	a	given	 trial.	Two	early	

participants	(one	patient	and	one	control)	completed	a	slightly	varying	version	of	the	task	that	

differed	only	 in	 that	 there	was	no	 time-out	 for	 responses;	 this	did	not	 lead	 to	 longer	data	

acquisition,	nor	did	it	affect	the	behavioural	modelling	described	below.	

	

Behavioural	modelling	

The	computational	framework	adopted	in	this	study	was	guided	by	Bayesian	theories	of	brain	

function	that	suggest	that	the	brain	maintains	and	continuously	updates	a	generative	model	

of	its	sensory	inputs	(Dayan	et	al.,	1995;	Rao	and	Ballard,	1999;	Friston,	2005).	In	other	words,	

individuals	are	thought	to	update	their	beliefs	about	states	of	the	external	world	based	on	the	

sensory	inputs	they	receive	(perceptual	model);	these	beliefs,	in	turn,	provide	a	foundation	

for	making	decisions	(response	model;	see	Daunizeau	et	al.,	2010).		

	

A	 number	 of	 different	 hypotheses	 about	 how	 humans	 learn	 about	 probabilistic	 stimulus-

outcome	contingencies	were	embodied	in	the	following	model	space	(Fig.	2A).	With	regard	to	

the	 perceptual	 model,	 our	 main	 question	 was	 whether	 subjects’	 models	 of	 reward	

probabilities	 based	 on	 stimulus-outcome	 associations	 had	 a	 hierarchical	 structure	 and	

accounted	 also	 for	 the	 volatility	 of	 these	 associations.	We	 thus	 compared	 (i)	 the	 classical	

Rescorla-Wagner	(RW)	model	(Rescorla	and	Wagner,	1972),	in	which	predictions	evolve	as	a	
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function	of	PE	and	a	constant	learning	rate	(model	M1)	to	three	Bayesian	models	of	learning,	

which	included	(ii)	a	non-hierarchical	model,	based	on	a	reduced	Hierarchical	Gaussian	Filter	

(HGF)	 that	 assumes	 that	 subjects	 do	 not	 infer	 on	 the	 volatility	 of	 stimulus-outcome	

probabilities	 (M2;	 see	Diaconescu	et	 al.,	 2014),	 (iii)	 a	 three-level	 ‘canonical’	HGF	 (M3,4;	 see	

Mathys	et	al.,	2011),	and	(iv)	a	three-level	‘mean-reverting’	HGF	in	which	volatility	estimates	

drift	towards	a	subject-specific	equilibrium	(M5,6).	

	

With	respect	to	the	response	model,	we	followed	previous	work	(Diaconescu	et	al.,	2014)	and	

considered	two	possible	mechanisms	of	how	beliefs	were	translated	into	responses	(Fig.	2A).	

Subjects’	 choices	 could	 either	 be	 affected	 by	 fixed	 decision	 noise	 (“Decision	 noise”	model	

family;	M1-3,5)	or	 the	decision	noise	might	vary	 trial-by-trial	 as	a	 function	of	 the	estimated	

volatility	of	the	stimulus-outcome	probabilities	(“Volatility”	model	family;	M4,6).	

	

Perceptual	model:	the	Hierarchical	Gaussian	Filter	

The	HGF	is	a	hierarchical	model	of	learning,	which	allows	for	inference	on	an	agent’s	beliefs	

(and	their	uncertainty)	about	the	state	of	the	world	from	observed	behavior	(Mathys	et	al.,	

2011)	and	has	been	used	by	several	recent	behavioural	and	neuroimaging	studies	on	different	

forms	 of	 learning	 (Iglesias	 et	 al.,	 2013;	Diaconescu	 et	 al.,	 2014,	 2017;	Hauser	 et	 al.,	 2014;	

Vossel	et	al.,	2014;	Schwartenbeck	et	al.,	2015;	Lawson	et	al.,	2017;	Powers	et	al.,	2017).	The	

model	proposes	 that	 agents	 infer	on	 the	 causes	of	 the	sensory	 inputs	using	hierarchically-

coupled	belief	updates	that	evolve	in	time	as	Gaussian	random	walks	where,	at	any	given	level,	

the	variance	(step	size)	is	controlled	by	the	state	of	the	next	higher	level	(Mathys	et	al.,	2011,	

2014).	A	standard	formulation	of	the	HGF	for	standard	binary	decision	making	tasks	includes	

three	levels,	where	the	first	(lowest)	level	encodes	the	probability	of	a	trial	outcome	(here:	

whether	a	stimulus	was	rewarded	or	not),	the	2nd	level	represents	the	tendency	of	a	stimulus	

to	 be	 rewarded	 as	 a	 continuous	 quantity	 (in	 logit	 space),	 and	 the	 3rd	 level	 represents	 the	

volatility	of	this	probability	(Fig.	3;	see	also	Mathys	et	al.,	2011).	

	

The	following	subject-specific	parameters	determine	how	the	above	states	evolve	in	time:	(i)	

!	determines	the	degree	of	coupling	between	the	second	and	third	level	in	the	hierarchy	("#	
and	"$)	and	the	degree	to	which	the	volatility	estimate	 influences	the	subject’s	uncertainty	
about	 the	stimulus-reward	probabilities;	 (ii)	%	represents	a	 constant	 (tonic)	 component	of	
the	log-volatility	of	"#,	capturing	the	subject-specific	magnitude	of	the	belief	update	about	the	
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stimulus-outcome	probabilities	that	is	independent	of	"$;	(iii)	&	is	a	meta-volatility	parameter	
and	determines	the	evolution	of	"$,	or	how	rapidly	the	volatility	of	the	associations	changes	
in	time.	Furthermore,	we	also	estimated	'$

()*+),	the	subject’s	initial	belief	about	volatility	of	

the	outcome	probabilities.	

	

A	key	notion	of	the	HGF	is	that	subjects	update	their	beliefs	about	hierarchically	coupled	states	

in	 the	 external	 world	 by	 using	 a	 variational	 approximation	 to	 intractable	 full	 Bayesian	

inference	(Mathys	et	al.,	2011).	The	update	rules	that	emerge	from	this	approximation	have	a	

structural	form	similar	to	RL,	but	with	a	dynamic	(adaptive)	learning	rate	determined	by	the	

next-higher	level	in	the	hierarchy.	Formally,	at	each	hierarchical	level	i,	predictions	(posterior	

means	'-
()))	on	each	trial	k	are	proportional	to	precision-weighted	PEs,	.-

())	(Equations	1	and	

2).	The	general	form	of	this	belief	update	(with	subtle	differences	for	categorical	quantities	at	

the	lowest	level)	is	the	product	of	the	PE	from	the	level	below	/-01
()) ,	weighted	by	a	precision	

ratio	2-
()):	

		

Δ'-
()) ∝ 2-

())	/-01
()) 	

	

(1)	

where																																					2-
()) = 789:;

(<)

79
(<) 	

(2)	

	

Here,	�=>01
(?) 	and	�>

(?)represent	estimates	of	the	precision	of	the	prediction	about	input	from	

the	 level	 below	 (e.g.,	 precision	 of	 sensory	 data)	 and	 of	 the	prediction	 at	 the	 current	 level,	

respectively	 (for	 details,	 see	 Mathys	 et	 al.,	 2011).	 This	 precision-weighting	 is	 critical	 for	

adaptive	 learning	and	emerges	naturally	 from	hierarchical	Bayesian	 formulations	 (Friston,	

2008;	Corlett	et	al.,	2010;	Mathys	et	al.,	2011;	Adams	et	al.,	2013;	Iglesias	et	al.,	2013).	Simply	

speaking,	 PEs	 have	 a	 larger	 weight	 (and	 thus	 updates	 are	 more	 pronounced)	 when	 the	

precision	of	 the	data	(input	 from	the	 lower	level)	 is	high,	relative	to	 the	precision	of	prior	

beliefs.	

	

Mean-reverting	HGF	

The	 standard	 HGF,	 described	 above,	 already	 allows	 for	 representing	 (and	 inferring)	 the	

precision	of	low-level	PEs	and	prior	beliefs	and	thus	offers	the	two	components	required	to	
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test	our	hypothesis.	We	can	finesse	this	model	further	by	using	a	variation	of	the	classical	HGF	

that	allows	for	inferring	on	drifts	in	a	subject’s	beliefs	towards	an	equilibrium	@	(essentially	
the	 equivalent	 of	 an	 Ornstein-Uhlenbeck	 process	 in	 discrete	 time).	 Here,	 we	 used	 this	

approach	 to	 examine	 the	 possibility	 that	 ARMS	 individuals	 might	 be	 characterised	 by	 a	

tendency	to	overestimate	the	volatility	of	the	environment,	which	would	further	enhance	the	

weight	(precision)	of	low-level	PEs	and	lead	to	an	inflation	of	uncertainty	about	probabilities	

over	 time.	As	described	 above,	 a	 scenario	of	 this	 sort	may	 lead	 to	 later	 compensation,	 for	

example	by	adopting	high-order	beliefs	with	 inappropriately	high	 certainty,	 and	may	 thus	

represent	a	risk	factor	for	delusion	formation.	

	

The	 equations	 describing	 the	 generative	model	 are	 summarised	 in	 Fig.	 3.	 Notably,	 in	 this	

model,	we	infer	on	both	the	subject’s	individual	starting	estimate	of	volatility,	'$
()*+),	as	well	

as	 a	 subject-specific	 parameter	@$ 	(see	 Supplementary	 Table	 1)	 that	 determines	 the	

equilibrium	value	to	which	the	subject’s	estimate	of	volatility	drifts	toward:	the	higher	this	

value,	the	more	uncertain	the	agent	tends	to	be	about	his/her	estimates	of	probabilities	in	the	

environment	over	time.	The	prior	on	@$	was	equivalent	to	the	prior	on	'$
()*+)	,	implying	that	

over	time,	beliefs	about	volatility	drift	towards	the	agent’s	prior.	In	other	words,	this	model	

assumes	that	the	agent	has	a	tendency	to	‘pull	back’	estimates	of	volatility	towards	his/her	

prior	expectations.	The	hypothesis	described	above,	that	ARMS	individuals	are	characterised	

by	enhanced	precision-weighting	of	low-level	PEs,	implies	that	either	the	estimated	precision	

of	sensory	input	is	abnormally	high	or	that	the	precision	of	beliefs	is	abnormally	low	(see	Eq.	

2).	In	the	context	of	our	task,	the	latter	corresponds	to	higher	uncertainty	about	cue-outcome	

contingencies	and	implies	that	learning	behaviour	should	be	characterised	by	an	upward	drift	

of	the	predicted	volatility,	'̂$
()),	over	time.	

	

Response	Model	

The	 response	model	 embodies	 a	 (probabilistic)	mapping	 from	 the	 agent’s	 beliefs	 to	 their	

decisions	 (Daunizeau	 et	 al.,	 2010).	 The	 probability	 that	 the	 subject	 behaves	 according	 to	

his/her	prediction	of	the	outcome	probabilities	was	described	by	a	sigmoid	function	(Eq.	3):	
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BCD()) = 1F'1
())G = '1

())H

'1
())H + C1 − '1

())G
H	

(3)	

	

Here,	�	represents	the	inverse	of	the	decision	temperature:	as	� →�,	the	sigmoid	function	
approaches	a	step	function	with	a	unit	step	at	b(?) = 0.5	(i.e.,	no	decision	noise).	As	described	
above,	we	considered	two	types	of	this	belief-to-response	mapping.	The	first	“Decision	noise”	

model	 family	 assumes	 constant	 decision	 noise;	 that	 is,	� 	becomes	 a	 subject-specific	 free	

parameter.	 By	 contrast,	 the	 “Volatility”	 response	model	 family	 proposes	 that	 the	 decision	

temperature	parameter	P	might	vary	trial-by-trial	with	the	estimated	volatility,	Q0RS(<) ,	such	
that	the	larger	the	volatility,	the	lower	the	(inverse)	decision	temperature	and	the	higher	the	

decision	noise	(see	Diaconescu	et	al.,	2014	for	details).	In	other	words,	the	more	stable	the	

stimulus	probabilities,	the	more	deterministic	the	participant’s	belief-to-response	mapping.	

	

Using	priors	over	the	model	parameters	based	on	previous	studies	with	similar	probabilistic	

learning	paradigms	 (Iglesias	et	 al.,	 2013;	Diaconescu	et	 al.,	 2014;	Supplementary	Table	1),	

maximum	a	posteriori	 (MAP)	estimates	of	model	parameters	were	obtained	using	the	HGF	

toolbox	version	3.0.	This	MATLAB-based	toolbox	is	freely	available	as	part	of	the	open	source	

software	package	TAPAS	(https://www.tnu.ethz.ch/de/software/tapas.html).	

	

Bayesian	model	selection	and	computational	regressors	

We	compared	the	full	set	of	resulting	models	M1-6	using	Bayesian	model	selection	(Stephan	et	

al.,	 2009b),	 to	 determine	 which	 combination	 of	 perceptual	 and	 response	 models	 best	

explained	the	behavioural	dataset	and	would	thus	optimally	inform	the	subsequent	analysis	

of	fMRI	data.	Based	on	the	model	space	outlined	above	(Fig.	2A),	a	total	of	six	different	models	

were	compared.	

	

From	 the	 winning	 model	 (Fig.	 2B),	 we	 extracted	 the	 trajectories	 of	 several	 trial-wise	

computational	quantities,	estimated	for	each	subject	individually:	(i)	the	prediction	about	the	

next	outcome,	(ii)	uncertainty	(Bernoulli	variance)	about	the	probability	of	the	next	outcome	

(‘1st-level	uncertainty’),	(iii)	their	belief	about	the	current	volatility	of	the	environment	('̂$
())),	

(iv)	their	absolute	precision-weighted	PE	regarding	the	outcome	on	a	given	trial	relative	to	

their	current	beliefs	about	 the	probability	of	 that	outcome	(ε2),	 (v)	 their	belief	uncertainty	
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(‘2nd-level	 uncertainty’;	 σ2)	 and	 (vi)	 their	 signed	 precision-weighted	 PE	 regarding	 the	

perceived	volatility	of	the	outcome	on	a	given	trial	relative	to	their	current	belief	about	that	

volatility	(ε3).	Each	of	these	trajectories	was	then	used	as	a	regressor	(parametric	modulator)	

in	the	single-subject	fMRI	analyses	described	below.	

	

Behavioural	analysis	

We	 subjected	 the	 MAP	 estimates	 of	 the	 winning	 model	 to	 one-way	 analysis	 of	 variance	

(ANOVA)	assessments,	 in	order	to	 test	 for	differences	 in	decision	and	 learning	parameters	

between	ARMS	individuals	and	healthy	controls.	Our	hypothesis	described	above	implies	that	

@$	itself	 and/or	 the	meta-volatility	volatility	parameter	&	would	be	 significantly	greater	 in	
the	 ARMS	 group,	 suggesting	 that	 ARMS	 participants	 in	 contrast	 to	 controls	 perceive	 an	

increased	 environmental	 volatility	 over	 time.	 To	 examine	 group	 differences	 in	 perceived	

volatility	 induced	 by	 basic	 reversals	 of	 probabilistic	 contingency,	 we	 also	 performed	 a	 2	

(group:	ARMS,	control)	×	3	(phase:	stable,	reversal,	volatile)	mixed-factor	ANOVA	to	examine	

group-by-phase	interaction	effects	on	'̂$
())	(see	the	phases	outlined	in	Fig.	1B).	The	code	for	

behavioural	 modelling	 and	 analysis	 is	 accessible	 via	 GitLab	 at	

https://gitlab.ethz.ch/dandreea/apup.	

	

Image	acquisition	

Data	were	acquired	on	a	3	T	Magnetom	TIM	Trio	MRI	scanner	(Siemens,	Erlangen,	Germany)	

at	the	Max	Planck	Institute	for	Metabolism	Research,	Cologne.	As	the	task	was	partially	self-

paced,	a	slightly	different	number	of	volumes	was	acquired	for	each	subject	(mean	=	1217,	

approximately	40.5	minutes	experiment	duration).	T2*-weighted	echo-planar	 images	(EPI)	

sensitive	 to	blood-oxygenation	 level-dependent	 (BOLD)	 contrast	were	acquired	during	 the	

task	(TR	=	2	s;	TE	=	30	ms;	flip	angle	=	90°;	30	axial	slices;	in-plane	resolution	=	3.3	×	3.3	mm;	

slice	thickness	=	2.7	mm;	slice	gap	=	1.35	mm).	Magnetic	equilibration	was	accounted	for	via	

scanner	 automatic	 dummy	 removal.	 Images	 were	 acquired	 in	 parallel	 to	 the	 anterior-

posterior	commissural	plane.	Cardiac	and	breathing	rates	were	recorded	peripherally	during	

scanning.	Anatomical	T1-weighted	volumes	were	also	acquired	for	each	subject	(TR	=	1.9	s;	

TE	=	3.51	ms;	flip	angle	=	9°;	field-of-view	256	×	256	×	128;	voxel	size	1.0	×	1.0	×	1.0	mm).	
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fMRI	data	preprocessing	

Preprocessing	 of	 fMRI	 data	 was	 performed	 using	 FSL	 5.0	

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/;	Centre	for	Functional	Magnetic	Resonance	Imaging	of	

the	 Brain,	 University	 of	 Oxford,	 United	 Kingdom;	 Smith	 et	 al.,	 2004).	 This	 incorporated	

standard	steps	of	high-pass	filtering	(128	seconds	cut-off),	realignment	of	individual	volumes	

to	 correct	 for	 head	 motion,	 removal	 of	 non-brain	 tissue	 from	 the	 images	 and	 Gaussian	

smoothing	at	5	mm	full-width	half-maximum.	

	

Following	 these	 initial	 steps,	 we	 performed	 single-subject	 data	 ‘denoising’:	 artefact	

classification	and	rejection	based	on	single-session	spatial	independent	component	analysis	

(ICA)	and	machine	learning	techniques,	using	the	FSL	‘MELODIC’	and	‘FIX’	tools	(Beckmann	

and	Smith,	2004;	Salimi-Khorshidi	et	al.,	2014).	These	steps	were	incorporated	to	remove	any	

artefactual	signal	components	that	had	survived	conventional	realignment	and	physiological	

noise	 correction	 (where	 available;	 see	 next	 section).	 Details	 are	 provided,	 along	 with	 a	

description	of	spatial	normalisation	procedures,	in	the	Supplementary	Materials.	

	

fMRI	analysis	

Single-subject	 fMRI	 analyses	 were	 conducted	 using	 the	 general	 linear	 model	 (GLM)	 as	

implemented	 in	SPM8	(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/;	Wellcome	Trust	

Centre	for	Neuroimaging,	University	College	London,	United	Kingdom).	Base	regressors	for	

the	 task	were	 defined	 in	 terms	of	 the	 onsets	of	 the	 decision	 period,	which	 had	 a	 variable	

duration	(0-4	s)	and	the	outcome	period,	which	had	a	fixed	duration	(2	s).	The	decision	period	

regressor	 was	 accompanied	 by	 three	 parametric	 modulator	 regressors	 encoding	 for	 the	

subject’s	trial-wise	prediction	of	outcome,	uncertainty	at	the	1st	level	of	the	HGF,	and	expected	

volatility	at	the	3rd	level.	The	outcome	period	regressor	was	associated	with	three	parametric	

modulators	encoding	for	the	absolute	(unsigned)	outcome-related	precision-weighted	PE	(ε2;	

(see	Iglesias	et	al.,	2013),	uncertainty	at	the	2nd	level	(σ2)	and	the	volatility-related	precision-

weighted	PE	(ε3).	All	parametric	modulators	were	Z-normalised	(zero	mean,	unit	standard	

deviation)	before	entering	into	the	GLM.	Orthogonalisation	was	not	performed.	Temporal	and	

dispersion	derivatives	of	all	regressors	were	added	to	the	GLM	of	each	subject	 in	order	to	

account	 for	 variability	 in	 the	 onset	 and	width	 of	 hemodynamic	 responses.	We	 performed	

physiological	 noise	 correction,	 based	 on	 RETROICOR	 (Glover	 et	 al.,	 2000)	 of	 cardiac	 and	

respiratory	measurements	 (where	 available;	 8	 controls	 and	 7	 patients),	 using	 the	 PhysIO	
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toolbox	 in	 TAPAS	 (Kasper	 et	 al.,	 2017)	 to	 compute	 18	 additional	 regressors	 that	 were	

included,	 along	 with	 six	 realignment	 parameters	 representing	 head	 motion,	 as	 confound	

regressors	in	the	GLM	for	each	subject.	

	

Group	analyses	were	conducted	using	second-level	GLMs	as	implemented	in	SPM8.	Outcome-

related	contrast	estimates	from	the	subject-level	analysis	were	entered	into	a	2	(diagnostic	

groups:	ARMS	vs.	controls)	×	4	(outcome-related	variables:	base	regressor,	ε2,	σ2	(2nd-level	

uncertainty),	ε3)	analysis	of	covariance	(ANCOVA;	unequal	variance	assumed).	Age	and	sex	

were	included	as	covariates	of	no	interest.	Decision-related	contrast	estimates	were	entered	

into	a	similar	2	(group:	ARMS	vs.	controls)	×	4	(decision-related	variables:	base	regressor,	

prediction,	1st-level	uncertainty,	volatility	estimate)	analysis	of	covariance	(ANCOVA).		

	

Contrasts	of	interest	at	the	group	level	examined,	for	each	computational	regressor,	(i)	the	

average	activation	across	groups	(ARMS	+	controls)	and	(ii)	significant	differences	between	

groups	(ARMS	vs.	controls).	For	the	latter	analyses,	we	conducted	whole-brain	comparisons	

but	also	used	contrast-masking	to	restrict	the	analysis	to	regions	showing	significant	average	

effects	across	groups	 (note	 that	 these	are	orthogonal	 contrasts,	 thus	avoiding	problems	of	

non-independent	inference).	One	exception	to	the	latter	approach	was	made	in	the	analysis	of	

group	differences	in	ε3,	where	(iii)	we	restricted	analyses	to	an	anatomically	defined	mask	of	

the	 anterior	portion	 of	 the	 cingulate	 cortex	 (defined	 using	 the	 probabilistic	 volume	 in	 the	

Harvard-Oxford	atlas	provided	with	FSL	and	further	masked	by	a	study-specific	group-level	

EPI	 template).	 This	 a	 priori	 mask,	 which	 included	 the	 basal	 forebrain,	 was	 motivated	 by	

previous	observations	of	ε3-related	activation	 in	the	basal	 forebrain	and	anterior	cingulate	

cortex	(Iglesias	et	al.,	2013;	Diaconescu	et	al.,	2017;	see	also	Behrens	et	al.,	2007).	In	line	with	

the	 results	of	 the	 same	studies,	we	also	employed	 (iv)	 a	 similar	a	priori	 region	of	 interest	

analysis	of	ε2-	and	ε3-related	activations	using	a	mask	of	the	dopaminergic	midbrain.	For	each	

contrast,	we	corrected	 for	multiple	comparisons	across	the	respective	search	volume	–	 i.e.,	

whole	brain	for	(i),	functional	masks	for	(ii),	and	the	anatomical	mask	for	(iii)	and	(iv)	–	using	

family-wise	 error	 (FWE)	 correction	 at	 the	 cluster-level	 (p	 <	 0.05,	 with	 a	 cluster-defining	

threshold	of	p<0.001).	
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fMRI	association	with	clinical	variables	

We	 hypothesised	 that	 key	 clinical	 features	 of	 the	 ARMS	 might	 be	 associated	 with	 the	

representation	of	low-level	precision-weighted	PEs	in	brain	regions	that	were	(i)	activated	by	

these	learning	signals	and	(ii)	exhibiting	aberrantly	greater	such	activation	in	ARMS	relative	

to	healthy	 control	participants.	To	 this	 end,	 and	 in	 line	with	previous	 convergent	 findings	

indicating	a	 link	between	prefrontal	cortical	brain	changes	and	ARMS	(Benetti	et	al.,	2009;	

Allen	et	al.,	2012;	Cannon	et	al.,	2015),	we	selected	a	prefrontal	region	comprising	a	cluster	of	

differential	fMRI	activation	to	ε2	(see	Results)	in	which	to	examine	fMRI	contrast	beta-value	

associations	(via	Pearson	correlation)	with	SIPS	positive	symptoms	and	SIPS-GAF	measures,	

predicting	that	higher	ε2-related	activation	 in	this	region	would	be	associated	with	greater	

symptom	burden/severity.	
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Results	

	

Behaviour	

Initially,	we	applied	a	mixed-factor	ANOVA	with	between-subject	and	within-subject	factors	

to	directly	measurable	behaviour	(accuracy	and	reaction	times,	respectively)	in	order	to	test	

for	significant	main	effects	or	interactions	(2×3	factorial	design:	group	×	task	phase).	No	main	

effects	of	group	and	no	group	×	phase	interactions	were	found.	For	performance	accuracy,	we	

observed	a	main	effect	of	phase	(df	=	(2,	48),	F	=	5.59,	p	=	0.008	with	Greenhouse-Geisser	(GG)	

nonsphericity	 correction,	 effect	 size	TUVWX-VY# =	0.19),	with	 reduced	 performance	 in	 volatile	
compared	to	stable	phases	of	 the	task.	By	contrast,	 the	main	effect	of	phase	 for	RT	closely	

failed	to	reach	significance	(df	=	(2,	48),	F	=	3.11,	p	=	0.07	with	GG	correction,	TUVWX-VY# =	0.12).	
We	then	proceeded	to	computational	analyses	to	test	for	group	differences	in	latent	variables	

underlying	learning	and	decision-making.	

	

Behavioural	modelling	

Bayesian	model	 selection	gave	a	 clear	 result,	 showing	 that	 the	mean-reverting	HGF	with	a	

response	 model	 incorporating	 volatility	 mapping	 (M6)	 was	 more	 likely	 to	 explain	 task	

behaviour	than	any	other	model	type	(Fig.	2B).	A	summary	of	parameters	from	the	inversion	

of	 this	winning	model	 is	provided	for	both	groups	 in	Table	1.	 Importantly,	model	selection	

results	 were	 equivalent	 in	 both	 groups,	 allowing	 for	 a	 direct	 comparison	 of	 parameter	

estimates	 across	 groups.	 Group	 average	 belief-updating	 trajectories	 computed	 from	 the	

winning	model	M6,	are	depicted	in	Figs.	S1	and	S2.	

	

We	 investigated	 group	 differences	 in	 the	 parameters	 that	 (i)	 were	 well	 recovered	 from	

simulations	and	(ii)	particularly	impacted	learning	about	volatility	and	thus	the	precision	of	

high-order	beliefs.	While	we	did	not	observe	any	group	differences	for	the	meta-volatility	&	
parameter	(df	=	(1,	25),	F	=	0.54,	p	=	0.47,	TUVWX-VY# =	0.02),	we	found	a	significant	difference	in	
the	mean-reversion	 equilibria	 values	@$ .	 Relative	 to	 controls,	 ARMS	 individuals	 exhibited	

reversion	 to	 significantly	higher	 equilibria	 levels	 (group:	df	 =	 (1,	 25),	 F	 =	4.29,	 p	=	 0.049,	

TUVWX-VY# =	0.15;	Fig.	4A).	This	effect	remained	significant,	whether	or	not	the	single	participant	
in	 the	 ARMS	 group	whose	 diagnosis	 failed	 to	 be	 upheld	 at	 follow-up	 (and	who	was	 thus	

excluded	from	the	between-group	fMRI	analyses)	was	included.	From	Figs.	S1	and	S2,	one	can	
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observe	that,	in	contrast	to	controls,	the	belief	trajectories	for	the	estimated	volatility	extend	

to	higher	levels	in	ARMS	compared	to	controls,	consistent	with	the	group	differences	in	the	

MAP	estimates	of	@$.		

	

Second,	we	investigated	group	×	task	phase	interaction	effects	on	the	phase-specific	averages	
of	predicted	environmental	volatility,	or	'̂$,	following	probabilistic	contingency	reversals,	by	
performing	a	mixed-factor	ANOVA	with	between-subject	and	within-subject	factors	(with	GG	

nonsphericity	correction).	We	found	a	significant	group-by-phase	interaction	effect	(df	=	(2,	

48),	F	=	5.71,	p	=	0.025,	TUVWX-VY# =	0.19;	Fig.	4B),	suggesting	that,	in	comparison	to	controls,	
ARMS	individuals	display	a	significantly	larger	increase	in	perceived	environmental	volatility	

following	the	first	probability	reversal.	We	also	found	a	main	effect	of	phase	(df	=	(2,	48),	F	=	

41.68,	p	<	0.001,	TUVWX-VY# =	0.71),	 reflecting	 significant	 increases	 in	perceived	 volatility	 for	
both	groups	with	 increases	 in	 the	volatility	of	the	task	schedule.	 Importantly,	 these	mixed-

factor	ANOVA	results	remained	significant,	whether	or	not	the	single	participant	in	the	ARMS	

group	whose	diagnosis	failed	to	be	upheld	at	follow-up	was	included.	

	

A	number	of	our	model	parameters	were	estimated	based	on	participants’	choice	behaviour.	

We	also	examined	whether	their	actual	values	could	be	recovered	from	synthetic	data.	Thus,	

we	simulated	responses	based	on	all	participants’	MAP	parameter	estimates,	and	then	fitted	

the	model	to	those	simulated	responses.	The	results	of	the	parameter	recovery	are	included	

in	 Fig.	 S3.	 Several	 parameters	 could	 be	 recovered	 well	 from	 the	 data:	 The	 second-level	

parameters	encoding	tonic	(%)	and	phasic	(!)	aspects	of	volatility	and	third-level	parameters	
determining	the	dynamics	of	the	volatility	trajectory,	including	the	equilibrium	point	@$	and	

the	meta-volatility	parameter	&	were	 recovered	 from	 the	data	well.	By	 contrast,	 the	 initial	
value	 on	 the	 volatility	'$

()*+)	,	the	 initial	 variance	 on	 the	 volatility	\$()*+) ,	 and	 the	 inverse	
decision	noise	parameter	P	could	not	be	recovered	from	the	data	well.	

	

fMRI	

When	pooling	across	both	groups,	we	found	that	the	computational	regressor	associated	with	

the	precision-weighted	outcome	PE	signal	(ε2)	activated	a	set	of	bilateral	cortical	regions	(Fig.	

5A),	similar	to	previous	analyses	of	the	same	type	of	PE	from	a	sensory	learning	task	(Iglesias	

et	al.,	2013).	More	specifically,	the	nine	clusters	forming	this	network	were	located	bilaterally	

in	inferior	parietal	cortex,	anterior	insula,	ventrolateral	prefrontal	cortex	(vlPFC)	extending	
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also	into	right	dorsolateral	prefrontal	cortex	(dlPFC)	and	superior	frontal	cortex	(spanning	

superior	and	middle	frontal	gyri),	as	well	as	in	a	region	of	left	cerebellum	(p	<	0.05,	whole-

brain	 cluster-level	 FWE-corrected,	 see	Methods;	 Table	 2).	 An	 additional	 region	 of	 interest	

analysis,	using	an	anatomically	defined	a	priori	mask	of	 the	midbrain	(Bunzeck	and	Düzel,	

2006;	Iglesias	et	al.,	2013)	revealed	no	significant	activation	in	this	region.	

	

In	 an	 additional	 analysis	 step,	 the	whole-brain	 corrected	 activation	 pattern	was	 used	 as	 a	

functionally	defined	mask	to	restrict	the	subsequent	analysis	of	group	differences	in	ε2	(group-

by-PE	 interactions)	 to	regions	showing	a	main	effect	of	ε2	(note	that	 the	two	contrasts	are	

orthogonal	 and	 thus	 do	 not	 cause	 non-independence	 problems	 for	 inference).	 We	 found	

significantly	greater	activation	(small	volume	FWE-corrected	p	<	0.05)	by	ε2	in	ARMS	patients,	

relative	to	controls,	 in	areas	of	 left	superior	 frontal	cortex	and	left	anterior	 insula	(Fig.	5B;	

Table	 2).	 A	 distinct	 set	 of	 regions	 also	 survived	 whole-brain	 correction	 for	 this	 contrast,	

revealing	additional	group	differences	in	the	left	vlPFC	(some	overlap	with	the	pooled	whole	

group	region	encoding	ε2),	precuneus,	dlPFC,	frontal	insulo-opercular	cortex,	right	superior	

frontal	cortex	and	right	anterior	insula	extending	into	orbitofrontal	cortex	(OFC;	Fig.	5B;	Table	

2).	An	additional	 region	of	 interest	 analysis	 focussing	on	 the	 same	a	priori	midbrain	mask	

described	above	similarly	revealed	no	significant	group	differences	in	activation.	Although	no	

significant	 outcome	 phase	 activation	 was	 found	 at	 the	 whole-group	 level	 for	 2nd-level	

uncertainty	(σ2),	this	variable	activated	a	region	of	the	left	fusiform	gyrus	significantly	more	

in	ARMS	than	in	controls	(whole-brain	cluster-level	FWE-corrected;	p	=	0.030,	peak	t	=	5.44;	

x	=	-28,	y	=	-58,	z	=	-10;	82	voxels).	

	

Under	 whole-brain	 FWE-correction	 for	 multiple	 comparisons,	 a	 number	 of	 whole-group	

average	and	group	difference	(controls	>	ARMS)	effects	were	found	for	the	precision-weighted	

probability	PE	(ε3),	which	informs	updates	of	beliefs	about	volatility	(Table	2).	At	the	whole-

group	level,	ε3	significantly	activated	regions	of	the	bilateral	posterior	cingulate	cortex	(PCC)	

and	the	left	parahippocampal	gyrus	(Fig.	6A;	Table	2).	The	group	contrast	‘ε3:	controls	>	ARMS’	

revealed	a	more	widespread	difference	in	the	representation	of	volatility-related	precision-

weighted	 PEs	 in	 four	 additional	 regions,	 not	 overlapping	 with	 the	 whole	 group	 average,	

comprising	 regions	of	 left	 vlPFC,	 frontopolar	 cortex,	 supramarginal	gyrus/temporoparietal	

junction	and	right	OFC	extending	into	anterior	insula	(Fig.	6B;	Table	2).	Furthermore,	within	

our	a	priori	anterior	cingulate	cortex	mask,	the	subgenual	cingulate	gyrus	(Fig.	6B)	displayed	
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significantly	greater	activation	to	ε3	in	controls	than	in	ARMS	patients	(small	volume	FWE-

corrected,	p	=	0.038,	peak	t	=	4.99;	x	=	-2,	y	=	16,	z	=	-24;	37	voxels).	In	addition,	an	exploratory	

region	of	 interest	analysis	using	the	aforementioned	midbrain	mask	revealed	a	 trend-level	

cluster	(small	volume	FWE-corrected)	of	group	differences	in	encoding	(ε3:	controls	>	ARMS)	

in	the	left	substantia	nigra/ventral	tegmental	area	(SN/VTA)	of	the	midbrain	(p	=	0.075,	peak	

t	=	3.54;	x	=	-2,	y	=	-22,	z	=	-20;	5	voxels;	Fig.	6B).	

	

Finally,	when	pooling	across	both	groups	we	found	that	the	predicted	volatility	'̂$
())during	the	

decision	phase	of	the	probabilistic	reversal	learning	task	was	associated	with	BOLD	activation	

in	a	number	of	regions	 including	bilateral	cuneus,	precuneus,	superior	 frontal	cortex,	right	

superior	temporal	and	precentral	gyrus/central	sulcus	(Fig.	7A).	Contrast	masking	using	this	

whole	group	result	 to	examine	 for	group	differences	revealed	two	clusters	 in	anterior	and	

posterior	 superior	 temporal	 cortex	 displaying	 significantly	 greater	 volatility-related	

activation	in	controls	relative	to	ARMS	(Fig.	7B;	Table	3).	Two	additional	regions	from	a	whole-

brain	 corrected	 group	 difference	 contrast,	 comprising	 right	 visual	 cortex	 extending	 into	

precuneus	 and	 a	 left	medial	 cerebellar	 region,	 also	 showed	 significantly	 greater	 volatility-

related	modulation	of	decision-phase	activation	in	controls	than	in	ARMS	individuals	(Fig.	7B,	

Table	3).	Finally,	within	our	a	priori	midbrain	mask	we	found	two	regions	of	SN/VTA,	one	

significant	and	slightly	more	dorsal	anterior	(small	volume	FWE-corrected	p	=	0.046,	peak	t	=	

3.97;	x	=	4,	y	=	-22,	z	=	-18;	9	voxels;	Fig.	7B)	and	one	trend-level	and	more	ventral	posterior	

(p	=	0.075,	t	=	3.41;	-2,	-28,	-20;	5	voxels;	Fig.	7B)	that	showed	greater	encoding	of	predicted	

volatility	in	control	participants	relative	to	ARMS.	

	

fMRI	association	with	clinical	variables	

Following	our	hypothesis	that	key	clinical	features	of	the	ARMS	might	be	associated	with	the	

representation	 of	 low-level	 precision-weighted	 PEs	 in	 prefrontal	 regions,	 we	 extracted	

subject-level	fMRI	analysis	beta-values	of	ε2–related	activation	from	the	cluster	of	left	superior	

dlPFC	 that	 also	 displayed	 a	 significant	group	difference	 in	 this	 ε2	 encoding	 representation	

(ARMS	>	controls).	We	then	performed	Pearson	correlation	analysis	of	these	beta-values	with	

sub-scales	of	the	SIPS.	We	found	a	significant	negative	correlation	between	these	fMRI	data	

and	the	SIPS-GAF	measure	of	current	global	functioning	(r	=	-0.53,	one-tailed	p	<	0.05;	Fig.	

5C).	In	other	words,	the	higher	the	low-level	outcome-related	PE	encoding	in	dlPFC,	the	lower	
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the	current	functioning	and	thus	the	greater	the	symptom	burden	or	severity	at	the	time	of	

testing.	
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Discussion	

The	ARMS	is	characterised	by	attenuated	or	brief,	self-limiting	psychotic	symptoms,	including	

delusional	beliefs.	While	delusions	are	thought	to	reflect	the	endpoints	of	aberrant	learning	

and	inference	processes,	with	evidence	for	links	to	dopaminergic	mechanisms	in	full-blown	

schizophrenia	(Murray	et	al.,	2008;	Romaniuk	et	al.,	2010;	Gradin	et	al.,	2011),	it	is	not	clear	

whether	cognitive	disturbances	of	this	sort	are	already	evident	in	the	ARMS.	

	

The	specific	hypothesis	tested	in	this	paper	derives	from	concepts	of	hierarchical	Bayesian	

inference	that	play	a	prominent	role	in	theories	of	schizophrenia	(Stephan	et	al.,	2006,	2009a,	

Corlett	et	al.,	2009a,	2010;	Fletcher	and	Frith,	2009;	Adams	et	al.,	2013).	The	central	idea	here	

is	that	the	brain	instantiates	a	generative	model	of	its	sensory	inputs,	i.e.,	a	model	that	makes	

predictions	 about	 the	 environment	 and	 how	 its	 (hidden)	 state	 gives	 rise	 to	 sensations.	

Perceptual	 inference	 rests	 on	 inverting	 the	 model	 to	 determine	 the	 most	 likely	 cause	 of	

sensory	 input;	 learning	 serves	 to	 update	 beliefs	 such	 that	 future	 sensory	 inputs	 can	 be	

predicted	better.	Importantly,	under	very	general	assumptions,	these	belief	updates	have	a	

generic	 form:	 they	are	proportional	 to	prediction	error,	weighted	by	a	precision	 ratio	 that	

serves	 as	 a	 dynamic	 learning	 rate	 and	 balances	 the	 expected	 precision	 of	 low-level	 (e.g.,	

sensory)	input	against	the	precision	of	prior	beliefs	(see	Eqs.	1	and	2;	see	also	Mathys	et	al.,	

2014).	 The	 corollary	 from	 this	 general	 update	 rule	 is	 that	 unusually	 pronounced	 belief	

updates	can	arise	from	two	sources:	by	assigning	too	much	precision	to	sensory	inputs,	or	by	

overly	uncertain	prior	beliefs.	

	

This	 perspective	 allows	 for	 formalising	 the	 long-standing	 concept	 of	 “aberrant	 salience”	

(Kapur,	2003;	Heinz	and	Schlagenhauf,	2010)	and	predicts	that	the	initial	phase	of	delusion	

formation	could	be	equally	characterised	by	abnormally	high	 low-level	precision	(‘sensory	

precision’)	or	by	abnormally	low	precision	of	higher-level,	prior	beliefs	(‘belief	precision’).	As	

indicated	by	Eqs.	1	and	2,	these	two	factors	both	work	in	the	same	direction	by	elevating	the	

weights	of	PEs	and	thus	enhancing	belief	updates.	A	chronic	persistence	of	either	factor	could	

eventually	lead	to	highly	unusual	beliefs,	or	necessitate	a	compensatory	adoption	of	beliefs.	

For	example,	constant	surprise	about	events	in	the	world	might	eventually	only	be	resolved	

by	 the	 adoption	 of	 unusual	 and	 rigid	 higher-order	 beliefs	 (see,	 e.g.,	 Corlett	 et	 al.,	 2009b).	

Conversely,	high-order	beliefs	of	abnormally	low	precision	(Adams	et	al.,	2013)	render	the	
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environment	seemingly	unpredictable	(e.g.,	more	volatile)	and	boost	the	weight	of	lower-level	

PEs.	

	

Using	a	combination	of	computational	modelling	of	behaviour	and	fMRI,	this	study	examined	

these	 hypothetical	 abnormalities	 of	 learning	 and	 inference	 in	 non-medicated	 ARMS	

individuals,	 compared	 to	 control	 subjects.	 Firstly,	 computational	 modelling	 of	 behaviour	

indicated	 that,	 across	 the	 duration	of	 the	 task,	 ARMS	 individuals	 converge	 to	 significantly	

higher	levels	in	their	beliefs	about	volatility.	Secondly,	concerning	the	fMRI	results,	we	found	

evidence	for	both	aberrantly	enhanced	neural	encoding	of	low-level	precision-weighted	PEs	

and	aberrantly	attenuated	encoding	of	high-level	precision-weighted	PEs	in	ARMS	individuals.	

	

When	testing	for	the	average	effect	of	low-level	outcome-related	PEs	(ε2)	across	groups,	we	

found	 activation	 in	 a	 set	 of	 fronto-parieto-insular	 cortical	 regions,	 in	 line	 with	 previous	

findings	(Iglesias	et	al.,	2013;	Diaconescu	et	al.,	2017).	We	found	a	significant	group	difference	

in	 the	 degree	 of	 this	 activation	within	 lateral	 and	 superior	 frontal,	 insular	 and	 precuneal	

cortex,	 with	 ARMS	 individuals	 displaying	 increased	 ε2-related	 activation	 compared	 with	

controls.	 The	 possibility	 that	 this	 increase	 in	 ε2-related	 activation	 might	 be	 a	 prominent	

pathophysiological	 characteristic	 of	 the	 ARMS	 is	 supported	 by	 our	 observation	 that	 beta	

magnitudes	of	low-level	PE	encoding	in	left	superior	dlPFC	were	significantly	correlated	with	

more	 burdensome	 clinical	 scores	 of	 prodromal	 symptoms	 (SIPS-GAF).	 One	 mechanistic	

explanation	 for	 the	observed	overweighting	(in	terms	of	neural	encoding)	of	 low-level	PEs	

could	be	a	reduced	precision	of	higher-level	beliefs	in	ARMS	individuals;	in	other	words,	ARMS	

may	be	characterised	by	abnormal	estimates	of	environmental	uncertainty.	

	

Accordingly,	 with	 respect	 to	 activations	 by	 higher-level	 precision-weighted	 PEs	 (ε3)	 that	

inform	updates	of	volatility	estimates,	we	indeed	found	opposing	effects,	in	that	many	of	the	

same	 regions	 –	 dlPFC,	 vlPFC	 and	 insula,	 as	 well	 as	 additional	 effects	 in	 temporoparietal	

junction,	 the	 subgenual	 cingulate	 and,	marginally,	 the	 dopaminergic	midbrain	 –	 displayed	

greater	ε3–related	activations	in	controls,	relative	to	ARMS	individuals.	Taken	together,	our	

behavioural	and	fMRI	 findings	related	to	higher-order	beliefs	 therefore	suggest	 that	ARMS	

individuals	 may	 perceive	 the	 volatility	 of	 the	 environment	 differently	 from	 controls.	 The	

mechanism	underlying	 the	 observed	 constellation	 of	 an	 increased	 ‘set	 point’	 of	 estimated	

volatility	(according	to	the	behavioural	data)	and	reduced	activation	in	response	to	high-level	
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precision-weighted	PEs	(ε3)	that	inform	updates	of	volatility	estimates,	remains	to	be	clarified	

but	suggests	a	neurobiological	difference	in	the	processing	of	volatility.	

	

Collectively,	 our	 results	 indicate	 that	 associative	 learning	 under	 volatility	 in	 the	 ARMS	 is	

characterised	by	higher	estimates	of	environmental	volatility	(as	expressed	at	the	behavioural	

level)	and	overly	high	low-level	precision-weighted	PE	activations	(at	the	neural	level).	These	

effects	 may	 reflect	 an	 enhanced	 tendency	 towards	 belief	 updating	 and	might	 explain	 the	

empirically	observed	“jumping	to	conclusions”	bias	in	ARMS	individuals	(Broome	et	al.,	2007;	

Winton-Brown	et	al.,	2015).	More	generally,	this	cognitive	style	may	represent	a	risk	factor	

for	delusion	proneness.		

	

A	 final	 finding	 is	more	 difficult	 to	 interpret:	 in	 contrast	 to	 the	 behavioural	 results,	 which	

suggest	that	ARMS	individuals’	updates	of	volatility	were	converging	to	significantly	higher	

levels	than	those	of	the	controls,	fMRI	activations	by	volatility	estimates	were	generally	lower	

in	ARMS	individuals	during	decision-making.	These	relative	deactivations	by	volatility	were	

found	in	several	regions,	including	temporal	and	occipital	cortices,	as	well	as	the	midbrain.	It	

is	presently	not	clear	how	this	reduced	neural	representation	of	volatility	during	decision-

making	 is	 related	 to	 the	 behavioural	 evidence	 for	 increased	 volatility	 updating.	 Generally,	

however,	this	atypical	cortical	representation	of	volatility	does	support	the	general	notion	that	

processing	of	high-level	uncertainty	is	abnormal	in	ARMS	individuals.	

	

Our	study	has	some	strengths	but	also	several	important	limitations	that	deserve	mentioning.	

Regarding	 strengths,	 we	 implemented	 strict	 inclusion	 criteria	 that	 limited	 recruitment	 to	

those	ARMS	individuals	who	had	never	been	exposed	to	antipsychotic	medication.	Given	the	

potential	relation	of	low-level	prediction	errors	and	precision	to	dopamine	function,	this	step	

avoided	a	potentially	critical	confound.	Additionally,	we	took	several	steps	to	maximise	the	

sensitivity	of	our	analyses,	including	careful	correction	for	physiological	noise	based	on	ICA	

and	RETROICOR,	orthogonal	contrast	masking	and	a	priori	hypotheses	about	the	encoding	of	

specific	 computational	 signals	 in	 specific	 anatomical	 regions	 of	 interest.	 Concerning	

limitations,	while	not	markedly	lower	than	previous	fMRI	studies	on	the	ARMS,	which	have	

typically	examined	up	to	18	participants	(for	example,	see	Allen	et	al.,	2010;	Roiser	et	al.,	2013;	

Schmidt	et	al.,	2013;	Falkenberg	et	al.,	2015b;	Modinos	et	al.,	2015;	Ermakova	et	al.,	2018),	our	

sample	size	would	nonetheless	have	to	be	regarded	as	rather	small.	We	thus	emphasise	that	
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our	results	should	be	treated	with	caution	until	replicated	 in	additional	samples.	A	second	

issue	 is	 that	 the	 two	 groups	were	 not	 perfectly	matched	with	 regard	 to	 age	 and	 sex.	We	

controlled	for	these	differences	by	including	these	variables	as	covariates	of	no	interest	in	all	

group-level	 fMRI	analyses.	Finally,	 it	 is	also	notable	 that	 the	SIPS	clinical	questionnaire	we	

incorporated	 into	 our	 analyses	 is	 comprised	 of	 a	 number	 of	 different	 sub-scales,	 and	 the	

reported	significant	association	between	one	of	these	(SIPS-GAF)	and	our	fMRI	measures	of	

low-level	precision-weighted	PE	encoding	would	not	survive	Bonferroni	correction	for	testing	

all	scales.	It	should	thus	be	treated	as	a	preliminary	result	that	requires	confirmation	by	future	

studies.	

	

In	conclusion,	our	findings	contribute	to	advancing	a	mechanistic	understanding	of	cognitive	

abnormalities	during	the	ARMS.	Using	computational	modelling,	functional	neuroimaging	and	

clinical	 measures,	 we	 found	 that	 behaviour	 and	 brain	 activity	 of	 individuals	 at	 risk	 for	

psychosis,	relative	to	healthy	control	subjects,	shows	preliminary	evidence	for	two	potential	

mechanisms	–	increased	low-level	precision	(of	outcome	PEs)	and	greater	updates	in	high-

level	uncertainty	(i.e.,	volatility)	–	that	converge	in	their	impact	and	render	an	individual	more	

prone	 to	 adjusting	 high-order	 beliefs.	 In	 addition,	 we	 provide	 empirical	 evidence	 that	

individual	neural	representations	of	outcome-related	 learning	signals	 (low-level	precision-

weighted	 PEs)	 correlate	 with	 individual	 differences	 in	 symptom	 severity.	 These	 findings	

support	previous	proposals	 focusing	on	the	 importance	of	aberrant	salience	(Kapur,	2003;	

Roiser	 et	 al.,	 2013)	 and	 imprecise	 higher-order	 beliefs	 (Adams	 et	 al.,	 2013)	 for	 delusion	

proneness.	 The	 present	 results	 may	 usefully	 inform	 future	 investigations	 that	 employ	

computational	and	biophysical	models	 to	study	prediction	errors	and	uncertainty	 in	 larger	

ARMS	samples	and	examine	 the	 relevance	of	 these	quantities	 for	predicting	 conversion	 to	

psychosis	in	prospective	designs.	
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Table	1.	Summary	of	demographic,	behavioural	and	clinical	variables	(mean	±	s.d.).	

	 Measure	 ARMS	(n	=	13)	 Controls	(n	=	13)	

Demographics	 Age	 21.1	±	3.0	 29.2	±	3.2	

	 Sex	(M:F)	 9:4	 6:7	

Behavioural	parameters	 !	 1.07	±	0.20	 1.13	±	0.19	

	 %	 -5.48	±	1.74	 -5.05	±	2.27	

	 &	 0.30	±	0.04	 0.31	±	0.05	

	 �	 9.06	±	4.26	 7.03	±	2.91	

	 @$	 2.49	±	0.36	 2.21	±	0.35	

	 '$
()*+)	 1.29	±	0.57	 1.80	±	0.56	

	 	 	 	

Clinical	variables	 SIPS	positive	

symptom	sum	

6.85	±	3.05	 	

	 SIPS	negative	

symptom	sum	

11.62	±	3.66	 	

	 SIPS-GAF	 62.54	±	10.14	 	

	 SIPS	total	 31.23	±	6.47	 	
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Table	2.	Regions	showing	main	effects	(average	effect	across	groups)	and	group	differences	of	ε2-	(upper	panel)	and	ε3-related	(lower	
panel)	 activations	during	 the	outcome	phase.	Upper	panel:	 a	 contrast-masked	 (overlapping)	 subset	of	 the	ε2-related	 regions	display	
significant	 group	 differences	 (ARMS	 >	 controls;	 bold	 text).	 Additional	 regions	 displaying	 significant	 whole-brain	 corrected	 group	
differences	are	highlighted	in	italics	(non-overlapping)	or	bold	italics	(some	overlap).	Secondary	and	tertiary	values	denote	these	various	
group	difference	effects.	Lower	panel:	group	differences	in	ε3-related	activation	(controls	>	ARMS)	do	not	overlap	with	average	effects	
and	thus	are	shown	only	in	italics	in	distinct	rows	from	the	main	average	effects	across	groups;	dlPFC	=	dorsolateral	prefrontal	cortex;	
OFC	=	orbitofrontal	cortex;	PCC	=	posterior	cingulate	cortex;	TPJ	=	temporoparietal	junction;	vlPFC	=	ventrolateral	prefrontal	cortex;	R	=	
right	and	L	=	left	hemisphere.	
PE-associated	fMRI	

activations	

Brain	region	 Cluster	size	(2	

mm3	voxels)	

p	(FWE-corrected)	 t-value	of	peak	

voxel	

x,	y,	z	coordinates	(MNI)	

fMRI	activations	
associated	with	ε2	

L	inferior	parietal	 386	 <	0.001	 5.62	 -38,	-52,	42	
	 	 	 	 	

	 L	anterior	insula/	
opercular	cortex	

140;	31;	94	 0.002;	0.018;	0.016	 5.30;	3.95;	4.52	 -28,	22,	-2;	-32,	22,	0;		
-44,	18,	4	

	 R	inferior	parietal	 624	 <	0.001	 5.25	 40,	-46,	38	
		 L	medial	lateral	cerebellum	 103	 0.010	 5.07	 -38,	-60,	-42	
	 R	vlPFC	(and	dlPFC)	 175	 <	0.001	 4.86	 26,	50,	2	
	 R	anterior	insula/OFC	 156;	88	 0.001;	0.021	 4.71;	4.00	 30,	24,	-2;	32,	16,	-14	
	 L	superior	frontal	 157;	37	 0.001;	0.012	 4.48;	4.18	 -24,	0,	58;	-30,	2,	60	
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	 R	superior	frontal	 80;	74	 0.033;	0.046	 4.27;	4.94	 34,	8,	60;	16,	8,	48	
	 L	vlPFC	 91;	232	 0.018;	<	0.001	 3.94;	5.00;	 -36,	58,	6;	-48,	44,	-4	
	 L	precuneus	 133	 0.002	 4.57	 -18,	-82,	36	
	 L	dlPFC	 161	 0.001	 4.55	 -50,	12,	32	

fMRI	activations	
associated	with	ε3	

PCC	 724	 <	0.001	 5.16	 -2,	-54,	14	
L	parahippocampal	gyrus	 103	 0.010	 4.07	 -32,	-40,	-14	
L	vlPFC	 309	 <	0.001	 5.31	 -48,	46,	-4	

L	frontopolar	cortex	 136	 0.002	 4.94	 -18,	50,	18	

L	supramarginal	gyrus/TPJ	 73	 0.049	 4.71	 -56	-48,	12	

R	OFC/anterior	insula	 92	 0.017	 4.35	 32,	20,	-16	
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Table	3.	Upper	panel:	regions	showing	main	effects	of	estimated	volatility-related	activation	during	the	decision	phase,	a	subset	of	which	
display	contrast-masked	group	differences	(controls	>	ARMS;	bold	text);	Lower	panel,	in	italics:	additional	regions	showing	controls	>	
ARMS	differences,	identified	using	whole-brain	correction;	R	=	right	and	L	=	left	hemisphere.	
Activations	assoc.		

with	!"#
(%)		

Brain	region	 Cluster	size	

(voxels)	

p	(FWE)	 t-value	 x,	y,	z	

Decision-phase	
volatility	estimate	
controls	+	ARMS	

Bilateral	cuneus	 513	 <	0.001	 4.91	 8,	-84,	22	
R	posterior	superior	temporal	 131;	19	 0.002;	0.034	 4.80;	4.41	 62,	-18,	6;	58,	-34,	10	
Bilateral	precuneus	 181	 <	0.001	 4.36	 -2,	-54,	52	
R	precentral	gyrus/central	sulcus	 104	 0.009	 4.28	 28,	-30,	60	
Bilateral	superior	frontal	 170	 <	0.001	 4.16	 -8,	0,	58	
R	anterior	superior	temporal	 176;	18	 <	0.001;	0.037	 4.04;	3.78	 58,	2,	-4;	54,	6,	-8	

Decision-phase	
volatility	estimate	
controls	>	ARMS	

Right	visual/intracalcarine/precuneal	cortex	 210	 <	0.001	 4.99	 4,	-60,	2	

L	anterior	medial	cerebellum	 108	 0.007	 4.77	 -10,	-64,	-32	
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Figure	legends.	

	

Figure	1.	Probabilistic	reversal-learning	task.	The	behavioural	paradigm	consisted	of:	(A)	

within	trial,	a	pair	of	fractal	stimuli,	each	paired	with	a	reward	value,	requiring	a	decision	from	

the	 participant	 via	 button	 press	 in	 order	 to	 obtain	 the	 reward;	 (B)	 across	 trials,	 the	

probabilistic	contingency	(dotted	line)	of	which	of	the	two	fractal	cues	was	most	likely	to	yield	

a	 reward	 occasionally	 underwent	 ‘reversal’,	 the	 regularity	 of	 which	 engendered	 pseudo-

blocks	of	volatility	modulation	(blue,	violet	and	red	panels).	The	reward	values	within	trials	

were	entirely	independent	of	the	stimulus-outcome	contingencies.	

	

Figure	 2.	 Hierarchical	 structure	 of	 the	 model	 space:	 perceptual	 models,	 response	

models	 and	Bayesian	model	 selection.	 (A)	 The	models	 considered	 in	 this	 study	 have	 a	

factorial	structure	that	can	be	displayed	as	a	tree:	The	nodes	at	the	first	level	represent	the	

perceptual	model	 families	 (RW,	 2-level	 non-volatility	HGF,	 3-level	HGF,	 and	 3-level	mean-

reverting).	 The	 nodes	 at	 the	 second	 level	 represent	 the	 individual	models.	 Two	 response	

model	families	were	formalized	under	the	HGF	models:	the	mapping	of	beliefs-to-decisions	

either	 (i)	 depended	 dynamically	 on	 the	 estimated	 volatility	 of	 the	 learning	 environment	

(“Volatility	+	decision	noise”	model)	or	 (ii)	was	a	 fixed	entity	over	 trials	 (“Decision	noise”	

model).	(B)	Bayesian	model	selection	(BMS)	reveals	M6,	the	mean-reverting	HGF	perceptual	

model	in	combination	with	the	“Volatility”	decision	model,	to	best	explain	the	data.	

	

Figure	3.	Graphical	representation	of	the	winning	model	combination:	“mean-reverting	

HGF”	perceptual	model	and	the	“Volatility”	response	model.	 In	this	graphical	notation,	

circles	represent	constants	and	diamonds	represent	quantities	that	change	in	time	(i.e.,	that	

carry	a	time/trial	index).	Hexagons,	like	diamonds,	represent	quantities	that	change	in	time,	

but	additionally	depend	on	the	previous	state	in	time	in	a	Markovian	fashion.	x1	represents	

the	cue	probability,	x2	the	cue-outcome	contingency	and	x3	the	volatility	of	the	cue-outcome	

contingency.	Parameter	κ	determines	how	strongly	x2	and	x3	are	coupled,	ω	determines	the	

log-volatility	or	tonic	component	of	x2,	ϑ	represents	the	volatility	of	x3,	and	m	represents	the	

mean	of	 the	drift	 towards	which	x3	regresses	to	 in	 time.	The	response	model	parameter	β	

represents	the	inverse	decision	temperature	and	determines	the	belief-to-response	mapping.	
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Figure	4.	Behavioural	parameter	group	differences.	 (A)	Group	differences	 in	reversion	

equilibria	values	(!"):	larger	reversion	equilibria	values	were	detected	in	ARMS	compared	to	
controls	 (group:	df	=	 (1,	25),	F	=	4.29,	p	=	0.049,	$%&'()&*+ =	0.15);	 and	 (B)	Group-by-phase	
interactions	 of	 perceived	 environmental	 volatility	 ( .̂" ):	 A	 mixed-factor	 ANOVA	 (with	
Greenhouse-Geisser	nonsphericity	correction),	which	included	between-subject	and	within-

subject	 factors,	 found	 a	 significant	 main	 effect	 of	 phase	 and	 a	 significant	 group	 ´	 phase	

interaction	(phase:	df	=	(2,	48),	F	=	41.68,	p	=	1.113e-06,	$%&'()&*+ =	0.71;	group	x	phase:	df	(2,	
48),	F	=	5.71,	p	=	0.025,	$%&'()&*+ =	0.19).	See	main	text	for	details.	Jittered	raw	data	are	plotted	
for	each	parameter.	The	solid	red	line	refers	to	the	mean,	the	dotted	red	line	to	the	median,	

the	grey	background	reflects	1	SD	of	 the	mean,	and	the	coloured	bars	 the	95%	confidence	

intervals	of	the	mean.	‘*’	refers	to	group	differences	of	significance	level	p	<	0.05.	

	

Figure	5.	The	neural	representation	of	low-level/outcome-related	precision-weighted	

PEs	(ε2)	 in	ARMS	patients	and	healthy	controls.	 (A)	A	representative	map	of	significant	

(cluster-level	 FWE-corrected	 p	 <	 0.05)	 group-level	 (ARMS	 +	 controls)	 outcome-related	

activations	modulated	 parametrically	 by	 ε2,	 calculated	 via	 one-sample	 t-test	 (N	 =	 25)	 and	

overlaid	on	an	anatomical	image	calculated	as	the	mean	structural	MRI	of	the	whole	group.	

(B)	Significantly	greater	representation	of	ε2-related	activation	in	a	sub-set	of	these	and	other	

regions	 in	 ARMS	 patients	 relative	 to	 controls.	 Solid	 colour	maps	 of	 group	 differences	 are	

binarised	and	indicate	spatial	differences	between	whole-brain	cluster-level	corrected	results	

(red)	and	results	corrected	using	the	group	average	map	in	‘(A)’	for	contrast-masking	(dark	

blue).	Colour	bar	represents	t-statistics.	Axial	and	coronal	slices	are	orientated	in	line	with	

neurological	conventions	(R	=	right).	(C)	Significant	negative	correlation	in	ARMS	patients	(N	

=	 13)	 between	 a	 clinical	measure	 of	 current	 global	 functioning	 (SIPS-GAF)	 and	 ε2-related	

activation	(beta-values,	from	the	analysis	as	in	panel	‘A’)	in	a	region	of	left	(L)	superior	dlPFC	

also	showing	significant	group	differences	(ARMS	>	controls,	from	the	independent	analysis	

as	in	panel	‘B’).	

	

Figure	 6.	 Failures	 of	 monitoring	 and	 incorporating	 environmental	 uncertainty	

(volatility)	in	probabilistic	learning	by	ARMS	relative	to	control	individuals:	prediction	

error	 response.	 (A)	A	 representative	map	 of	 significant	 (cluster-level	 FWE-corrected	 p	 <	

0.05)	group-level	(ARMS	+	controls)	outcome-related	activations	modulated	parametrically	

by	precision-weighted	volatility-related	prediction	error	(ε3),	calculated	via	one-sample	t-test	
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(N	=	25)	and	overlaid	on	an	anatomical	image	calculated	as	the	mean	structural	MRI	of	the	

whole	 group.	 (B)	 Greater	 neural	 representation	 of	 high-level/volatility-related	 precision-

weighted	 PEs	 (ε3)	 during	decision	 feedback	 in	 healthy	 controls	 relative	 to	ARMS	patients,	

(main)	in	a	network	of	regions	identified	using	whole-brain	cluster-level	correction,	(inset)	in	

a	region	of	subgenual	anterior	cingulate	identified	under	correction	for	an	a	priori	anterior	

cingulate	mask	(bottom	centre)	and	in	a	left	midbrain	region	identified	under	correction	for	a	

dopaminergic	 midbrain	 mask	 (trend	 level	 p	 =	 0.075,	 bottom	 right).	 Double	 inset,	 green:	

representative	 sagittal	 slice	 depicting	 anatomical	 anterior	 cingulate	 cortex	 mask	 used	 as	

search	 volume	 in	 statistical	 analysis	 and	 multiple	 comparison	 correction.	 Colour	 bars	

represent	t-statistics.	

	

Figure	 7.	 Failures	 of	 monitoring	 and	 incorporating	 environmental	 uncertainty	

(volatility)	in	probabilistic	learning	by	ARMS	relative	to	control	individuals:	decision	

tracking.	 (A)	 A	 representative	 map	 of	 significant	 (cluster-level	 FWE-corrected	 p	 <	 0.05)	

group-level	 (ARMS	 +	 controls)	 decision-related	 activations	 modulated	 parametrically	 by	

estimated	volatility,	calculated	via	one-sample	t-test	(N	=	25)	and	overlaid	on	an	anatomical	

image	 calculated	 as	 the	 mean	 structural	 MRI	 of	 the	 whole	 group.	 (B)	 Greater	 neural	

representation	 of	 estimated	 volatility	 during	 probabilistic	 decision-making	 in	 healthy	

controls	relative	to	ARMS	patients,	 (main)	 in	a	network	where	solid	colour	maps	of	group	

differences	are	binarised	and	indicate	spatial	differences	between	whole-brain	cluster-level	

corrected	results	(red)	and	results	corrected	using	the	group	average	map	in	‘(A)’	for	contrast-

masking	(dark	blue),	and	(inset)	in	bilateral	midbrain	regions	identified	under	correction	for	

a	dopaminergic	midbrain	mask	(dorsal	cluster	p	<	0.05,	ventral	cluster	trend	level	p	=	0.075).	

Colour	bars	represent	t-statistics.	
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Figure 1| Probabilistic reversal-learning task
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Figure 2| Hierarchical structure of the model space: perceptual models, response 
models and Bayesian model selection
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Figure 3| Graphical representation of the winning model combination: “mean-reverting HGF” 
perceptual model and the “Volatility” response model
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Figure 4| Behavioural parameter group differences
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Figure 5| The neural representation of low-level/outcome-related precision-weighted PEs (ε2) 
in ARMS patients and healthy controls
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Figure 6| Failures of monitoring and incorporating environmental uncertainty (volatility) in 
probabilistic learning by ARMS relative to control individuals: prediction error response.
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Figure 7| Failures of monitoring and incorporating environmental uncertainty (volatility) in 
probabilistic learning by ARMS relative to control individuals: decision tracking.


