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Abstract

Although it is well appreciated that gene expression is inherently noisy and that
transcriptional noise is encoded in a promoter’s sequence, little is known about the
variation in transcriptional noise across growth conditions. Using flow cytometry
we here quantify transcriptional noise in E. coli genome-wide across 8 growth con-
ditions, and find that noise and gene regulation are intimately coupled. Apart from
a growth-rate dependent lower bound on noise, we find that individual promoters
show highly condition-dependent noise and that condition-dependent expression
noise is shaped by noise propagation from regulators to their targets. A simple
model of noise propagation identifies TFs that most contribute to both condition-
specific and condition-independent noise propagation. The overall correlation struc-
ture of sequence and expression properties of E. coli genes uncovers that genes are
organized along two principal axes, with the first axis sorting genes by their mean
expression and evolutionary rate of their coding regions, and the second axis sorting
genes by their expression noise, the number of regulatory inputs in their promoter,
and their expression plasticity.

Introduction

It is by now well established that isogenic cells growing in a homogeneous environment show
cell-to-cell fluctuations in gene expression, e.g. |[Elowitz et al, [2002; |Rao et all, 2002} Blake et all
2003}, [Raser and O’Sheal, [2005. This gene expression noise is not surprising from a biophysical
perspective given the inherent thermodynamic fluctuations in the molecular events underlying
gene expression and the small numbers of molecules involved. Much progress has been made
in understanding the sources and mechanisms underlying this stochastic heterogeneity in gene
expression, including fluctuations in transcription and translation, chromatin state, or cellular
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growth, e.g. |Golding et all 2005 Blake et all, 20006; [Tirosh and Barkail 2008; Raj and van
Oudenaardenl, 2008; [Sanchez et al, 2013} |Carey et al, 2013 [Shahrezaei and Margueratl, 2015}
Keren et all, [2015]

From a functional perspective, stochastic heterogeneity in gene expression, or more generally
in phenotypic state, has generally been seen as a mechanism that is complementary to gene regu-
lation. That is, whereas gene regulatory mechanisms allow cells to sense and respond to changes
in their environment in a targeted manner, stochastic heterogeneity provides an alternative ‘bet
hedging’ strategy enabling cells to deal with varying environments, e.g. [Bull, [1987; [Haccou and
Iwasal, [1995} [Kussell and Leibler| 2005} [Tanase-Nicola and ten Wolde, 2008} [Ackermann et all,
2008

However, in recent years evidence has been accumulating that gene regulation and gene ex-
pression noise may be inherently and intimately linked. For example, several studies have shown
that transcriptional noise varies significantly across genes and is to a substantial extent encoded
in the promoter sequence of a gene [Taniguchi et all, 2010; [Silander et all, 2012; |Carey et all, 2013;
Jones et al, 2014; Wolf et al, 2015, Indeed, whereas genes that are transcribed at a constant
rate will exhibit Poissonian fluctuations in mRNA levels, most genes exhibit significantly higher
levels of transcriptional noise. This increased transcriptional noise is generally understood to
result, at least partially, from the fact that binding and unbinding of transcription factors (TFs)
causes the promoter to stochastically switch between different states that are associated with
different transcription initiation rates. In this way, fluctuations in both the expression levels of
TFs and their binding to promoter regions are propagated to the their target genes and this noise
propagation has long been recognized as an unavoidable side effect of regulation [Thattai and van
Oudenaardenl, 2001; |Pedrazal, 2005} |Lestas et al, 2010} |[Lehner and Kaneko| 2011; [Bruggeman
and Teusink, 2018.

In a recent study we showed that, in E. coli, unregulated promoters have low expression noise
by default, and that the more regulatory inputs a gene has, the more noisy its gene expression
tends to be [Wolf et all 2015 A similar general association between highly regulated genes and
high expression noise has also been observed in eukaryotes [Blake et al, |2003; Newman et all
2006, and it has also been observed that co-regulated genes show correlated gene expression
fluctuations [Junker and van Oudenaarden|, 2012, All these observations suggest that noise
propagation may be a key determinant of gene expression noise.

If noise propagation is indeed an important determinant of gene expression noise, then ex-
pression noise should not be an intrinsic property of a gene, but should be condition-dependent.
That is, fluctuations in a promoter’s transcription rate depend on the stochastic binding and
unbinding of TFs and these in turn depend on average expression levels and fluctuations in
expression levels across cells |Becskei et all, [2005; (Carey et all, 2013} Sharon et al, 2014} |Jones
et all 2014, Thus, as TFs change their expression levels across conditions, the noise properties
of their target promoters should vary as well. However, so far there has been no systematic
investigation into how the noise properties of genes in F. coli vary across conditions.

We here systematically quantify how genome-wide gene expression noise in E. coli varies
across conditions by using flow cytometry in combination with a library of fluorescent transcrip-
tional reporters|Zaslaver et all,[2006|in 8 different growth conditions, including different nutrients,
stresses, and in stationary phase. We investigate how global noise properties vary across condi-
tions and quantify noise propagation by modeling the condition-dependent transcriptional noise
of each gene in terms of annotated regulatory sites in their promoters. Using this modeling we
infer which TFs are contributing most to expression noise in each condition, and identify several
TFs that consistently contribute to noise propagation in all growth conditions. Our analysis
shows that gene expression noise and gene regulation are intimately coupled. In particular, the
number of regulatory inputs of a gene, its expression plasticity, its gene expression noise, and
also the plasticity in its gene expression noise, are all highly positively correlated.
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Results

Signatures of noise propagation

Understanding how noise propagation from TFs shapes patterns of gene expression noise is
experimentally challenging as it is difficult to manipulate the activity of TFs in a predictable way.
However, the activities of TFs are generally expected to change between conditions. Therefore,
if noise propagation is a key determinant of gene expression noise, we expect noise levels across
different conditions to exhibit certain qualitative features, as illustrated in Fig. [T}
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Figure 1: Condition-dependent noise propagation. One mechanism by which noise propagation can
arise is from heterogeneous expression of transcription factors. A: Two independent transcription factors (TF)
represented each by an orange and a blue dot show differential single-cell expression distributions across two
conditions. TF1 (blue dots) is homogeneously expressed in condition 1, but not in condition 2, whereas TF2
(orange dots) shows the opposite behaviour. B: As noise propagation is a condition-dependent mechanism, in
the condition where a given transcription displays a heterogeneous expression, its targets will also show increased
variability. As shown in the illustration, since TF2 is noisier than TF1 in condition 1, its targets show also higher
noise than those of TF1, whereas in condition 2 the opposite occurs. C: Given the condition-dependent nature
of noise propagation, regulated promoters will show larger plasticity in noise across conditions than constitutive
ones, as the latter are not affected by condition-dependent noise propagation. Here we define noise plasticity as
the variance in noise levels of a promoter across conditions.

We consider a simple case scenario where two individual transcription factors show variable
activities, i.e. expression levels and DNA binding, both across conditions and across cells within
each condition. In condition 1, we assume TF 1 to be higher expressed on average and less
variable in expression across cells than TF 2, whereas in condition 2 the situation is reversed,
i.e. TF 2 has higher mean and less variability across cells (Fig. ) As a consequence of noise
propagation, the cumulative distribution of noise levels for the targets of TF 2 will be shifted
to higher values compared to the targets of TF 1 in condition 1, whereas in condition 2 the
situation will be reversed (Fig. ) In other words, targets of TFs that change their expression


https://doi.org/10.1101/795369
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/795369; this version posted October 7, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

distribution across conditions are expected to change their relative noise levels across conditions.

In addition, by comparing the relative noise levels of targets of different TFs, it should be
possible to infer which TFs are contributing most to noise propagation in a giving condition,
and below we develop a model approach to do this. Finally, because constitutively expressed
promoters are not affected by noise propagation, they are expected to change their noise levels
less across conditions than regulated genes that are subject to noise propagation. That is,
regulated genes are expected to have higher noise plasticity (Fig. )

Expression noise levels vary substantially across conditions and on average
decrease with growth-rate.

We used flow cytometry together with a library of fluorescent transcriptional reporters to mea-
sure gene expression distributions of E. coli promoters genome-wide across a set of 8 different
growth conditions (Fig. JJA). The library (Zaslaver et all 2006)) consists of most of E. coli’s in-
tergenic regions inserted upstream of a strong ribosomal binding site and a fast-folding GFP in
a low copy plasmid, and has already been used in several studies to study gene expression noise
in F.coli [Freed et all, 2008} [Silander et all, 2012} Wolf et all, 2015l As we have shown previously
Wolf et al, 2015 GFP levels of these reporters reflect transcriptional activity, since translation
and mRNA decay rates vary little across reporters because their mRNAs are almost identical.

The growth conditions (Suppl. Table were chosen to span a wide range of growth rates
(Suppl. Fig. , cell physiologies (Suppl. Fig. , and regulatory states. They consist of
M9 minimal media with three different carbon sources (0.2% glucose, 0.2% glycerol and 0.2%
lactose), two stresses (sub-MIC antibiotic: Ciprofloxacin 1.5 ng/ml + 0.2% glucose and osmotic:
0.4M NaCl + 0.2% glucose), two time points in stationary phase (after 16h and 30h of growth
in 0.2% glucose, respectively), and a MOPS synthetic rich media. We used microscopy to image
cells from each growth condition and found that, consistent with the known relationship between
growth-rate and cell physiology [Schaechter et all [1958, cell size generally increased with growth-
rate (Suppl. Fig. .

For each condition and each promoter, we used high-throughput flow cytometry to measure
GFP levels for thousands of single-cells. Apart from the two stationary phase conditions, all
measurements were taken during mid-exponential phase. In total we gathered 50’000 single-cell
measurements for each of the 1810 promoters in the library across 8 conditions, including some
conditions in replicate. As observed previously [Wolf et al| [2015], the fluorescence distributions
can be well fitted with log-normal distributions and we thus characterized each fluorescence
distribution by the mean and variance of log-fluorescence. To estimate mean and variance
we used a method that uses forward and side scatter to identify viable cells and fits the log-
fluorescence distribution by a mixture of a Gaussian and uniform distribution to remove possible
outliers (e.g. contaminants, non-growing cells) Galbusera et all, 2019.

Replicate measurements performed on different days were highly reproducible, with Pearson
correlations R? > 0.99 for the mean between replicates in all conditions, and correlations for the
variance ranging from R? = 0.85 to B2 = 0.95 (Suppl. Fig. [S4). In order to determine whether
the variability derived mainly from biological variation from day-to-day or from measurement
noise, we performed a time-course experiment where we repeatedly measured the same culture
at different time points during exponential growth and found that both the mean and variance
measurements were extremely reproducible (Suppl. Figs. and . This indicates that the
differences we observed among replicates from different days mainly reflect biological variability
and not technical measurement errors. This also implies that genes exhibit more biological
variation in their noise levels across days than in their mean expression.

As an example, Fig. 2IB shows the variance as a function of mean for each promoter measured
in M9 minimal media + 0.2% lactose (see Suppl. Fig. for all conditions). Note that the
variance in log-fluorescence is equal to the square of the coefficient of variation (C'V?) whenever
fluctuations are small relative to the mean [Wolf et al|, 2015 This approximation applies in our
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Figure 2: Expression noise of native E. coli promoters under different growth conditions. A: For
each growth condition and FE. coli promoter, we used flow cytometry to measure the distribution of GFP levels
across single cells of the corresponding fluorescent reporter. The 8 growth conditions comprised synthetic rich
media, minimal media with different carbon sources, an osmotic and DNA damage stress, and two time points
in stationary phase. B: Mean (x-axis) and variance (y-axis) of log GFP levels for all promoters with expression
above a background level for growth in M9 0.2% lactose (see Suppl. Fig. for results in all conditions). The
blue line shows the fitted minimal variance as a function of mean expression and the corresponding noise floor a.
is indicated with an arrow. The insets show distributions of log-GFP levels for two example promoters. C: The
noise floor a. as a function of the growth rate in the respective condition (stationary phase at 30h not shown). The
line indicates a linear fit (with 0.95 confidence interval in grey) and the Pearson squared correlation coefficient
R? is also indicated. D: To compare noise of promoters with different means, we defined the noise level of a
promoter as the difference between its variance and the fitted minimal variance at its mean expression. Shown
are noise levels versus mean for promoters in M9 0.2% lactose. E: Noise level distributions of the full library in
each of the measured conditions. The horizontal lines indicate the medians. The vertical scale is clipped at 0.35
for better visibility (Suppl. Fig. has the full distributions).
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data, as the majority of promoters (~75% across all conditions) have a variance smaller than
0.3 (Suppl. Fig. [S7).

As has been observed in previous studies/Bar-Even et al,[2006; Newman et all, 2006} Taniguchi
et all, 2010; Wolt et al|, 2015] there is a clear lower bound on noise as a function of the mean
expression level of the promoter (Fig. ) As explained in the Material and Methods section,
we have previously shown [Wolf et al, 2015| that the functional form of the minimal variance as
a function of mean expression, equation , can be derived assuming that GFP variance is the
sum of two terms: one ‘multiplicative’ contribution with variance proportional to the square
of the mean expression, and one ‘Poissonian’ contribution with variance proportional to mean
expression. The former term, which we will refer to as the ‘noise floor’ a., corresponds to the
minimal variance for highly expressed promoters and likely results from global fluctuations in
transcription, translation, mRNA decay, and growth [Elowitz et al|, 2002} [Taniguchi et al, 2010k
This term is often referred to as an ‘extrinsic noise’ contribution. The Poissonian term, whose
magnitude we denote by b. and is often referred to as the ‘intrinsic noise’ term, could in principle
derive from intrinsic expression noise whose magnitude scales proportional to mean expression
Taniguchi et all, 2010; [Sanchez and Kondev], 2008. However, by comparing microscopy and flow
cytometry measurements we have recently shown that, at these expression levels, the component
b. derives almost entirely from the measurement noise of the flow cytometer |Galbusera et all
2019, As shown in Suppl. Fig. [S7] the same functional form describes the minimal variance in
all conditions and we estimated the noise floor a. at high expression in each condition.

Remarkably, we observed that the noise floor a. is an almost perfectly decreasing linear
function of growth-rate (R? = 0.96, Fig. ) Thus, the slower cells grow, the higher the minimal
cell-to-cell variability in gene expression. A similar anti-correlation between noise and growth-
rate has been previously observed in eukaryotes, but was proposed to derive from heterogeneity
in cell cycle stage [Keren et all [2015. However, our results show that this general anti-correlation
between noise and growth-rate also occurs in prokaryotes that do not have analogous cell cycle
stages.

In order to have a noise measure for each gene that does not systematically depend on its
mean expression, we defined the noise level N, of promoter p in condition ¢ as the difference
between its variance in log-fluorescence and the minimal variance at its mean expression level
(Materials and Methods equation and Fig. ) Figure shows the distribution of noise
levels N, in each of the conditions, sorted from high to low growth-rate. We see that not
only the noise floor, but also the distribution of noise on levels on top of this noise floor varies
substantially across conditions. Moreover, like the noise floor, both the median of the noise
levels Np. as well as the variability in noise levels increase as the growth-rate decreases, e.g.
the noise levels are lowest in synthetic rich conditions (p = 3 x 1073, Wilcoxon rank-sum test)
and highest at 30h of stationary phase (p = 5 x 107%, Wilcoxon rank sum test). That is, not
only do minimal noise levels increase as growth-rate decreases, the variability in noise levels
across genes increases as well. The only exception to this general trend is the osmotic stress
condition M9 + 0.4M NaCl, which has relatively low variability in noise levels Np. compared to
other conditions with similar growth-rate (Fig. ), even though its noise floor is not deviating
from the general dependence on growth-rate. These results show that growth-rate, and more
generally the physiological state of the cell has a major influence on the absolute noise levels.
However, in this work we will focus on how the relative noise levels of different promoters vary
across conditions.

Individual promoters show highly diverse changes in noise across conditions

If changes in noise levels across conditions were mostly driven by the overall physiology of the
cells, then we would expect different genes to exhibit coherent changes in noise across conditions.
For example, noise levels might rescale across conditions as a function of the mean expression of
the gene in the condition. In contrast, we observe that different promoters show highly diverse
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changes in their noise levels across conditions (Fig. [3)). Some promoters show consistently low
noise at either low or high mean expression (Fig. and B), some promoters show consistently
high noise that also strongly varies across conditions in a manner not correlated with mean
expression (Fig. and D), some promoters show only plasticity in mean (Fig. BE) or only
plasticity in noise (Fig. ), but many other patterns of behavior were observed. For example,
there are also promoters that show only low noise when the promoter has high mean (Fig. ),
or only low noise when the promoter has low mean (Fig. [BH).

Consistently low noise at roughly constant mean High noise with high mean plasticity
A At low expression B At high expression C Maintained high noise D Maintained high noise
12 ndh 1.2% rpsL 127 pitB 1.2-gadB

i

[
-
[

1

g 0.8- g 08" g 0.8- g 0.8-
b= - z - =z - b - I
U 06- U 0.6- ¢ 0.6- U 06- [ |
7] . ) . ) . | ) 3
=] ] o ] o ] =] ]
Z 0.4- P 0.4- zZ 0.4- P 0.4- +
02- 0.2- 0.2- 02- ¢
3 ® 3 Z 3
=] 0 - o—1 0
6 7 8 9 10 11 12 6 7 8 9 10 11 12 6 7 8 9 10 11 12 6 7 8 9 10 11 12
Mean log fluorescence (A.U) Mean log fluorescence (A.U)
Plasticity in only mean or noise Other example patterns
E Expression plasticity F Noise plasticity G High noise at low expression H Low noise at low expression
Low noise at high expression High noise at high expression
12 ilve 1.2-serw 1.2- lacz 1.2-glgs
1: 1: 1: 1:
g 08- 3 08- g 08- g 08-
P 3 z - =z - + zZ 3
¢ 06- ¢ 06" ¢ 06" ¢ 06-
Q0 3 2 ] 2 3 Q0 3
<] 3 [e) ] o ] o ;;
Z 04- Z 04- Z 04- Z 04-
3 - ) - 3
0.2- 0.2- 0.23* 0.2- ’
S ¢ x ) : 1 ®
3 ] » ] 3
- > - L/ - -
0 Se 0 ] 0 o—¢
RN RN BN RN
6 7 8 9 10 11 12 6 7 8 9 10 11 1 6 7 8 9 10 11 1 6 7 8 9 10 11 1
Mean log fluorescence (A.U) Mean log fluorescence (A.U)
Condition
@ Synthetic Rich M9 +0.2% glucose ® M9 + 0.2% glycerol ® Stationary phase 16h
@ Ciprofloxacin 1.5 ng/ml M9 + 0.2% lactose ® M9 + 0.4M NaCl Stationary phase 30h

Figure 3: Individual promoters show diverse patterns of changes in noise levels across conditions.
Each panel shows the noise level as a function of mean across conditions (different colors) for an individual
promoter (in each panel the name of the immediately downstream gene is indicated). Error bars denote standard-
errors of the estimates. Each of the 4 pairs of panels indicate different types of behavior in mean and noise across
conditions, as described at the top of each pair of panels.

The growth media was not a predictor of how individual genes were going to change their
mean and noise. For example, while overall the whole library is shifted towards lower noise in
synthetic rich media, individual genes can show higher noise in this condition compared to other
conditions (e.g. Fig. , E, and G). We highlighted this particular condition as an example,
but the same observation applies to others. These observations indicate that global changes in
the cell physiology or in the expression level only cannot explain how the noise of a promoter
varies across conditions. This implies that there is a promoter specific source of noise shaping
gene expression variability across the environments.
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Noise propagation explains the condition-dependent noise levels of genes

That noise propagation from regulators to their targets may play an important role in setting
the relative noise levels across genes was suggested by previous analysis Wolf et al, 2015, where
we found there to be a substantial correlation between the noise level of a gene in M9 + glucose
and the number of regulatory inputs it has, i.e. the number of different TFs that are known to
regulate it according to RegulonDB [Santos-Zavaleta et all 2019, Here we find that this positive
association between the noise level of a gene and its number of regulatory inputs is observed in
all 8 conditions that we tested (Fig. , Suppl. Fig. Material and Methods). In addition,
since the noise levels of TFs likely vary across conditions (Fig. ), we expect genes with many
regulatory inputs to also show larger noise plasticity, i.e. higher variance in their noise levels
across conditions. As Fig. @B shows, we indeed observe that genes with more regulatory inputs
show larger noise plasticity compared to genes with few regulatory inputs or unregulated genes
(p < 3.7 x 10710, two-sided Welch’s t-test).

If noise propagation is a key determinant of the condition-dependent changes in the noise
levels of promoters, then it should be possible to explain some of these changes in terms of
the regulatory sites occurring their promoter sequences. We have previously developed a model,
called Motif Activity Response Analysis|Suzuki et al, 2009} [Balwierz et al,[2014) that models gene
expression patterns in terms of computationally predicted regulatory sites in promoters genome-
wide and ‘activities’ of regulators. Here we adapted this approach to model the condition-
dependent noise levels of promoters in terms of known regulatory inputs and ‘noise propagating
activities’ of regulators. In particular, we model the noise N,. of each promoter p in each
condition ¢ as a linear function of its known regulatory inputs S, and the unknown noise
propagating activities A,. of each regulator r in each condition c:

(Npe = No) = €+ > (Spr — 51) Are, (1)

where N, is the average noise level of all promoters in condition ¢, and e is a noise term that
is assumed Gaussian distributed with mean 0 and unknown variance. We used the RegulonDB
database [Santos-Zavaleta et al, [2019| to set a binary matrix of known regulatory inputs, i.e. Sy,
is 1 when promoter p is known to be regulated by TF r and 0 otherwise. In addition S, is the
average of Sy, across all promoters, i.e. the fraction of promoters targeted by regulator r.

For each condition ¢ we infer the noise propagating activities A,. by fitting the model
using a Gaussian prior on the activities A,. to avoid overfitting, which allows us to calculate
a full posterior probability distribution over the activities A,. |Balwierz et al, 2014 It should
be noted that this extremely simple linear model of course only provides a caricature of the
complex interactions between TFs and promoters, i.e. we ignore the number, positioning, and
affinities of the binding sites, the potential interactions between binding sites for different TFs,
the non-linear dependence on TF concentrations, and so on. We thus do not expect that this
simple model will accurately predict the expression noise of each promoter across the conditions.
Rather, the main aim is to test whether noise propagation can explain a significant fraction of
the variation in noise levels across promoters, and to identify which TFs are most responsible
for noise propagation in each condition.

As shown in Fig. (grey bars), a substantial fraction of the variance in noise levels in each
condition, i.e. between 9% and 29%, can be explained by the simple model of equation (I). To
confirm the significance of these fits we fitted the same model to data in which rows of the noise
matrix N, were randomly shuffled, i.e. the association between regulatory inputs and noise
levels were randomized, and observed that the fraction of explained variance on the randomized
data was always much lower (Fig. , yellow bars).

Apart from estimating the noise propagating activities A,. of each regulator r in each con-
dition ¢, the model calculates an error bar § A,. for each of these activities and Suppl. Fig.
shows, for each condition, all TFs for which the noise propagating activity was larger than
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Figure 4: Condition-dependent noise propagation features. A: There is a positive association between
number of regulatory inputs and noise level. We sorted promoters by their average noise N, across the 8 conditions
and calculated the mean (y-axis) and standard error (grey area) of the average number of known unique regulatory
inputs of all promoters with noise above N,, as a function of N, (x-axis). B: Promoters with many regulatory
inputs show larger noise plasticity than unregulated ones. Shown is the cumulative distribution of the variance in
noise of each promoter across the 8 conditions for promoters without known regulatory inputs (blue), 1 or 2 known
regulators (yellow), and 3 or more known regulators (red). C: Fraction of Explained Variance (FOV, %) by the
adapted Motif Activity Response Analysis model (y-axis) in each of the 8 conditions (x-axis) after running it in
two modes: on the original dataset (grey bars) and on a randomizeddataset (yellow bars). Randomized data were
generated by shuffling the association between regulatory inputs and expression noise multiple times and shown
is the average FOV value obtained -+ /- standard error. D: Table of transcription factors predicted by the model
as significant condition-specific noise propagators (with A,. > dA,.). E: Average noise propagation strengths
(A,, y-axis) and their error bars (§A,, vertical lines) of the strongest 6 noise-propagators (with A, > §A,.), sorted
by significance (z,, x-axis), that consistently contribute to explain noise levels in all 8 conditions.
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its error-bar, i.e. A,. > 0A,.. We first focused on TFs that contributed to noise-propagation
in a highly condition-specific manner. As shown in Fig. D, there were 5 TFs that had signifi-
cant noise propagating activity in only 1 condition. For example, the TF LexA contributed to
noise propagation only in the sub-MIC ciprofloxacin condition. LexA is a repressor of the SOS
response genes which responds to DNA damage by auto-cleaving on recA polymers that form
on DNA double-strand breaks [Giese et al], 2008, Indeed, it is known ciprofloxacin can induce
DNA damage and induce the SOS response [Phillips et aol, [1987. In particular, since we em-
ployed ciprofloxacin at a concentration well below the minimal inhibitory concentration, DNA
damage likely only occurred in a subset of the cells, leading to heterogeneity in lexA activity
across the cells. A second example of a condition-specific noise propagating TF is ArcA, whose
activity was only significant in M9 + 0.4M NaCl. ArcA is a general regulator that controls the
aerobic/anaerobic expression of respiratory proteins and diverges metabolism into fermentation
Salmon et all, 2005l It is known that under salt stress major adaptations in metabolism occur
and fermentation products increase |Arense et all, |2010, which is consistent with heterogeneous
activity of ArcA in these conditions. Third, we found that FIhDC, the master regulator of
flagellar biosynthesis [Guttenplan and Kearns|, 2013, was contributing to noise propagation only
in early stationary phase, i.e after 16h of growth on 0.2% glucose. It is known that flagellar
synthesis has a peak in expression during late exponential phase and decreases shortly after
entry in stationary phase [Amsler et all, [1993] Since the 16h condition is a transition between
late exponential growth and entry into stationary phase, it seems plausible that some cells had
entered growth arrest and were no longer expressing components of the flagellar machinery, while
others had not yet transitioned. Fourth, the TF CytR was found to contribute to noise prop-
agation only in late stationary phase. CytR regulates genes involved in nucleoside uptake and
utilization [Sernova and Gelfand, 2012 and it was recently found that mutations in CytR have a
fitness advantage during long term stationary phase |Kram et all 2017, which was hypothesized
to result from an increased ability to import and use nucleosides that occur in the stationary
phase environment due to cell death. Heterogeneity in CytR activation late in stationary phase
is consistent with this functional role. Finally, the TF Fur, which regulates genes involved in
iron homeostasis [Vassinova and Kozyrev], 2000, had significant noise propagating activity only in
the M9 + 0.2% lactose condition. In contrast to the other four cases, we do not have a obvious
biological interpretation for why Fur activity might be especially heterogeneous during growth
on lactose.

In addition to these condition-specific noise propagators, it is noteworthy that many of the
most significant noise propagators were found in multiple conditions (Suppl. Fig. . To
identify regulators that were consistently contributing to noise propagation in all conditions
we calculated, for each regulator r, its average noise propagating activity A, averaged over all
conditions (Fig. and Material and Methods). The most significant noise propagating factor
was H.NS, a general transcriptional repressor that regulates around 5% of all E.coli promoters.
It belongs to the family of 'nucleoid associated’ proteins, acting as a histone-like molecule, by
binding to curved DNA and inhibiting transcription [Dorman) [2004. It is noteworthy that, in
eukaryotes, histone positioning plays an important role in determining noise levels [Tirosh and
Barkail, [2008; [Cairns|, 2009, although the gene regulatory mechanisms are too different between
prokaroytes and eukaryotes to imply a direct mechanistic link between these observations.

The second most significant noise propagating TF is Sigma38 (rpoS), which is considered
the central regulator of gene expression in stationary phase and under environmental stress, as
it interacts with the RNA polymerase and activates genes involved in the overall stress response
and genes required to survive long periods of food starvation and growth arrest [Tanaka et al,
1993; [Landini et all, [2014. It has been established that, in contrast to rich media, rpoS levels
in minimal media (the basis of 7 of our 8 conditions) are also high during exponential phase,
although the molecular mechanisms behind these differences in rpoS activity are unclear Dong
and Schellhorn| [2009. Interestingly, it has been reported that in a mutant strain unable to
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produce ppGpp, noise levels in a set of synthetic genes were significantly reduced in stationary
phase compared to a WT strain |(Guido et al, 2007, This observation is in line with the prediction
of Sigma38 playing an important role in shaping genome-wide expression noise, as ppGpp is an
"alarmone’ responsible for regulating genes upon entry into stationary phase Hauryliuk et all, 2015
and promoters regulated by Sigma38 require ppGpp for induction [Kvint et all,[2000. Moreover, it
was recently shown that rpoS activity is heterogeneous among single cells in M9 glucose |[Patange
et al, 2018|

Two further significant noise propagators are CRP and PhoB. CRP is a global regulator of
genes involved in carbon source catabolism and its activity has been proposed to reflect carbon
source influx|You et al,|2013. PhoB regulates the response to inorganic phosphate (Pi) starvation
and binds to the DNA as a dimer after being phosphorylated by a histidine kinase (PhoR) under
Pi limited conditions [Santos-Beneit| 2015, We hypothesize that, in our growth conditions, both
carbon source influx and Pi concentration are sufficiently limiting that there are significant cell-
to-cell fluctuations, leading to fluctuations in the activities of CRP and PhoB. We also note that
it has previously been observed that promoters associated with carbon metabolism regulation
are overrepresented among high noise promoters [Silander et al, 2012.

Finally, the two last factors we find to be significantly contributing to noise propagation
across all conditions (GadX and GadW), belong to a family of regulators involved in the response
to acid stress [Tucker et al, [2003. The appearance of these factors may also be explained by our
experimental setup. Oxygen levels in microtiter plates can easily become limiting and this
oxygen deprivation leads to production of fermentation products Salmon et al, 2005, even when
oxygen is still present [Basan et al, 2015, Fermentation products are known to acidify the
medium |[Kleman and Strohl, 1994, which can activate the response to acid stress in some cells.
Moreover, the fact that we find GadX and GadW as noise propagators is in accordance with
a recent publication, where it was shown that heterogeneous expression of the gadBC operon
(heavily regulated by GadX and GadW) correlated with single-cell survival to high acid induced
by an antibiotic [Mitosch et all, [2017]

Together our results show that noise propagation by TFs plays a major role in shaping noise
levels across genes, and that TFs have different noise propagating activities in each condition,
leading to highly condition-dependent noise levels across genes.

Gene features are organized along two major axes reflecting average expres-
sion and regulation

We have shown that, through noise propagation, gene regulation and gene expression noise are
intimately coupled, such that highly regulated genes tend to be more noisy and also vary their
noise levels more across conditions. We next set out to understand how regulation and expression
noise relate to other properties of genes on a genome-wide scale. Previous analysis of gene
features has uncovered that, on a genome-wide scale, genes are organized along a one-dimensional
axis that relates evolutionary rates, codon bias, and gene expression level Drummond et all, 2005,
20006}, Drummond and Wilke| [2008; [Koonin|, 2011}, i.e. highly expressed genes tend to have strong
codon bias and slowly evolving coding regions, whereas lowly expressed genes tend to have weak
codon bias and evolve more rapidly. To investigate how gene regulatory and expression noise
properties relate to other gene features we collected a set of features for E. coli genes on a
genome-wide scale from the literature including the absolute expression levels at both the RNA
Taniguchi et al, 2010| and protein level Wang et all, 2012, sequence properties such as codon
bias and evolutionary rates at both synonymous and nonsynonymous sites [Drummond and
Wilke], 2008 and the number of regulatory inputs of each gene [Santos-Zavaleta et all, 2019, We
then complemented these features with gene regulatory annotations and gene expression features
that we measured here including mean expression level, expression plasticity across the 8 growth
conditions, mean expression noise, and noise plasticity across the 8 growth conditions.

In total we gathered 10 different gene features and then calculated an overall normalized
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Figure 5: PCA analysis of the genome-wide structure of gene features. A: Relative contribution of 10
gene features to the first PCA component, sorted from top to bottom. The features in bold together account for
94% of the vector. In green are expression measurements obtained from previous studies, sequence features are in
blue, and features measured in this study are in red. B: As in panel A, but now for the second PCA component.
C: Correlation structure of the features contributing to the first PCA component. Negative correlations are in
blue and positive correlations in orange. D: As in panel C but now for the second PCA component.
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covariance matrix C' of correlations between these features, i.e. with C;; the squared Pearson
correlation between features ¢ and j. We then performed Principal Component Analysis (PCA)
of the matrix C to characterize the overall genome-wide correlation structure of these gene
features. As shown in Suppl Fig. the first two principal components capture significantly
more of the total variance than the other 8 components, and more than 50% of the total variance.
That is, genes are largely organized along two major PCA axes in the 10-dimensional space of
gene features. The first PCA axis sorts genes by their absolute gene expression and evolutionary
rate (Fig. ) That is, 94% of the weight along this first PCA component is accounted by mean
RNA and protein levels, codon bias, and evolutionary rates at synonymous and nonsynonymous
sites (Fig. ) and, while the absolute expression levels and codon bias are all positively
correlated with each other, the evolutionary rates are negatively correlated with these features
(Fig. ) That is, this first PCA axis recovers the previously observed organization of by their
absolute expression levels, codon bias, and evolutionary rates [Drummond et al, 2005, [2006;
Drummond and Wilke] |2008; [Koonin| 2011l

Strikingly, the second PCA axis is almost entirely oriented along features associated with
gene regulation and gene expression noise. That is, 94% of the vector’s weight is accounted for by
gene expression noise, noise plasticity, plasticity in mean expression, and number of regulatory
inputs (Fig. ) Moreover, these four features are all positively correlated with each other (Fig.
). That is, this second PCA axis organizes genes by their regulation and expression noise. On
one end of this axis are constitutively expressed genes that do not change their mean expression
level across conditions, and have low noise in all conditions, whereas on the other end of the
axis are highly regulated genes that are highly plastic in expression, and have high and varying
expression noise across conditions. This result not only further confirms that gene regulation
and expression noise are intimately coupled on a genome-wide scale, it also shows that these
gene regulatory features are varying independently of the absolute expression and evolutionary
rate features of the first principal axis.

Discussion

Although it is now well-established that gene expression is an inherently noisy process, so far
little is known in bacteria about how noise levels of genes vary across growth conditions. Here we
used high-throughput flow cytometry in combination with a library of fluorescent transcriptional
reporters to quantify expression noise of E. coli promoters genome-wide. The general picture
that emerges from our study is that the expression noise of a given gene in a given condition
is the sum of two separate contributions: a minimal amount of noise that derives from global
physiological fluctuations and that is approximately equal for all genes, and a highly gene- and
condition-specific component that is due to noise propagation from regulators to their targets.
Constitutively expressed promoters only exhibit the physiological ‘noise floor’ in each condition,
and the more regulated a gene is, the more additional noise from noise propagation it exhibits,
and the more variable this additional noise is across conditions.

We observed that the noise floor is itself significantly varying across conditions. In partic-
ular, the noise floor systematically decreases with the growth-rate of the cells, and is highest
in stationary phase (Fig. . Both its dependence on growth-rate, and the fact that this noise
floor appears to equally affect all genes, strongly suggest that the noise floor is driven by global
physiological fluctuations. However, it is currently unknown what physiological fluctuations
most contribute to this noise floor. Fluctuations in chromosome copy number, polymerase con-
centration, ribosome and charged tRNA concentrations, mRNA decay rates, and fluctuations in
growth-rate itself, may all contribute to determining the noise floor. To gain further understand-
ing which fluctuations set the noise floor, and why the noise floor decreases with growth-rate,
will likely require quantitative time course data, for example from approaches that combine
microfluidics with time-lapse microscopy [Wang et all, [2010; [Kaiser et all, 2018
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Our results show that, in addition to this noise floor, each gene exhibits additional expression
noise due to noise propagation. This additional noise is not only highly condition-dependent, but
different genes show highly diverse behaviors of noise across conditions (Fig. . In addition, the
more regulatory inputs a gene has, the higher its noise levels tend to be, and the more variable
its noise levels across conditions. The intimate relationship between expression noise and gene
regulation was further underscored by a global analysis of the correlation structure of a diverse
set of gene features. We found that E. coli genes are broadly organized along two independent
axes in the space of sequence, evolutionary, and gene expression features. While the first axis
organizes genes by evolutionary rate and absolute expression level, with low expression and fast
evolving genes on one end, and high expression and slow evolving genes on the other, the second
axis organizes genes by regulation and expression noise. Here constitutively expressed genes
with consistently low expression noise occur on one end of the axis, while highly regulated genes
with high expression plasticity, high noise, and high noise plasticity, occur at the other end of
the axis.

To identify which TFs are most responsible for noise propagation in each condition we
adapted a simple linear model that we previously developed for modeling gene expression in
terms of regulatory sites in promoters |[Balwierz et all, 2014, to model gene expression noise in
terms of known regulatory inputs and noise propagation activities of TFs. This analysis showed
that, in spite of the simplicity of the model, a significant fraction of the variance in expres-
sion noise can be explained by noise propagation and we identified both a number of TFs that
propagate noise in only a specific condition, and a number of TFs that appear to significantly
contribute to noise propagation in all conditions. Among these latter ubiquitously noise propa-
gating TFs are the histone-like TF H.NS, the stationary phase sigma factor Sigma38, the global
carbon and phosphate regulators CRP and PhoB, and the Gad TFs involved in acid stress. We
strongly suspect that these ubiquitous noise propagating TFs reflect aspects that were shared
between all our growth-conditions, i.e. batch culture growth in microtiter plates.

Although our simple linear noise propagation model captures a significant amount of the
variation in noise levels, it only captures a modest fraction of the total variance in absolute terms.
This is not surprising. In order to make quantitatively accurate predictions of the expression
noise of promoters much more realistic models would be needed that take into account that
different TFs compete for binding at promoters, that binding rates depend on TF concentrations
in a non-linear manner, that interactions between bound TFs and RNA polymerase depend on
the relative positioning of sites, and so on. To develop such quantitative models one would
likely need more detailed data on the expression dynamics of different promoter architectures.
A particularly interesting question that such more detailed data might answer is whether the
noise propagation results mainly from fluctuations in TF concentrations across cells, or whether
the main source of noise propagation is the stochastic binding and unbinding of the TFs to the
promoters.

Materials and methods

Strains

All strains used in this study have been previously described [Zaslaver et all, 2006}, [Silander et al,
2012: each strain carries a transcriptional fusion of a given native F.coli promoter followed by
a strong ribosomal binding site and gfp-mut2 (a fast maturing GFP) on a low copy-number
plasmid (pUAG66 or pUA139 with pSC101 origin, ~ 5 copies per cell). The library contains a
construct for ~75% of all intergenic regions longer than 40bp in FE.coli’s genome flanked by 50
(resp. 150bp) of the downstream (resp. upstream) sequence in order to include most regulatory
interactions found on the chromosome.
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Growth conditions

The strains library was stored at -80°C in LB + 7.5% glycerol in microtiter plates. Individual
plates were inoculated into fresh media of interest (200 p1) and incubated for two overnights in the
same condition before fluorescence measurements. Dilutions (~1/2000) between overnights were
done using a 96 Solid Pin Replicator (V&P, 409). The library was grown in a total of 8 different
conditions: minimal media, M9 (ImM CaCly, 100uM MgSos, 1 x M9 salts [Sigma M6030])
supplemented with either 0.2% glucose (w/v), 0.2% glycerol (v/v), 0.2% lactose (w/v), 0.4M
NaCl (+ 0.2% glucose [w/v]) or 1.5 ng/ml ciprofloxacin (+ 0.2% glucose [w/v]); a MOPS based
synthetic rich media (Teknova, M2105) supplemented with 0.2% glucose, and two stationary
phase conditions, where plates were grown for either 16h or 30h in M9 minimal media + 0.2%
glucose (w/v). Note that optical density typically saturates after about 10 hours of growth in
these conditions (Suppl. Fig. [SI)).

All media, except the one containing ciprofloxacin, were supplemented with 50 pg/ml kanamyecin.
The overnights for the sub-MIC ciprofloxacin condition were done in M9 glucose 0.2%, and only
at the day of quantification ciprofloxacin was added. On the quantification day, cells were diluted
between 200 and 1000-fold depending on the condition (Supplementary Table and grown
until mid-exponential phase at 37°, shaken at 600rpm. Growth rates were estimated indepen-
dently for individual strains in each condition by monitoring the optical density (ODggg) every
90s during 15-25 hours at 37°C in a plate reader (Biotek Synergy 2). We defined the growth
rate as « as the slope of a straight-line fit of log(ODgno) against time.

To estimate cell sizes, a strain of the library containing a plasmid without promoter was
selected and grown as described. Cells were then placed on a 1% agarose pad and phase contrast
images were obtained with a Nikon Ti-E microscope using a 100x Ph3 objective (NA 1.45) and
an Hamamatsu Orca-Flash 4.0 v2 camera. Cell outlines were identified using a custom MATLAB
pipeline.

Flow cytometry quantification of fluorescence

We measured the distribution of GFP fluorescence levels in single cells using a FACSCanto 11
(BD Biosciences) with a high-throughput sampler (HTS), fluorescence excitation at 488 nm
and a 530/30 nm filter for emission. For each strain we collected 5 x 10% events. We used a
Bayesian procedure that removes outliers to extract the mean and variance of the log-fluorescence
distributions as described in |Galbusera et al, 2019, Briefly, we first fitted the 4-dimensional
signal distribution of forward and side scatter heights and widths by a mixture of a multi-
variate Gaussian and a uniform ‘background’ distribution. For each event, we then calculated
the posterior probability that it derives from the central multi-variate Gaussians, and all events
with lower than 50% posterior probability were removed. For the remaining cells, the logarithms
of the fluorescence signals (logarithm of the height of the peak) were fitted to a mixture of a
Gaussian and a uniform background distribution. That is, the probability of observing log-
fluorescence y has the form:

p _w=w? 1—p
P = 202 - 2
(y’/’L7O'7 p) mae + A Y ( )

where p and o2 are the mean and variance of the log-fluorescence distribution, p is the fraction
of cells deriving from the Gaussian, and A = ymax — Ymin 18 the range of observed log-fluorescence
values. Given n single-cell log-fluorescence measurements y1, ¥o, .. ., Y, for a given promoter in
a given condition, the likelihood is simply given by L(u, 0, p) = [[;; P(yi|p, o, p) and we fit p,
o, and p by maximizing this likelihood. The data processing method of |Galbusera et all, 2019 is
available as an R package at (https://github.com/vanNimwegenLab/vngFCM.git).

In order to assess reproducibility of the measurements, we measured a subset of the library
on multiple days and estimated means and variances of each promoter separately for each day
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(Suppl. Fig. . We defined the mean and variance of each promoter that was measured more
than once as the average over its replicates. For each of the individual promoters shown in Fig[3]
6 independent measurements were taken.

Time-course quantification of fluorescence

One of the plates of the library (95 strains) was grown in M9 + 0.4M NaCl during two overnights.
At the day of the quantification a 1/200 dilution was done in 1ml of fresh media in a 96 deep-well
plate (with 1 glass-bead per plate for better shaking). The plate was covered with a breathable
sealing film and grown at 37°, shaken at 600 rpm. At 9 consecutive time points after dilution
(after Oh, 1h, 2h, 3h, 5h, 6.5h, 8.5h, 10h and 11h), 100 pl of the culture was transferred into a
96-well plate and used for fluorescence quantification.

Minimal variance as a function of mean and noise estimation

We observe a clear lower bound on noise levels (variance of log-fluorescence) that depends on
the mean of expression. In previous work [Wolf et all, [2015| we derived a functional form for this
noise floor as a function of mean expression which takes into account that total fluorescence is
a sum of background fluorescence and fluorescence deriving from GFP, and that the variance
in GFP levels is a sum of a ‘Poissonian’ term that is proportional to mean fluorescence, and a
‘multiplicative’ term proportional to mean fluorescence squared. If we denote the background
fluorescence in condition ¢ by fyg.. and the average fluorescence of promoter p in condition ¢ by
(fp,c), the minimal variance in log-fluorescence takes the form

o () = (1~ <J;f§,f>>2 vy (- 3), ®)

where b, is the prefactor of the component of the noise proportional to the mean, and a. is the
prefactor of the noise proportional to the square of the mean.

We estimated the average background fluorescence in each condition from plasmids without a
promoter upstream of gfp-mut2 that were included in each individual plate. As the model breaks
down in the regime where promoters display fluorescence levels close to background fluorescence,
we only considered promoters with mean larger than 2 x f, . for further analysis. We fitted the
following parameters for the minimal variance in each condition:

Condition Qe be fvg,c Y0 of promoters above background
Synthetic Rich 0.015 410 180 40.0
Ciprofloxacin 1.5ng/ml 0.05 570 230 58.5
M9 glucose 0.05 530 220 54.6
M9 lactose 0.063 550 220 57.2
M9 glycerol 0.065 580 205 59.0
M9 0.4M NaCl 0.065 500 205 51.2

Stationary phase 16h 0.075 600 190 58.2
Stationary phase 30h 0.075 600 190 58.9

To obtain a noise level for each promoter that does not systematically depend on mean,
we defined the noise N, of promoter p in condition ¢ as the difference between the measured
variance and the fitted minimal variance:

Npe = 0pe = Tain (Fpe)) (4)
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Noise propagation features

We used the same promoter annotation as in Wolf et al. 2015, where the promoter fragments
had been re-annotated by mapping the primer pairs used to construct the library to the FE.coli
K12 MG1655 genome. From all measured promoters we were able to annotate 94% unambigu-
ously to an immediately downstream gene. We obtained all gene-TF regulation annotations
from RegulonDB [Santos-Zavaleta et al, 2019 and counted for each gene the number of unique
transcription factors known to regulate it.

We sorted all annotated genes by their average noise across all conditions (N,) and as a
function of a cut-off in Np7 we calculated the mean and standard-error of the number of regulatory
inputs of all genes with N, values above the cut-off. We also performed this analysis separately
in each of the conditions ¢, using the noise levels N, ass opposed to the averages (Suppl. Fig.
. As a measure of noise plasticity of each promoter p, we calculated the variance of the noise
levels N, across conditions.

Fitting noise in terms of regulatory inputs

To model noise in terms of regulatory inputs we adapted a method that was previously developed
in our group [Suzuki et al, 2009; Balwierz et all, 2014, called Motif Activity Response Analysis,
which models gene expression levels in terms of computationally predicted regulatory sites in
promoters and condition-dependent activities regulators using a linear model. As explained in
the main text, we model the noise N, of each promoter p in each condition c as a linear function
of the condition-dependent noise-propagating activities A,. of the regulators known to regulate
promoter p, i.e. equation ({1)).

The binary matrix of regulatory interactions S, was constructed using the RegulonDB data
Santos-Zavaleta et al, 2019, where S, = 1 when transcription factor r is known to target
promoter p, and Sy, = 0, otherwise. N, is normalized by subtracting the average noise N, in
the condition and S, is normalized by subtracting the average of S, over all promoters, i.e.
the fraction of promoters targeted by regulator r.

The noise term, which reflects the deviation between the measurements and our simple model,
is assumed to be Gaussian distributed with unknown variance. To avoid overfitting, the model
also includes a Gaussian prior over noise-propagation activities A,. that has mean zero and a
variance that is set using cross-validation. In particular, maximal posterior noise-propagation
activities A,. are inferred on 80% of the promoters, and the variance of the prior is set so as to
minimize the squared-error of the predictions on the remaining 20% of the promoters. Thus, a
different prior is fitted for each condition. As a simple measure of the quality of the fit, we used
the fraction of the total variance in the data that is explained by the model (FOV).

For each regulator and condition, we obtain the full posterior distribution over the noise-
propagation activity A,. and use the standard-deviation d A,. of this posterior as an error-bar
for the inferred activity A,.. In addition, we use the z-like statistic z,. = A,c/d A, as a measure
of significance of regulator r in condition c.

We defined the average noise-propagating strength A, of each regulator r as a weighted

average over the 8 conditions:
ATC

e s
A, = 0 o)
ZC 5A%C
and the corresponding error-bar § A, as
- 1
EC 6A%c
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Finally, the average significance z,. of motifs over all conditions was then estimated as:
- )
T
Note that, roughly speaking, z, corresponds to the number of standard-deviations the activity
of regulator r is away from zero on average.
To confirm the significance of our fits, we performed tests in which we randomly shuffied
the rows of the noise-level matrix Np., thereby randomizing the association between noise levels

and regulatory inputs. We fitted the model to this randomized data and found consistently low
FOVs (Figure [4C, yellow bars).

Zr

Principal component analysis

For each promoter we gathered a list of 10 features associated with the immediately downstream
gene using both the measurement in this study as well as previously published data. In particular
we obtained for each promoter:

1. Average RNA level (data taken from Taniguchi et all, 2010).

2. Average protein level (data taken from Wang et all, 2012).

3. Fraction of optimal codons (data taken from [Drummond and Wilke, [2008]).

4. Substitution rate at synonymous sites dS (data taken from Drummond and Wilke, 2008)).

5. Substitution rate at non-synonymous sites dN (data taken from |[Drummond and Wilke,
2008)).

6. Average of the mean in log-expression across conditions (this study).

7. Expression plasticity, i.e. variance of the mean in log-expression across conditions (this
study).

8. Average of the promoter noise across conditions (this study).
9. Noise plasticity, i.e. variance of the promoter noise across conditions (this study).
10. Number of regulatory inputs (data taken from Santos-Zavaleta et al, 2019).

Using these measurements, we calculated a covariance matrix containing all the variances
of each of these features across genes, and the covariances of each pair of features. Note that
not all features were available for all genes so that, for each pair of features, we estimated the
covariance from the set of genes for which both features were available. We then normalized
the covariance matrix by dividing each entry C;; by the square-root of the product of variances,
ie. Cjj = Rij = Cy;/4/CyCyj, turning it into a matrix of correlation coefficients. We then
performed PCA on this correlation matrix. Finally, for the first two principal components we
calculated what fraction of the principal vector’s length was accounted for by each feature.
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Supplementary information

Synthetic R-ich* same 2h 1/1000 1.59 +/-0.28 43 +/- 1.4
M9** + Ciprofloxacin 1.5 ng/ml (+ 0.2% glucose) M9 + 0.2% glucose 4h 1/200 0.69 +/- 0.07 2.7+/-1
M9** +0.2% glucose same 4h 1/200 0.67 +/-0.05 2+/-0.6
M9** + 0.2% lactose same 4h 1/200 0.58 +/-0.03 2.1+/-0.6
M9** +0.2% glycerol same Sh 1/200 0.5+/-0.11 1.6+/-0.5
M9** + 0.4M NaCl (+ 0.2% glucose) same 15h 1/500 0.37 +/-0.03 1.4+/-0.3
Stationary phase 16h (M9** 0.2% glucose) same 16h 1/200 X 1.3+/-0.4
Stationary phase 30h (M9** 0.2% glucose) same 30h 1/200 X X

* MOPS based. Commercially available (Teknova M2105)
** prepared as follows: ImM CaCl,, 100uM MgSo,, 1 x M9 salts (Sigma M6030), 50 pg/ml Kanamycin, dH20

Table S1: List of conditions: Description of the 8 environmental conditions in which the
library of native E.coli promoters|Zaslaver et al,[2006/has been grown. The chosen environmental
conditions comprised a MOPS based synthetic rich media, minimal media (M9) with different
carbon sources (glucose, lactose and glycerol), an osmotic and DNA damage stress (0.4M NaCl
and Ciprofloxacin 1.5 ng/ml both supplemented with glucose), as well as two time points in
stationary phase (16 and 30 hours of growth in M9 glucose).
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A Growth curves
Synthetic Rich Ciprofloxacin 1.5 ng/ml M9 + 0.2% glucose M9 + 0.2% lactose M9 + 0.2% glycerol M9 + 0.4M NaCl
0.01 n:86 n:92 n:22 n:5 n:92 n:90
Z /-
-2.51 '
— /
o [/
3 /
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B Growth rate distributions
Synthetic Rich Ciprofloxacin 1.5 ng/ml M9 + 0.2% glucose M9 + 0.2% lactose M9 + 0.2% glycerol M9 + 0.4M NaCl
251
mean+/-sd: mean+/-sd: mean+/-sd: mean+/-sd: mean+/-sd: mean+/-sd:
201 1.55+/-0.12 0.69+/-0.07 .67+/-0.05 0.58+/-0.03 0.47+/-0.08 0.38+/-0.03
2 154
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3
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Growth rate (h™)

Figure S1: Growth curves across conditions. A: ODgg (log-scale, y-axis) as a function of
time (in hours, x-axis). We measured ODg in individual strains growing in bulk at intervals of
90 seconds during 15 to 25 hours. The number of strains used per condition is indicated in each
panel. B: Density distribution of the estimated growth rates in each condition. The growth-rate
a was defined as the slope of a linear fit of log(ODgno) against time.
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Figure S2: Cell sizes distributions. A: Histograms of the distribution of single-cell areas
(um?, x-axis) in each condition. The insets in each condition show segmentation examples
together with the number of cells used to estimate the mean and standard-deviation of the
areas. B: Kernel-density estimates of the distribution of areas across all conditions (Areas
bigger than 12.5 pm? are not shown).
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Figure S3: Cell area as a function of growth rate. Mean cell area (in um?) as a function
of the growth rate (h~!) in all conditions except stationary phase 30h. Cross-hairs indicate

standard-deviations.
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Figure S4: Reproducibility of measured means and variances. A: Means (left-panel) and
variances (right-panel) of promoters (each represented by a black dot) measured on different
days. The Pearson squared-correlations are indicated in each panel. B: Reproducibility of

means (top panel) and variances (bottom panel) separately for each condition. Pearson squared
correlations are indicated in each panel.
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Figure S5: Reproducibility of measured mean fluorescences at different time-points
during growth. A: Correlations of mean expression levels for 95 promoters from the library,
measured at consecutive time points during growth in M9 + 0.4M NaCl (+ 0.2% glucose). The
time points range between Oh (freshly diluted culture) and 11 hours. The grey boxes on the
axes indicate the time points that are being compared. B: R? Pearson correlation coefficients
of measured mean expression levels for all pairs of timepoints.
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Figure S6: Reproducibility of measured fluorescence variances at different time-points
during growth. A: Correlations of variance in expression levels for 95 promoters from the
library, measured at consecutive time points during growth in M9 + 0.4M NaCl (+ 0.2% glucose).
The time points range between Oh (freshly diluted culture) and 11 hours. The grey boxes on the
axes indicate the time points that are being compared. B: R? Pearson correlation coefficients
of measured variances in expression levels for all pairs of timepoints.
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Figure S7: Means and variances of promoters from the library in all conditions. A:
Variance as a function of mean for all promoters measured in each condition. Each promoter is
represented by a black dot. The blue line indicates the predicted minimal variance as a function
of mean . The model breaks at fluorescence levels close to background (left of the vertical blue
dashed line), thus we only considered promoters above it. The number of promoters measured
per condition is annotated inside each panel. B: Noise-level Np. as a function of mean after
correcting for the mean-dependent noise floor, i.e. differences between measured variance and
minimal variance (Figure continued on next page).
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Figure S7: Means and variances of promoters from the library in all conditions. A:
Variance as a function of mean for all promoters measured in each condition. Each promoter is
represented by a black dot. The blue line indicates the predicted minimal variance as a function
of mean . The model breaks at fluorescence levels close to background (left of the vertical blue
dashed line), thus we only considered promoters above it. The number of promoters measured
per condition is annotated inside each panel. B: Noise-level Np. as a function of mean after
correcting for the mean-dependent noise floor, i.e. differences between measured variance and
minimal variance.
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Regulatory interactions were annotated from Regulon DB [Santos-Zavaleta et all 2019l
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Figure S10: Strongest noise-propagators in each condition. Each panel corresponds to one
growth condition and shows the inferred noise propagation strengths A,. for the transcription
factors for which A,. > dA,. in that condition. The TFs are sorted by their overall signifiance
zr. The condition is indicated above each panel together with the fraction of variance (FOV)
explained by the model.
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Figure S11: Principal component analysis of the 10 gene features. A: Fractions of the
total variance in gene features captured by each of the PCA components. Note that the first
two components together capture more than 50% of the variance. B: Projection of each of the
10 features on the first two PCA components. Expression levels from the literature are shown in
green, sequence features are shown in blue, and gene expression features measured in this study
are shown in red.
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