

1

2 **Class I histone deacetylase HDA-3 is required for full maintenance of locomotor ability**
3 **in *Caenorhabditis elegans***

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 Kazuto Kawamura and Ichiro N. Maruyama

20

21 ^aInformation Processing Biology Unit, Okinawa Institute of Science and Technology

22 Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan, 904-0495

23

24 ¹To whom correspondence may be addressed. Email: kkawamura@age.mpg.de or ichi@oist.jp

25

26 Short Title: HDA-3 maintains locomotor ability

27 Keywords: *hda-3*, *dys-1*, age-related locomotor impairment, BATH domain, CUB-like

28 domain

29 **ABSTRACT:**

30 Locomotor ability declines with old age. A person's capacity to maintain locomotor ability
31 depends on genetic and environmental factors. Currently, the specific genetic factors that
32 work to maintain locomotor ability are not well understood. Here we report the involvement
33 of *hda-3*, encoding a class I histone deacetylase, as a specific genetic factor that contributes
34 to the maintenance of locomotor ability in *C. elegans*. From a forward genetic approach, we
35 identified a missense mutation in HDA-3 as the causative mutation for progressive decline in
36 locomotor ability in one of the isolated strains. From transcriptome analysis, we found
37 downregulated expression of two clusters of genes on Chromosome II and IV in this strain.
38 Genes carrying CUB-like domains and genes carrying BATH domains were found on
39 Chromosome II and IV, respectively. Knockdown of CUB-like genes, *K08D8.5* and *dod-17*,
40 and BATH genes, *bath-1*, *bath-21* and *bath-24* led to a progressive decline in locomotor
41 ability. Our study identifies specific genetic factors that work to maintain locomotor ability
42 and reveals potential targets for delaying age-related locomotor decline.

43

44

45

46

47

48

49

50

51 **INTRODUCTION:**

52 Locomotor ability is a key determinant of quality of life in the elderly (Groessl *et al.* 2007).
53 Age-related declines in locomotor ability are predictors of loss of independence, depressive
54 symptoms, morbidity, and mortality (Trombetti *et al.* 2016). A combination of genetic and
55 environmental factors contribute to how well a person can maintain locomotor ability during
56 adulthood. Currently, the specific genetic factors that contribute to the maintenance of
57 locomotor ability are largely unknown. A better understanding of the genetic factors that
58 work to maintain locomotor ability may enable novel approaches to prevent or delay age-
59 related declines in locomotor ability.

60 In order to identify genetic factors that regulate adult locomotor ability, we previously
61 carried out a forward genetic screen for *C. elegans* mutants that show progressive declines in
62 adult locomotor ability (Kawamura and Maruyama 2019). Characterization of one of the
63 isolated strains led to the identification of a nonsense mutation in *elpc-2* and implicated the
64 Elongator complex and tRNA modifications as factors that regulate locomotor healthspan in
65 *C. elegans* (Kawamura and Maruyama 2019). Mutation in human ELP3, the catalytic subunit
66 of the Elongator complex, has been linked to amyotrophic lateral sclerosis which suggests the
67 evolutionarily conserved nature of the genetic factors that regulate locomotor healthspan
68 (Simpson *et al.* 2009; Bento-Abreu *et al.* 2018).

69 In the present study, we analyzed another strain, *ix241*, to identify other genes that
70 contribute to progressive decline in locomotor ability. In this strain, two notable mutations
71 remained after four backcrosses: a splice site mutation in *dys-1* and a missense mutation in
72 *hda-3* that leads to a glycine to glutamic acid substitution at the 271st amino acid (G271E) in
73 HDA-3. DYS-1 is the *C. elegans* ortholog of human Dystrophin, the causative gene that is
74 mutated in Duchenne and Becker muscular dystrophies (Hoffman *et al.* 1987; Bessou *et al.*

75 1998). HDA-3 is a *C. elegans* ortholog of human class I histone deacetylases HDAC1–3 (Shi
76 and Mello 1998). Surprisingly, mutation in *hda-3*, but not *dys-1*, contributed to progressive
77 decline in locomotor ability during adulthood. Downstream of the G271E mutation in HDA-
78 3, specific genes carrying CUB-like domains and genes carrying BATH domains are
79 transcriptionally repressed. Proper induction of CUB-like and BATH genes are required for
80 full maintenance of locomotor ability during adulthood.

81

82

83 MATERIALS AND METHODS:

84 Strains

85 *C. elegans* Bristol N2 strain was used as the wild type strain. Worms were cultivated at 20°C
86 on Nematode Growth Media (NGM) agar plates with *Escherichia coli* strain OP50 as a food
87 source (Brenner 1974). All strains used in this study are listed in Table S1.

88

89 Sanger sequencing

90 The target genomic region was amplified using PCR and purified using Wizard SV Gel and
91 PCR Clean-Up System (Promega, Madison, WI). The DNA sequence of the PCR fragment
92 was determined using cycle sequencing with BigDye v3.1 reagents (Applied Biosystems,
93 Foster City, CA). Sequencing products were purified by EtOH/EDTA precipitation.
94 Sequencing was performed by capillary sequencing using ABI3100 (Applied Biosystems).
95 Primers used for Sanger sequencing are listed in Table S2.

96

97 Whole-genome DNA sequencing

98 *C. elegans* DNA was sequenced using the MiSeq next-generation sequencing system
99 (Illumina, San Diego, CA) as previously described (Kawamura and Maruyama 2019).
100 Libraries for sequencing were prepared with Illumina TruSeq Library Prep Kit. Sequenced
101 reads were mapped using BWA software (Li and Durbin 2009). Mapped read files were
102 converted to bam format, then to pileup format with Samtools (Li *et al.* 2009). Variant
103 detection was carried out using VarScan and SnpEff (Blankenberg *et al.* 2010; Cingolani *et*
104 *al.* 2012; Giardine *et al.* 2005; Goecks *et al.* 2010; Koboldt *et al.* 2009). Mutation frequencies
105 were calculated and visualized using CloudMap (Minevich *et al.* 2012).

106

107 **Measurements of maximum speed and travel distance**

108 “Synchronized egg-laying” was used to raise a batch of worms of similar age. Five adult day
109 1 worms were placed onto an NGM plate with food, and allowed to lay eggs for 3 h. When
110 the offspring reached adult day 1, 15 worms were randomly picked onto a 6 cm NGM plate
111 without bacteria. After the worms moved away from the initial location with residual food,
112 worms were again moved onto a different NGM plate without bacteria. The maximum speed
113 and travel distance of worms were measured on the first, third, and fifth days of adulthood as
114 previously described (Kawamura and Maruyama 2019). R was used to make plots (Team
115 2015).

116

117 **CRISPR-Cas9 genome editing**

118 Targeted mutagenesis was carried out using CRISPR-Cas9 genome editing with single-
119 stranded oligodeoxynucleotide (ssODN) donors as previously described (Dokshin *et al.*
120 2018). First, a ribonucleoprotein complex was created by mixing together 0.5 μ L of 10 μ g/ μ L
121 Cas9 protein, 5.0 μ L of 0.4 μ g/ μ L of tracrRNA, and 2.8 μ L of 0.4 μ g/ μ L of crRNA (Target-

122 specific sequence: 5'-CCGAUUCACUGGCAGGAGAU-3') and incubating at 37°C for 10
123 min. Following incubation, 2.2 µL of 1 µg/µL ssODN, 2.0 µL of 400 ng/µL pRF4::rol-
124 6(*su1006*) co-injection marker, and 7.5 µL of nuclease free water was added to the mixture.
125 This mixture was then injected into the gonad of worms subject to genomic editing. F1
126 offspring that showed the roller phenotype were singled onto individual plates, and allowed
127 to lay eggs. Editing of the target sequence was checked by single worm PCR of the F1 worm,
128 followed by Sanger sequencing. ssODN sequences are listed in Table S3.

129

130 **RNA sequencing**

131 Worms were synchronized by placing ten adult day 1 worms onto an NGM plate with food,
132 and allowed to lay eggs for 3 h. At the L4 stage, worms were collected and washed with M9
133 buffer and placed on 9 cm NGM plates with 25 µM floxuridine (FUDR). On the third day of
134 adulthood, worms were collected with M9 buffer and RNA was extracted. Worms were
135 homogenized using Micro Smash MS-100R (Tomy Seiko, Tokyo, Japan). RNA was
136 extracted by the phenol-choloroform method using Trizol reagent (Thermo Fisher Scientific).
137 Sequencing was performed on the HiSeq platform (Illumina). For bioinformatics analysis,
138 reads were aligned using STAR (Dobin *et al.* 2013), sorting and marking duplicates were
139 done by Picard, and read counting was done by Featurecounts (Liao *et al.* 2014). EdgeR
140 (Robinson *et al.* 2009) and R (Team 2015) were used to create figures to visualize differential
141 gene expression.

142

143 **Quantitative PCR (qPCR)**

144 RNA was extracted by the phenol-choloroform method using Trizol reagent (Thermo Fisher
145 Scientific). cDNA was synthesized using SuperScript III with oligo-dT primers (Thermo

146 Fisher Scientific). qPCR was carried out with Luna Universal qPCR Master Mix (New
147 England Biolabs, Ipswich, MA) using StepOnePlus (Thermo Fisher Scientific).

148

149 **RNA interference**

150 The Ahringer RNAi library was used to reduce the expression of target genes (*F55G11.8*,
151 *K08D8.5*, *K10D11.1*, *F59H6.8*, *F59H6.9*, *B0047.3*). Frozen stocks of the RNAi bacteria were
152 streaked onto agar plates containing 100 µg/mL ampicillin. Single colonies of the RNAi
153 bacteria were cultured for 8 h at 37°C with vigorous shaking in lysogeny broth (LB)
154 containing 100 µg/mL ampicillin. 100 µL of bacterial culture was spread on NGM plates
155 with 50 µg/mL ampicillin and 1.0 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Plates
156 with RNAi bacteria were dried overnight with the lid on at room temperature (25°C). Adult
157 wild-type worms were placed on RNAi plates and allowed to lay eggs for 3 h. The locomotor
158 ability of the offspring was tested from the first day of adulthood. For mock control, an empty
159 vector L4440 was used.

160

161 **Statistics**

162 All results are expressed as means with error bars representing a 95% confidence interval. For
163 pairwise comparisons, Student's *t* test was used with Excel 2010 (Microsoft). For multiple
164 comparisons to a control, one-way ANOVA was followed with Dunnett's post hoc test using
165 R (Team 2015). For multiple comparisons, one-way ANOVA was followed with Tukey's
166 Honest Significant Difference test using R (Team 2015). Statistical significance was set at **P*
167 < 0.05; ***P* < 0.01; ****P* < 0.001.

168

169 **Data availability**

170 All isolated strains are available upon request. DNA and RNA sequencing results are
171 available on NCBI sequence read archive PRJNA530333.

172

173

174 **RESULTS:**

175 **Identification of novel *dys-1(ix259)* mutant allele in *ix241* strain**

176 Previously, we carried out a forward genetic screen for *C. elegans* mutants with a shortened
177 adult locomotor healthspan (Kawamura and Maruyama 2019). One of the isolated strains was
178 the *ix241* strain which shows a slight developmental deficit in locomotor ability and a
179 progressive decline in locomotor ability during adulthood (Kawamura and Maruyama 2019).
180 The *ix241* strain retained an exaggerated head bending phenotype after four backcrosses,
181 suggesting that the phenotype may be linked with progressive decline in locomotor ability
182 (Figure 1A). Exaggerated head bending has previously been observed by numerous
183 independent research groups in mutants with loss-of-function mutations to *dys-1*, the *C.*
184 *elegans* ortholog of human Dystrophin, and to components of the Dystrophin associated
185 protein complex (DAPC) (Fig. S1A) (Oh *et al.* 2012; Kim *et al.* 2004, 2009; Grisoni *et al.*
186 2003; Zhou and Chen 2011; Bessou *et al.* 1998).

187 Whole genome sequencing of backcrossed *ix241* strains that show progressive
188 declines in locomotor ability revealed a splice site mutation in *dys-1* prior to the 34th exon,
189 which was confirmed by Sanger sequencing (Figure 1B, Table S4). We refer to this mutation
190 site as *dys-1(ix259)*, since later we found that this mutation site is not involved in the
191 progressive decline in locomotor ability. Reverse-transcriptase PCR using primers that flank
192 the *dys-1(ix259)* splice site mutation indicated that intron retention occurs in the majority of
193 *dys-1* mRNA in the *ix241* strain (Figure 1C). A small proportion of *dys-1* transcripts are

194 spliced using an adjacent splice site, but results in a 2 bp frameshift (Figure 1C). Intron
195 retention or the 2 bp frameshift would likely lead to nonsense-mediated mRNA decay of *dys-*
196 *I* transcripts.

197

198 ***dys-1* mutations do not cause progressive decline in locomotor ability in *C. elegans***

199 In humans, Dystrophin mutations cause progressive weakness of muscles (Hoffman *et*
200 *al.* 1987). Therefore, we hypothesized that the *dys-1(ix259)* splice site mutation may be the
201 causative mutation site for the progressive decline in locomotor ability in the *ix241* strain.
202 However, after the fifth backcross we isolated *ix241(5x BC) #8*, a strain that carries the *dys-*
203 *I(ix259)* mutation but does not show a progressive decline in locomotor ability as measured
204 by maximum velocity and travel distance (Figure 1D, 1E, Fig. S1B, S1C). The *ix241(5x BC)*
205 #8 strain shows the exaggerated head bending phenotype observed in *dys-1* mutants (Figure
206 1E). The phenotype of the *ix241(5x BC) #8* worms raised the possibility that *dys-1(ix259)*
207 does not lead to progressive decline in locomotor ability in the *ix241* strain.

208 We wondered whether other *dys-1* mutants show a progressive decline in locomotor
209 ability. There are two available *dys-1* mutants from the *Caenorhabditis* Genetics Center:
210 BZ33 strain carrying *dys-1(eg33)* and LS292 strain carrying *dys-1(cx18)*. Both *dys-1(eg33)*
211 and *dys-1(cx18)* mutant alleles are nonsense mutations. Interestingly, *dys-1(eg33)* mutant
212 worms show a progressive decline in locomotor ability while *dys-1(cx18)* mutant worms do
213 not show a progressive decline in locomotor ability from the first to fifth days of adulthood
214 (Figure 2A, Fig. S2A). Similar to our findings, *dys-1(eg33)* worms, but not *dys-1(cx18)*
215 worms were found to have significantly weaker adult muscle strength compared to wild-type
216 worms (Hewitt *et al.* 2018). The discrepancy was attributed to a difference in the *dys-1*
217 mutation allele. However, in light of the newly isolated *dys-1(ix259)* mutant worms which do

218 not show a progressive decline in locomotor ability, we hypothesized that the progressive
219 decline in adult locomotor ability in the BZ33 strain may not be caused by the *dys-1(eg33)*
220 mutation.

221 In order to test whether the progressive decline in locomotor ability in the BZ33 strain
222 is caused by a mutation aside from *dys-1(eg33)*, we backcrossed the BZ33 strain based on the
223 exaggerated head bending phenotype (Fig. S2B). After one backcross, we were able to isolate
224 two strains that carry the *dys-1(eg33)* mutation and show the exaggerated head bending, but
225 do not show progressive decline in locomotor ability from the first to fifth days of adulthood
226 (Figure 2B, Fig. S2C). This suggests that loss-of-function mutations in *dys-1* does not cause
227 progressive decline in locomotor ability from the first to fifth days of adulthood in *C.*
228 *elegans*. A mutation site aside from *dys-1(eg33)* likely causes progressive decline in
229 locomotor ability in the BZ33 strain.

230

231 ***hda-3* mutation causes progressive decline in locomotor ability in *ix241* strain**

232 In order to identify the causative mutation site that leads to progressive decline in
233 locomotor ability in the *ix241* strain, we carried out whole genome sequencing in strains that
234 showed and did not show the progressive decline in locomotor ability after backcrossing. We
235 identified the mutations that were shared among the genomes of *ix241* backcrossed strains
236 that showed the progressive decline in adult locomotor function, and subtracted the shared
237 mutations among *ix241* backcrossed strains that did not show the progressive decline in adult
238 locomotor function. A peak of mutations remained on Chromosome I (Figure 3A, 3B, Table
239 S5).

240 We identified a list of candidate mutation sites, which included *hda-3(ix241)* that
241 would cause a G271E missense mutation in HDA-3 (Figure 3C, 3D). HDA-3 is an ortholog

242 of human class I histone deacetylases, HDAC1–3 (Shi and Mello 1998). The G271 residue is
243 evolutionarily conserved from *C. elegans* to humans and is located in the variable loop region
244 (Figure 3D, 3E, 3F). The variable loop region is suggested to play a role in substrate
245 recognition and binding to the HDAC cofactors zinc and inositol phosphate (Watson *et al.*
246 2012; Schuetz *et al.* 2008) (Figure 3E, 3F).

247 The effect of the *hda-3(ix241)* mutation was tested by two strategies. In the first
248 strategy, CRISPR-Cas9 genome editing was used to revert the *hda-3(ix241)* mutation in the
249 *ix241(4x BC)* strain back to the WT sequence (Fig. 3G). In order to prevent repetitive editing,
250 a synonymous mutation was introduced that would disrupt the protospacer adjacent motif
251 (PAM) sequence, 5 bp upstream of the editing site (Fig. 3G). We refer to this reverted allele
252 as *hda-3(ix260)*, which has the same HDA-3 amino acid sequence as WT HDA-3 (Fig. 3G).
253 In the second strategy, the HDA-3 G271E mutation was introduced into the WT N2
254 background using CRISPR-Cas9 genome editing. Again, a synonymous mutation was
255 introduced that would disrupt the PAM sequence, 5 bp upstream of the editing site (Fig. 3G).
256 We refer to this mutation allele as *hda-3(ix261)*, which causes the same HDA-3 G271E
257 mutation as the *hda-3(ix241)* mutation (Fig. 3G). Strains carrying *hda-3(ix261)* were
258 backcrossed twice.

259 The reversion of the *hda-3(ix241)* mutation in the *ix241(4x BC)* strain to *hda-3(ix260)*
260 rescued the progressive decline in locomotor function (Figure 3H, Fig. S3A). This result
261 indicated that the *hda-3(ix241)* mutation is necessary for the progressive decline in locomotor
262 function in the *ix241* strain. Introduction of the G271E mutation in the N2 WT strain in *hda-*
263 *3(ix261)* strains led to progressive declines in locomotor ability (Figure 3I). This result
264 indicated that the HDA-3 G271E mutation alone is sufficient to cause progressive decline in
265 locomotor ability. In addition, an independently isolated *hda-3(ok1991)* deletion strain

266 showed progressive decline in locomotor ability (Figure 3J, Fig. S3C). Proper functioning of
267 HDA-3 is likely to be required for full maintenance of locomotor ability during adulthood.

268

269 **Expression of specific CUB-like and BATH genes are dysregulated in *hda-3* mutant**
270 **strains**

271 In order to identify gene expression changes that occur in the *ix241*(4x BC) strain,
272 transcriptome analysis was carried out. In comparison to wild-type worms, *ix241*(4x BC)
273 worms had 64 transcripts that were significantly upregulated and 47 transcripts that were
274 significantly downregulated (Figure 4A). In comparison to *ix241*(5x BC) #8 worms, *ix241*(4x
275 BC) worms had 27 transcripts that were significantly upregulated and 25 transcripts that were
276 significantly downregulated (Figure 4A). Twenty-two transcripts were commonly
277 upregulated in the *ix241*(4x BC) strain compared to wild type and the *ix241*(5x BC) #8.
278 Thirteen transcripts were commonly downregulated in the *ix241*(4x BC) strain compared to
279 wild type and the *ix241*(5x BC) #8 (Figure 4B). Gene ontology enrichment analysis indicated
280 that transcripts involved in the immune response were significantly enriched in both
281 upregulated and downregulated transcripts (Fig. S4A, B).

282 Among the downregulated transcripts, we noticed that multiple gene transcripts were
283 downregulated within two narrow regions of the genome. One of the downregulated regions
284 is on Chromosome II, where BATH domain carrying proteasome-related genes *bath-1*, *bath-*
285 *21*, and *bath-24* are located (Figure 5A). The other downregulated region was on
286 Chromosome IV where CUB-like domain carrying innate immune response genes *dod-17*,
287 *F55G11.6*, *F55G11.8*, *K08D8.5* are located (Figure 5A). All genes showed high levels of
288 expression except for *F55G11.6*, which showed very low expression levels in WT and
289 *ix241*(5xBC) #8. Downregulation of CUB-like and BATH genes were also seen in *hda-*

290 *3(ix261)* mutant worms (Figure 5B). In the *hda-3(ok1991)* deletion mutant, *bath-1*, *bath-21*,
291 *bath-24*, and *F55G11.8* were downregulated while *dod-17* and *K08D8.5* remained unchanged
292 (Figure 5C).

293

294 **Induction of CUB-like and BATH genes are required for full maintenance of locomotor
295 ability**

296 We tested whether the downregulation of the CUB-like and BATH genes contribute
297 to the progressive decline in locomotor function. We knocked down the CUB-like and BATH
298 genes in wild-type worms and measured their locomotor ability for seven days. Knockdown
299 of five out of the six genes led to a significant decline in locomotor ability on the fifth day of
300 adulthood (Figure 6A, 6B, Fig. S5A, S5B). We observed significant declines in locomotor
301 ability as compared from the first to fifth day of adulthood in five out of the six tested genes
302 (Figure 6A, 6B, Fig. S5A, S5B).

303

304

305 **DISCUSSION:**

306 In this study, we found that proper HDA-3 function is required for the full
307 maintenance of locomotor ability in *C. elegans*. In the *ix241* strain, progressive decline in
308 locomotor ability is caused by the *hda-3(ix241)* mutant allele which leads to a G271E
309 substitution in HDA-3. In *hda-3* mutants carrying the G271E mutation, we observed specific
310 downregulation of gene clusters located on chromosome II and IV. The downregulated
311 cluster of genes on chromosome II carry a CUB-like domain, and downregulated genes on
312 chromosome IV carry a BATH domain. Knockdown of several of the most significantly

313 downregulated CUB-like and BATH genes leads to a progressive decline in locomotor
314 ability. This study indicates the importance of proper HDA-3 functioning and induction of
315 genes carrying CUB-like or BATH domains for the maintenance of adult locomotor ability.

316 HDA-3 is a histone deacetylase that can affect the transcriptional expression of many
317 downstream genes (Struhl 1998). Generally, histone acetylation is positively associated with
318 transcriptional activation and deacetylation is associated with transcriptional repression
319 (Eberharter and Becker 2002). However, some studies have found that HDACs are involved
320 in both repression and activation (Wang *et al.* 2002; Nusinzon and Horvath 2005). Our
321 transcriptomics results show a similar number of upregulated and downregulated genes in the
322 *hda-3(ix241)* mutant strain, and support the notion that HDACs have dual roles in
323 transcriptional repression and activation.

324 Transcriptome analysis and quantitative PCR of mutant strains carrying the HDA-3
325 G271E mutation indicated two regions in the genome that are transcriptionally repressed on
326 Chromosome II and IV. The Chromosome II region carried multiple genes that contain
327 BATH domains, which are suggested to work as part of the immunoproteasome to target
328 foreign proteins for degradation (Thomas 2006). The Chromosome IV region carried multiple
329 genes that contain CUB-like domains, which are implicated in innate immune function (Bork
330 and Beckmann 1993). Knockdown of the most significantly repressed CUB-like and BATH
331 genes caused progressive decline in locomotor function in *C. elegans*, indicating that these
332 genes may be functional targets of HDA-3 to maintain locomotor ability in *C. elegans*.

333 Expression of genes carrying CUB-like domains and genes carrying BATH domains may be
334 important for the maintenance of locomotor ability. Interestingly, the structural properties of
335 both the BATH domain and CUB-like domain are characterized by beta sandwiches which
336 were first characterized in immunoglobulins. The *ix241* strain may enable further exploration
337 of the link between the innate immune system and neuromuscular maintenance.

338 The G271E mutation occurs at an evolutionarily conserved residue. The same residue
339 is present in human HDAC1–3. This residue is likely a critical residue for proper HDAC
340 function and may enable novel approaches for the inhibition of HDACs. The G271 amino
341 acid is located on one of the four variable loop regions which is implicated in substrate
342 recognition (Schapira 2011). The G271 amino acid is in close proximity to R269, which is an
343 evolutionarily conserved amino acid that mediates the interaction between human HDAC3
344 and its coactivator, inositol phosphate (Watson *et al.* 2012; Millard *et al.* 2013). D263 is also
345 a nearby amino acid which is predicted to mediate the interaction between HDAC family
346 proteins with the cofactor zinc (Schuetz *et al.* 2008). The G271 amino acid site may provide a
347 novel location for drug targets to alter the activity of class I histone deacetylases.

348 The role of class I HDACs during the aging process has been difficult to study, as
349 HDAC1, HDAC2, HDAC3, and HDAC8 have been found to play important roles during
350 development in vertebrates (Haberland *et al.* 2009). For example, HDAC3 knockout mice die
351 during embryonic development (Montgomery *et al.* 2008). Since *C. elegans* can tolerate the
352 loss of *hda-3* during development, the HDA-3 G271E mutants and *hda-3(ok1991)* deletion
353 mutant may be valuable tools to study the role of a specific class I histone deacetylase during
354 aging.

355 During the process of identifying the causative mutation site of the *ix241* strain, we
356 found that *dys-1* loss-of-function mutations do not cause a progressive decline in adult
357 locomotor ability. Sufficient backcrossing showed that the progressive decline in locomotor
358 ability does not segregate perfectly with the *dys-1* mutation site in the *ix241* strain and the
359 BZ33 strain carrying the *dys-1(eg33)* mutant allele. This came as a surprise since DYS-1 is
360 the ortholog of human Dystrophin, the causative mutation for Duchenne and Becker muscular
361 dystrophies (Hoffman *et al.* 1987). Our findings suggest the use of caution when interpreting
362 the role of *dys-1* in the maintenance of muscle strength or locomotor ability.

363 These findings should not preclude the use of *C. elegans* *dys-1* mutants to study
364 potential mechanisms of Duchenne muscular dystrophy. Genetic and molecular interactions
365 of Dystrophin are highly conserved in *C. elegans*. Dystrobrevin and syntrophin, which are
366 components of the Dystrophin-associated protein complex, have *C. elegans* orthologs which
367 interact with *C. elegans* DYS-1 (Grisoni *et al.* 2003; Oh *et al.* 2012). One major
368 advantage of *C. elegans* Dystrophin mutants is the presence of the exaggerated head bending
369 phenotype, which can be readily observed under the microscope (Oh *et al.* 2012; Kim *et al.*
370 2004, 2009; Grisoni *et al.* 2003; Zhou and Chen 2011; Bessou *et al.* 1998). Future drug
371 screenings and genetic manipulations that suppress the head bending phenotype in the *dys-1*
372 mutants may be a promising avenue to identify modifiers of *dys-1* loss-of-function.

373 In a previous study, we identified a nonsense mutation in *elpc-2* that leads to
374 progressive decline in locomotor ability (Kawamura and Maruyama 2019). The role of *elpc-2*
375 as part of the Elongator complex implicates the role of tRNA modifications for the
376 maintenance of proteostasis and adult locomotor ability. In this study, we identify the G271E
377 mutation in HDA-3 and its role in transcriptional regulation of CUB-like and BATH genes
378 for the maintenance of adult locomotor ability. Together, these mutants provide insights into
379 the mechanisms that contribute to the maintenance of adult locomotor ability. Future studies
380 of mutants that show progressive declines in locomotor ability may provide further insights
381 into the genetic programs that work to maintain our locomotor healthspan.

382

383

384 **ACKNOWLEDGEMENTS:**

385 We thank H. Goto, M. Kanda, M. Kawamitsu, S. Yamasaki, N. Arakaki and other DNA
386 sequencing section members for technical assistance with DNA and RNA sequencing. We

387 are grateful to T. Murayama and E. Saita for technical support and advice. We thank D. Van
388 Vactor, B. Kuhn, and members of the Maruyama unit for helpful discussions regarding this
389 work. We are grateful to H. Ohtaki for administrative support. We thank the *Caenorhabditis*
390 Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P40
391 OD010440), for providing worm strains. This work was partly supported by Okinawa
392 Institute of Science and Technology Graduate University, and K. K. was supported by Japan
393 Society for the Promotion of Science KAKENHI (Grant 16J06404).

394

395

396 **LITERATURE CITED:**

397 Bento-Abreu A, Jager G, Swinnen B, Rué L, Hendrickx S, Jones A, Staats KA, Taes I,
398 Eykens C, Nonneman A, *et al.* 2018. Elongator subunit 3 (ELP3) modifies ALS through
399 tRNA modification. *Hum Mol Genet* **27**: 1276–1289. doi:10.1093/hmg/ddy043.

400 Bessou C, Giugia JB, Franks CJ, Holden-Dye L, Ségalat L. 1998. Mutations in the
401 *Caenorhabditis elegans* dystrophin-like gene dys-1 lead to hyperactivity and suggest a
402 link with cholinergic transmission. *Neurogenetics* **2**: 61–72. doi:10.1111/imr.12206.

403 Blankenberg D, Kuster G Von, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A,
404 Taylor J. 2010. Galaxy: A web-based genome analysis tool for experimentalists. *Curr
405 Protoc Mol Biol* 1–21. doi:10.1002/0471142727.mb1910s89.

406 Bork P, Beckmann G. 1993. The CUB Domain. *J Mol Biol* **231**: 539–545.
407 doi:10.1006/jmbi.1993.1305.

408 Brenner S. 1974. The genetics of *Caenorhabditis elegans*. *Genetics* **77**: 71–94.

409 Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM.

410 2012. A program for annotating and predicting the effects of single nucleotide
411 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain *w*
412 1118; *iso-2; iso-3*. *Fly (Austin)* **6**: 80–92. doi:10.4161/fly.19695.

413 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,
414 Gingeras TR. 2013. STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**: 15–
415 21. doi:10.1093/bioinformatics/bts635.

416 Dokshin GA, Ghanta KS, Piscopo KM, Mello CC. 2018. Robust genome editing with short
417 single-stranded and long, partially single-stranded DNA donors in *caenorhabditis*
418 *elegans*. *Genetics* **210**: 781–787. doi:10.1534/genetics.118.301532.

419 Eberharter A, Becker PB. 2002. Histone acetylation: A switch between repressive and
420 permissive chromatin. Second in review on chromatin dynamics. *EMBO Rep* **3**: 224–
421 229. doi:10.1093/embo-reports/kvf053.

422 Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg
423 D, Albert I, Taylor J, *et al.* 2005. Galaxy: A platform for interactive large-scale genome
424 analysis. *Genome Res* **15**: 1451–1455. doi:10.1101/gr.4086505.

425 Goecks J, Nekrutenko A, Taylor J. 2010. Galaxy: a comprehensive approach for supporting
426 accessible, reproducible, and transparent computational research in the life sciences.
427 *Genome Biol* **11**: R86. doi:10.1186/gb-2010-11-8-r86.

428 Grisoni K, Gieseler K, Mariol MC, Martin E, Carre-Pierrat M, Moulder G, Barstead R,
429 Ségalat L. 2003. The *stn-1* syntrophin gene of *C. elegans* is functionally related to
430 dystrophin and dystrobrevin. *J Mol Biol* **332**: 1037–1046.
431 doi:10.1016/j.jmb.2003.08.021.

432 Groessl EJ, Kaplan RM, Rejeski WJ, Katula JA, King AC, Frierson G, Glynn NW, Hsu FC,

433 Walkup M, Pahor M. 2007. Health-Related Quality of Life in Older Adults at Risk for
434 Disability. *Am J Prev Med* **33**: 214–218. doi:10.1016/j.amepre.2007.04.031.

435 Haberland M, Montgomery RL, Olson EN. 2009. The many roles of histone deacetylases in
436 development and physiology: implications for disease and therapy. *Nat Rev Genet* **10**:
437 32–42. doi:10.1038/nrg2485.

438 Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ,
439 Vanapalli SA. 2018. Muscle strength deficiency and mitochondrial dysfunction in a
440 muscular dystrophy model of *Caenorhabditis elegans* and its functional response to
441 drugs. *Dis Model Mech* **11**: dmm036137. doi:10.1242/dmm.036137.

442 Hoffman EP, Brown RH, Kunkel LM. 1987. Dystrophin: The protein product of the
443 duchenne muscular dystrophy locus. *Cell* **51**: 919–928. doi:10.1016/0092-
444 8674(87)90579-4.

445 Kawamura K, Maruyama IN. 2019. Forward Genetic Screen for *Caenorhabditis elegans*
446 Mutants with a Shortened Locomotor Healthspan. *G3 (Bethesda)* g3.400241.2019.
447 doi:10.1534/g3.119.400241.

448 Kim H, Pierce-Shimomura JT, Oh HJ, Johnson BE, Goodman MB, McIntire SL. 2009. The
449 Dystrophin Complex Controls BK Channel Localization and Muscle Activity in
450 *Caenorhabditis elegans*. *PLoS Genet* **5**: e1000780. doi:10.1371/journal.pgen.1000780.

451 Kim H, Rogers MJ, Richmond JE, McIntire SL. 2004. SNF-6 is an acetylcholine transporter
452 interacting with the dystrophin complex in *Caenorhabditis elegans*. *Nature* **430**: 891–
453 896. doi:10.1038/nature02798.

454 Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM,
455 Wilson RK, Ding L. 2009. VarScan: Variant detection in massively parallel sequencing

456 of individual and pooled samples. *Bioinformatics* **25**: 2283–2285.

457 doi:10.1093/bioinformatics/btp373.

458 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler

459 transform. *Bioinformatics* **25**: 1754–1760. doi:10.1093/bioinformatics/btp324.

460 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin

461 R. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**:

462 2078–2079. doi:10.1093/bioinformatics/btp352.

463 Liao Y, Smyth GK, Shi W. 2014. FeatureCounts: An efficient general purpose program for

464 assigning sequence reads to genomic features. *Bioinformatics* **30**: 923–930.

465 doi:10.1093/bioinformatics/btt656.

466 Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson C V., Fairall L,

467 Schwabe JWR. 2013. Class I HDACs share a common mechanism of regulation by

468 inositol phosphates. *Mol Cell* **51**: 57–67. doi:10.1016/j.molcel.2013.05.020.

469 Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O. 2012. CloudMap: a cloud-based

470 pipeline for analysis of mutant genome sequences. *Genetics* **192**: 1249–69.

471 doi:10.1534/genetics.112.144204.

472 Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM,

473 Richardson JA, Bassel-Duby R, Olson EN. 2008. Maintenance of cardiac energy

474 metabolism by histone deacetylase 3 in mice. *J Clin Invest* **118**: 3588–3597.

475 doi:10.1172/JCI35847.

476 Nusinzon I, Horvath CM. 2005. Histone deacetylases as transcriptional activators? Role

477 reversal in inducible gene regulation. *Sci STKE* **2005**: re11.

478 doi:10.1126/stke.2962005re11.

479 Oh HJ, Abraham LS, Van Hengel J, Stove C, Proszynski TJ, Gevaert K, DiMario JX, Sanes
480 JR, Van Roy F, Kim H. 2012. Interaction of α -catulin with dystrobrevin contributes to
481 integrity of dystrophin complex in muscle. *J Biol Chem* **287**: 21717–21728.
482 doi:10.1074/jbc.M112.369496.

483 Robinson MD, McCarthy DJ, Smyth GK. 2009. edgeR: A Bioconductor package for
484 differential expression analysis of digital gene expression data. *Bioinformatics* **26**: 139–
485 140. doi:10.1093/bioinformatics/btp616.

486 Schapira M. 2011. Structural Biology of Human Metal-Dependent Histone Deacetylases. In
487 *Histone Deacetylases: the Biology and Clinical Implication* (eds. T.-P. Yao and E.
488 Seto), pp. 225–240, Springer Berlin Heidelberg, Berlin, Heidelberg doi:10.1007/978-3-
489 642-21631-2_10.

490 Schuetz A, Min J, Allali-Hassani A, Schapira M, Shuen M, Loppnau P, Mazitschek R,
491 Kwiatkowski NP, Lewis TA, Maglathin RL, *et al.* 2008. Human HDAC7 Harbors a
492 Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase
493 Activity. *J Biol Chem* **283**: 11355–11363. doi:10.1074/jbc.M707362200.

494 Shi Y, Mello C. 1998. A CBP/p300 homolog specifies multiple differentiation pathways in
495 *Caenorhabditis elegans*. *Genes Dev* **12**: 943–55. doi:10.1101/gad.12.7.943.

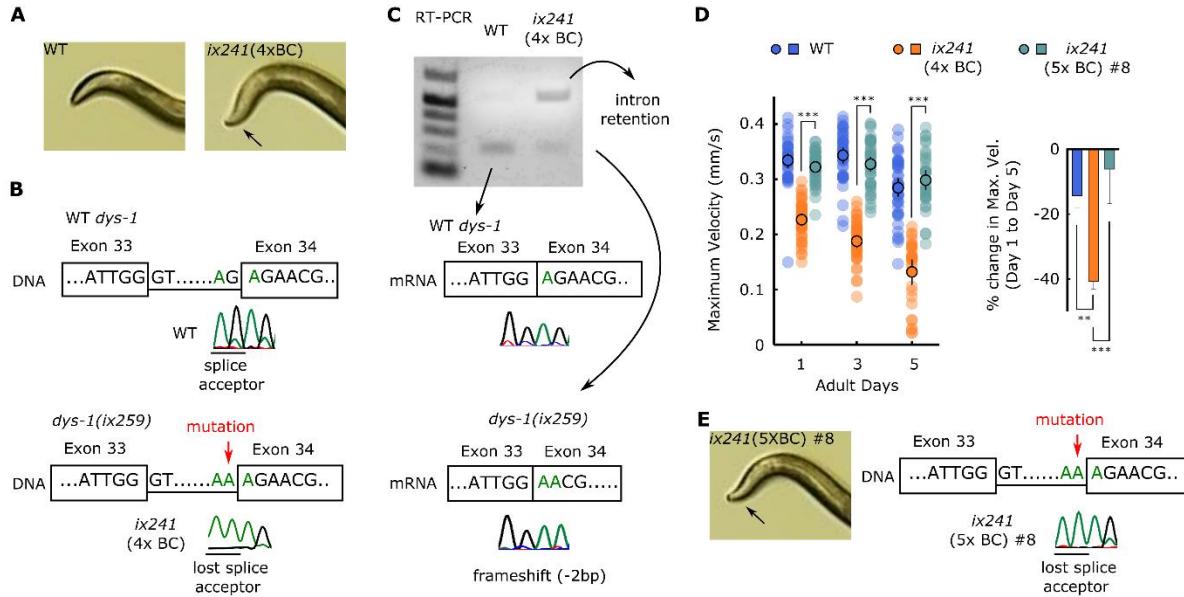
496 Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PWJ, Landers
497 JE, Sapp P, Van Den Bosch L, Knight J, *et al.* 2009. Variants of the elongator protein 3
498 (ELP3) gene are associated with motor neuron degeneration. *Hum Mol Genet* **18**: 472–
499 81. doi:10.1093/hmg/ddn375.

500 Struhl K. 1998. Histone acetylation and transcriptional regulatory mechanisms. *Genes Dev*
501 **12**: 599–606. doi:10.1101/gad.12.5.599.

502 Team RC. 2015. R: A language and environment for statistical computing [Internet]. Vienna,
503 Austria: R Foundation for Statistical Computing; 2015.

504 Thomas JH. 2006. Adaptive evolution in two large families of ubiquitin-ligase adapters in
505 nematodes and plants. *Genome Res* **16**: 1017–1030. doi:10.1101/gr.5089806.

506 Trombetti A, Reid KF, Hars M, Herrmann FR, Pasha E, Phillips EM, Fielding RA. 2016.
507 Age-associated declines in muscle mass, strength, power, and physical performance:
508 impact on fear of falling and quality of life. *Osteoporos Int* **27**: 463–471.
509 doi:10.1007/s00198-015-3236-5.


510 Wang A, Kurdistani SK, Grunstein M. 2002. Requirement of Hos2 histone deacetylase for
511 gene activity in yeast. *Science* **298**: 1412–4. doi:10.1126/science.1077790.

512 Watson PJ, Fairall L, Santos GM, Schwabe JWR. 2012. Structure of HDAC3 bound to co-
513 repressor and inositol tetraphosphate. *Nature* **481**: 335–340. doi:10.1038/nature10728.

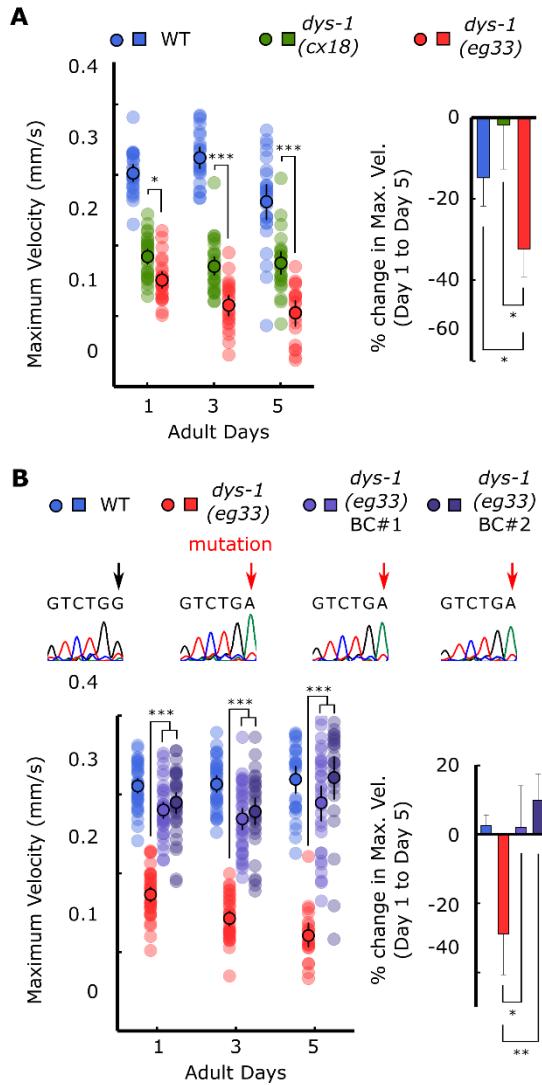
514 Zhou S, Chen L. 2011. Neural integrity is maintained by dystrophin in *C. elegans*. *J Cell Biol*
515 **192**: 349–363. doi:10.1083/jcb.201006109.

516

517

518

519 **Figure 1. Novel *dys-1*(*ix259*) loss-of-function mutation allele is present in *ix241* strain but does**


520 not cause progressive decline in locomotor ability

521 (A) Photos of head curvature during forward crawling in WT and *ix241*(4x BC) worms. *ix241*(4x BC) worms show exaggerated head bending (indicated by arrow). (B) (Top) DNA sequence of *dys-1*(*ix259*) mutation site from WT worms and (Bottom) *ix241*(4x BC) worms. (C) (Top) cDNA sequence of *dys-1*(*ix259*) mutation site from WT and (Bottom) *ix241*(4x BC) worms. (D) (Left) Maximum velocities of WT, *ix241*(4x BC), and *ix241*(5x BC) #8 worms. n=30–45 worms per strain for each day (10–15 worms from 3 biological replicate plates). (Right) Percent change in maximum velocity of WT, *ix241*(4x BC), and *ix241*(5x BC) #8 worms on adult day 5 compared to adult day 1. n=3 biological replicate plates. ***P < 0.001; *P < 0.05. (E) (Left) Photo of head curvature during forward crawling in *ix241*(5x BC) #8 worms. (Right) DNA sequence of *dys-1*(*ix259*) mutation site in *ix241*(5x BC) #8 worms.

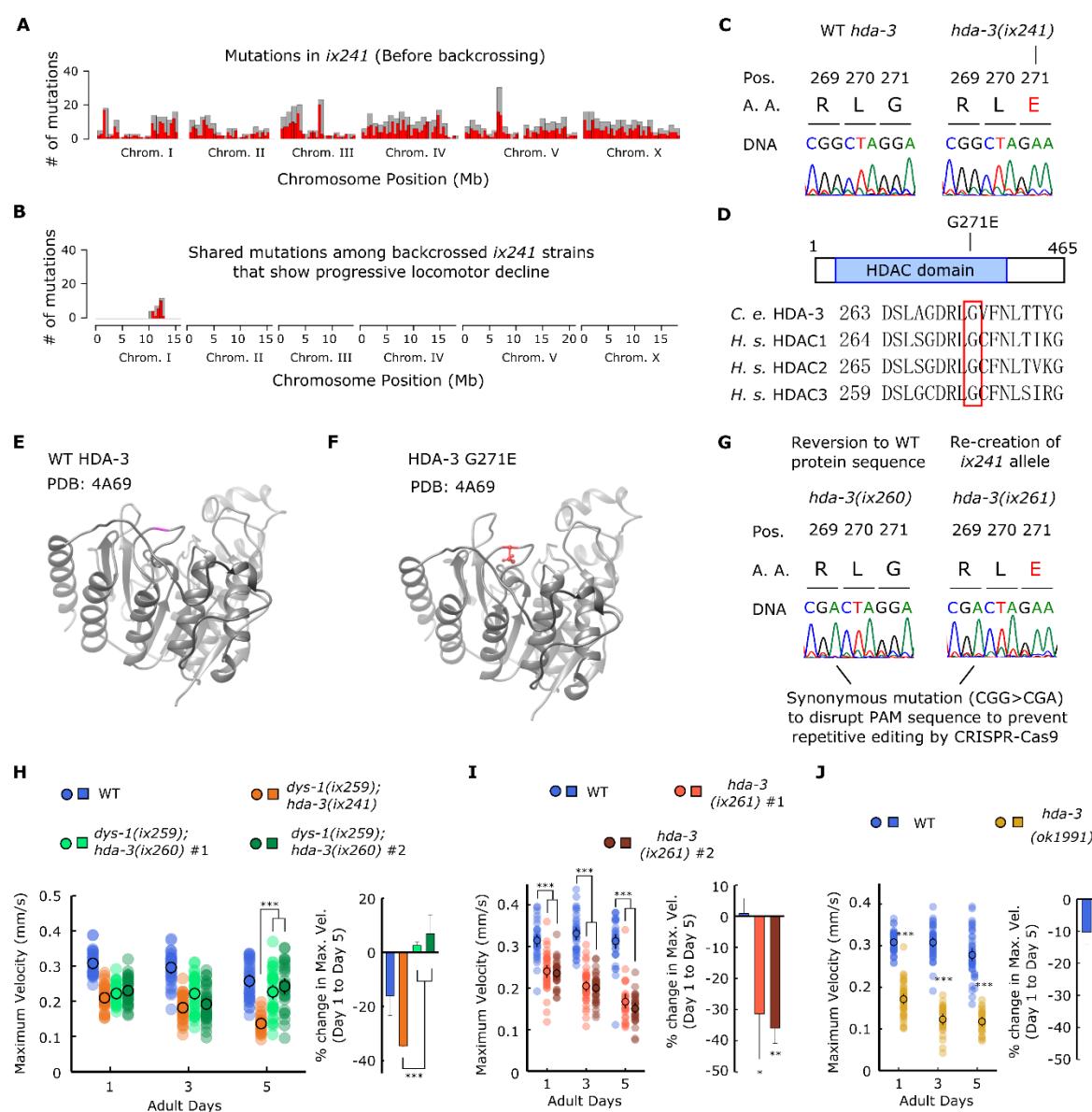
531

532

533

534

535 **Figure 2. *dys-1(eg33)* mutation does not cause progressive decline in locomotor ability**

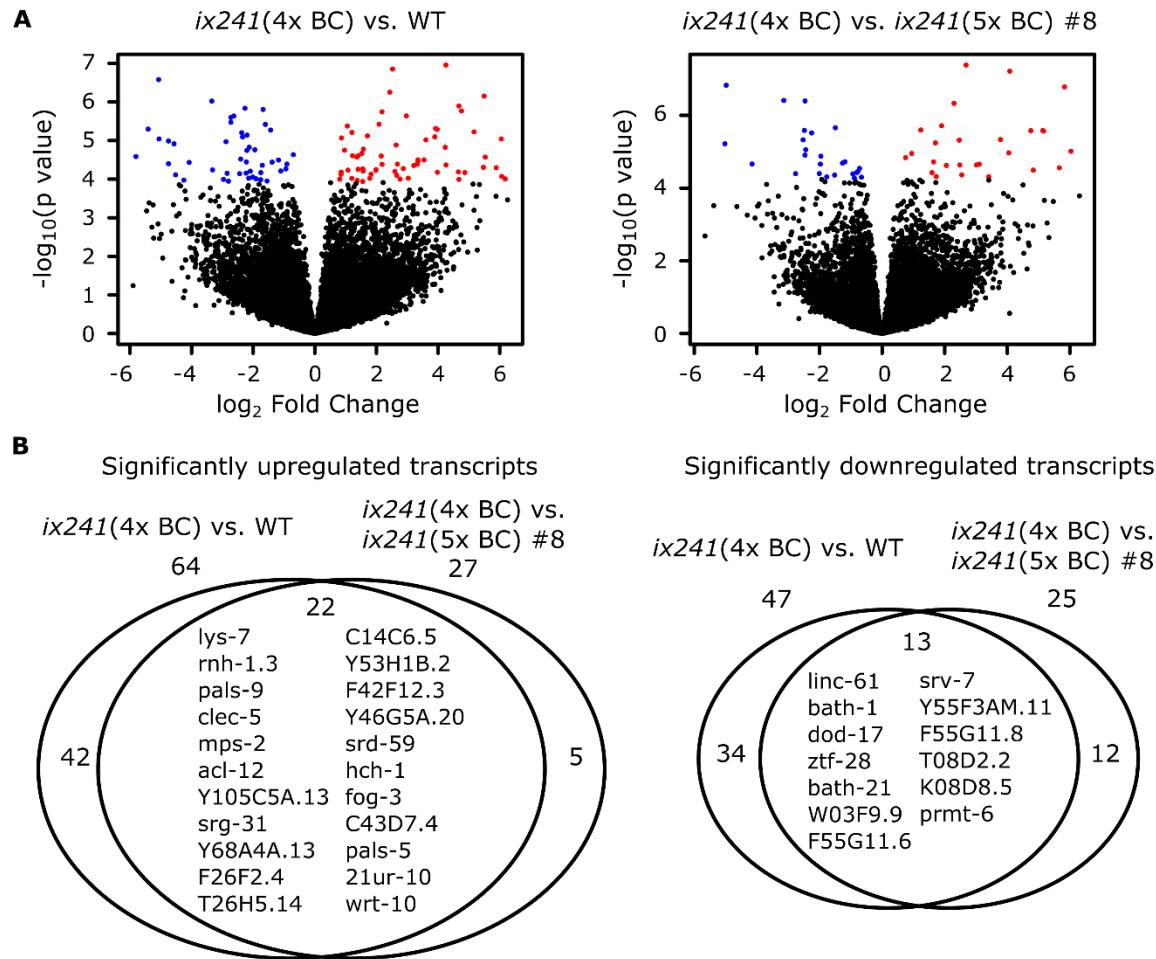

536 **from first to fifth day of adulthood**

537 (A) (Left) Maximum velocities of WT, *dys-1(cx18)*, and *dys-1(eg33)* worms. (Right) Percent
538 change in maximum velocity of WT, *dys-1(cx18)*, and *dys-1(eg33)* worms on adult day 5
539 compared to adult day 1. (B) (Top) DNA sequences of *dys-1(eg33)* mutation site in WT, *dys-*
540 *1(eg33)*, and two independent backcrossed lines, *dys-1(eg33)* BC #1, and *dys-1(eg33)* BC #2
541 worms. (Left) Maximum velocities of WT, *dys-1(eg33)*, *dys-1(eg33)* BC #1 and *dys-1(eg33)*
542 BC #2 worms. (Right) Percent change in maximum velocity of WT, *dys-1(eg33)*, *dys-1(eg33)*
543 BC #1, and *dys-1(eg33)* BC #2 worms on adult day 5 compared to adult day 1. For maximum

544 velocity measurements, n=30–45 worms per strain for each day (10–15 worms from 3
545 biological replicate plates). For percent change in maximum velocity graphs, n=3 biological
546 replicate plates. *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$.

547

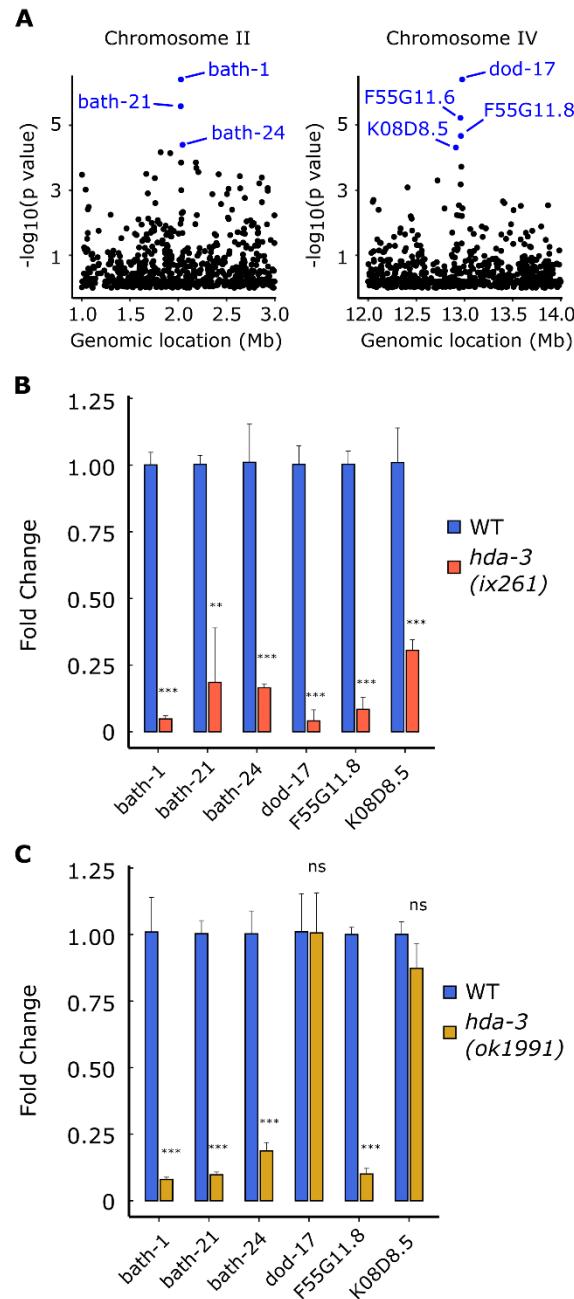
548


549

550 **Figure 3. HDA-3 G271E missense mutation leads to progressive decline in locomotor
551 ability**

552 (A) Mutation frequency along each chromosome for the *ix241* strain before backcrossing.
553 Red bars indicate 0.5-Mb bins and grey bars indicate 1.0-Mb bins. (B) Mutation frequency
554 along each chromosome for remaining mutations after subtracting mutations found in *ix241*
555 backcrossed strains that did not show a progressive decline in locomotor ability from
556 mutations found in *ix241* backcrossed strains that did show a progressive decline in
557 locomotor ability. (C) Effect of *ix241* mutation on DNA sequence and amino acid sequence.

558 (D) (Top) Depiction of *hda-3(ix241)* mutation site in HDA-3 protein. (Bottom) Alignment of
559 amino acid sequences centered around G271E mutation site in *C. elegans* HDA-3, *H. sapiens*
560 HDAC1, HDAC2 and HDAC3. (E) Structural modeling of *C. elegans* WT HDA-3 based on
561 PDB: 4A69 from *H. Sapiens* HDAC3. (F) Structural modeling of *C. elegans* HDA-3 G271E
562 based on PDB: 4A69 from *H. Sapiens* HDAC3. Mutated glutamic acid residue is shown in
563 red. (G) (Left) Sequence of *hda-3(ix260)* allele which is the same amino acid sequence as
564 wild type. (Right) Sequence of *hda-3(ix261)* allele which is the same amino acid sequence as
565 the *hda-3(ix241)* allele. Both sequences carry a synonymous mutation site to disrupt the PAM
566 sequence to prevent repetitive editing by CRISPR-Cas9. (H) (Left) Maximum velocities of
567 WT, *dys-1(ix259);hda-3(ix241)* worms, *dys-1(ix259);hda-3(ix260)* #1 and *dys-1(ix259);hda-*
568 *3(ix260)* #2 worms. (Right) Percent change in maximum velocity of WT, *dys-1(ix259);hda-*
569 *3(ix241)* worms, *dys-1(ix259);hda-3(ix260)* #1 and *dys-1(ix259);hda-3(ix260)* #2 worms on
570 adult day 5 compared to adult day 1. (I) (Left) Maximum velocities of WT, *hda-3(ix261)* #1,
571 *hda-3(ix261)* #2 worms. (Right) Percent change in maximum velocity of WT, *hda-3(ix261)*
572 #1, *hda-3(ix261)* #2 worms on adult day 5 compared to adult day 1. (J) (Left) Maximum
573 velocities of WT and *hda-3(ok1991)* worms. (Right) Percent change in maximum velocity of
574 WT and *hda-3(ok1991)* worms on adult day 5 compared to adult day 1. For maximum
575 velocity measurements, n=30–45 worms per strain for each day (10–15 worms from 3
576 biological replicate plates). For percent change in maximum velocity graphs, n=3 biological
577 replicate plates. *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$.


578

579

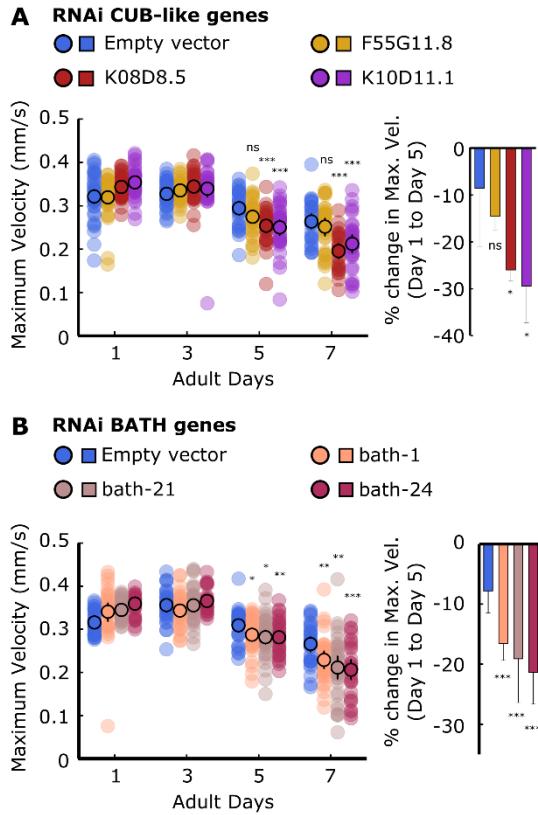
580 **Figure 4. Gene expression is dysregulated in *hda-3* mutant**

581 (A) (Left) Volcano plot of differential expression of transcripts from *ix241(4x BC)* vs. WT
582 worms. (Right) Volcano plot of differential expression of transcripts from *ix241(4x BC)* vs.
583 *ix241(5x BC) #8* worms. Blue points indicate downregulated genes and red points indicate
584 upregulated genes with p value < 0.0001 . (B) (Left) Venn diagram of number of significantly
585 upregulated transcripts with $p < 0.0001$ in *ix241(4x BC)* vs. WT worms and *ix241(4x BC)* vs.
586 *ix241(5x BC) #8* worms. (Right) Venn diagram of number of significantly upregulated and
587 downregulated transcripts with $p < 0.0001$ in *ix241(4x BC)* vs. WT and *ix241(4x BC)* vs.
588 *ix241(5x BC) #8* worms. Names of commonly upregulated or downregulated genes are
589 indicated within the Venn diagram.

590

591 **Figure 5. Specific BATH and CUB-like genes on chromosome II and IV are**
592 **downregulated from HDA-3 G271E mutation**

593 (A) (Left) Genomic location of strongly downregulated gene transcripts on Chromosome II.

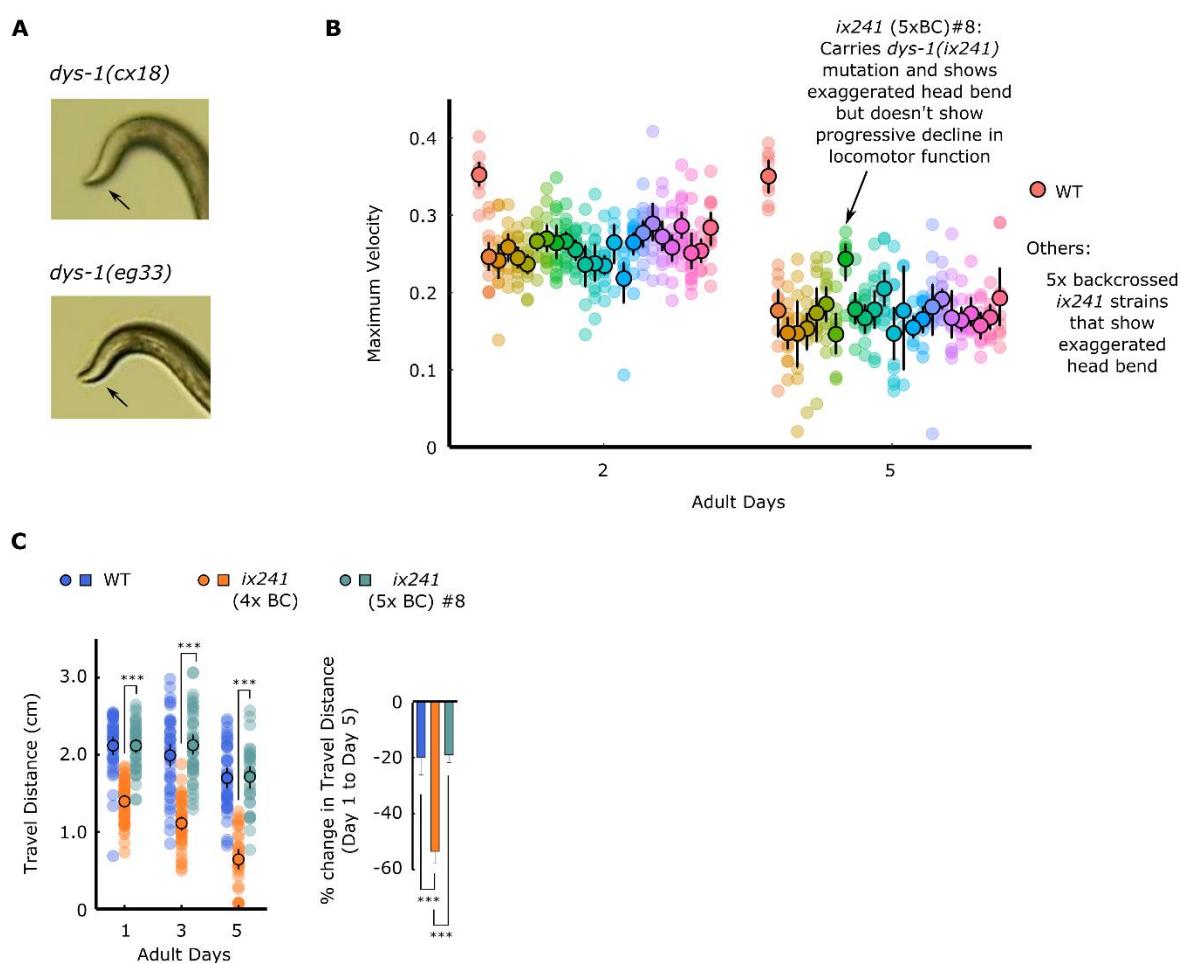

594 (Right) Genomic location of strongly downregulated gene transcripts on Chromosome IV. (B)

595 Fold change in CUB-like and BATH genes in *hda-3(ix261)* worms compared to WT, as

596 measured by qPCR. (C) Fold change in CUB-like and BATH genes in *hda-3(ok1991)* worms

597 compared to WT, as measured by qPCR. *** $P < 0.001$; ** $P < 0.01$.

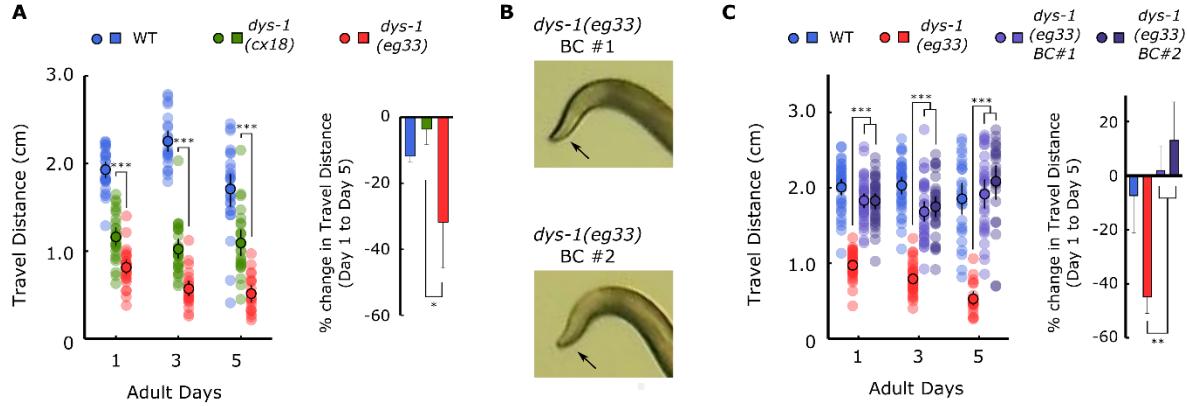
598



599

600 **Figure 6. RNAi of certain CUB-like and BATH genes cause progressive decline in**
601 **locomotor ability**

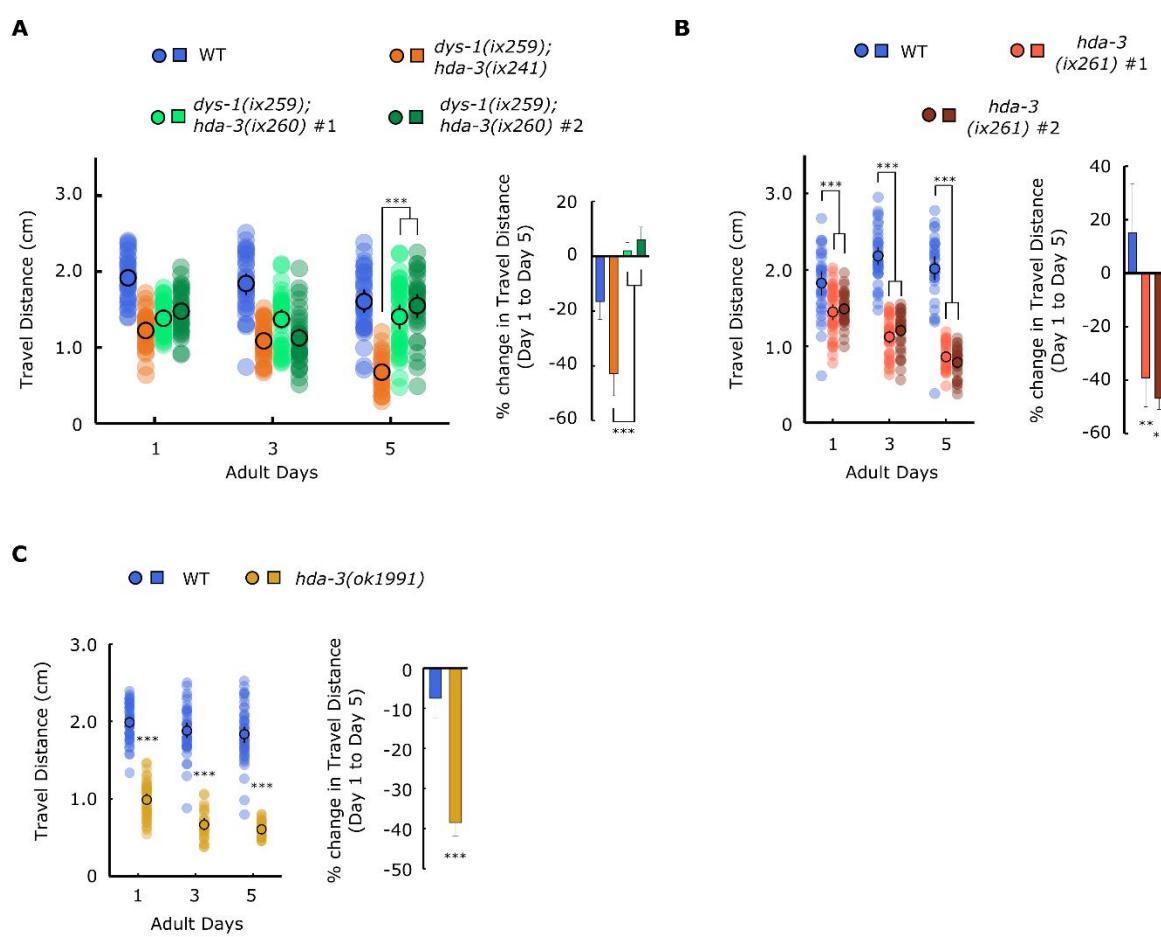
602 (A) (Left) Maximum velocities of worms raised on RNAi plates containing empty vector,
603 *F55G11.8*, *K08D8.5*, *K10D11.1*. (Right) Percent change in maximum velocity of worms
604 raised on RNAi plates containing empty vector, *F55G11.8*, *K08D8.5*, *K10D11.1* on adult day
605 5 compared to adult day 1. (B) (Left) Maximum velocities of worms raised on RNAi plates
606 containing empty vector, *bath-1*, *bath-21*, *bath-24*. (Right) Percent change in maximum
607 velocity of worms raised on RNAi plates containing empty vector, *bath-1*, *bath-21*, *bath-24*
608 on adult day 5 compared to adult day 1. For maximum velocity measurements, n=30–45
609 worms per strain for each day (10–15 worms from 3 biological replicate plates). For percent
610 change in maximum velocity graphs, n=3 biological replicate plates. ***P < 0.001; **P <
611 0.01; *P < 0.05.


612

613 **Figure S1. *ix241*(5xBC) #8 strain carries *dys-1(ix259)* mutation but does not show
614 progressive decline in locomotor ability**

615 (A) Photos of head curvature during forward crawling in WT and *ix241*(4x BC) worms.
616 Exaggerated head bending indicated by arrows. (B) Maximum velocities of 24 strains that
617 show the exaggerated head bending phenotype after the fifth backcross on the second and
618 fifth days of adulthood. n=10–15 worms per strain. (C) (Left) Travel distances of WT,
619 *ix241*(4x BC), and *ix241*(5xBC) #8 worms. n=30–45 worms per strain for each day (10–15
620 worms from 3 biological replicate plates). (Right) Percent change in travel distance of WT,
621 *ix241*(4x BC), and *ix241*(5xBC) #8 worms. n=3 biological replicate plates. ***P < 0.001.

622


623

624 **Figure S2. *dys-1(eg33)* mutation does not cause progressive decline in locomotor ability**

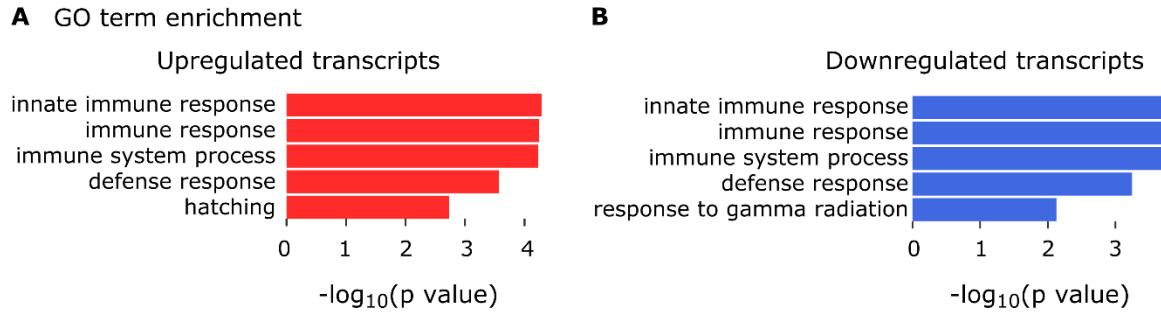
625 (A) (Left) Travel distances of WT, *dys-1(cx18)*, and *dys-1(eg33)* worms on adult days 1, 3,
626 and 5. (Right) Percent change in travel distance of WT, *dys-1(cx18)*, and *dys-1(eg33)* worms
627 on adult day 5 compared to adult day 1. (B) Photos of head curvature during forward
628 crawling in *dys-1(eg33)* BC #1 and *dys-1(eg33)* BC #2 worms. Arrows indicate exaggerated
629 head bending. (C) (Left) Travel distances of WT, *dys-1(eg33)*, *dys-1(eg33)* BC #1, and *dys-*
630 *1(eg33)* BC #2 worms on adult days 1, 3, and 5. (Right) Percent change in travel distance of
631 WT, *dys-1(eg33)*, *dys-1(eg33)* BC #1, and *dys-1(eg33)* BC #2 worms on adult day 5
632 compared to adult day 1. For travel distance measurements, n=30–45 worms per strain for
633 each day (10–15 worms from 3 biological replicate plates). For percent change in travel
634 distance graphs, n=3 biological replicate plates. ***P < 0.001; **P < 0.01; *P < 0.05.

635

636

637

638 **Figure S3. *hda-3* mutation causes progressive decline in locomotor ability**

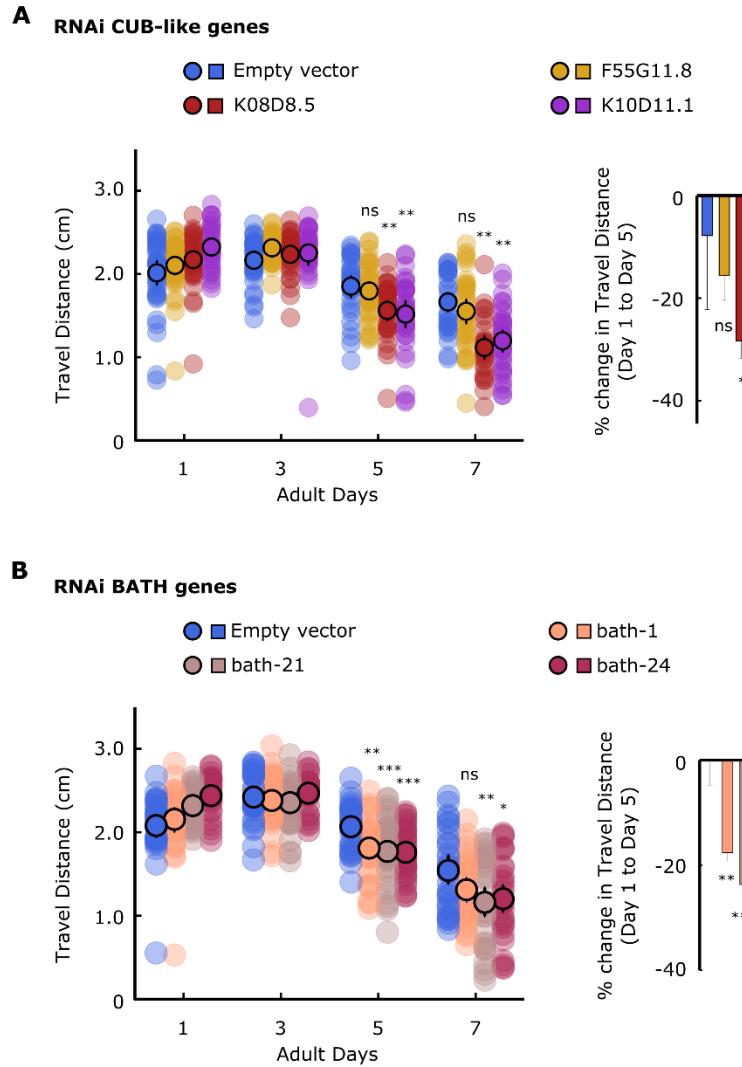

639 (A) (Left) Travel distances of WT, *dys-1(ix259);hda-3(ix241)*, *dys-1(ix259);hda-3(ix260) #1*
640 and *dys-1(ix259);hda-3(ix260) #2* worms on adult days 1, 3, and 5. (Right) Percent change in
641 travel distance of WT, *dys-1(ix259);hda-3(ix241)*, *dys-1(ix259);hda-3(ix260) #1* and *dys-1(ix259);hda-3(ix260) #2* worms on adult day 5 compared to adult day 1. (B) (Left) Travel
642 distances of WT, *hda-3(ix261) #1*, and *hda-3(ix261) #2* worms on adult days 1, 3, and 5.
643 (Right) Percent change in travel distance of WT, *hda-3(ix261) #1*, and *hda-3(ix261) #2*
644 worms on adult day 5 compared to adult day 1. (C) (Left) Travel distances of WT and *hda-3(ok1991)*
645 worms on adult days 1, 3, and 5. (Right) Percent change in travel distance of WT
646 and *hda-3(ok1991)* worms on adult day 5 compared to adult day 1. For travel distance
647 measurements, n=30–45 worms per strain for each day (10–15 worms from 3 biological
648 replicates).

649 replicate plates). For percent change in travel distance graphs, n=3 biological replicate plates.

650 *** $P < 0.001$; ** $P < 0.01$.

651

652


653

654 **Figure S4. Dysregulated genes are enriched for those involved in immune function**

655 (A) Enriched GO terms among genes upregulated in *ix241*(4x BC) strain versus WT and

656 *ix241* (5x BC) #8. (B) Enriched GO terms among genes downregulated in *ix241*(4x BC)

657 strain versus WT and *ix241* (5x BC) #8.

658

659 **Figure S5. Knockdown of CUB-like and BATH genes lead to progressive decline in**
660 **locomotor ability**

661 (A) (Left) Travel distances of worms raised on RNAi plates containing empty vector,
662 *F55G11.8*, *K08D8.5*, *K10D11.1*. (Right) Percent change in travel distance of worms raised on
663 RNAi plates containing empty vector, *F55G11.8*, *K08D8.5*, *K10D11.1* on adult day 5
664 compared to adult day 1. (B) (Left) Travel distances of worms raised on RNAi plates
665 containing empty vector, *bath-1*, *bath-21*, *bath-24*. (Right) Percent change in travel distance
666 of worms raised on RNAi plates containing empty vector, *bath-1*, *bath-21*, *bath-24* on adult
667 day 5 compared to adult day 1. For travel distance measurements, n=30–45 worms per strain

668 for each day (10–15 worms from 3 biological replicate plates). For percent change in travel
669 distance graphs, n=3 biological replicate plates. *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$.

670

671

672 **Table S1. List of strains used in this study**

Strain	Genotype	Obtained from
OF1262	<i>dys-1(ix259) I; hda-3(ix241)</i>	Isolated in previous study (Kawamura and Maruyama, 2019); Also referred to as <i>ix241</i>
OF1263	<i>dys-1(ix259) I; hda-3(ix241) I</i> (4x backcrossed)	Isolated in previous study (Kawamura and Maruyama, 2019); Also referred to as <i>ix241</i> (4x BC)
OF1350	<i>dys-1(ix259) I</i> (5x backcrossed)	This study; Also referred to as <i>ix241</i> (5x BC) #8
LS292	<i>dys-1(cx18)</i>	CGC
BZ33	<i>dys-1(eg33)</i>	CGC
OF1351	<i>dys-1(eg33)</i> (1x backcrossed) #1	This study
OF1352	<i>dys-1(eg33)</i> (1x backcrossed) #2	This study
OF1353	<i>dys-1(ix259) I; hda-3(ix260) #1</i>	This study
OF1354	<i>dys-1(ix259) I; hda-3(ix260) #2</i>	This study
OF1355	<i>hda-3(ix261) I</i> (2x backcrossed) #1	This study
OF1356	<i>hda-3(ix261) I</i> (2x backcrossed) #2	This study
673	RB1618 <i>hda-3(ok1991) I</i>	CGC

674

675

676 **Table S2. List of primers used in this study**

Primer Name	5'-3' Sequence
<i>dys-1(ix259) 5'</i>	atgggcatgtatgggtgtcaaatgaa
<i>dys-1(ix259) 3'</i>	cagaaaggcttccaccagtcggttg
<i>dys-1(eg33) 5'</i>	tctttcaaatttagttcccaggacggtca
<i>dys-1(eg33) 3'</i>	tttgattcttaggacaccggctcaaaatc
<i>hda-3(ix241) 5'</i>	ggaattgaaattccggcaaatgtgcgaatggca
<i>hda-3(ix241) 3'</i>	tccacgaggagtacacgagagcttctcgtaa
<i>bath-1 qPCR 5'</i>	ggttatcgatgtatgtacgtg
<i>bath-1 qPCR 3'</i>	gagacaagactttcaaattgtcc
<i>bath-21 qPCR 5'</i>	ttctcagaaagtccctgcctc
<i>bath-21 qPCR 3'</i>	caaccgtgtcatcatctatagc
<i>bath-24 qPCR 5'</i>	tgcgattgatgattctaccatcg
<i>bath-24 qPCR 3'</i>	gagaggcaaacggtttcaaatt
<i>K08D8.5 qPCR 5'</i>	attggatactgcggctgctg
<i>K08D8.5 qPCR 3'</i>	acgttgcattgtatggaaaagc
<i>F55G11.8 qPCR 5'</i>	caagcatctagatacttgactgg
<i>F55G11.8 qPCR 3'</i>	tgacggtagattcatcttcatc
<i>dod-17 qPCR 5'</i>	tcaagctaacagatattgactgg
<i>dod-17 qPCR 3'</i>	gttaagtttagactcatttatcatctg

677

678

679

680 **Table S3. List of single-stranded oligodeoxynucleotide sequences used in this study**

ssODN Name	5'-3' sequence
<i>hda3(ix241)</i> repair to WT	CCATAAGTAGTCAAATTGAATACTCCTAGTCGATCT CCTGCCAGTGAATCGGCACCACATTGGAGCACAA
<i>hda3(ix241)</i> mutation introduction	CCATAAGTAGTCAAATTGAATACTCTAGTCGATCT CCTGCCAGTGAATCGGCACCACATTGGAGCACAA

681

682

683

684

Table S4. List of remaining mutations in backcrossed *ix241* strains

Chrom.	Pos.	Ref.	Alt.	Gene	Mutation Type	Effect*	
I	3258592	CA	C	Y54E10A.20	upstream gene variant	modifier	
I	8160530	TTATA	T	T28B8.3	downstream gene variant	modifier	
I	10731034	C	T	rpn-10	missense variant	moderate	
I	10766899	C	T	daf-16	intron variant	modifier	
I	10974485	C	T	Y52B11A.3	intron variant	modifier	
I	11307424	C	T	H25P06.5	synonymous variant	low	
I	11536456	C	T	dys-1	splice acceptor variant	high	
I	11644705	C	T	W04G5.9	intron variant	modifier	
I	11726250	C	T	F35E2.9	missense variant	moderate	
				T02G6.2-			
I	11808061	G	T	T02G6.4	intergenic region	modifier	
I	11832340	C	T	Y47H9C.1	missense variant	moderate	
I	11864150	T	A	ced-1	intron variant	modifier	
I	11896398	C	T	Y47H9C.12	upstream gene variant	modifier	
I	11914682	C	T	hda-3	missense variant	moderate	
I	11927975	C	T	wve-1	upstream gene variant	modifier	
I	12008815	C	T	fbxa-122	downstream gene variant	modifier	
I	12176794	C	T	R05D7.3	intron variant	modifier	
I	12298210	C	T	F56H6.7	missense variant	moderate	
I	12341691	C	T	nhr-217	intron variant	modifier	
I	12343381	T	A	T09E11.11	upstream gene variant	modifier	
I	12414199	C	T	E03H4.5	intron variant	modifier	
I	12493515	C	T	T27F6.6	synonymous variant	low	
I	12970406	G	A	eif-6	downstream gene variant	modifier	
I	14083393	A	C	gadr-6	upstream gene variant	modifier	
III	2340737	A	C	Y54F10BM.1	intron variant	modifier	
III	3385124	A	AG	hecw-1	upstream gene variant	modifier	
III	3786851	T	TTC	acy-3	upstream gene variant	modifier	
III	6301707	T	TC	F47D12.9	upstream gene variant	modifier	
IV	1226960	T	C	W09G12.8	intron variant	modifier	
IV	12319292	TG	T	F19B6.9	downstream gene variant	modifier	
IV	12319295	T	A	F19B6.9	upstream gene variant	modifier	
IV	13506453	GA	G	nlp-17	upstream gene variant	modifier	
IV	13823462	A		AACTCGGCTGTCGGCTGGCGCCG ACAGCCGAGTCCTATTTCGCT	H08M01.74	downstream gene variant	modifier
V	363225	C		CTACTGTAGTGCTTGTGCGATT ACGGGATCGATTCTAAATGAA CCGTAATCGACACAAGCACTAC AGTAGTCATTAAAGGAT	T22H9.1	intron variant	
V	1500601	G	A	sru-27	missense variant	moderate	
V	13231585	T	G	C34D1.8	downstream gene variant	modifier	
V	13697695	C	T	T01D3.1	missense variant	moderate	
X	1519515	A		ATCCGACATTTTATAGCAATGC GCAGAACCCAAAAATGCGGA CGCGGAGCCAAGGCTGCACCAAA TAGTGCGATAGGGTATGGCATTA TTTGGTGCAAACCTGGCTTCGCG	toca-1	intron variant	modifier
X	2008595	TA	T	Y40A1A.1- Y102A11A.9	intergenic region	modifier	
X	3314891	A	AT	F11D5.12	upstream gene variant	modifier	
X	4241974	A	G	W01H2.11	upstream gene variant	modifier	
X	4674025	G	GT	F16H11.1	downstream gene variant	modifier	
X	6357781	C	CCCAT	C03B1.10	frameshift variant	high	
X	8191585	G	GT	C17H11.6	intron variant	modifier	
X	11646516	A	C	T04F8.15	upstream gene variant	modifier	
X	12502801	T	TACGAAAAATAGATTGTAC	sdz-19	intron variant	modifier	

685

*Putative impact of mutation (high > moderate > low > modifier)

686 **Table S5. List of remaining mutations after subtraction of mutations in backcrossed**
687 ***ix241* strains that do not show locomotor decline from *ix241* strains that show locomotor**
688 **decline**

Chrom.	Pos.	Ref.	Alt.	Gene	Mutation Type	Effect*
I	10731034	C	T	rpn-10	missense variant	moderate
I	10766899	C	T	daf-16	intron variant	modifier
I	10974485	C	T	Y52B11A.3	intron variant	modifier
I	11307424	C	T	H25P06.5	synonymous variant	low
I	11864150	T	A	ced-1	intron variant	modifier
I	11896398	C	T	Y47H9C.12	upstream gene variant	modifier
I	11914682	C	T	hda-3	missense variant	moderate
I	11927975	C	T	wve-1	upstream gene variant	modifier
I	12008815	C	T	fbxa-122	downstream gene variant	modifier
I	12176794	C	T	R05D7.3	intron variant	modifier
I	12298210	C	T	F56H6.7	missense variant	moderate
I	12341691	C	T	nhr-217	intron variant	modifier
I	12343381	T	A	T09E11.11	upstream gene variant	modifier
I	12414199	C	T	E03H4.5	intron variant	modifier
I	12493515	C	T	T27F6.6	synonymous variant	low
I	12970406	G	A	eif-6	downstream gene variant	modifier

689 *Putative impact of mutation (high > moderate > low > modifier)

690