

1 Amitosis confers benefits of sex in the absence of sex to

2 *Tetrahymena*

3 Hao Zhang¹, Joe A. West¹, Rebecca A. Zufall¹ & Ricardo B. R. Azevedo¹

4 ¹*Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA*

5 **Sex appears to be the most successful reproductive strategy in eukaryotes despite its many**

6 **costs^{1–3}. While a complete explanation for sex's success remains elusive, several evolution-**

7 **ary benefits of sex have been identified^{4,5}, such as, the purging of deleterious mutations^{6,7},**

8 **the accumulation of beneficial mutations^{8,9}, and an advantage in biotic interactions^{3,10,11}. It**

9 **is predicted that, by forgoing these benefits, asexual lineages are evolutionary dead-ends^{2,12}**

10 **due to genetic deterioration and/or an inability to adapt to environmental changes. Consis-**

11 **tent with this prediction, many asexual lineages show signs of accelerated accumulation of**

12 **deleterious mutations compared to their sexual relatives^{13–18}. Despite these low expectations,**

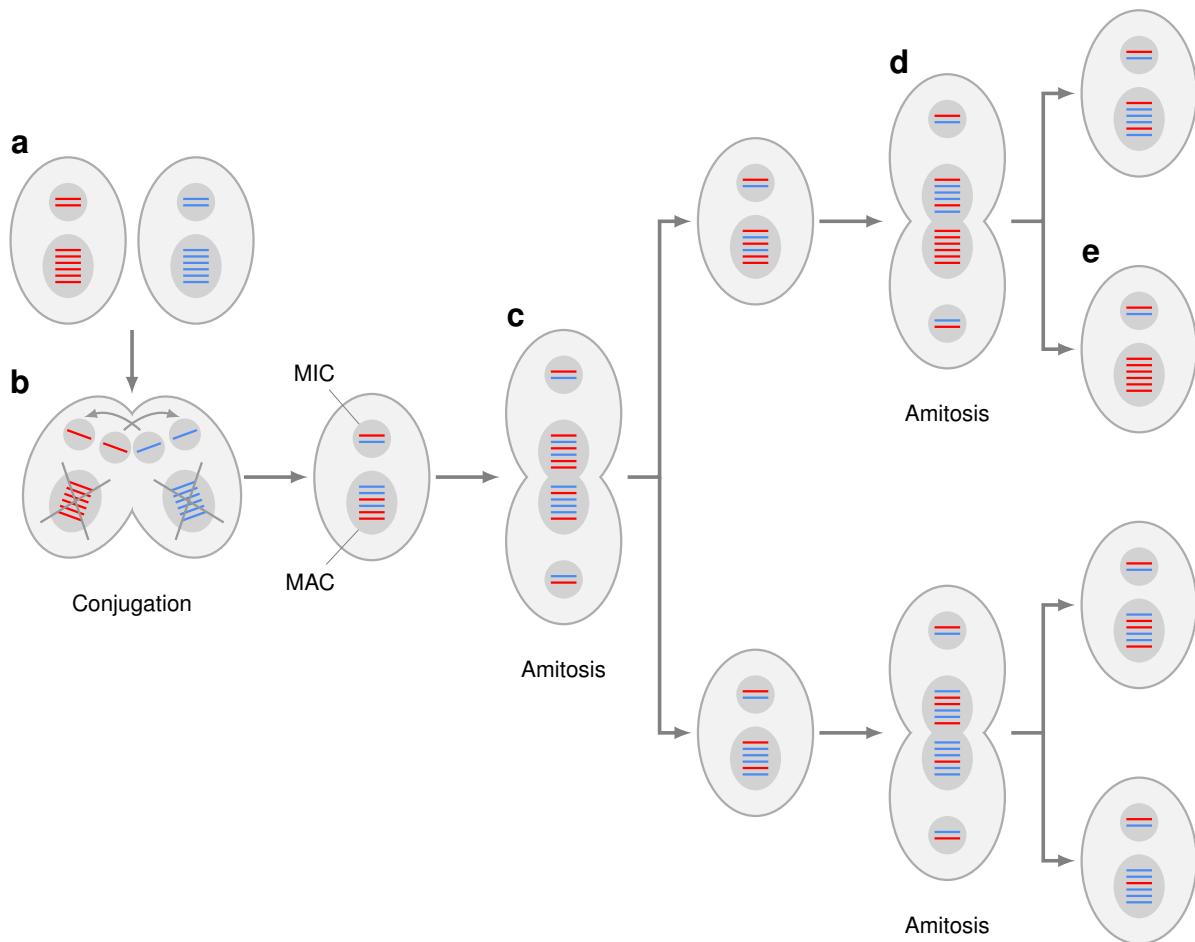
13 **some asexual eukaryotic lineages appear to be successful, including the ciliate *Tetrahymena*¹⁹.**

14 **Here, we show that the mechanism of somatic nuclear division in *Tetrahymena*, termed ami-**

15 **tosis, provides benefits similar to sex, allowing for the long-term success of asexual lineages.**

16 **We found that, when compared to mitosis, amitosis with chromosome copy number control**

17 **reduces mutation load deterministically, slows the accumulation of deleterious mutations un-**


18 **der genetic drift, and accelerates adaptation. These benefits arise because, like sex, amitosis**

19 **can generate substantial genetic variation in fitness among (asexual) progeny. Our results**

20 **indicate that the ability of *Tetrahymena* to persist in the absence of sex may depend on non-**

21 **sexual genetic mechanisms conferring benefits typically provided by sex, as has been found**
22 **in other asexual lineages²⁰⁻²³.**

23 Although rare throughout ciliates, obligately asexual lineages are abundant, and possibly an-
24 cient, in the genus *Tetrahymena*¹⁹. The reason for this abundance is unknown. One possibility is
25 that the peculiar genomic architecture of *Tetrahymena* allows it to avoid some of the negative con-
26 sequences of asexuality^{19,24}. Ciliates are microbial eukaryotes characterized by the separation of
27 germline and somatic functions into two distinct types of nuclei within a single cell. The somatic
28 macronucleus (MAC) is the site of all transcription during growth and asexual reproduction, and
29 the germline micronucleus (MIC) is responsible for the transmission of genetic material during
30 sexual conjugation (Fig. 1). Following conjugation, a zygotic nucleus divides and differentiates
31 into the two types of nuclei (Fig. 1a,b). During this differentiation, the macronuclear genome un-
32 dergoes massive rearrangements resulting in a genome with many small, highly polyploid, acen-
33 tromeric chromosomes²⁵. This genome structure results in amitotic macronuclear division (Fig.
34 1c,d). Amitosis generates variation among individuals in the number of each allele at a locus. In
35 most ciliates, amitosis results in differing numbers of chromosomes among progeny, which even-
36 tually leads to senescence and death²⁶. However, *Tetrahymena* have an unknown mechanism to
37 control chromosome copy number during amitosis that results in roughly constant ploidy²⁷. 25%
38 of 2,609 *Tetrahymena*-like wild isolates lacked a MIC and were, therefore, asexual¹⁹. To test
39 whether amitosis with chromosome copy number control can account for the relative success of
40 asexual *Tetrahymena*, we examined the evolutionary consequences of various forms of reproduc-
41 tion, nuclear division, and ploidy.

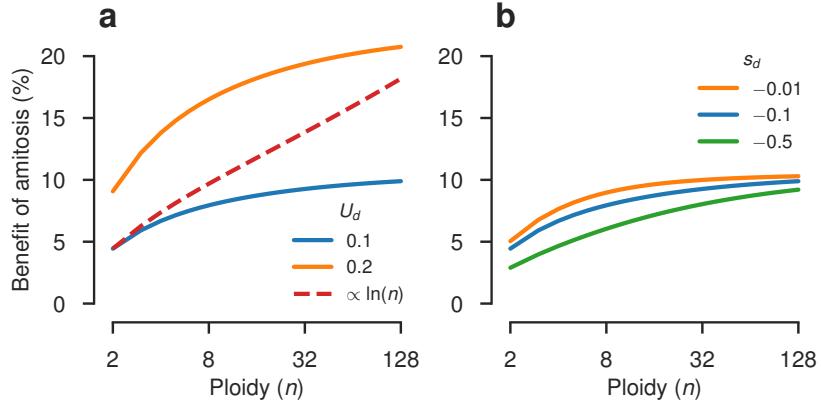
Figure 1: Amitosis with chromosome copy number control generates variation among individuals.

See next page for full legend.

Figure 1: Amitosis with chromosome copy number control generates variation among individuals. Schematic of sexual conjugation followed by two rounds of asexual division. For simplicity, only one chromosome is shown: it occurs in two copies in the micronucleus (MIC) and six copies in the macronucleus (MAC) (in reality, each chromosome occurs in 45 copies in the *Tetrahymena thermophila* MAC). **a**, During sexual reproduction (conjugation), the diploid MIC undergoes meiosis^{27,28}. **b**, Two cells can fuse transiently and exchange haploid meiotic products. A resident meiotic product then fuses with the transferred meiotic product to produce a new diploid zygotic nucleus, which divides to generate the new MIC and MAC (the old MAC is destroyed). During asexual reproduction (**c, d**), the MIC divides by mitosis while the MAC divides by amitosis. Amitosis allows the random segregation of parental chromosomes among daughter cells generating variation among individuals. Ultimately, this results in phenotypic assortment, in which individual chromosomes in the MAC become completely homozygous within several generations²⁹ (**e**). *T. thermophila*, has an unknown copy number control mechanism that results in an approximately equal number of homologous chromosomes in each daughter cell²⁷.

42 Most mutations with effects on fitness are deleterious but natural selection cannot remove all
43 of them from populations. As a result, many individuals carry deleterious mutations that reduce
44 their fitness, which leads to a reduction in the mean fitness of populations, or mutation load. We
45 begin by investigating the extent to which amitosis with chromosome copy number control affects
46 mutation load. A population of asexual diploids that reproduces by mitosis is expected to show the
47 following mean fitness at equilibrium³⁰⁻³³:

$$\hat{W}_{\text{mit}} = \exp(-U_d) \quad (1)$$


48 where $U_d = 2L\mu_d$ is the deleterious mutation rate per diploid genome per generation, L is the num-
49 ber of loci influencing fitness, and μ_d is the deleterious mutation rate per locus per generation (see
50 Supplementary Information). In contrast, if an asexual diploid population reproduces by amitosis,
51 its mean fitness at equilibrium is given by

$$\hat{W}_{\text{amit}} = \exp \left[-U_d \left(\frac{1 - 3s_d}{2 - 3s_d} \right) \right] \quad (2)$$

52 where $s_d < 0$ is the effect on fitness of a deleterious mutation in a homozygous state (see Sup-
53 plementary Information). This scenario is purely theoretical because no diploid nucleus is known
54 to reproduce amitotically. Equations 1 and 2 rely on several assumptions: (i) population size
55 is very large, so we can ignore genetic drift; (ii) mutations are irreversible; μ_d is (iii) low and
56 (iv) equal across loci; (v) there is linkage equilibrium among fitness loci; all mutations (vi) have
57 the same deleterious effect s_d , and contribute to fitness (vii) additively within loci (i.e., are codom-
58 inant) and (viii) multiplicatively among loci (i.e., do not interact epistatically). Equations 1 and
59 2 show that amitosis can reduce mutation load compared to mitosis in diploid populations. For

60 example, if $U_d = 0.1$ and $s_d = -0.1$, the mean fitness at equilibrium is $\hat{W}_{\text{mit}} = 0.905$ under mi-
61 tosis and $\hat{W}_{\text{amit}} = 0.945$ under amitosis. Thus, amitosis has a selective advantage over mitosis of
62 $\hat{W}_{\text{amit}}/\hat{W}_{\text{mit}} - 1 = 4.4\%$. The deleterious mutation rate, U_d , has a large effect on the benefit of ami-
63 tosis: doubling the value of U_d more than doubles the advantage of amitosis to 9.1% (Fig. 2a). The
64 selection coefficient of a deleterious mutation, s_d , however, has a comparatively small effect on the
65 benefit of amitosis: making mutations one tenth as deleterious ($s_d = -0.01$) causes the advantage
66 of amitosis to increase to only 5.0% (Fig. 2b).

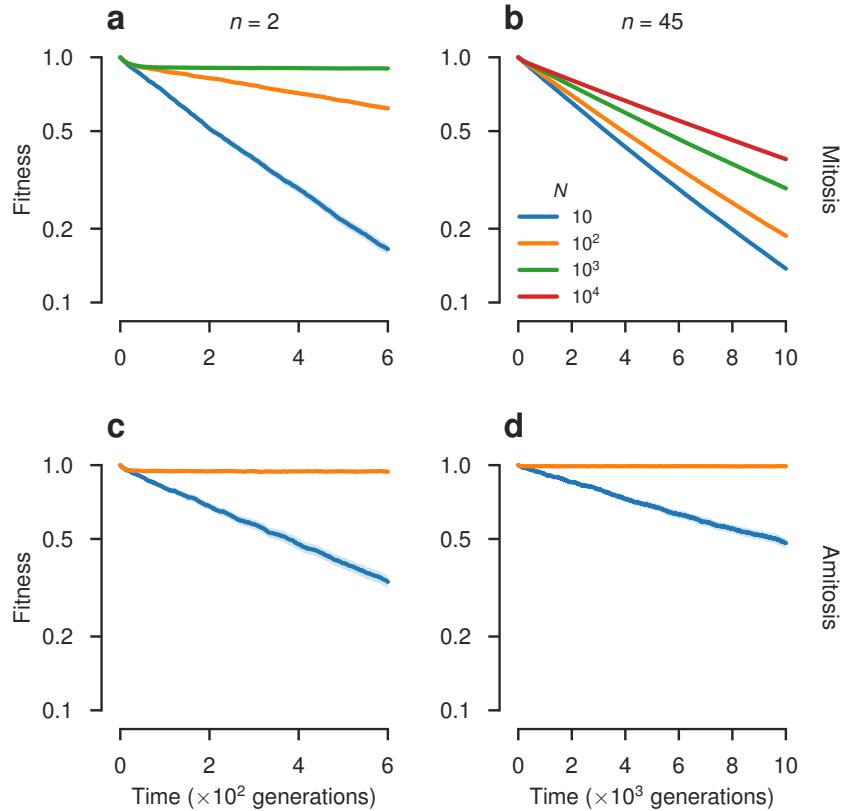

67 Amitosis with copy number control is observed in the genus *Tetrahymena*, which have high
68 ploidy in their macronuclear genome (e.g., *T. thermophila* are 45-ploid). Interestingly, the bene-
69 fit of amitosis relative to a mitotically reproducing organism with the same ploidy increases with
70 ploidy (Fig. 2). For example, if $U_d = 0.1$ and $s_d = -0.1$, the benefit of amitosis increases to 6.7%
71 in tetraploids, 7.9% in octoploids, 8.7% in 16-ploids, and so on. Further increases in ploidy cause
72 diminishing returns in the benefit of amitosis. These expected benefits are conservative because
73 they assume that the deleterious mutation rate, U_d , is constant across ploidies. If, for example,
74 doubling ploidy causes an increase of 10% in U_d , a substantially greater benefit of amitosis would
75 be achieved at high ploidies (Fig. 2a, dashed line). A mutation accumulation study estimated that
76 *T. thermophila* has a deleterious mutation rate in the MIC of $U_d^{(\text{MIC})} = 0.0094$ per genome per
77 generation and that mutations have an expected deleterious effect of $s_d^{(\text{MIC})} = -0.11$ in a homozy-
78 gous state³⁴. If we assume that the MAC genome has $U_d^{(\text{MAC})} = (45/2) \times U_d^{(\text{MIC})} = 0.2115$ and
79 $s_d^{(\text{MAC})} = s_d^{(\text{MIC})}$, we estimate that amitosis has a benefit of 21.0% relative to mitosis in this species.

Figure 2: Amitosis with chromosome copy number control reduces mutation load relative to mitosis in large populations. Values show the selective advantage of amitosis over mitosis, $\widehat{W}_{\text{amit}}/\widehat{W}_{\text{mit}} - 1$, at different ploidies (\widehat{W}_X is the mean fitness at equilibrium of a population of individuals following reproductive strategy X for a certain ploidy). **a**, Effect of the genomic deleterious mutation rate, U_d . Solid lines show selective benefits corresponding to constant values of U_d at all ploidies. The dashed line assumes that a doubling of the ploidy results in a 10% increase in U_d . Mutations have a deleterious effect of $s_d = -0.1$ at all ploidies. **b**, Effect of the selection coefficient of a deleterious mutation, s_d . We set $U_d = 0.1$ at all ploidies. In both **a** and **b** we assumed that there were $L = 100$ fitness loci. Note that ploidy is shown in a log scale.

80 The analyses so far have ignored the effect of genetic drift. Drift can cause a population to ac-
81 cumulate deleterious mutations stochastically, further increasing genetic load, or drift load^{32,35,36}.
82 In asexuals this phenomenon is known as Muller's ratchet^{6,37,38}. We now evaluate the extent to
83 which amitosis with copy number control can slow down the accumulation of drift load. Popula-
84 tions of $N = 10$ or 100 diploid mitotic individuals experience strong Muller's ratchet when $U_d = 0.1$
85 and $s_d = -0.1$ (Fig. 3a). Increasing population size to $N = 10^3$ individuals causes the ratchet to
86 slow down considerably, allowing populations to achieve mutation-selection equilibrium (Fig. 3a).
87 Reproduction through amitosis makes populations less susceptible to Muller's ratchet. The ac-
88 cumulation of drift load slows down by 39% (95% confidence interval, CI: 31%, 46%) in diploid
89 populations of $N = 10$ individuals, and effectively halts in populations of $N = 100$ individuals (Fig.
90 3c).

91 The benefit of amitosis in slowing down the accumulation of drift load, like the deterministic
92 benefit, increases with ploidy. Muller's ratchet operates in populations as large as $N = 10^4$ mitotic
93 45-ploid individuals (Fig. 3b). Amitosis is able to halt the accumulation of drift load in populations
94 with as few as $N = 100$ 45-ploid individuals (Fig. 3d). Even when amitotic populations are small
95 enough to accumulate drift load, they do so more slowly than mitotic ones. For example, popu-
96 lations of $N = 10$ amitotic 45-ploid individuals accumulate drift load 64% (95% CI: 59%, 68%)
97 more slowly than mitotic populations of the same size (Fig. 3b,d).

Figure 3: Amitosis with chromosome copy number control slows down the accumulation of drift load relative to mitosis. Evolutionary responses of mean fitness in populations of different sizes (N) and ploidies (n), following different reproductive strategies. Lines show the means of stochastic simulations of 100 populations; shaded regions represent 95% CIs. **a**, Mitosis in diploids ($n = 2$). **b**, Mitosis with a ploidy of $n = 45$. **c**, Amitosis in diploids ($n = 2$). **d**, Amitosis with a ploidy of $n = 45$. We assumed $L = 100$ fitness loci, a genomic deleterious mutation rate of $U_d = 0.1$ per generation, that mutations have a deleterious effect of $s_d = -0.1$ in a homozygous state, and that, initially, all individuals are unmuted. Note that fitness is shown in a log scale.

98 The benefits of amitosis over mitosis identified so far are analogous to benefits of sexual
99 over asexual reproduction. In diploids, sexual reproduction by selfing confers a deterministic ad-
100 vantage over mitosis almost identical to that of asexual amitosis shown in Equations 1 and 2 (see
101 Supplementary Information). Unlike amitosis, sex with random mating in diploids only confers a
102 deterministic advantage over asexual reproduction if there is negative epistasis between deleteri-
103 ous mutations^{7,39}, or if deleterious mutations are partially recessive^{40,41}. Sex can also counteract
104 Muller's ratchet^{6,37}, much like amitosis (Fig. 3a,c). Are the benefits of asexual amitosis also sim-
105 ilar to those of sexual reproduction when ploidy is high? We investigated this question in popu-
106 lations of $N = 20$ individuals of a 45-ploid organism like *T. thermophila* experiencing $U_d = 0.1$
107 and $s_d = -0.1$. Amitosis slows down the accumulation of drift load relative to mitosis by 90%
108 (95% CI: 88%, 92%; Figure 4a). An organism like *T. thermophila* but reproducing sexually, with
109 outcrossing, every generation (i.e., obligate sex with no amitosis) and then generating a 45-ploid
110 macronucleus from the recombinant diploid micronucleus (see Fig. 1a,b) would slow down the
111 accumulation of drift load by 92% (95% CI: 90%, 94%; $\tau = 1$, Fig. 4a). However, *T. thermophila*
112 cannot reproduce sexually every generation; rather, it requires ~ 100 asexual cell divisions to
113 reach sexual maturity^{42,43}. Facultative sex every $\tau = 100$ generations slows down the ratchet by
114 only 68% (95% CI: 64%, 72%; measured based on fitness in the generation immediately before
115 the population reproduces sexually), much less than amitosis (Fig. 4a). The benefit of amitosis
116 is also comparable to that of sex in larger populations in the presence of beneficial mutations. In
117 an evolutionary scenario under which asexual populations are not able to adapt, both amitosis and
118 obligate sex every generation ($\tau = 1$) allow populations to adapt, and more rapidly than facultative

119 sex every $\tau = 100$ generations (Fig. 4b).

120 The results shown in Fig. 4 raise the intriguing possibility that amitosis is actually evolution-
121 arily superior to facultative sex in *T. thermophila* and its relatives, which have $\tau \approx 100$. If true, this
122 would lead to the prediction that asexual lineages should outcompete sexual ones in *Tetrahymena*.
123 This could explain why obligately asexual lineages are abundant in *Tetrahymena*¹⁹. If this expla-
124 nation is correct, we would expect that asexual lineages of *Tetrahymena* do not show the typical
125 signs of accelerated accumulation of deleterious mutations compared to their sexual relatives¹³⁻¹⁸.

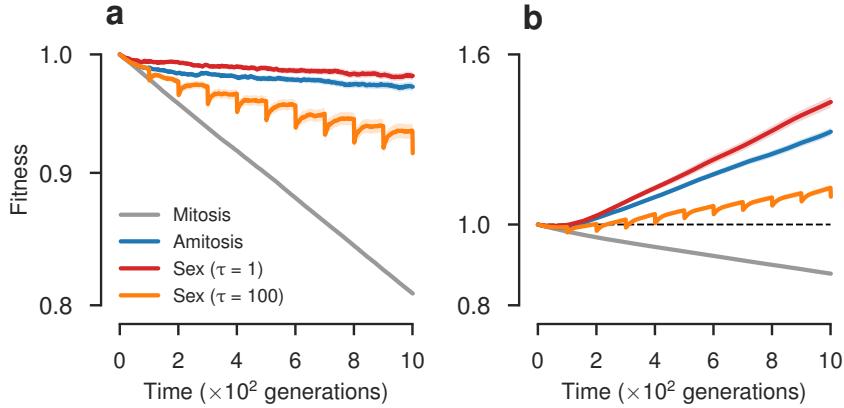
126 The hypothesis outlined in the previous paragraph may be invalid for two reasons. First, our
127 analysis may overestimate the benefit of amitosis relative to facultative sex. Our hypothesis as-
128 sumes that chromosome copy number control during amitosis is perfect, or at least, highly precise
129 on an evolutionary time-scale. However, the precision of copy number control is unknown even in
130 *T. thermophila*. Control of chromosome copy number could be less precise than we have assumed
131 and, therefore, confer a smaller benefit to *Tetrahymena*. Second, our analysis may underestimate
132 the benefit of facultative sex relative to amitosis. We have considered only two possible benefits
133 of sex, both “mutational” in nature⁴. Other benefits of sex are not guaranteed to show the same
134 pattern. For example, we have not considered the potential benefits of sex in the face of biotic
135 interactions^{3,10,11}. Even if our hypothesis is correct, it is also conceivable that there are additional
136 factors contributing to the relative success of asexual *Tetrahymena*. For example, it has been pro-
137 posed that high ploidy alone may inhibit the accumulation of deleterious mutations through gene
138 conversion²³. However, this proposed advantage has not been modelled, and therefore it is difficult

139 to evaluate.

140 What is the mechanistic basis of the benefits of amitosis identified here? The main difference
141 between the two types of nuclear division is that amitosis, like sex, can generate more genetic
142 variation in fitness than mitosis. For example, an n -ploid individual (we assume n is even for
143 simplicity) with $n/2$ wild-type alleles and $n/2$ deleterious alleles will have a fitness of $W = 1 -$
144 $s_d/2$. Mutation will generate a variance in fitness of

$$V_{\text{mut}} = \frac{(u_d - u_d^2) s_d^2}{n^2} \quad (3)$$

145 every generation, where $u_d = n\mu_d$ is the deleterious mutation rate at the locus per generation.


146 Mitosis is not expected to generate any variance in fitness in addition to mutation (i.e., $V_{\text{mit}} = V_{\text{mut}}$).

147 Amitosis will, however, increase the variance in fitness further

$$V_{\text{amit}} = V_{\text{mut}} + \frac{s_d^2}{8n - 4} \quad (4)$$

148 every generation⁴⁴. Since u_d is likely to be low, amitosis is expected to increase the variance in
149 fitness to a much greater extent than mutation, and therefore mitosis ($V_{\text{amit}} \gg V_{\text{mit}}$).

150 We propose that amitosis causes an increase in the additive genetic variance in fitness, there-
151 fore making natural selection more efficient—an analog of Weismann’s hypothesis for the advan-
152 tage of sex^{1,4,5}. Consistent with this idea, the variance in fitness generated by amitosis relative to
153 mitosis increases approximately linearly with ploidy ($V_{\text{amit}}/V_{\text{mit}} \approx n/(8u_d)$), which explains why
154 the benefit of amitosis relative to mitosis increases with ploidy. We conclude that amitosis with
155 chromosome copy number control confers benefits of sex in the absence of sex and can account
156 for the high incidence of obligately asexual lineages in *Tetrahymena*¹⁹.

Figure 4: The benefit of amitosis with chromosome copy number control is similar to that of sex. Evolutionary responses of population mean fitness under different reproductive strategies. Lines show the means of stochastic simulations of 500 populations; shaded regions represent 95% CIs. **a**, Populations of $N = 20$ individuals with a deleterious mutation rate of $U_d = 0.1$ per genome per generation. All mutations are deleterious and have a selection coefficient of $s_d = -0.1$ in a homozygous state. **b**, Populations of $N = 10^3$ individuals with a genomic mutation rate of $U = 0.1$ per generation; 99% of mutations are deleterious and 1% are beneficial with selection coefficients of $s_d = -0.1$ and $s_b = 0.1$, respectively. We assumed that individuals have a MAC ploidy of $n = 45$ with $L = 100$ fitness loci, and that, initially, they carry no mutations. Sexual reproduction takes place with random mating and free recombination every τ generations. Note that fitness is shown in a log scale.

1. Weismann, A. On the signification of the polar globules. *Nature* **36**, 607–609 (1887).
2. Maynard Smith, J. *The Evolution of Sex* (Cambridge University Press, Cambridge, 1978).
3. Bell, G. *The Masterpiece of Nature: The Evolution and Genetics of Sexuality* (University of California Press, Berkeley, 1982).
4. Kondrashov, A. S. Classification of hypotheses on the advantage of amphimixis. *J. Hered.* **84**, 372–387 (1993).
5. Burt, A. Perspective: Sex, recombination, and the efficacy of selection—Was Weismann right? *Evolution* **54**, 337–351 (2000).
6. Muller, H. J. The relation of recombination to mutational advance. *Mutat. Res.* **1**, 2–9 (1964).
7. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. *Nature* **336**, 435–440 (1988).
8. Fisher, R. A. *The Genetical Theory of Natural Selection* (Clarendon Press, Oxford, 1930).
9. Muller, H. J. Some genetic aspects of sex. *Am. Nat.* **66**, 118–138 (1932).
10. Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). *Proc. Natl. Acad. Sci. U. S. A.* **87**, 3566–3573 (1990).
11. Otto, S. P. & Nuismer, S. L. Species interactions and the evolution of sex. *Science* **304**, 1018–1020 (2004).

12. Stebbins, G. L. Self fertilization and population variability in the higher plants. *Am. Nat.* **91**, 337–354 (1957).
13. Paland, S. & Lynch, M. Transitions to asexuality result in excess amino acid substitutions. *Science* **311**, 990–992 (2006).
14. Johnson, S. G. & Howard, R. S. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. *Evolution* **61**, 2728–2735 (2007).
15. Neiman, M., Hehman, G., Miller, J. T., Logsdon, J. M. & Taylor, D. R. Accelerated mutation accumulation in asexual lineages of a freshwater snail. *Mol. Biol. Evol.* **27**, 954–963 (2010).
16. Henry, L., Schwander, T. & Crespi, B. J. Deleterious mutation accumulation in asexual *Timema* stick insects. *Mol. Biol. Evol.* **29**, 401–408 (2012).
17. Tucker, A. E., Ackerman, M. S., Eads, B. D., Xu, S. & Lynch, M. Population-genomic insights into the evolutionary origin and fate of obligately asexual *Daphnia pulex*. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 15740–15745 (2013).
18. Hollister, J. D. *et al.* Recurrent loss of sex is associated with accumulation of deleterious mutations in *Oenothera*. *Mol. Biol. Evol.* **32**, 896–905 (2015).
19. Doerder, F. P. Abandoning sex: multiple origins of asexuality in the ciliate *Tetrahymena*. *BMC Evol. Biol.* **14**, 112 (2014).

20. Gladyshev, E. A., Meselson, M. & Arkhipova, I. R. Massive horizontal gene transfer in bdelloid rotifers. *Science* **320**, 1210–1213 (2008).
21. Flot, J.-F. *et al.* Genomic evidence for ameiotic evolution in the bdelloid rotifer *Adineta vaga*. *Nature* **500**, 453–457 (2013).
22. Seidl, M. F. & Thomma, B. P. H. J. Sex or no sex: Evolutionary adaptation occurs regardless. *BioEssays* **36**, 335–345 (2014).
23. Maciver, S. K. Asexual amoebae escape Muller's ratchet through polyploidy. *Tr. Parasitol.* **32**, 855–862 (2016).
24. Zufall, R. A. Mating systems and reproductive strategies in *Tetrahymena*. In Witzany, G. & Nowacki, M. (eds.) *Biocommunication of Ciliates*, 221–233 (Springer, Cham, 2016).
25. Chalker, D. L. Dynamic nuclear reorganization during genome remodeling of *Tetrahymena*. *Biochim. Biophys. Acta* **1783**, 2130–2136 (2008).
26. Bell, G. *Sex and Death in Protozoa: The History of an Obsession* (Cambridge University Press, Cambridge, U.K., 1988).
27. Orias, E., Cervantes, M. D. & Hamilton, E. P. *Tetrahymena thermophila*, a unicellular eukaryote with separate germline and somatic genomes. *Res. Microbiol.* **162**, 578–586 (2011).
28. Jahn, C. L. & Klobutcher, L. A. Genome remodeling in ciliated protozoa. *Annu. Rev. Microbiol.* **56**, 489–520 (2002).

29. Doerder, F. P., Deak, J. C. & Lief, J. H. Rate of phenotypic assortment in *Tetrahymena thermophila*. *Dev. Genet.* **13**, 126–132 (1992).
30. Haldane, J. B. S. A mathematical theory of natural and artificial selection, Part V: Selection and mutation. *Math. Proc. Camb. Phil. Soc.* **23**, 838–844 (1927).
31. Kimura, M. & Maruyama, T. The mutational load with epistatic gene interactions in fitness. *Genetics* **54**, 1337–1351 (1966).
32. Crow, J. F. Genetic loads and the cost of natural selection. In Kojima, K.-i. (ed.) *Mathematical Topics in Population Genetics*, 128–177 (Springer, Berlin, 1970).
33. Kondrashov, A. S. & Crow, J. F. King's formula for the mutation load with epistasis. *Genetics* **120**, 853–856 (1988).
34. Long, H. *et al.* Antibiotic treatment enhances the genome-wide mutation rate of target cells. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E2498–E2505 (2016).
35. Kimura, M., Maruyama, T. & Crow, J. F. The mutation load in small populations. *Genetics* **48**, 1303–1312 (1963).
36. Poon, A. & Otto, S. P. Compensating for our load of mutations: Freezing the meltdown of small populations. *Evolution* **54**, 1467–1479 (2000).
37. Felsenstein, J. The evolutionary advantage of recombination. *Genetics* **78**, 737–756 (1974).
38. Haigh, J. The accumulation of deleterious genes in a population—Muller's ratchet. *Theor. Popul. Biol.* **14**, 251–267 (1978).

39. Otto, S. P. & Feldman, M. W. Deleterious mutations, variable epistatic interactions, and the evolution of recombination. *Theor. Popul. Biol.* **51**, 134–147 (1997).
40. Chasnov, J. R. Mutation-selection balance, dominance and the maintenance of sex. *Genetics* **156**, 1419 –1425 (2000).
41. Otto, S. P. The advantages of segregation and the evolution of sex. *Genetics* **164**, 1099–1118 (2003).
42. Doerder, F. P., Gates, M. A., Eberhardt, F. P. & Arslanyolu, M. High frequency of sex and equal frequencies of mating types in natural populations of the ciliate *Tetrahymena thermophila*. *Proc. Natl. Acad. Sci. U. S. A.* **92**, 8715–8718 (1995).
43. Nanney, D. L., Caughey, P. A. & Tefankjian, A. The genetic control of mating type potentialities in *Tetrahymena pyriformis*. *Genetics* **40**, 668–680 (1955).
44. Schensted, I. V. Appendix model of subnuclear segregation in the macronucleus of ciliates. *Am. Nat.* **92**, 161–170 (1958).

Acknowledgements We thank P. Doerder, M. Orive, T. Paixão, and E. Kelleher for discussions. R.A.Z. and R.B.R.A. acknowledge support from grant R01GM101352 from the National Institutes of Health. R.A.Z. acknowledges support from grant DEB-1911449 from the National Science Foundation. R.B.R.A. acknowledges support from grant DEB-1354952 from the National Science Foundation.

Author contributions R.A.Z. and R.B.R.A. conceived the study; H.Z., J.A.W., and R.B.R.A. wrote code and conducted simulations; H.Z. and R.B.R.A. analyzed the data; R.B.R.A. conducted mathematical analyses; H.Z., R.A.Z., and R.B.R.A. wrote the manuscript; J.A.W. contributed to editing the manuscript.

Competing interests The authors declare no competing interests.

Supplementary information is available for this paper at [https://doi.org/...](https://doi.org/)

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to R.B.R.A.