bioRxiv preprint doi: https://doi.org/10.1101/793885; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Discordant bioinformatic predictions of antimicrobial
resistance from whole-genome sequencing data of
bacterial isolates: An inter-laboratory study

Ronan M. Doyle!?, Denise M. O’Sullivan®, Sean D. Aller*, Sebastian Bruchmann®, Taane
Clark®, Andreu Coello Pelegrin’®, Martin Cormican’, Ernest Diez Benavente®, Matthew J.
Ellington'®, Elaine McGrath!!, Yair Motro'2, Thi Phuong Thuy Nguyen'?, Jody Phelan®, Liam
P. Shaw!4, Richard A. Stabler'®, Alex van Belkum’, Lucy van Dorp'¢, Neil Woodford!?, Jacob
Moran-Gilad'?, Jim F. Huggett®!”, Kathryn A. Harris?

10.
1.

12.

13.

14.

15.
16.

17.

Clinical Research Department, London School of Hygiene & Tropical Medicine,
London, UK

Microbiology Department, Great Ormond Street Hospital NHS Foundation Trust,
London, UK

. Molecular and Cell Biology Team, National Measurement Laboratory, Queens Road,

Teddington, Middlesex, UK

Institute for Infection and Immunity, St George’s, University of London, Cranmer
Terrace, London, UK

Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus,
Hinxton, UK

Department of Infection Biology, London School of Hygiene & Tropical Medicine,
London, UK

bioM¢érieux, Clinical Unit, La Balme Les Grottes, France.

Vaccine & Infectious Disease Institute, Laboratory of Medical Microbiology, Faculty
of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
National University of Ireland Galway, Galway, Ireland.

NIS Laboratories, National Infection Service, Public Health England, London, UK.
Carbapenemase-Producing Enterobacterales Reference Laboratory, Department of
Medical Microbiology, University Hospital Galway, Galway, Ireland.

School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the
Negev, Beer Sheva, Israel.

Department of BioNano Technology, College of BioNano Technology, Gachon
University, Seoul, Republic of Korea.

Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital,
Oxford, UK.

AMR Centre, London School of Hygiene & Tropical Medicine, London, UK

UCL Genetics Institute, Department of Genetics, Evolution & Environment,
University College London, Gower Street, London, UK

School of Biosciences & Medicine, Faculty of Health & Medical Science, University
of Surrey, Guildford, UK.

Corresponding author: Ronan M. Doyle, ronan.doyle@lshtm.ac.uk



mailto:ronan.doyle@lshtm.ac.uk
https://doi.org/10.1101/793885
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/793885; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Abstract
Background

Antimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology
laboratories typically rely on culturing bacteria for antimicrobial susceptibility testing (AST).
As the implementation costs and technical barriers fall, whole-genome sequencing (WGS)
has emerged as a ‘one-stop’ test for epidemiological and predictive AST results. Few
published comparisons exist for the myriad analytical pipelines used for predicting AMR. To
address this, we performed an inter-laboratory study providing sets of participating
researchers with identical short-read WGS data sequenced from clinical isolates, allowing us
to assess the reproducibility of the bioinformatic prediction of AMR between participants and
identify problem cases and factors that lead to discordant results.

Methods

We produced ten WGS datasets of varying quality from cultured carbapenem-resistant
organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq
instrument. Nine participating teams (“participants’) were provided these sequence data
without any other contextual information. Each participant used their own pipeline to
determine the species, the presence of resistance-associated genes, and to predict
susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime.

Results

Individual participants predicted different numbers of AMR-associated genes and different
gene variants from the same clinical samples. The quality of the sequence data, choice of
bioinformatic pipeline and interpretation of the results all contributed to discordance between
participants. Although much of the inaccurate gene variant annotation did not affect
genotypic resistance predictions, we observed low specificity when compared to phenotypic
AST results but this improved in samples with higher read depths. Had the results been used
to predict AST and guide treatment a different antibiotic would have been recommended for
each isolate by at least one participant.

Conclusions

We found that participants produced discordant predictions from identical WGS data. These
challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for
refinements when using this technology in clinical settings. Comprehensive public resistance
sequence databases and standardisation in the comparisons between genotype and resistance
phenotypes will be fundamental before AST prediction using WGS can be successfully
implemented in standard clinical microbiology laboratories.

Keywords: Antimicrobial resistance, antimicrobial susceptibility testing, whole-genome
sequencing, bioinformatics, carbapenem resistance.
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Introduction

Antimicrobial resistance (AMR) is a major, global, public health threat with projections of up
to 10 million deaths per annum by 2050 [1]. The World Health Organisation’s 2015 Global
Action Plan on AMR identified diagnostics as a priority area for combating resistance [2].
Whilst most diagnostic AMR testing is phenotypic antimicrobial susceptibility testing (AST)
based on principles dating back to the early 20" century [3]. Molecular testing has facilitated
the implementation of PCR assays that target key AMR mutations and genes [4,5]. However
there remains an unmet need for truly rapid point-of-care AST [6,7].

Whole-genome sequencing (WGS) is emerging as a routine clinical test that could be used to
determine the bacterial species, undertake transmission tracking and identify multiple AMR
associated mutations and genes in a single assay [8—13]. Whilst the initial clinical roll-out of
WGS has used bacterial isolates, metagenomics and sequencing direct from clinical samples
are future possibilities [ 14—16]. Resolving the challenges of AMR prediction using WGS for
bacteria will provide key advances for the application of metagenomics as a clinical test.

Bioinformatics tools and pipelines to predict AMR have generally been developed by
individual research groups, many with no clinical expertise, and mostly with the same basic
principle of matching the input DNA sequence to entries in a reference database of known
AMR-associated gene sequences. The testing of pipelines for AMR prediction is typically
either performed in house [17—-19] or done ad hoc for specific research [20-23]. Often, these
tools are not developed with clinical application or portability in mind. Currently there are no
higher-order reference materials (synthetic references that contain exact components of
interest) that are available to validate these tools. Studies have reported good concordance
between genotype and phenotype on datasets they have been applied to [9,21,24], but rarely
address the factors underlying situations where different methods may produce discordant
results and how this discordance should be resolved.

Gaining laboratory accreditation is an important, often essential step for tests in clinical
microbiology, but is less advanced for bioinformatics due to its comparatively recent
development. Bioinformatic reproducibility studies have been performed for clinically
relevant bacterial sequence typing methods [25,26]. However, while there have been intra-
laboratory studies comparing methods of AMR prediction, there have been no comparisons of
multiple methods at the inter-laboratory scale. As there is limited evidence of robust,
reproducible analyses in bioinformatic prediction of AMR from clinical WGS data, adoption
of these methods may be hampered in meeting the necessary accreditation.

This multi-centre study used genomic DNA sequences from clinical carbapenem-resistant
organisms (CROs), specifically chosen to be of varying quality and complexity, to identify
the contributors to discordant AMR predictions. Participants included a mixture of
individuals and teams involved in AMR prediction from research groups, hospital
laboratories, public health laboratories and clinical diagnostic companies. The observations
made underpin our recommendations for future method developments.
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Methods
Sample collection and whole genome sequencing

For the purposes of this study, a panel of ten samples (A-1, A-2, B-1, B-2, C-1, C-2, D, E, F
and G) were generated from seven clinical isolates (A, B, C, D, E, F and G). The bacteria
were isolated between 2014 and 2017 from stool specimens from patients attending Great
Ormond Street Hospital (GOSH) UK or University Hospital Galway (UHG), Ireland. They
represented six clinically-relevant bacterial species, including diverse Enterobacterales and

also Acinetobacter baumannii, and contained six distinct families of carbapenemase genes
(Table 1).

Phenotypic AST was performed at UHG and GOSH using the EUCAST disk diffusion
method (http://www.eucast.org) and meropenem, ertapenem, cefotaxime, amikacin,
gentamicin and ciprofloxacin. The isolates were confirmed as carbapenemase producers by
PCR at a reference laboratory (Public Health England).

Total genomic DNA was extracted from isolate sweeps on the EZ1 Advanced XL (Qiagen)
using DNA Blood 350 pl kits with an additional bead beating step. For eight samples the
NEBNext Ultra Il DNA Library Prep Kit (New England Biolabs) and NextSeq (Illumina)
150bp paired-end sequencing was used. For two samples Nextera DNA Library Prep Kit
(Illumina) and HiSeq 100bp paired-end sequencing was used (Table 1). The FASTQ files
were deposited in the European Nucleotide Archive (PRJIEB34513).

Inter-laboratory study plan

Potential inter-laboratory participants were invited in an individual capacity both in person
and by email at the meeting “Challenges and new concepts in antibiotics research”, March
2018, at Institut Pasteur, France. Fifteen individuals were also emailed directly to participate
in the study. From those invited, nine sets of participants agreed to take part in the study. We
will refer to these sets as ‘participants’ throughout. These participants were labelled Lab 1 to
Lab 9; “Lab” is used as a catch-all term for an individual or team of participants, who came
from a mixture of research groups, hospital laboratories, public health laboratories, and
clinical diagnostic companies. All participants agreed to take part in a personal capacity under
the condition of anonymity of the results. Each participant was not made aware who the other
invited participants were at this stage.

Participants were sent ten paired FASTQ files (labelled AMRIL 1 to AMRIL 10) and were
blinded to their contents. The samples included: Two exact duplicates A-1 and A-2 (renamed
copies of the same FASTQ files). Two duplicates with different sequence coverage B-1 and
B-2 (sequenced from the same isolate, but with median read depths of 1.4X and 142.9X
respectively). Two samples sequenced from the same isolate C-1 and C-2 (sequenced in two
different laboratories using NextSeq and HiSeq respectively). The remaining four samples D,
E, F and G represented diverse bacterial species and carbapenemases).

Participants were asked to report a species identification for each pair of FASTQ files
provided as well as the presence of all AMR-associated genes present in that sample. They
were asked, using the above data, to make a categorical prediction on whether that sample
would be resistant to ciprofloxacin, gentamicin, amikacin and cefotaxime. Lastly, participants
were asked to provide a detailed description of the analysis pipeline they used.

Participants returned results via an Excel spreadsheet (Additional file 1). Results were
collated for all species identification and resistant or susceptible predictions from each
participant. Collated AMR-associated genes had each name manually checked between each
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participant to identify minor differences in nomenclature used. Individual methods are
summarised in Table 2. The full methods submitted by each participant can be found in
Additional file 2.

Table 1. Inter-laboratory study sample characteristics.

Study ID Isolate species Sequencing method gC;:eL v ;; c:.ver:gerth Comment
A-1 K. pneumoniae NEBNext Ultra IT + NextSeq 150bp PE OXA-48-like 190.2 Exact duplicate of A-2
A-2 K. pneumoniae NEBNext Ultra IT + NextSeq 150bp PE OXA-48-like 190.2 Exact duplicate of A-1
B-1 E. cloacae complex ~ NEBNext Ultra II + NextSeq 150bp PE OXA-48-like 1.4 Very low coverage duplicate of B-2
B-2 E. cloacae complex ~ NEBNext Ultra II + NextSeq 150bp PE OXA-48-like 142.9 High coverage duplicate of B-1
C-1 K. oxytoca Nextera DNA + HiSeq 100bp PE OXA-48-like 37.4 Same original isolate as C-2
C-2 K. oxytoca NEBNext Ultra IT + NextSeq 150bp PE OXA-48-like 156.4 Same original isolate as C-1
D K. pneumoniae NEBNext Ultra I + NextSeq 150bp PE NDM 83.5
E E. coli Nextera DNA + HiSeq 100bp PE IMP 20.6
F C. freundii NEBNext Ultra I + NextSeq 150bp PE VIM 325
G A. baumannii NEBNext Ultra II + NextSeq 150bp PE OXA-23-like & 222
OXA-51-like

Table 2. Summary of bioinformatic tools used for detecting antimicrobial resistance by

each participant.

Method

step Lab_la! Lab_1b! Lab_2 Lab_3 Lab_4 Lab_5 Lab_6 Lab_7 Lab_8 Lab_ 9  References
?sii?nbly (51};?\‘:11:5) (51};?\‘:11:5) SPAdes %‘Ff\yﬁig assggbly AS-miseq Blonusmenc ass:I;bly I(Jsl}ljxy;elz; asszlrflbly [27-29]
Bionumeric
AMR : RGI & s E. coli . [17,19,30-
identifier RGI c-SSTAR  ABRicate Resfinder ARIBA RGI gerl;(l):;?;ng SRST2 ABRicate  Genefinder 32]
(BLAST)
CARD &
§;§g§§§e CARD ];e;ﬁgg:r CARD g?sléf df‘r C:Eg-& CARD  Resfinder A/;?\%T Resfinder (Ir{::fl?;(;; [17,31,33]
ANNOT ANNOT curated)
Sequence «© :g;/)o) &
identity 80% 95% 75% 90% 90% 80% 90% 90% 75% 90%
cut-off (Resfinder)
Sequence «© A(l):f)) &
coverage 0% 0% 0% 80% 20% 0% 60% 90% 0% 100%
cut-off (Resfinder)

1. Lab_1 provided two sets of results with two separate methods and so have been split into

Lab laand Lab_1b.
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Results
Bacterial species identification

Four of the nine participants identified all species correctly from WGS data (Table 3). This
included sample B-1 where we did not expect enough information for a correct call. Species
misidentifications of D and B-2 at the genus level by Lab 5 is likely to be human reporting
error rather as they correctly identified species in B-1 from a very low read depth. Lab_6
used the same web-based tool for species identification as Lab 5 (Kmerfinder, CGE) but one
error was noted where raw sequence reads were inputted instead of assembled contiguous
sequences (Table 3).

Table 3. Species identification for each sample by each participant.

Participant A-1 A-2 B-1 B-2 C-1 C-2 D E F G
REF ID KP KP ECl1 ECl1 KO KO KP EC CF AB
Lab_1 KP KP ECl1 ECl1 KO KO KP EC CF AB
Lab_2 KP KP - ECl1 KO KO KP EC CF AB
Lab_3 KP KP Shigella ECl1 KO KO KP EC Citrobact AB
phage er sp.
Sfiv
Lab_4 KP KP ECl1 ECl1 KO KO KP EC Citrobact AB
er sp.
Lab_5 KP KP ECI1 KP KO KO EC EC CF AB
Lab_6 KP KP ECl1 ECl1 - KO Klebsiella EC CF AB
sp.
Lab_7 KP KP ECI1 ECI KO KO KP EC CF AB
Lab_8 KP KP ECI1 ECI KO KO KP EC CF AB
Lab 9 KP KP ECI1 ECI KO KO KP EC CF AB

Missing data represent no results reported. Results highlighted in bold represent
discrepencies. KP: Klebsiella pneumoniae, ECl: Enterobacter cloacae, KO: Klebsiella
oxytoca, EC: Escherichia coli, CF: Citrobacter freundii, AB: Acinetobacter baumannii.

Antimicrobial resistance gene identification

We compared the number of AMR-associated genes reported by each participant in each
sample and found disparities in the total reported (Figure 1). Lab_1 used two different
methodologies for identifying AMR-associated genes; these are referred to as Lab_la and
Lab_1b. The number of AMR-associated genes reported by each participant was affected by
the choice of database used. Lab 1a, Lab 2, Lab 3 and Lab_5 all repeatedly reported the
highest number of genes in each sample and all used the Comprehensive Antibiotic
Resistance Database (CARD) as their reference database. This is due to CARD including
many sequences from loosely AMR-associated efflux pump genes that are not found in the
other databases. Lab 4 and Lab_9 also used CARD but in combination with other databases
and selectively reported genes. The number of AMR-associated genes reported by each
participant was also found to be associated with sequence identity and coverage thresholds
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used to infer a “hit”. Both Lab_2 and Lab_8 used the lowest identity and coverage thresholds
(75% sequence identity and no coverage threshold) and lab_2 consistently reported the
highest number of AMR genes in each sample. While Lab_8 reported fewer AMR-associated
genes than Lab 2, it did use ResFinder as its reference database rather than CARD, and
reported the highest number of genes compared with other participants using the same
database.

All isolates included in this study were carbapenem resistant. The reporting of carbapenemase
genes from whole-genome sequencing from all participants matched the reference PCR result
in 91% of cases (91/100) (Table 4). Eight of the ten misidentifications occurred in the low
coverage sample B-1 as would be expected. Differences between reported gene variants of
blanp were seen in sample E. Five participants reported blamp-1, whereas the other five
reported blamvp-3s. This discrepancy exactly matched the reference database used with those
reported blanvp-1 having used CARD and those who reported blamp-34 either having used
ResFinder or ARG-ANNOT. While the sequences for blamvp-34 included in each database are
identical, the choice of blamp-1 reference sequence included in both databases only share 85%
sequence identity. This is due to CARD’s blawmp-1 reference sequence being isolated from a
Pseudomonas aeruginosa integron (NCBI accession: AJ223604) and ARG-ANNOT’s
reference sequence from a Acinetobacter baumannii integron (NCBI accession: HM036079).
While there is variation at the nucleotide level, both encode the same IMP-1 enzyme.

Table 4. Carbapenemase genes identified for each sample by each participant and the
reference laboratory PCR.

Participant A-1 A-2 B-1 B-2 C-1 C-2 D E F G
OXA-48 OXA-48 OXA-48 OXA-48 OXA-48 OXA-48 OXA-23-
REF PCR! e e e L L o NDM IMP VIM like + OXA-
like like like like like like .

51-like

Lab_la? OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-1 VIM-4 OXA-23 +
OXA-66

Lab_1b? OXA-48 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-34 VIM-4 OXA-23 +
OXA-66

Lab_2 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-1 VIM-4 OXA-23 +
OXA-66

Lab_3 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-1 VIM-4 OXA-23 +
OXA-66

Lab_4 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-34 + VIM-4 OXA-23 +
IMP-9 OXA-66

Lab_5 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-1 VIM-4 OXA-23

Lab_6 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-34 VIM-4 OXA-23 +
OXA-66

Lab_7 OXA-48 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-34 VIM-4 OXA-23 +
OXA-66

Lab_8 OXA-48 OXA-48 OXA-48 OXA-181 OXA-181 NDM-1 IMP-34 VIM-4 OXA-23 +
OXA-66

Lab_9 OXA-48 OXA-48 OXA-405 OXA-48 OXA-181 OXA-181 NDM-1 IMP-1 VIM-4 OXA-23 +

OXA-66

1. Specific carbapenemase PCR results for each sample.

2. Lab_1 provided different results using two separate methods and so are included as Lab_la
and Lab_1b.

Missing data represent no results reported.
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We compared all AMR-associated genes identified by each participant in each sample. As
previously noted, the largest discrepancy were the 55 efflux pump gene sequences which
were present only in CARD (Figure S1). To understand the other factors influencing
discordant reporting we removed these genes that were only present in one database from our
comparisons (Figure 2). A pairwise comparison between all participants found that two
participants only reported the exact same genes within a sample in 2% (18/900) of cases.
Fourteen of these cases occurred when analysing the two identical samples (A-1 and A-2,
Figure 2). Although there was little agreement between participants for genes identified in A-
1 and A-2, there was complete within-participant concordance across both samples,
exhibiting reproducibility within each analysis pipeline. No two participants reported the
exact same combination of gene variants in samples B-2, C-1, D, F and G. There were many
clear examples where participants assigned different gene variants to the same sequence data
where the reference sequences only differed by a few single nucleotides. This can be seen in
Figure 2 amongst samples which contained tetracycline resistance genes (tet(A4), tet(B) and
tet(C)), some aminoglycoside modifying enzyme gene variants (aac(3)-Ila and aac(3)-1Ic)
and f-lactamases (blaact-14 and blaact-138). We also observed differences between the same
participants analysing samples from the same original isolate. Due to the very low read depth,
the genes reported in B-1 bore little resemblance to B-2 across all participant results.
However even in the samples from the same isolates with sufficient sequencing depth (C-1
and C-2) we observed differences in the genes identified in four out of nine participants. This
suggests that resequencing, and even small increases in read length, can produce variation in
results. It is worth noting that all but one of these differences were additional genes identified
in C-2, which had a higher read depth than B-2 (156 vs 37 median read depth). The additional
genes in C-2 included ant#(3”)—Ia (lab_2 and lab_8), fosA7 (lab_2 and lab_8) and fe#(C)
(lab_3) but the reported reference coverage of ant(3”)—Ia and fosA7 was low (17% and 75%,
respectively) and the sequence similarity between the purported zet(C) sequence and the
reference was also low (75%). We also found no systematic differences in genes present or
absent between those participants that used tools that required assembly of short reads first
and those that took unassembled short reads as input (lab_4 and lab_8, ARIBA and SRST2
respectively).

Phenotypic and genotypic resistance concordance

Given the differences in the AMR-associated genes identified in the samples by each
participant, we also compared predictions of antibiotic resistance to phenotypic AST results
and each other. Two participants (Lab_2 and Lab_4) did not submit any results for phenotypic
resistance prediction and so were not included in the subsequent analysis. A pairwise
comparison between genotypic prediction results reported by all participants, on all
antibiotics and samples, showed an overall consensus of 79% (864/1092, Figure 3). This
varied depending on the antibiotic tested with the highest pairwise reporting consensus of
88% (240/273) between participants for ciprofloxacin and the lowest pairwise reporting
consensus of 72% (197/273) for cefotaxime, which could be understandable given the
different complexities of the resistance mechanisms involved. When we compared results
from each participant with the phenotypic AST results, we found an overall sensitivity of
76% and specificity of 50%. Broken down by antibiotic, the highest consensus between
phenotype and genotype was gentamicin (78%, 62/79) and the lowest amikacin (43% 34/79).
As expected, there was little agreement between predictions within the low read depth sample
(B-1) and most participants predicted a susceptible isolate due to missing data when in fact it
was resistant by phenotypic AST. However, when analysing the same isolate at a higher read
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depth (B-2) there was near perfect concordance between participant reported genotypes and
the resistance phenotype, with only two discrepant results reported by Lab 3 (ciprofloxacin)
and Lab_7 (amikacin). Lab 3 also reported different results between the two identical
samples (A-1 and A-2) where A-1 was reported as resistant and A-2 was reported as sensitive.
As there were no differences in the gene content reported in either sample by this participant
(Figure 2), this is likely to be due to human reporting error. We also identified a single
discrepancy between amikacin resistance predicted by Lab_7 between samples C-1 and C-2
which both were sequenced from the same isolate. C-1 was reported as sensitive but C-2 was
reported as resistant and the phenotypic AST result was sensitive, however there was no
difference in the reported gene content in both samples by Lab 7 so it is also another likely
human reporting error. Excluding the extremely low depth sample, B-1, there were only 2/30
cases where no laboratory correctly predicted the phenotypic AST result. Both of these results
were an incorrect resistance prediction for amikacin in C-2 and E but as noted earlier the
prediction from Lab 7 for C-2 was likely human error.

Discussion

In this study we have shown that participants using different bioinformatics pipelines report
different AMR-associated gene variants when given identical bacterial isolate WGS datasets
and that this led to differences in reporting of predicted resistance phenotypes. We observed
good concordance for genotypic resistance predictions between participants but poor
concordance with phenotypic AST results. A similar trend has previously been seen in a study
of Staphylococcus aureus genomes [34]. Concordance in phenotype prediction differed for
different antibiotic classes. Good concordance was seen comparing WGS with AST results
for gentamicin, but for amikacin concordance was poor. This may be due to the fact that
amikacin is not affected by the action of most aminoglycoside modifying enzymes [35].
Previous studies predicting antimicrobial susceptibility from WGS data have reported
sensitivities of 96% and 99% against phenotypic AST as a benchmark [20,21], compared
with an overall sensitivity of 76% in this inter-laboratory study. It should be noted however
that some of the data used in this study were purposefully low quality and some of the
clinical isolates were deliberately chosen to be difficult to characterise as our aim was to
identify the contributors to discordant results reported between participants working on the
same data in order to provide useful recommendations.

We found three stages of analysis that contributed to discrepancies in predictions: The quality
of the sequence data used, the bioinformatic methods (choice of database or software used)
and the interpretation of those results. Where single gene calling is required (e.g presence of a
carbapenemase) results are mainly affected by sequence quality. However, once multiple
genes are involved, all three analytical issues become important. We found the largest
contributors to discrepant results between the gene variants reported in each sample and the
phenotypic resistance predictions were the sample read depth and the choice of reference
resistance gene database. Samples must be sequenced to a sufficient depth as well as
sufficient coverage for the expected size of the genome, usually inferred by mapping to a
suitable reference genome, of at least above 90% to ensure even coverage. Based on our own
experience and these results, we recommend 30X as a lower limit. This also tends to be a
default setting for many read assembly tools but generally most samples should have a higher
depth of coverage than this for meaningful prediction. Some participants did flag that they
would not normally analyse the low coverage samples (<30X, samples B-1, E and G) and if
those samples are excluded from this analysis sensitivity in comparison to phenotypic AST
rises from 76% to 98%. As long as the sequence data produced is of sufficient depth and
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quality (e.g. current Illumina error rates) we have observed the choice of sequencer and DNA
library preparation method has a small effect on closely related gene variants but little
discernible effect on the inference of resistance phenotype.

Some participants ran the same set of read data against different reference databases and
merged the results which led to different gene variants being reported at the same loci. We
also found reference sequences in different databases for same gene variant can differ by 15%
nucleotide identity (b/amvp-1 in CARD and ARG-ANNOT). If precise identification of gene
variants is required, we would strongly recommend avoiding this as it effectively leads to
‘double-dipping’ using the same reads. Multiple reference databases could be used but after
screening for reads that have already been assigned a hit against one of the databases. This
would avoid multiple different genes reported at the same genomic loci. However, it would
be better to merge the different reference databases and remove the redundant sequences
before comparisons are made against the test data. Sequence identity, and to lesser extent
coverage cut-offs, should be kept high when comparing test data to a reference database.
Based on this study we would recommend using sequence identity cut-off of at least 90%, in
combination with an up to date reference resistance gene database. Although lowering of
these thresholds does identify more candidate genes within a sample it did not improve
concordance with phenotypic AST results in this study.

There is an overwhelming need for a standardised, centralised database that integrates the
current knowledge base for linking genotype with resistance phenotype and is not linked to a
single research group, as previously suggested [10]. There is also a growing need regarding
computational reproducibility [36,37]. This would deal with many of the issues we have
raised, such as which sequences to include and what gene nomenclature to use. With strict
version control, such a resource would allow greater integration of results and be an
invaluable tool for larger epidemiological studies. Currently, databases are being built for
organisms such as for Mycobacterium tuberculosis, though this is a less challenging organism
for genotype-phenotype predictions due to it being highly clonal and lacking an accessory
genome [38,39]. A recent publication of a new protein-based database also obtained high
concordance (98.4%) between genotype and phenotype for four food-borne pathogens [40].
However, for other clinically relevant organisms there are limited resources.

Participants in this study included a mixture of individuals and teams involved in AMR
prediction in a variety of settings. A potential criticism is that we did not restrict these settings
to those routinely predicting AMR phenotype for clinical use, meaning that some participants
were attempting analyses they did not usually perform. However, the fact that AMR
phenotype prediction from WGS is not yet routine in most clinical laboratories was the very
reason for undertaking this study. Clinical laboratories at the moment do not have the tools or
knowledge to make good phenotypic resistance calls from genotypic data. This is evident
from the fact that two participants in this study did not report any phenotypic resistance
predictions as they felt they could find no valid method for doing so. At this point in time
many research laboratories use these methods to track specific resistance genes or one
specific resistance mechanism, rather than building tools for the broad detection of AMR in
bacteria. We found in this study that there was particularly low concordance between
participants reporting sensitive isolates compared with phenotypic AST. The problem with
the inference of phenotype from genotype is that the information is either not known at all or
is expert knowledge restricted to single laboratories working on specific bacteria. In addition
to this, although the identification of the presence of genes is performed in a systematic way,
the prediction of resistance is still performed in an ad hoc manner by scientists and therefore
subject to user error given the same set of genes. Once again M. tuberculosis is providing the
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first example of the need for a defined decision tree when working from the presence of
genes to the prediction of phenotypic drug resistance [41]. Interpretation and reporting of this
genotypic data will need to be subjected to the same level of scrutiny as current tests if it is to
form part of an accredited laboratory service within the healthcare service.

A limitation of this study is that we focused on the use of short read sequence data which
produces sequences far shorter than the length of genes being identified. However, we feel
this is more reflective of the WGS data that is more routinely generated in clinical
laboratories at this point in time. If these short reads need to be assembled into longer
contiguous sequences and we found the use of an actively developed short read assembler to
be essential for this. Web-hosted tools that provide a “black box™ solution to assembly and
identifying resistance from uploaded WGS data should be avoided if possible, because of the
lack of interpretability. Tools are needed which are open source, designed for purpose and can
be subjected to thorough troubleshooting when erroneous results arise [42]. To this end,
permanently employed bioinformaticians are required who can provide expert interpretation
of the results and update approaches as necessary. In this study, tools that either require
assembled contigs (ABRicate) and those that take unassembled short reads (SRST2 and
ARIBA) were capable of producing very similar results with no notable effects alone on the
predication of phenotypic resistance. This hold promise for rapid phenotypic predictions as
genome assembly is one of the largest bottlenecks in computational analysis time.

Other limitations of this study include our focus on acquired genes rather than point
mutations or many of the other resistance mechanisms found in bacteria (e.g. target site
modifications and efflux pumps). We also only required reporting on categorical resistance
predictions. Furthermore, because our focus was on WGS, although we validated AST at two
independent laboratories we did not investigate potential variability and discordance in
phenotypic prediction. More work needs to be done on the prediction of MICs from WGS
data before it can be implemented in laboratories. This will be aided by more systematic
reporting of accompanying MIC data when making WGS data available.

In conclusion, we have identified some of the current the key contributors to discrepancies in
predicting AMR-associated genes and phenotypes from bacterial isolate WGS data. We have
provided recommendations for improving the current reporting of results. Even after
accounting for poor sequence data we found that the current public methods, in particular
databases, are not adequate ‘off-the-shelf tools for the prediction of AMR from bacterial
WGS data as a universal clinical test at this point in time.
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Additional File 1: Excel spreadsheet template used by study participants to communicate
results from each analysis.

Additional File 2: Supplementary methods outlining individual study participant pipelines
used in data analysis.

Additional file 3: Contains Figure S1 which shows the presence of all AMR-associated
genes in each sample by each participant. Genes are organised and coloured by the class of
antibiotics they are associated with resistance, or if they are associated with the efflux of
multiple classes of antibiotics.

17


https://doi.org/10.1101/793885
http://creativecommons.org/licenses/by/4.0/

e ¥
(S (S
I AN I Lo\
. R
0% A
% S
; B B
s — dh _—
B I
E— —— %
%. (S
R AP
B I |
mv A.OV
_— —
. R
R B
(S (S
. B |, I
- B
. .
B B
% %
R P
I | I |
mv A.OV
[te) |,
Lo NG
RE% | Y
| RN -
0% .
: I e |, | I
- i |” R
e || I | - ;
o | ] I | -
(S (S
Lo, Lo 2
1% 1%
-, m-,
-6\ = &\
N e R
(S (S
] L [ ] %,
| B | BgeX
; O I
1 ) o &
< Y- -S4
- —
e -
%. IS
AN I Lo 2
——l B
“va QroV
e —
% S
_ BRe% -
| BEa% %
: |y O
: - |° .
R o2
B - I -
[ R [ R
. I
S L & & & & & B L L L 5L & & %
© Yol < [3p] N ~ © 0 < (] N ~

payuapl sausb Jo JaquinN

Participants

bial resistance associated genes identified in each sample

imicro

Figure 1. Number of ant


https://doi.org/10.1101/793885
http://creativecommons.org/licenses/by/4.0/

Aminoglycoside
Beta-lactam
Fluoroquinolone
Glycopeptide
MLS
Phenicol
Sulphonamide
Tetracycline
Trimethoprim

icipant

Parti

[
[

il

it

N

NG

XN
5

\‘o@

)

4{

N
R

N

RIS
OO\ (O ¢
39
S

R R R $

@

\.b ;' O é\
& S

IH LI |

-

NN

NS P
W

S

SY¥

@ ¢ O

< N
WO

CEEEETHE B BHE § A
(LT OO 0 (T

YT pe—

l“ll-l_

H [T [ HJHW

0

0

IS R

AN

0

0 o

&

(I I o N M R M

2

N
R
@

:

S
K

Z)\\

0

B
=

"™ NN

|
|
|

O\ &
& ¢ «§

* o
NN
Fs¥

-V

v

-9

z-9

=)

o

Figure 2. Presence of AMR-associated genes in each sample by each participant. Genes are organised and coloured by the class of antibiotics
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reference database used.
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from WGS data. Results are presented separately for each participant sample and antibiotic.
Each tile is coloured based on whether both the resistant phenotype and genotype agreed
(R/R). Both phenotype and genotype predicted sensitive (S/S). Major errors where the
phenotype was sensitive but the genotype was resistant (S/R) and very major errors where the
phenotype was resistant but the genotype was sensitive (R/S). Missing cells represent a result
not reported.


https://doi.org/10.1101/793885
http://creativecommons.org/licenses/by/4.0/

