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18 Abstract

19 Real-time reverse transcription PCR (qPCR) normalized to an internal reference gene (RG), is a frequently 

20 used method for quantifying gene expression changes in neuroscience. Although RG expression is assumed 

21 to be constantly independent of physiological or experimental conditions, several studies have shown that 

22 commonly used RGs are not expressed stably. The use of unstable RGs has a profound effect on the 

23 conclusions drawn from studies on gene expression, and almost universally results in spurious estimation 

24 of target gene expression. Approaches aimed at selecting and validating RGs often make use of different 

25 statistical methods, which may lead to conflicting results. The present study evaluates the expression of 5 

26 candidate RGs (Actb, Pgk1, Sdha, Gapdh, Rnu6b) as a function of hypoxia exposure and hypothermic 

27 treatment in the neonatal rat cerebral cortex in order to identify RGs that are stably expressed under these 

28 experimental conditions and compares several statistical approaches that have been proposed to validate 

29 RGs. In doing so, we first analyzed the RG ranking stability proposed by several widely used statistical 

30 methods and related tools, i.e. the Coefficient of Variation (CV) analysis, GeNorm, NormFinder, 
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31 BestKeeper, and the ΔCt method. Subsequently, we compared RG expression patterns between the various 

32 experimental groups. We found that these statistical methods, next to producing different rankings per se, 

33 all ranked RGs displaying significant differences in expression levels between groups as the most stable 

34 RG. As a consequence, when assessing the impact of RG selection on target gene expression quantification, 

35 substantial differences in target gene expression profiles were observed. As such, by assessing mRNA 

36 expression profiles within the neonatal rat brain cortex in hypoxia and hypothermia as a showcase, this 

37 study underlines the importance of further validating RGs for each new experimental paradigm considering 

38 the limitations of each selection method.

39 Keywords: Reference genes, QPCR, Neonatal Hypoxia-Ischemia.

40

41 Abbreviations:

42 qPCR real-time reverse transcription PCR

43 RG reference gene

44 Actb beta-actin

45 Pgk1 phosphoglycerate kinase 1

46 Sdha succinate dehydrogenase complex flavoprotein subunit A

47 Gapdh glyceraldehyde-3-phosphate dehydrogenase

48 Rnu6b U6 small nuclear RNA

49 18S rRNA 18S ribosomal RNA

50 Hprt hypoxanthine-guanine phosphoribosyltransferase

51 B2m beta-2-micro-globulin

52 Tubb5 tubulin beta 5

53 Ppia peptidylprolyl isomerase A

54 Ywhaz tyrosine 3/tryptophan 5-monooxygenase activation protein zeta polypeptide

55 Pgk1 phosphoglycerate kinase 1

56 Tbp TATAA-box binding protein

57 Arbp acidic ribosomal phosphoprotein P0

58 Gusb beta-glucuronidase

59 Ckb brain creatine kinase
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60 Rpl13a ribosomal protein L13A

61 Pbg-d porphobilinogen deaminase

62 Cypa cyclophilin

63 Rest repressor element 1-silencing transcription factor

64 Bad BCL2/BCL-XL-associated death promoter

65

66 Introduction

67 In qPCR analysis, reference genes (RGs) with stable expression levels are essential internal controls for 

68 relative quantification of mRNA expression. RGs normalize variations of candidate gene expression under 

69 different conditions (1,2). The ideal RG should be expressed at constant levels regardless of e.g. 

70 experimental conditions, developmental stages or treatments (3,4), and should have expression levels 

71 comparable to that of the target gene (5). Nevertheless, increasing evidence suggests that the expression of 

72 commonly used RGs often varies considerably under different experimental conditions, as reviewed 

73 previously (6,7). The choice of unstable RGs for the normalization of qPCR data may give rise to inaccurate 

74 results, concomitant with potential expression changes in genes of interest being easily missed or 

75 overemphasized. Thus, the identification of stable RGs is a prerequisite for reliable qPCR experiments (9–

76 11).

77

78 RG selection should be performed using the same samples that will be compared when looking at genes of 

79 interest. For this purpose, several statistical methods have been proposed, i.e. GeNorm (12), qBase (13), 

80 BestKeeper (14), NormFinder (15), Coefficient of Variation (CV) analysis (16), and the comparative ΔCt 

81 method (17). These statistical methods rank the stability of the candidate RGs based on a unique set of 

82 assumptions and associated algorithms. As a result, the predictions of these methods can differ significantly 

83 based on the method used, potentially leading to conflicting results. This observation has been frequently 

84 made, but still seems to be systematically ignored in recent validation studies.

85

86 To address this issue, several approaches that make use of several statistical approaches at the same time, 

87 have been proposed, including i) a weighted rank (18–20), an approach that is compromised by the fact that 

88 it does not consider the strengths and drawbacks of each method for a given experimental setting; ii) the 
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89 “Geometric mean rank” that uses the average of the stability ranks across different methods yielding an 

90 overall ranking (12,21); as well as iii) an integrated approach (22), including a first selection step making 

91 use of the CV analysis (eliminating genes with CV>50%), and subsequently ranking the remaining genes 

92 using GeNorm.

93

94 In the present study, we compared these methods, on the evaluation of the stability of 5 candidate RGs in 

95 a murine model of perinatal asphyxia and therapeutic hypothermia. Perinatal asphyxia is a clinical condition 

96 defined as oxygen deprivation that occurs around the time of birth and may be caused by perinatal events 

97 such as placental abruption, cord-prolapse, or tight nuchal cord, limiting the supply of oxygenated blood to 

98 the fetus (23). Recently, hypothermia has emerged as the standard of care for perinatal asphyxia. Although 

99 this treatment has been demonstrated to be effective in reducing mortality and long-term consequences of 

100 perinatal asphyxia, the underlying mechanisms of this therapy are still not completely understood (24–28). 

101 Assessing gene expression changes in the neonatal hypoxic-ischemic brain may be of added value in order 

102 to further decipher the mechanism of perinatal asphyxia and to increase the effectivity of therapeutic 

103 hypothermia and related therapies. Here, we used a murine perinatal hypoxic-ischemic encephalopathy 

104 model (29–31) to address the abovementioned problems in RG selection and qPCR normalization. Several 

105 in vivo and in vitro studies on hypoxia, making use of qPCR, have been reported (19,32–39), indicating 

106 that hypoxia significantly impacts the expression of various commonly used RGs. Although some of these 

107 studies use the same or similar hypoxia models, the results vary substantially across studies, emphasizing 

108 the need to publish these validation studies prior or parallel to reporting qPCR results.

109

110 We selected five candidate RGs based on published RG validation studies involving hypoxia (Table 1). 

111 Subsequently, we applied various validated methodological and statistical methods to evaluate the effects 

112 of anoxia and hypothermia on the expression stability of the candidate RGs. To evaluate the impact of the 

113 resulting RG selection, we assessed the expression levels of the Repressor Element 1-Silencing 

114 Transcription Factor (Rest), a gene that has been shown to be upregulated by hypoxic-ischemic injury in 

115 the peri-infarct cortex of adult rats following transient focal ischemia induced by middle cerebral artery 

116 occlusion (MCAO) (40). Moreover, the proapoptotic gene BCL2/BCL-XL-associated death promoter 

117 (Bad), a gene that has been shown to be up-regulated by hypoxia in the MCAO rat model, was assessed 
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118 (41). This study provides a basis for the selection of RGs and useful guidelines for future gene expression 

119 studies, in particular regarding studies on developmental hypoxic insults.

120 Table 1.  List of published RG validation studies involving hypoxia. 

121
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123

124 Methods

125 Ethics statement

126 This study was carried out in accordance with the recommendations in the Guide for the Care and Use of 

127 Laboratory Animals of the National Institute of Health of Argentina. The protocol was approved by the 

128 Biomedical Ethics Committee of Universidad Católica de Cuyo, San Juan, Argentina and by the Ethical 

129 Committee of CICUAL: “Institutional Committee for the Use and Care of Laboratory Animals” (Resolution 

130 no. 2079/07), Facultad de Medicina, Universidad de Buenos Aires, Argentina. Appropriate actions were 

131 taken to minimize the number of animals used and their suffering, pain, and discomfort.

132

133 Hypoxic-ischemic injury animal model

134 Severe acute PA was induced using a model of hypoxia-ischemia as described previously (26-28). Briefly, 

135 albino Sprague-Dawley rats were kept under standard laboratory conditions at 24°C with light-dark cycles 

136 of 12:12 hours, and food and water present ad libitum. Fifteen timed-pregnant Sprague-Dawley rats were 

137 used. The first group of offspring studied consisted of normally delivered naive pups that were used as 

138 controls (CTL; n=6). After vaginal delivery of the first pup, pregnant dams were euthanized by decapitation 

139 and immediately hysterectomized. All full-term fetuses, still inside the uterus, were subjected to asphyxia 

140 by transient immersion of both uterine horns in a saline bath for 20 min at either 37°C (perinatal asphyxia 

141 in normothermia, PA, n=6) or 15°C (perinatal asphyxia in hypothermia, [HYPPA]; n=6). After asphyxia, 

142 the uterine horns were opened, pups were removed, dried of delivery fluids, and stimulated to breathe, and 

143 their umbilical cords were ligated. After recovery, one group of PA animals was placed on a cooling pad at 

144 8ºC for 15 minutes for hypothermic treatment (PAHYP, n=6), while hypothermic control animals (HYP, 

145 n=6) received the same treatment. After 15 minutes of exposure to the cold environment the core 

146 temperature of the newborns was measured with a rectal probe (mean temperature: 20.1ºC; n=8). The pups 

147 were subsequently placed under a heating lamp for recovery after which they were and placed with a 

148 surrogate mother. Time of asphyxia was measured as the time elapsed from the hysterectomy up to the 

149 recovery from the water bath. Pups that adjusted to the following parameters were included: 1. 

150 Occipitocaudal length > 41mm, 2. Weight > 5g.
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151

152 Total RNA extraction and reverse transcription cDNA 

153 synthesis

154 Animals were sacrificed by quick decapitation 24 h post treatment. The brain cortex was isolated, snap-

155 frozen in liquid nitrogen, ground into powder with pestle and mortar cooled in liquid nitrogen and then 

156 stored at −80 °C. Total RNA was isolated from about 80 mg tissue powder using TRIzol® (Invitrogen Life 

157 Technologies, USA) following the manufacturer’s instructions. The residual DNA was removed by the 

158 TURBO DNA free kit (Ambion Inc., UK). Yield and purity of RNA was determined by the NanoDrop ND-

159 1000 spectrophotometer (Nanodrop technologies, USA). RNA samples with an absorbance ratio OD 

160 260/280 between 1.9–2.2 and OD 260/230 greater than 2.0 were used for further analysis. RNA integrity 

161 was assessed using agarose gel electrophoresis. One microgram of RNA from each sample was reverse 

162 transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to 

163 the manufacturer’s instructions. cDNA was stored at −20 °C for future use. For qPCR analysis, each cDNA 

164 sample was diluted 20 times with nuclease-free water.

165

166 Real-time PCR

167 Real-time PCRs were conducted using the LightCycler® 480 Multiwell Plate 96 (Roche, Mannheim, 

168 Germany) containing 1µM of each primer. For each reaction, the 20 μl mixture contained 1 μl of diluted 

169 cDNA, 5 pmol each of the forward and reverse primers, and 10 μl 2 × SensiMix SYBR No-ROX Kit 

170 (Bioline, UK). The amplification program was as follows:  95°C for 30 sec, 40 cycles at 95°C for 15 sec, 

171 and 60°C for 15 sec, and 72°C for 15 sec. After amplification, a thermal denaturing cycle was conducted 

172 to derive the dissociation curve of the PCR product to verify amplification specificity. Reactions for each 

173 sample were carried out in triplicate. qPCR efficiencies in the exponential phase were calculated for each 

174 primer pair using standard curves (5 ten-fold serial dilutions of pooled cDNA that included equal amounts 

175 from the samples set). The mean threshold cycle (Ct) values for each serial dilution were plotted against 

176 the logarithm of the cDNA dilution factor and calculated according to the equation E = 10(−1/slope) × 100, 

177 where the slope is the gradient of the linear regression line. 

178

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


9

179 Reference gene selection

180 Based on their common usage as endogenous control genes in previous studies (Table 1), five candidate 

181 RGs were analyzed, i.e., Actb, Pgk1, Gapdh, Sdha, Rnu6b. These genes represent commonly used 

182 endogenous control genes chosen from the relevant literature and have been previously validated in rat, 

183 mouse and human brain tissues exposed to hypoxia. The selected RGs belong to different molecular 

184 pathways to minimize the risk of co-regulation between genes. The primers were designed from nucleotide 

185 sequences identified using NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Rnu6b TaqMan 

186 MicroRNA Assay (Rnu6b) was commercially available (Thermo Fisher Scientific, Product number: 

187 4427975-001093). All other primers were ordered from Thermo Fisher Scientific with their certificates of 

188 analysis. The primer characteristics of nominated RGs are listed in Table 2. The primer sequences (5´-3´) 

189 of the target genes were as follows:

190 Rest; - F, AACTCACACAGGAGAACGCC - R, GAGGTTTAGGCCCGTTGTGA.

191 Bad; - F, GCCCTAGGCTTGAGGAAGTC - R, CAAACTCTGGGATCTGGAACA.

192

193 Table 2.  List of RGs investigated by qPCR. 

194

195 Analysis of expression stability using multiple statistical approaches. To assess the stability of 

196 candidate RGs, five statistical methods, each with unique characteristics, were used: GeNorm, BestKeeper, 

197 NormFinder, Coefficient of Variation analysis, and the comparative ΔCt method. Ct values were converted 

198 to non-normalized relative quantities according to the formula: 2−ΔCt. CV analysis, GeNorm and 

Gene 
symbol Gene name Accesion 

number Function Primer sequence (5´-3´)
Product
length 
(bp)

Efficiency 
(%)

Actb Beta-actin NM_031144 Cytoskeletal structural protein F: CCCGCGAGTACAACCTTCTTG
R: GTCATCCATGGCGAACTGGTG

71 104.3

Pgk1 Phosphoglycerate 
kinase 1 NM_053291.3 Glycolytic enzyme F: GTCGTGATGAGGGTGGACTT

R: AACCGACTTGGCTCCATTGT
120 99.75

Sdha

Succinate 
dehydrogenase 

complex flavoprotein 
subunit A

NM_130428.1 Catalytic subunit of succinate-
ubiquinone oxidoreductase

F: AGCCTCAAGTTCGGGAAAGG
R: CCGCAGAGATCGTCCATACA

102 102.75

Gapdh
Glyceraldehyde-3-

phosphate 
dehydrogenase

NM_017008.4
Membrane fusion, microtubule 
bundling, cell death, and neurite 
outgrowth

F: AAGGGCTCATGACCACAGTC
R: GTGAGCTTCCCATTCAGCTC

143 92.1

Rnu6b RNU6-2; U6 small 
nuclear RNA NR_002752 ncRNAs CGCAAGGATGACACGCAAATTCG

TGAAGCGTTCCATATTTTT
64 93.95
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199 NormFinder calculations are based on these converted quantities, whereas BestKeeper and the ΔCt method 

200 make use of raw Cq values.

201

202 Impact of selection of RGs on gene expression normalization. The impact of RG selection on gene 

203 expression quantification was assessed via examining the expression of Rest and Bad. Six gene expression 

204 normalizing strategies were used to represent the least and most stable reference genes. The relative 

205 expression profiles of Rest and Bad were determined and normalized with all tested RGs. Relative fold 

206 changes in gene expression were calculated using the DDCt and Pfaffl methods. Data was expressed as 

207 mean ± standard error of the mean (SEM) from six independent samples/group with triple qPCR reactions. 

208 One-way analysis of variance (ANOVA) test was applied to analyze significant differences between 

209 conditions for each house-keeping gene.  Differences were reported as statistically significant when p<0.05. 

210 GraphPad Prism 6 (GraphPad Software, USA) was used for statistical procedures and graph plotting.

211

212 Results

213 qPCR

214 Pilot assays were performed to optimize cDNA and primer quantities. A total of 0.9 mg of RNA that was 

215 previously treated with DNase was used for the reverse transcription reaction in a total volume of 40ml. 

216 One microliter of the resulting cDNA was used for the qPCR reaction. Each gene amplification was 

217 analyzed, and a melting curve analysis was performed, showing a single peak indicating the temperature of 

218 dissociation. Efficiencies are shown in Table 2. All Ct values were between 17.0 and 33.0.

219 Coefficient of Variation analysis

220 We calculated the raw expression profiles of RGs as changes of Ct values across groups and ranked the 

221 gene stability according to the CV. The CV analysis is a descriptive statistical method where the Ct values 

222 of all candidate RGs across samples are first linearized (2-Cq). Next, the CV for each gene across all samples 

223 was calculated and expressed as a percentage. The CV estimates the variation of a gene across all samples 

224 taken together, and, therefore, a lower CV value indicates higher stability. This analysis on the cortical 

225 samples revealed Gapdh as the most stable RG, and Actb as the least stable RG. This method however does 
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226 not consider the variation across different treated groups; hence, CV analysis alone cannot determine the 

227 best set of RGs.

228

229 Fig 1. Variability of the raw Ct values of the five candidate RGs under different experimental 

230 conditions. a. Relative quantities without normalization to any RG using cerebral cortex samples (n=30). 

231 The boxes encompass the 25th to 75th percentiles, whereas the line in the box represents the mean. Whisker 

232 caps denote the maximum and minimum values. b. CV analysis of the linearized Ct values.

233

234 To assess if the mean mRNA levels across groups were significantly different from one another, a One-

235 way ANOVA was used. The results demonstrated that variations in the Ct values for the different treatments 

236 were different for all candidate RGs. Four of the five genes tested (Sdha, Rnu6b, Pgk1, Actb) showed 

237 significant variation in mRNA levels across different treatments (Fig 2). Only Gapdh showed no significant 

238 changes. These results, making use of the raw expression profiles of the RGs, suggest that the various 

239 experimental conditions were associated with changes in RG expression levels that, as such, could skew 

240 the normalized profile of target genes. As a result, RG selection without accounting for potential expression 

241 differences between conditions is accompanied by a significant bias in the results and their interpretation. 

242 Hence, it is of utmost importance to validate the stability of RGs prior to normalization in gene expression 

243 studies.

244

245 Fig 2. Expression profiles of RG expressed as Cp across the experimental conditions. a. Actb, b. Pgk1, 

246 c. Sdha. d. Gapdh, e. Rnu6b. Results are expressed as the Mean ± SEM for each treatment. One-way 

247 ANOVA was performed to asses differences between the means of all groups. Statistical significance is 

248 denoted by p values: *p<0.05, **p<0.01, ***p<0.001.

249

250 Next, to identify the optimal RG(s), the expression stability of candidate RGs was analyzed using four well 

251 known statistical methods (Table 3). 

252

253

254

255
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256 Table 3. Candidate RG expression stability.

257

258 First, a GeNorm analysis was performed on all five candidate genes. GeNorm calculates stability value (M) 

259 based on pairwise variation of every two genes. The rationale is that if two genes vary similarly across all 

260 samples, then they are the most stable RGs for that dataset. A limitation of this method is that if two genes 

261 are regulated in the same direction by one or more experimental conditions, those will often be assumed to 

262 be the most stable. In our analysis, except for Rnu6b, which presented the highest M-value (M=1.923), all 

263 of the other candidate RGs presented M-values lower than 1.5, which is considered to be the cut-off for 

264 suitability. Based on this analysis for the neonatal cortex, the most stable RGs were Pgk1 and Actb. This is 

265 in stark contrast to the CV analysis, that showed those genes as the least stable ones (higher CV), and to 

266 the expression profiles that showed inter-group differences.

267

268 NormFinder calculates the stability score (S) based on the inter- and intra-group variation. However, it has 

269 been reported that including genes with high overall variation can affect the stability ranking of all genes 

270 with this method (22). This algorithm can potentially be improved after identifying and removing genes 

271 with high overall variation.. Actb, Sdha and Pgk1 were the most stable RGs, presented stability values lower 

272 than 0.3. Gapdh (SV=1.736) and Rnu6b (SV=3.17) were the least stable.

273

274 BestKeeper uses the cycle threshold (Ct) values to calculate a standard deviation (SD), coefficient of 

275 variance (CV), and Pearson correlation coefficient (r) for each gene. Lower SD and CV values indicate 

276 more stable gene expression, and genes that exhibit a SD in Ct values above 1.0 should be eliminated and 

277 regarded as unreliable controls. Then, the remaining RG are ranked according to r values, with a higher r 

278 value indicating more stable gene expression. None of the genes analyzed were excluded for having SD 

GeNorm NormFinder BestKeeper Δ Ct method Comprehensive ranking
Rank

Gene M Gene S Gene Cv 
(%Ct)

SD 
(±Ct) r Gene Mean 

SD Geomean Rank Gene

1 Pgk1 0.596 Actb 0.222 Pgk1 2.17 0.53 0.825 Pgk1 1.41 1.5 1 Pgk1

2 Actb 0.599 Sdha 0.298 Actb 2.83 0.55 0.819 Sdha 1.45 2 2 Actb
3 Sdha 0.782 Pgk1 0.298 Sdha 1.54 0.32 0.814 Actb 1.53 2.5 3 Sdha
4 Gapdh 1.053 Gapdh 1.736 Gapdh 1.84 0.44 0.614 Gapdh 2.00 4 4 Gapdh
5 Rnu6b 1.923 Rnu6b 3.17 Rnu6b 1.97 0.57 0.106 Rnu6b 3.23 5 5 Rnu6b

Stability was ranked by GeNorm, NormFinder, BestKeeper and Δ CT average STDEV. The comprehensive ranking was based on the geometric 
mean of the gene rank. Candidates are listed from top to bottom in order of decreasing expression stability. (SD [±Ct]: standard deviation of the Ct; 
CV [% Ct]: coefficient of variance expressed as a percentage of the Ct level; geomean: geometrical mean).
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279 above 1. The most stable RG was Pgk1 (r=0.825), while Rnu6b was considered the least stable gene 

280 (r=0.106). The ranking obtained from this analysis was the same as the one obtained with GeNorm.

281

282 The Δ-Ct method works on the same rationale as GeNorm but calculates the stability value (mean SD) 

283 differently; it is calculated as the average standard deviation of the Ct value differences that the gene 

284 exhibits with other genes. Using this method, the ranking was similar to previous rankings. The most stable 

285 RGs were Pgk1 (Av. SD=1.41) and Sdha (Av.SD=1.45), and the least stable Rnu6b (Av.SD=3.23). The 

286 overall ranking depicted in Table 3 was based on the geometric mean of the previous gene ranks. This 

287 ranking indicates that for this tissue and treatment, the most stable RG was Pgk1.

288

289 Impact of RG selection on target gene expression profiles 

290 The impact of RG selection on gene expression quantification was assessed by examining the expression 

291 of Rest and Bad. These genes have shown to be influenced by hypoxia and hypothermia. Five gene 

292 expression normalizing strategies were used to select the least and most stable RGs, and the best 

293 combination of two genes, Actb/Pgk1 (Fig 3).  Expression values were calculated relative to expression in 

294 control animals, using both the ΔΔCt method (Livak & Schmittgen, 2001) and the primer efficiency method 

295 (Pfaffl, 2001, Fig 3). Results were similar using Livak or Pfaffl methods. As expected, even when the 

296 general pattern of target gene expression was similar for most of the RGs across treatments, target gene 

297 expression levels were different depending on the RG used for normalization causing differences in the 

298 significance level of the expression patterns.

299

300 Fig 3. Evaluation of the impact of selection of RG on gene expression normalization. Expression 

301 profiles of Rest and Bad normalized by different strategies. Arithmetic mean values and standard deviations 

302 were obtained from three bioreplicates.

303

304 Discussion 

305 The selection of RGs in qPCR experiments has an enormous impact on the reliability and interpretation of 

306 results in gene expression studies making it a crucial yet often understated process. It is now recognized 
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307 that normalization of qPCR results against a single RG is likely to be inadequate and that normalization 

308 against a panel of RGs containing at least three stable RGs is preferred. However, for most of the RGs used 

309 in published qPCR studies, no thorough investigation of their variation over experimental conditions has 

310 been performed and/or reported (48). Many researchers continue to use a single, unvalidated RG to 

311 normalize data.

312

313 The majority of studies where assessment of the RGs’ stability is included make use of statistical tools like 

314 GeNorm, BestKeeper, NormFinder, CV analysis, and the comparative ΔCt method. Each of these methods 

315 determines the stability based on a set of assumptions and calculations, and has its own limitations. In 

316 general, methods that rely on pairwise variation (GeNorm and Pairwise ΔCt method) are influenced by the 

317 expression pattern of all genes making their ranking inter-dependent. The CV analysis does not take the 

318 variation between groups into account, hence alone it cannot determine the best (set of) RG(s), but it can 

319 be used as a first filter to discard genes with high overall variance. Moreover, except for the CV analysis, 

320 the presence of genes with high overall variation impact upon the ranking of all these methods.

321

322 As a result, the selection of stable RGs varies significantly depending on the method used making the choice 

323 of the validation method a critical step in qPCR assays. In our study, using Geomean, Pgk1 was the most 

324 stable gene across treatments, while U6 and Gapdh were ranked as most variable. This is in stark contrast 

325 to the CV% Analysis and intergroup ANOVA Ct variations that indicated that Gapdh was the most stable 

326 gene among groups, and Actb the least stable. 

327

328 Using any of these methods alone is not sufficient in obtaining bias-free results. Generally, stability 

329 validation studies have ranked the genes using Geomean, a ranking obtained from the mean rank of the 

330 statistical tools used. This method does not take into account the limitations of each algorithm separately, 

331 which is why it is increasingly considered an erroneous approach when validating RGs. This makes the 

332 identification of the best RGs very unwieldy. Using the same statistical methods, new approaches have 

333 been proposed, such as the “Integrated approach” (22) that has shown to provide a more accurate estimate 

334 of RG stability. It is advisable to devise integrated approaches based on suitability for each experimental 

335 setting.

336
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337 Although we analyzed a small set of candidate RGs, we found differences in the stability rankings obtained 

338 with the different methodologies, and the associated bias was reflected in our target gene quantification. 

339 Our study emphasizes the necessity of validating RGs previous to assessing target gene qPCR data, and the 

340 importance of choosing the right set of statistical methods for doing so. Such an approach would lead to 

341 more accurate and reproducible expression assessment.

342

343 Funding

344 This research was partially supported by the Sistema de Investigación y Desarrollo (SINDE) and the 

345 Vicerrectorado de Investigación y Posgrado of the Universidad Católica de Santiago de Guayaquil, 

346 Guayaquil, Ecuador. M. Bustelo is funded by Consejo Nacional de Investigaciones Científicas y Técnicas 

347 (CONICET) of Argentina and the Foundation of Pediatrics, Maastricht University Medical Center. F. Loidl 

348 is supported by Universidad de Buenos Aires (UBACyT - 20020160100150BA). 

349

350 References 

351 1. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat 

352 Protoc. 2008; 

353 2. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den hoff MJB, et al. 

354 Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. 

355 Nucleic Acids Res. 2009; 

356 3. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005; 

357 4. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: 

358 Minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 

359 5. Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. BioTechniques. 2000. 

360 6. Bustin SA, Wittwer CT. MIQE: A Step Toward More Robust and Reproducible Quantitative PCR. 

361 Clin Chem. 2017; 

362 7. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, et al. The need for transparency 

363 and good practices in the qPCR literature. Nature Methods. 2013. 

364 8. Coulson DTR, Brockbank S, Quinn JG, Murphy S, Ravid R, Brent GB, et al. Identification of valid 

365 reference genes for the normalization of RT qPCR gene expression data in human brain tissue. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


16

366 BMC Mol Biol. 2008; 

367 9. B. K, M. R. Reference genes in real-time PCR. Journal of Applied Genetics. 2013. 

368 10. Tunbridge EM, Eastwood SL, Harrison PJ. Changed relative to what? Housekeeping genes and 

369 normalization strategies in human brain gene expression studies. Biological Psychiatry. 2011. 

370 11. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: 

371 Minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013; 

372 12. J V, K DP, I P, B P, N VR, A DP, et al. Accurate normalization of real-time quantitative RT-PCR 

373 data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 

374 13. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification 

375 framework and software for management and automated analysis of real-time quantitative PCR 

376 data. Genome Biol. 2008; 

377 14. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, 

378 differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-

379 wise correlations. Biotechnol Lett. 2004; 

380 15. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-

381 PCR data: A model-based variance estimation approach to identify genes suited for normalization, 

382 applied to bladder and colon cancer data sets. Cancer Res. 2004; 

383 16. Boda E, Pini A, Hoxha E, Parolisi R, Tempia F. Selection of reference genes for quantitative real-

384 time RT-PCR studies in mouse brain. J Mol Neurosci. 2009; 

385 17. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies 

386 in human reticulocytes using real-time PCR. BMC Mol Biol. 2006; 

387 18. Perez LJ, Rios L, Trivedi P, D’Souza K, Cowie A, Nzirorera C, et al. Validation of optimal 

388 reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes 

389 research. Sci Rep. 2017; 

390 19. Kang Y, Wu Z, Cai D, Lu B. Evaluation of reference genes for gene expression studies in mouse 

391 and N2a cell ischemic stroke models using quantitative real-time PCR. BMC Neurosci. 2018; 

392 20. Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T. Assessment of brain reference 

393 genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep. 2016; 

394 21. Chervoneva I, Li Y, Schulz S, Croker S, Wilson C, Waldman SA, et al. Selection of optimal 

395 reference genes for normalization in quantitative RT-PCR. BMC Bioinformatics. 2010; 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


17

396 22. Sundaram VK, Sampathkumar NK, Massaad C, Grenier J. Optimal use of statistical methods to 

397 validate reference gene stability in longitudinal studies Abstract : 2019; 

398 23. Fattuoni C, Palmas F, Noto A, Fanos V, Barberini L. Perinatal asphyxia: A review from a 

399 metabolomics perspective. Molecules. 2015; 

400 24. Dixon K, Smith S. In neonates with hypoxic ischemic encephalopathy, is therapeutic hypothermia 

401 outside of current criteria safe? A literature review. Journal of Neonatal Nursing. 2019. 

402 25. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ. Therapeutic hypothermia for 

403 neonatal hypoxic-ischemic encephalopathy - Where to from here? Frontiers in Neurology. 2015. 

404 26. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, et al. Childhood outcomes 

405 after hypothermia for neonatal encephalopathy. Obstetrical and Gynecological Survey. 2012. 

406 27. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, et al. Selective head 

407 cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised 

408 trial. Lancet. 2005; 

409 28. Iwata O, Iwata S, Thornton JS, De Vita E, Bainbridge A, Herbert L, et al. “Therapeutic time 

410 window” duration decreases with increasing severity of cerebral hypoxia-ischaemia under 

411 normothermia and delayed hypothermia in newborn piglets. Brain Res. 2007; 

412 29. Loidl CF, Gavilanes AWD, Van Dijk EHJ, Vreuls W, Blokland A, Vles JSH, et al. Effects of 

413 hypothermia and gender on survival and behavior after perinatal asphyxia in rats. Physiol Behav. 

414 2000; 

415 30. Capani F, Loidl CF, Aguirre F, Piehl L, Facorro G, Hager A, et al. Changes in reactive oxygen 

416 species (ROS) production in rat brain during global perinatal asphyxia: An ESR study. Brain Res. 

417 2001; 

418 31. Loidl CF, Capani F, López-Costa JJ, Selvín-Testa A, López EM, Pecci-Saavedra J. Long term 

419 changes in NADPH-diaphorase reactivity in striatal and cortical neurons following experimental 

420 perinatal asphyxia: Neuroprotective effects of hypothermia. Int J Neurosci. 1997; 

421 32. Arteaga O, Revuelta M, Urigüen L, Martínez-Millán L, Hilario E, Álvarez A. Docosahexaenoic 

422 Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by 

423 Neonatal Hypoxia–Ischemia in Rats. Mol Neurobiol. 2017; 

424 33. Julian GS, De Oliveira RW, Perry JC, Tufik S, Chagas JR. Validation of housekeeping genes in the 

425 brains of rats submitted to chronic intermittent hypoxia, a sleep apnea model. PLoS One. 2014; 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


18

426 34. Yao L, Chen X, Tian Y, Lu H, Zhang P, Shi Q, et al. Selection of housekeeping genes for 

427 normalization of RT-PCR in hypoxic neural stem cells of rat in vitro. Mol Biol Rep. 2012; 

428 35. A.A. B, Y. M, R. V, V.G. S, P. S, M. R, et al. Does Caspase-6 Have a Role in Perinatal Brain 

429 Injury? Dev Neurosci. 2015; 

430 36. Järlestedt K, Rousset CI, Faiz M, Wilhelmsson U, Stahlberg A, Sourkova H, et al. Attenuation of 

431 reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. 

432 PLoS One. 2010; 

433 37. Keddy PGW, Dunlop K, Warford J, Samson ML, Jones QRD, Rupasinghe HPV, et al. 

434 Neuroprotective and Anti-Inflammatory Effects of the Flavonoid-Enriched Fraction AF4 in a 

435 Mouse Model of Hypoxic-Ischemic Brain Injury. PLoS One. 2012; 

436 38. El-Kashef N, Gomes I, Mercer-Chalmers-Bender K, Schneider PM, Rothschild MA, Juebner M. 

437 Validation of adequate endogenous reference genes for reverse transcription-qPCR studies in 

438 human post-mortem brain tissue of SIDS cases. Forensic Sci Med Pathol. 2015; 

439 39. L.-L. Z, X.-S. H, J.-R. L, C.-B. Z, Y.-T. W, G.-Y. Y. Lentivirus-Mediated Overexpression of 

440 MicroRNA-210 Improves Long-Term Outcomes after Focal Cerebral Ischemia in Mice. CNS 

441 Neurosci Ther. 2016; 

442 40. Morris-Blanco KC, Kim TH, Bertogliat MJ, Mehta SL, Chokkalla AK, Vemuganti R. Inhibition of 

443 the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Molecular Neurobiology. 

444 2018; 

445 41. Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature 
446 Reviews Neuroscience. 2012. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/793786doi: bioRxiv preprint 

https://doi.org/10.1101/793786
http://creativecommons.org/licenses/by/4.0/

