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Abstract— Stochasticity in gene expression poses a critical
challenge to the precise control of cellular function. In this
paper we examine how precisely can a stochastically expressed
protein attain a given target expression level. We consider
a protein which is produced in bursts and which is able
to control its expression via a negative feedback loop; we
specifically focus on feedback of a bang–bang type which turns
off the production of the protein whenever its concentration
exceeds a given threshold. Using a piecewise deterministic
mathematical formalism, we derive explicit expressions for the
probabilistic distribution of the protein concentration, and for
the mean square deviation from the target level. Employing a
combination of analytic and numerical optimization, we identify
the optimal value of the bang–bang threshold, in terms of
minimising the deviation, and examine the dependence of the
optimal value on the target level and the sub-threshold burst
frequency. The systematic analysis allows us to formulate a
number of quantitative and qualitative conclusions about the
controllability of burst like gene expression. Finally, we outline
directions for future research into the topic.

I. INTRODUCTION

Bursty protein production is a major source of stochas-
ticity (noise) in the expression of genetic information [1].
The bursts result from brief periods of intense transcrip-
tional/translational activity, and are interspersed by long
time spans of quiescence, during which the protein is de-
graded/diluted [2]. The amount of protein produced in a
burst, referred to as the burst size, is a random quantity, as it
depends on the length of the bursting period, which differs
from one instance to another [3]. The duration of bursts is
widely assumed to be memoryless [4]. Consequently, burst
sizes are geometrically distributed [5] (if one uses a discrete
copy number to measure the protein level) or exponentially
distributed [6] if one uses a continuous concentration for the
protein level. Here we will consider a continuous piece-wise
deterministic framework with exponentially distributed burst
sizes [7], [8], [9]. Importantly, this modelling framework
explains large noise levels observed in gene expression at
single cell level [10]. The question that we pose in this
paper is one of optimality [11], [12], [13], [14]: we seek to
determine how precisely we can target a prescribed protein
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concentration in the context of a highly random bursty
protein expression.

Negative feedback is a control mechanism, which uses
the information on a controlled quantity (here protein con-
centration) to counterbalance its deviations [15]. Feedback
is ubiquitous in gene expression, with a specific class of
protein, called transcription factors, being able to interact
with the DNA to suppress their own expression [16]. Tran-
scriptional feedback manifests itself through the regulation
of burst frequency, meaning that high protein concentration
leads to a decrease, and low concentration to an increase,
in the frequency [17]. The dependence of the frequency on
the protein concentration is given by the response function.
Many studies use a Hill type response function [18]. Here
we consider a step like function, which gives a positive value
of frequency if the protein concentration is beneath a critical
threshold, and a zero value if the value if the concentration
exceeds the threshold. In line with the stated aim of the paper,
we seek to determine the optimal value of the threshold
which minimises the mean square deviation from the target
level.

The outline of the paper is as follows. Section II formally
introduces the model particulars. Section III provides explicit
formulae for protein probability density functions, first in
the unregulated case (Subsection III-A), and then in the
feedback case (Subsection III-B); a special attention is given
in Subsection III-C to the important case of infinite sub-
threshold burst frequency. Section IV deals with the problem
of minimising the deviation from the target level, first for the
unregulated framework, then for the infinite sub-threshold
burst frequency (Subsection IV-A), and finally for finite
values of the rate (Subsection IV-B). Section V concludes
the paper with a discussion of its results.

II. MODEL FORMULATION

The fundamental model for protein dynamics that we use
throughout our work is a piecewise deterministic Markov
process x(t) which decays deterministically (black portions
of the trajectories in Fig. 1) but is produced stochastically
in bursts (vertical red portions of the trajectories in Fig.
1). Decay is assumed to be simple exponential, i.e. the
protein trajectory x(t) is proportional to e−γt inside any
time interval which does not contain a burst event. In the
absence of feedback, bursts of production occur randomly in
time with frequency (or rate) a per unit time; the inclusion
of feedback will be dealt with below. Whenever a burst
event occurs, the protein concentration is discontinuously
increased by the burst size, which is randomly drawn from
the exponential distribution with mean b. By measuring time
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in units of protein lifetime, we can achieve, without any loss
of generality, that γ = 1. The parameter a then assumes
the meaning of normalized burst frequency, and gives the
expected number of bursts occurring per typical protein
lifetime.

Extending our model by feedback in burst frequency, we
allow the production rate to depend on the current protein
concentration so that

P [ a burst occurs in (t, t+ dt) ] = θ(x(t))dt+ o(dt),

where θ(x) is a response function which determines the
production rate in the presence of feedback. We will focus
on negative feedback only, meaning that we consider non-
increasing functions θ(x). Specifically, the Hill function [16]

θH(x) =
a

1 + (x/K)H
, (1)

where a, H , and K are parameters explained below, has
been widely used in literature and justified in terms of
cooperative binding of a protein molecule to its gene’s
promoter. The parameter K gives the concentration required
to reach half the maximum burst frequency; it corresponds
to the dissociation constant of the protein–promoter binding
[19]. Interestingly, by taking K to infinity one recovers the
unregulated model as introduced earlier in this section. The
parameter H , which is referred to as the Hill coefficient,
indicates how steeply feedback reacts to changes in protein
concentration (Fig. 2), and directly corresponds to the co-
operativity in the underlying promoter–protein independent
interaction. The parameter a here takes the role of maximal
burst frequency, which is achieved in the absence of the self-
repressing protein.

In the limit of very large Hill coefficients, we find that (cf.
Fig. 2)

θ∞(x) = lim
H→∞

θH(x) =


a, x < K,
a
2 , x = K,

0, x > K,

(2)

which we hereafter refer to as bang–bang feedback. In case
of bang–bang type feedback, the protein exponentially de-
grades, and bursts cannot occur, as long as the concentration
level is higher than K; once x falls beneath K, bursts occur
with a constant frequency a.

III. PROTEIN CONCENTRATION DISTRIBUTION

The (stationary) distribution of protein concentration is
obtained as a steady-state solution of a master equation
associated to the process described in the previous section.
The master equation here takes the form of a probability
conservation law [20]

∂p(x, t)

∂t
+
∂J(x, t)

∂x
= 0,

in which the probability flux is shaped by the model’s
particulars and here given by [9]

J(x, t) = −xp(x, t) +

∫ x

0

B(x|y)p(y, t)dy.
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Fig. 1: Sample trajectories of gene expression without any regulation (the
upper panel) and subject to negative feedback with the K = 2 (green
horizontal line). The burst size is fixed to b = 1 and burst frequency is
a = 2 (upper and middle panels) and a = 20 (bottom panel).
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Fig. 2: Examples of Hill functions (1) with different choices of Hill
coefficients H . As H increases to infinity, the function develops at x = K
a jump discontinuity. The other parameters of (1) are set to a = 2 and
K = 1.

In the probability flux J(x, t), the first term corresponds to
the decay of protein level due to natural protein degradation,
and the second term corresponds to an instant growth of the
protein level in bursts; B(x|y) is the burst kernel, which
defines the conditional probability that concentration will
jump from a given protein level y to beyond x after burst.

A. Unregulated gene expression

The burst kernel in case of unregulated gene expression is
given by the product

B(x|y) = ae−(x−y)/b (3)

of burst frequency a and the probability e−(x−y)/b that the
burst size is larger than the difference x− y.

The steady-state of protein concentration is reached
when system dynamics do not change with time, so that
∂p(x, t)/∂t = 0, from which it follows that the probability
flux J(x, t) must be constant with respect to x; and since we
do not admit a nonzero flux of probability mass from infinity,
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this constant has to be equal to zero. Thus the equation of
stationary probability density function satisfies J = 0, i.e.

xp(x) = a

∫ x

0

e−
x−y

b p(y)dy,

which is an Volterra integral equation of the second kind
with a difference kernel, for which one can obtain p(x)
using Laplace transformation approach [21]. This approach
involves transforming the integral equation into a differential
equation for the Laplace image, and subsequently returning
to the original space.

Performing this solution approach one finds that [7]

p(x) =
1

baΓ(a)
xa−1e−x/b. (4)

It means that in the unregulated gene expression the protein
concentration x ∼ Γ(a, b), i.e. it is gamma-distributed with
shape a and scale b. From this follows, in particular,

E(x) = ab, Var(x) = ab2 (5)

for the protein mean and variance.

B. Regulated gene expression

The negative regulation kernel is given by the product of
the response function θ(y) and the probability of a burst
exceeding the size of x− y, i.e.

B(x|y) = θ(y)e−(x−y)/b. (6)

Note that while this kernel is no longer a difference kernel,
it is still a product kernel, and, as such, the associate integral
equation

xp(x) =

∫ x

0

θ(y)e−(x−y)/bp(y)dy

admits an explicit solution [22]. In order to find it, we
pull out from under the integral sign the exponential e−x/b,
differentiate the equation with respect to x and apply the
Leibnitz integral rule; this yields an ODE

(ex/bxp(x))′ = θ(x)ex/bp(x),

the general solution of which is

p(x) = Cx−1e−x/b exp

(∫
θ(x)

x
dx

)
, (7)

in which C is an integration constant. The primitive function
in the argument of the exponential can easily be solved for
the piecewise constant θ(x) of the bang–bang regulation (2).
Since the bang–bang response function features a disconti-
nuity at x = K, the primitive function in the exponential, as
well as the probability density function (PDF) p(x) itself, are
nonsmooth at x = K (Fig. 3); to the left and to the right of
the point of smoothlessness the density is given by separate
expressions

p(x) =

{
CK−ae−x/bxa−1, x < K,

Ce−x/bx−1, x ≥ K.
(8)
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Fig. 3: Upper: The PDF of protein concentration governed by negative
feedback (blue line) in comparison with the PDF of unregulated gene expres-
sion (green line). Lower: PDFs with finite sub-threshold burst frequencies
(grey and blue lines) and with the infinitely high value (red line) are shown;
the probability of x being less than K decreases as a increases. We set b = 1
throughout.

The condition that the distribution density must be normal-
ized to one fixes the value of the normalisation constant to

C =

(
γ(a,K/b)

(K/b)a
+ E1(K/b)

)−1
, (9)

where γ(a, z) is the lower incomplete gamma function [23]
is defined by

γ(a, z) =

∫ z

0

ta−1e−tdt, <(a) > 0,

and E1(z) is the exponential integral defined on the complex
plane by

E1(z) =

∫ ∞
z

e−t

t
dt, |arg z| < π.

Integrating the density multiplied by the factor x, we obtain

E(x) =
abγ(a,K/b)

γ(a,K/b) + (K/b)aE1(K/b)
(10)

for the expected protein concentration at steady state.

C. Infinitely high frequency case

Let us investigate in greater detail the limiting case of
burst frequency a that is infinitely high; in such case it is
expected that, if the protein level falls below K, a burst
occurs almost immediately; therefore the concentration is
higher than K almost surely. Since only a single parameter
has been taken to a limit but the fundamentals of the model
remain unaltered, the stationary probability density function
for protein concentration can be derived by taking a limit as
a→∞ of (8).

Provided that the protein concentration x is less than the
dissociation constant K, we have

lim
a→∞

p(x) = e−x/bx−1 lim
a→∞

(x/K)a

γ(a,K/b)
(K/b)a + E1(K/b)

, x < K.
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The same approach for the other case, occurring when the
protein concentration x is above K, yields

lim
a→∞

p(x) = e−x/bx−1 lim
a→∞

1
γ(a,K/b)
(K/b)a + E1(K/b)

, x ≥ K.

The lower incomplete gamma function has series expansion
[23]

γ(a, z) =
∞∑
n=0

(−1)nza+n

(a+ n)n!
, (11)

from which

γ(a, z) =
za

a

∞∑
n=0

a

a+ n

(−z)n

n!
∼ e−zza

a
, as a→∞.

In particular it follows that

lim
a→∞

γ(a, z)

za
= 0. (12)

The limiting stationary density function therefore given by

p(x) =

{
0, x < K,

e−x/bx−1E−11 (K/b), x ≥ K.
(13)

The change in the form of the protein probability density
function in response to increasing the sub-threshold fre-
quency is illustrated on lower panel of Fig. 3, with the limit-
ing case (13) shown in red. The mean protein concentration
is E(x) = be−K/bE−11 (K/b).

IV. OPTIMIZATION PROBLEM

Here we use the theoretical results of the preceding
sections to study the mean squared difference

J = E
(
(x− x∗)2

)
(14)

between the steady state protein level and a prescribed target
level x∗. The mean square difference can be written as

J = Var(x) + (E(x)− x∗)2

in terms of the protein mean and variance.
In case of unregulated gene expression, the mean and

variance are given by (5), implying that

J = ab2 + (ab− x∗)2. (15)

The nonnegative value a = aopt that minimises the above
expression and the minimum Jopt = J(aopt) are given by

aopt =
x∗

b
− 1

2
, Jopt = b(x∗ − b/4) if b < 2x∗, (16)

or
aopt = 0, Jopt = (x∗)2 if b ≥ 2x∗. (17)

We will see that, by employing the bang–bang feedback,
much lower values can be achieved.

In the presence of bang–bang feedback, we write the mean
square difference as

J =

∫ ∞
0

p(x)(x− x∗)2dx, (18)
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Fig. 4: The cost function J(K) for a =∞ and a selection b values. The
markers indicate the coordinates of the minimizer Kopt and the minimum
Jopt.

in which the probability density function is given by (8)
if a < ∞ or (13) if a = ∞. The value of a is thereby
assumed to be a fixed constant. We shall consider the mean
squared difference (18) to be a function of the dissociation
constant, i.e. J = J(K), seeking to determine the value Kopt

at which the cost function J achieves an optimal (minimal)
value Jopt = J(Kopt).

A. Infinitely high frequency case

Substituting into (18) the functional form of the PDF p(x)
in the infinitely high sub-threshold burst frequency (13), we
arrive at

J(K) =
be−K/b

E1(K/b)
(K + b− 2x∗) + (x∗)2. (19)

The graph of this function, including the location of its
minimum, is shown in the Fig. 4. The graph includes the
behaviour of J(K) only for right-sided neighbourhood of
K = 0 because both the definition of exponential integral
and the interpretation of the model do not admit negative
values of the dissociation constant.

Differentiating the cost function (19) yields

dJ

dK
=

e−K/b

E1(K/b)
(2x∗ −K) +

be−2K/b

E2
1(K/b)

K + b− 2x∗

K
.

For low values of the threshold K we have an asymptotic
approximation

dJ

dK
∼ b(b− 2x∗)

K ln2(K/b)
, for K � b,

which implies, in particular, that

lim
K→0+

dJ

dK
=

{
−∞, b < 2x∗,

∞, b > 2x∗,

so that the cost function is locally decreasing for 0 < K � b
if b < 2x∗ and locally increasing if b > 2x∗ (cf. Fig. 4). The
local behaviour for small positive values of K has important
implications for the global minimum of the function J(K):
if b > 2x∗, the local minimum is achieved at Kopt = 0,
whereas for b < 2x∗, the local minimum Kopt is found
within the interval 0 < K < ∞ as the solution of the
equation

E1(K/b)eK/b =
b(K + b− 2x∗)

K(K − 2x∗)
. (20)
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The dependence of Kopt on the mean burst size b is shown
for a = ∞ in magenta colour in the right panel of Fig. 5b;
note that Kopt = 0 for b > 2x∗ and that Kopt ∼ x∗ − b for
b� x∗. The left panel of Fig. 5b shows the minimal mean
square deviation J(Kopt) as function of the burst size b. If
b > 2x∗, then Kopt = 0 implies x ≡ 0, so that J(Kopt) =
E(x − x∗)2 = (x∗)2. As the burst size b decreases to zero,
the minimal mean square deviation becomes progressively
smaller with asymptotics J(Kopt) ∼ b2, b � x∗ (Fig. 5b,
left, magenta colour). Note that this quadratic decrease is
faster than the linear one exhibited by the minimal deviation
in the unregulated case (16).

The left-hand side of (20) with the special function E1(K)
carries with it an additional difficulty when solving this
equation; it will be sufficient for us to solve the equation
numerically with high precision. To do this, we use the
package pracma of the language R for statistical computing
[24], which provides all the necessary functionality. There
are two ways to find solution Kopt: the first is to find directly
the minimal value of the cost function; the second is to find
the point, at which the difference between the left and right
hand sides of (20) is the smallest. In practice, the first method
appears to be more robust and accurate.

B. Finite frequency case

Here we consider a more general case of the gene ex-
pression regulation, in which a is any finite positive number.
Inserting the functional form (8) of the PDF p(x) into the
cost function (18), we find that the mean square deviation
of the protein concentration x from x∗ is given by a sum of
two terms

J = C
(
K−a

∫ K

0

e−x/bxa−1(x− x∗)2dx+∫ ∞
K

e−x/bx−1(x− x∗)2dx
)
, (21)

where C is the normalisation constant (9). After applying
certain transformations and expressing the integrals in terms
of special functions, we arrive at a representation

J = Cab2
((

a+ 1− 2x∗

b

)
γ(a,K/b)

(K/b)a
− e−K/b

)
+ (x∗)2.

(22)
Aiming to find the minimum of the cost function, we
differentiate (22) with respect to K, obtaining

∂J

∂K
= ab2

((
a+ 1− 2x∗

b

)
∂(Cγ(a,K/b)(b/K)a)

∂K

− ∂(Ce−K/b)

∂K

)
. (23)

The sought-after optimal value of Kopt, at which the protein
concentration x minimally fluctuates around the required
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Fig. 5: (a) The minimal square deviation Jopt (left) and the minimizer
Kopt (right) as functions of a for selected b. The horizontal dashed lines
indicate the limit values as a → ∞. In the opposite limit a → 0 (protein
production is turned off) we find Kopt → (2x∗− b)+ and Jopt → (x∗)2.
(b) The minimal square deviation Jopt (left) and the minimizer Kopt (right)
as functions of b for selected a. The vertical line refers to the critical value
b = 2x∗; red dots indicate the values of b below which the calculation of
Kopt is precluded by numerical indeterminacy issues. (c) The optimal cost
of the regulated feedback J(Kopt) normalized by that of the unregulated
one J(aopt) (16)–(17).

level x∗, satisfies the equation(
1− 2x∗

b

)
γ(a,K/b) + γ(a+ 1,K/b)

γ(a,K/b) + (K/b)aE1(K/b)
=

e−K/b
(

1− 2x∗

b + K
b

)
aE1(K/b)

, K 6= 0. (24)

In Fig. 5, we exemplify the behaviour of the cost function
J(K) and study the dependence of the optimiser Kopt on the
upregulated burst rate a and the burst size b. The information
conveyed by the figure is discussed in detail in the next
section.
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V. DISCUSSION

In this paper we considered the question of finding optimal
parameters in bursting gene expression models so as to
minimise the cost function J (14) which is defined as the
square distance from a prescribed protein level x∗. First, we
examined this question in the context of unregulated gene
expression occurring with burst frequency a and mean burst
size b. The steady state distribution is the gamma distribution
with shape a and scale b; the mean square difference from
the target is given by a simple multinomial of the model
parameters (15). In our analysis we fixed b and x∗ and sought
to find an optimal a = aopt. Elementary analysis showed that
a positive optimal burst frequency aopt which minimises the
deviation exists only if the mean burst size is less than twice
the target level (b < 2x∗); otherwise it is optimal to shut
off the production of protein by setting the optimal burst
frequency aopt to zero. Thus, the elementary analysis of the
unregulated case demonstrates that large burst sizes limit the
ability of a gene to achieve relatively low targets.

After examining the unregulated case, we turned our
attention to the case of bang–bang feedback. Its performance
is strongly dependent on the choice of the critical threshold
(also referred to as the dissociation constant) K at which
the gene expression gets shut down. For a fixed target level
x∗, sub-threshold burst frequency a (which can be finite
or infinite) and mean burst size b, we calculated the value
K = Kopt which minimises the mean square deviation from
x∗. We found that, similarly as in the unregulated case,
a positive optimal threshold is available only if the mean
burst size is smaller than twice the target level (b < 2x∗);
otherwise it is optimal to shut off gene expression completely
by setting the threshold Kopt to zero (Fig. 5b). Decreasing
the sub-threshold burst frequency a leads to an increase in
both the optimal threshold Kopt and the optimal deviation
Jopt = J(Kopt) (Fig. 5a). If the burst size is very small, then
a protein with a finite value of burst freqency a will fail
to reach the target x∗ whatever the value of the feedback
threshold K may be; this explains both the large values
of Jopt as well as indeterminacy of Kopt for a < ∞ and
b� x∗ (Fig. 5b). In light of these observations, the infinite
sub-threshold burst frequency (a = ∞) is deemed to be
best performing among bang–bang feedbacks. Additionally,
a protein with an optimal bang–bang feedback with a =∞
outperforms a protein without regulation in terms of reaching
the target x∗ (Fig. 5c).

In addition to providing a number of observations for the
optimisation problem, our analysis contributes to previous re-
sults by establishing in Equations (8) and (13) the form of the
steady state probability density function for a protein subject
to bang–bang burst frequency feedback. In the future steps
of our work, we intend to use optimal-control techniques,
such as the Pontryagin maximum principle, to establish the
optimality of bang–bang feedback among a wider class of
response functions. Additionally, we intend to extend our
analysis to other types of gene-expression feedback, such as
feedback in burst size [25] and protein stability [26].
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Paoletti N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in
Computer Science, vol 11705. Springer, Cham, 2019.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 4, 2019. ; https://doi.org/10.1101/793638doi: bioRxiv preprint 

https://doi.org/10.1101/793638
http://creativecommons.org/licenses/by-nc-nd/4.0/

