

1 **Physical fitness in community dwelling older adults is linked
2 to dietary intake, gut microbiota and metabolomic
3 signatures**

4

5 Josué L. Castro-Mejía^{1*}, Bekzod Khakimov¹, Łukasz Krych¹, Jacob Bülow², Rasmus L.
6 Bechshøft^{2,3}, Grith Højfeldt², Kenneth H. Mertz², Eva Stahl Garne^{1,3}, Simon R. Schacht⁴,
7 Hajar F. Ahmad^{1,5}, Witold Kot⁶, Lars H. Hansen⁶, Federico J. A. Perez-Cueto¹, Mads V.
8 Lind⁴, Aske J. Lassen⁷, Inge Tetens⁴, Tenna Jensen⁷, Søren Reitelseder^{2,3}, Astrid P.
9 Jespersen⁷, Lars Holm^{2,3,8}, Søren B. Engelsen¹, Dennis S. Nielsen^{1*}

10

11 ¹ Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark

12 ² Department of Orthopedic Surgery M, Bispebjerg Hospital, 2400 Copenhagen NV,
Denmark

13 ³ Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N,
Denmark

14 ⁴ Department of Nutrition, Exercise and Sports, University of Copenhagen, 1958
Frederiksberg C, Denmark

15 ⁵ Faculty of Industrial Science and Technology, Industrial Biotechnology Program, Universiti
Malaysia Pahang, Pahang, Malaysia

16 ⁶ Department of Plant and Environmental Sciences, University of Copenhagen, 1871
Frederiksberg C, Denmark

17 ⁷ Copenhagen Center for Health Research in the Humanities, The SAXO Institute, University
of Copenhagen, 2300 Copenhagen SV, Denmark

18 ⁸ School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham,
Birmingham, UK

26

27 * Correspondence to Josué L. Castro-Mejía (jcame@food.ku.dk) and Dennis S. Nielsen
(dn@food.ku.dk)

29

30

31

32 Email addresses:

33 J.L.C jcame@food.ku.dk
34 B.K. bzo@food.ku.dk
35 Ł.K. krych@food.ku.dk
36 J.B. jacob.buelow.02@regionh.dk
37 R.L.B. r.bechshoeft@gmail.com
38 G.H. grithwh@gmail.com
39 K.H.M. kenneth.hudlebusch.mertz@regionh.dk
40 E.G. eva.garne@sund.ku.dk
41 S.R.C simonschacht@nexs.ku.dk
42 H.F.A. fauzan@food.ku.dk
43 W.K. wk@plen.ku.dk
44 L.H.H. lhha@plen.ku.dk
45 F.J.A.P. apce@food.ku.dk
46 M.V.L. madslind@nexs.ku.dk
47 A.J.L. ajlas@hum.ku.dk
48 I.T. ite@nexs.ku.dk
49 T.J. tennaje@hum.ku.dk
50 S.R. s.reitelseder@gmail.com
51 A.P.J. apj@hum.ku.dk
52 L.H. L.Holm@bham.ac.uk
53 S.B.E. se@food.ku.dk
54 D.S.N. dn@food.ku.dk
55

56 **Running title:**

57 Physical fitness in older subjects

58

59 **Keywords:** aging, gut microbiota (GM), host metabolome, physical fitness, proinsulin-C-
60 peptide, energy and dietary fiber intake

61

62

63

64 **Abstract**

65

66 When humans age, changes in body composition arise along with lifestyle-associated
67 disorders influencing fitness and physical decline. Here we provide a comprehensive view of
68 dietary intake, physical activity, gut microbiota (GM) and host metabolome in relation to
69 physical fitness of 207 community dwelling subjects aged +65 years. Stratification on
70 anthropometric/body-composition/physical-performance measurements (ABPm) variables
71 identified two phenotypes (high/low-fitness) clearly linked to dietary intake, physical activity,
72 GM and host metabolome patterns. Strikingly, despite a higher energy intake high-fitness
73 subjects were characterized by leaner bodies and lower fasting proinsulin-C-peptide/blood
74 glucose levels in a mechanism likely driven by higher dietary-fiber intake, physical activity
75 and increased abundance of Bifidobacteriales and Clostridiales species in GM and associated
76 metabolites (i.e. enterolactone). These factors explained 50.1% of the individual variation in
77 physical fitness. We propose that targeting dietary strategies for modulation of GM and host
78 metabolome interactions may allow establishing therapeutic approaches to delay and possibly
79 revert comorbidities of aging.

80

81

82

83

84

85

86

87

88

89 **1. INTRODUCTION**

90 Throughout the course of aging, physical impairment and changes in body
91 composition may arise along with a number of lifestyle-associated disorders influencing
92 physical decline and ultimately frailty (Xue, 2011; Holm et al., 2014). Aging inevitably
93 occurs in all organisms with genetics, epigenetics and environmental exposures (e.g. diet,
94 physical activity) being modulators of the bodily deterioration caused by biological age (Khan
95 et al., 2017). A number of guidelines toward dietary and daily physical activity
96 recommendations are currently available, however, adherence remains a significant challenge
97 (Gopinath et al., 2016). Further, food perception and dietary habits can be strongly altered
98 during the course of life, particularly those traits associated with the loss of appetite (declined
99 senses of smell and taste), occurrence of immune-senescence and deterioration of the gastro-
100 intestinal system (Giezenaar et al., 2016).

101 During the last decade, the gut microbiota (GM) has been recognized as a signaling
102 hub that integrates dietary habits with genetic and immune signals throughout life (Thaiss et
103 al., 2016; Peters et al., 2019). Many inflammatory and metabolic disorders, such as obesity,
104 diabetes and inflammatory reactions, are linked with GM dysbiosis (Boulangé et al., 2016).
105 Among Irish older subjects frailty has been linked with changing GM signatures (Claesson et
106 al., 2012) and age-related insulin resistance has been found to be regulated by the metabolic
107 activity (e.g. production of short-chain fatty acids – SCFA) of a number of Clostridiales
108 species (e.g. *Clostridium IV*, *Ruminococcus*, *Saccharofermentans*) and *Akkermansia*
109 *muciniphila* (Bodogai et al., 2018; Kong et al., 2016; Biagi et al., 2010). Further, low
110 abundance of these bacteria leads to increased leakage of proinflammatory epitopes from the
111 gut to the blood stream (due to leaky gut syndrome) activating monocytes inflammation and
112 subsequently impair insulin signaling in rodents (Bodogai et al., 2018).

113 It is well-established, that frail older adults are characterized by changed dietary
114 habits and altered GM and metabolic signatures relative to non-frail peers (Claesson et al.,
115 2012; Lustgarten et al., 2014), but whether similar signatures can be identified among non-

116 frail older adults of different physical capacity has, to the best of our knowledge, not been
117 investigated previously. A few studies have focused on frail individuals showing that a
118 reduced consumption of dietary fiber compromises the GM associated production of SCFA
119 required for maintenance of colonic epithelial cells and regulation of immune and
120 inflammatory responses (Kong et al., 2016; Biagi et al., 2010; Claesson et al., 2012).
121 Likewise, GM signatures were found to correspond with frailty-indexes in a large cohort of
122 older adults, whose GM composition were inherently driven by dietary patterns (Claesson et
123 al., 2012). Moreover, metabolites related to GM metabolism (e.g. p-cresol sulfate, indoxyl
124 sulfate), peroxisome proliferator-activated receptors-alpha activation, and insulin resistance
125 likely influence physical function in physically impaired older adults (Lustgarten et al., 2014).

126 Understanding how dietary intake and physical activity in non-frail older adults alter
127 the GM-metabolome axis, and ultimately the physical fitness and the risk of functional
128 decline, is of great clinical interest for the affected subjects as well as for the society.
129 Furthermore, identifying key components of such multifactorial processes may open
130 opportunities to therapeutically address and possibly treat and prevent the comorbidities of
131 aging (Khan et al., 2017). Based on this framework, we characterized dietary intake, daily
132 physical activity, GM and host metabolome in order to be able to explain physical fitness of
133 non-frail older subjects. To this end, we included 207 individuals (65+ years old, self-
134 supportive and apparently healthy) recruited through the Counteracting Age-related Loss of
135 skeletal Muscle mass (CALM) study (<http://calm.ku.dk>) (Bechshøft et al., 2016). Our findings
136 demonstrate that physical fitness and function corresponded to signatures of fasting proinsulin
137 and average blood glucose, and characterized by clear differences in energy and dietary fiber
138 intake, daily physical activity as well as differential abundance of GM members and a number
139 of fecal and plasma metabolites.

140 **2. RESULTS**

141 **2.1 Participants inclusion**

142 Two hundred seven individuals were included in this cross-sectional baseline study
143 (Bechshøft et al., 2016). The recruited subjects are population-level representatives of
144 community dwelling, self-supportive and apparently healthy older adults living in the Danish
145 Capital Region with body mass index (BMI) ranging between 18.5 and 37.3 kg/m² (Table 1).
146 Detailed inclusion criteria have been described previously (Bechshøft et al., 2016). From each
147 individual, data were obtained on detailed anthropometric, body-composition and physical-
148 performance measurements (ABPm), average daily physical activity, dietary intake and
149 preferences, GM composition, clinical biomarkers, as well as fecal- and plasma-metabolome
150 adding up to 1,232 analyzed features per subject (Figure S1a).

151 **2.2 Stratification of subjects according to physical fitness and activity monitoring**

152 Study participants were stratified based on non-collinear ABPm variables (Table S1;
153 Variance Inflation Factor, VIF < 2, *r*-coefficient < 0.5) into high- and low-physical fitness
154 phenotypes (level of physical capacity). The selected variables included chair-rise test [30s-
155 test]], BMI, and Dual-energy X-ray Absorptiometry (DXA) scans for body composition
156 (given by legs-soft-tissue fat% (LSF%)), determined as described previously in Bechshøft et
157 al., (2016).

158 For stratification, hierarchical clustering analysis of principal component analysis
159 (HCP-PCA(Husson et al., 2008)) within sexes was used to determine two fitness phenotypes
160 [high (HF) (n=116) and low (LF) (n=91) (Figure 1a, 1b, Table 2)]. All participants out-
161 performed the suggested ranges for frailty according to the chair-rise test (Jones et al., 1999;
162 Guralnik et al., 1994), while LF phenotypes on average had BMI ranges categorized as
163 overweight (WHO, 2000), as well as a greater deposition of fat mass in their legs (Figure 1b,
164 Table 2). Moreover, 4-day activity monitoring (Dowd et al., 2012) showed significant
165 differences (*p* < 0.001) between the two phenotypes. Longer standing periods (Figure 1c; HF

166 mean: 4.6 ± 1.3 , LF mean: 4.2 ± 1.5) and a greater number of steps per day (Figure 1d; HF
167 mean: $11,129 \pm 3,861$, LF mean: $8,814 \pm 3,595$) were recorded among HF phenotypes. The
168 habitual daily activity for LF phenotypes was found to be within recommended ranges (taking
169 approximately 7,000-10,000 steps/day (Tudor-Locke et al., 2011)), but the LF subjects were
170 markedly outperformed by the HF subjects (Figure 1d).

171 **2.3 Dietary food intake in relation to fitness-state**

172 Using 3-day weighted food records (3d-WFR)(Schacht et al., 2019), the daily average
173 energy and macronutrients intake for each person were quantified to obtain an overall view on
174 the dietary intake. On average, the energy intake per person was 24.5 ± 7.4 (range of 11.5 –
175 55.2) Cal·kg body weight $^{-1} \cdot$ day $^{-1}$. Protein contributed less of the energy intake ($18.9\% \pm 4.1$,
176 range 9-36%) compared to the average energy intake of fat ($36.7\% \pm 7.3$, 22-64%) and
177 carbohydrates ($44.4\% \pm 7.7$, 17-66%) expressed as percentage of total energy intake.

178 Total energy consumption per kg body weight (Figure 2a) differed significantly ($p <$
179 0.001) between phenotypes, with an average daily intake of 29.3 Cal·kg body weight $^{-1} \cdot$ day $^{-1}$
180 in HF phenotypes vs. 23.1 Cal·kg body weight $^{-1} \cdot$ day $^{-1}$ in LF phenotypes. The higher energy
181 intake among HF subjects was reflected in a larger fraction of energy (expressed as % energy)
182 from carbohydrates ($p = 0.01$) as compared to that of dietary protein (Figure 2b and Figure
183 S1b). The same pattern was also observed across daily average intake (g·kg body weight $^{-1} \cdot$ day $^{-1}$)
184 of dietary fiber ($p < 0.0001$), starch ($p < 0.0001$), simple sugars ($p = 0.0002$) and
185 saturated fatty acids ($p = 0.0001$) (Figure 2c). Moreover, significant ($p < 0.0001$) negative
186 correlations between BMI with dietary fiber consumption ($r = -0.52$) (Figure 2d) energy
187 intake ($r = -0.52$), starch ($r = -0.35$) and simple sugars ($r = -0.35$), as well as positive
188 associations between chair-stand test and energy intake ($r = 0.25$) were found (Figure S1c-f).
189 Questionnaires on food-choices showed that HF subjects to a higher degree than LF subjects
190 consider healthy food as an important element of their daily life (Figure S1g).

191 A considerable proportion of subjects from both phenotypes did not comply with the
192 recommended minimum proportion of energy obtained from carbohydrates (Figure 2e) and
193 dietary fiber intake (Figure 2f) as established by the Nordic Nutrition Recommendations
194 (Nordic Council of Ministers, 2012). Yet, the frequency of compliers-to-non-compliers was
195 significantly higher (carbohydrates: $p = 0.006$, dietary fiber: $p = 0.03$) in HF individuals.
196 Furthermore, using the Goldberg cut-off (Black, 2000), 46 under-reporters (UR) and 2 over-
197 reporters (OR) of energy intake were identified. Nonetheless, if excluded, individuals with
198 higher physical capability (HF phenotype) still had a higher energy ($p < 0.001$) and energy
199 from carbohydrates ($p < 0.06$) intake as compared to LF subjects (Table S2). Since UR and
200 OR subjects did not change the overall findings they were not excluded in downstream
201 analyses.

202 **2.4 Characterization of GM and correspondence with fitness and diet**

203 Sequencing of DNA extracted from stool samples yielded 11.3 million reads derived
204 from the 16S rRNA-gene V3-region with an average of 116,476 (48,872 SD) sequences per
205 subject. The analysis of amplicon-sequencing data generated 10,084 zOTUs (sequence
206 variants) summarized over 875 cumulative species (species richness) and 8 core-species
207 (defined as being present in all recruited subjects) among the study subjects (Figure S2a). The
208 relative abundance of core species varied between 18 – 84% (Supplementary Figure 2b).
209 Between sexes no significant differences in beta-diversity (Figure 3a) and alpha-diversity
210 (Figure S2c) were observed. Furthermore, regardless of sex, the study participants were
211 characterized by higher relative abundance of e.g. Lachnospiraceae spp., *Akkermansia* spp.,
212 *Blautia* spp., along with reduced proportions of *Bacteroides* spp. (Figure S2d) as compared to
213 the community-dwelling group of older adults recruited for the Irish ELDERMET study
214 (Claesson et al., 2012). This may reflect differences associated with dietary habits, age [mean
215 age: baseline-CALM 70 ± 4 y, ELDERMET 78 ± 8 y], and geographical location.

216 A substantial higher alpha-diversity ($p = 0.06$, Observed Species) were observed
217 (Figure S2c) among HF phenotypes compared to LF phenotypes, as well as weak but
218 significant ($p < 0.05$) correlations of observed species with BMI, energy and starch intake
219 (Figure S2e-g). Correspondence analysis and analysis of similarities (ANOSIM) on Bray-
220 Curtis (weighted beta-diversity) distance metric calculated from species-level abundance
221 showed significant correspondence ($p = 0.04$) and dissimilarities ($p = 0.01$) in GM
222 composition in connection with the two physical phenotypes (Figure 3b-c).

223 Also, GM composition was clearly associated with ($p < 0.05$) gradients of energy
224 consumption (Figure 3d), starch (Figure 3e), dietary fiber (Figure 3f) steps per day (Figure
225 3g) and BMI (Figure 3h) reflecting fitness phenotypes. Using regularized canonical
226 correlation (rCC) analysis associations between those lifestyle covariates (e.g. dietary factors
227 and physical activity) with 161 microbial species were disclosed (Figure 3i, Figure S3)
228 explaining <5% and 13% of the total variance of the microbiota and lifestyle covariates,
229 respectively (Figure S3a). The strongest associations (those $> |0.2|r$, number of species in
230 brackets) were observed for Bacteroidales (12), Bifidobacteriales (2), Clostridiales (106),
231 Coriobacteria (7), Enterobacterales (3), Erysipelotrichales (12), Lactobacillales (3),
232 PAC001057 (Mollicutes members) (8), Proteobacteria (1) and other orders (7) (Figure S3b).
233 Increased intake of energy, starch, dietary fiber, as well as steps per day correlated positively
234 with the relative abundance of up to 103 of those species (e.g. higher Bifidobacteriales
235 abundance) and correlated negatively with BMI (e.g. Proteobacteria being signatures for high
236 BMI) (Figure 3i, Figure S3b).

237

238 **2.5 Host metabolic state in relation to fitness and dietary intake**

239 Untargeted Gas Chromatography-Mass Spectrometry (GC-MS) metabolomics of
240 human fecal extracts and blood plasma as well as targeted SCFA analysis using GC-MS
241 generated a total of 304 analytes (181 analytes in the fecal and 123 analytes in the plasma
242 metabolome). Nearly half of the metabolites variables were identified, either at level 1 or

243 level 2 according to the Metabolomics Standards Initiatives (Sumner et al., 2007). These
244 metabolites were monosaccharides, amino acids, organic acids, sterols and long-, and short
245 chain fatty acids. In addition, 31 biomarkers for immunological function, renal and liver
246 function, as well as glucose and lipid metabolism were acquired through blood clinical
247 profiling.

248 Correspondence analysis on the combined metabolome blocks showed weak
249 discrimination of sexes (Figure 4a) and pronounced discrimination between fitness phenotype
250 (Figure 4b) based on their metabolic profile. Variations in metabolome composition
251 corresponded clearly ($p < 0.05$) with energy intake and consumption of dietary fiber, starch,
252 simple sugars (Figure 4c-f), as well as steps per day and hours-standing-per-day (Figure 4g-h),
253 including stratifying variables: BMI (Figure 4i), chair-stand and LFT%, Figure S4a-b).
254 Likewise, rCC analysis showed significant associations between lifestyle covariates and 34
255 clinical/metabolic variables (Figure 4j), explaining 9% and 15% of the total variance of the
256 metabolome and lifestyle covariates, respectively (Figure S4c). The strongest associations ($>$
257 $|0.2|r$) were observed for 19 clinical biomarkers, 10 gut metabolites and 5 plasma metabolites
258 (Figure 4j). Increased intake of energy, starch, dietary fiber (or dietary covariates), as well as
259 steps per day correlated positively with mono- and di-saccharides and negatively with amino
260 acids (Pro, Ala, Trp), glucose metabolism parameters (proinsulin, glucose HbA1c, HbA1c),
261 lipid metabolism (triglycerides, vLDL) and renal function (creatinine, inversely to estimate
262 glomerular filtration rate (eGFR)) measurements, primary bile acids (lithocholic acid) and N-
263 Nitrosotrimethylurea (Figure 4j). Moreover, a higher proportion of enterolactone in the fecal
264 metabolome of HF subjects were also found (Figure 4k). Remarkably, the concentrations of
265 SCFA as well as other/branched-chain fatty acids (O/B-CFA) in the fecal samples did not
266 differ according to phenotypes ($p > 0.13$) or dietary intake factors (Figure 4l-m).

267 **2.6 Dietary intake, gut microbiota and metabolic signatures explain fitness levels**
268 **independently from physical activity**

269 Characterization of subjects after variable selection based on Random Forest and
270 backward elimination procedure selected 55 variables (Figure 5a) with different levels of
271 importance (Figure 5b) that discriminate the two phenotypes with a high level of accuracy
272 (Figure 5c-d). The features included 25 bacterial species belonging to 7 bacterial orders
273 (Clostridiales, Saccharibacteria, Bacteroidales, PAC001057, Enterobacterales,
274 Erysipelotrichales and Bifidobacteriales), seven dietary components (energy, saturated fatty
275 acids, simple sugars, starch and dietary fiber intake, and energy derived from proteins and
276 carbohydrates); five clinical biomarkers (alanine transaminase, triglycerides, vLDL, fasting
277 proinsulin, average blood glucose/HbA1c). In addition, seven plasma metabolites (amino
278 acids and organic acids), ten fecal metabolites (sugar alcohols, amino acids, primary bile
279 acids and urea) and physical activity (steps per day) were also tabbed (Figure 5a).

280 Discrimination of the two phenotypes based on all the selected features (combined
281 datasets) had the highest level of accuracy (22% out-of-bag error rate, OOB), followed GM
282 and clinical/metabolome features (23% OOB), dietary intake (36% OOB) and physical
283 activity parameters (46% OOB) (Figure 5d). Through redundancy analysis (RDA) the effect
284 of the selected variables (within blocks) on the stratifying variables it was found that GM had
285 the largest explanatory power (24.7%), followed by dietary intake (17.3%), clinical
286 biomarkers (16.8%), gut metabolome (8.8%), plasma metabolome (6.2%) and physical
287 activity (5.2%) (Figure 5e). Notably, the cumulative explained variance conferred by the pool
288 of selected features reached 50.1%, and even after conditioning the effect of physical activity
289 over the stratifying variables, the cumulative explained variance reached up to 44.9% (Figure
290 5f).

291 **3. DISCUSSION**

292 The number of older-adults over the age of 65 will increase by more than 50%
293 worldwide over the next three decades (NIH 2011), potentially with huge implications for the
294 health and economy of the implicated individuals and society as a whole. With this,
295 understanding the physical mechanisms and lifestyle conditions linked to fitness and
296 independence in older adults becomes a relevant field of research.

297 Despite the homogeneity of the recruited subjects (all non-frail and without serious
298 disease) noticeable differences in fitness level was observed and based on non-collinear
299 ABPm variables (chair-rise test, BMI and DXA-scan based body composition), two fitness
300 phenotypes (LF and HF) were identified. Neither of the fitness types were frail (Guralnik et
301 al., 1994) , nevertheless dietary, GM and host metabolome factors were found to clearly
302 discriminate between the two fitness types. HF subjects were characterized by a higher
303 consumption of foods of plant origin as also reflected by their higher levels of total
304 carbohydrates (i.e. starch, simple sugars) and dietary fiber, accompanied by a higher
305 adherence to the recommended intake of carbohydrates and dietary fiber intake given by the
306 Nordic Nutrition Recommendations (Nordic Council of Ministers 2012). These differences
307 were observed in spite of the methodological limitations of 3d-WFR to capturing long term
308 variability (Yang et al., 2010). Furthermore, whether awareness of dietary guidelines
309 influenced the selection of dietary choices in the study participants remains to be investigated,
310 but it is worth mentioning that HF subjects consider healthy food as an important component
311 in their life as also described by Schacht et al., (Schacht et al., 2019).

312 The GM community and host metabolome clearly discriminated between the HF and
313 LF phenotypes and was largely associated with the consumption of total energy, and plant
314 derived nutrients (such as starch and dietary fibers as well as enterolactone, all being higher in
315 HF subjects). A number of features (Figure 5a) selected from GM, host metabolome, dietary
316 intake and daily physical activity were able to strongly discriminate and explain variation
317 between phenotypes, thereby indicating their strong association with physical function. Daily

318 physical activity showed the lowest power towards phenotypic differentiation (in spite of the
319 high validity of the method for activity monitoring (Dowd et al., 2012)) and explaining only
320 5% of the phenotypic variance. Albeit conditioning for physical activity, the remaining set of
321 selected features explained up to 45% of the total variance of the stratifying variables. In
322 particular dietary intake (17% of explained variance), GM composition (24%) and host
323 metabolome (25%) signatures are important drivers of phenotypic differentiation (Figure 5),
324 and also described in animal models (Fujisaka et al., 2018). Accordingly, HF subjects showed
325 a higher proportion of GM members commonly known for their protective roles, such as
326 *Bifidobacterium adolescentis* and *Christensenella* species (Goodrich et al., 2014), and whose
327 abundance corresponded negatively with glucose and lipid metabolism biomarkers
328 (proinsulin, HbA1c, vLDL, triglycerides). Contrarily, LF phenotypes had increased levels of
329 the same biomarkers and a higher relative abundance of pro-inflammatory microbial members
330 in the gut, as for example Enterobacteriales (Fei & Zhao 2013; Hoarau et al., 2016; Khan et
331 al., 2014).

332 SCFAs derived from GM activity have been identified as signaling molecules
333 responsible for maintenance of the integrity of colonic epithelium, glucose homeostasis, lipid
334 metabolism and appetite regulation (Morrison et al., 2016). Claesson et al., (Claesson et al.,
335 2012) reported higher SCFA concentrations (acetate, butyrate and propionate) in the fecal
336 metabolome of older adults living as community-dwellers compared to frail individuals living
337 in residential care. Moreover, decreasing concentrations of these SCFAs were associated with
338 advanced levels of frailty given by diet and specific transitions in GM composition (Claesson
339 et al., 2012). However, in the present study no correlations between fecal SCFA and O/B-
340 CFA concentrations with neither macronutrient distribution or fitness phenotype were found.
341 This suggest that levels of physical function amidst healthy older adults may not be primarily
342 dependent upon changes in the production of these compounds. Instead, this could be due to
343 signals of glucose metabolism deterioration as reflected by significantly ($p < 0.001$) higher
344 proinsulin levels and higher average blood glucose (determined by HbA1c-levels) in the LF

345 phenotypes (1/116 HF and 20/91 LF subjects had higher than normal ranges of proinsulin
346 (Chi-Squared $p < 0.001$), 10/116 HF and 30/91 LF had higher ranges than those
347 recommended for HbA1c (Gardner & Shoback 2011) (Chi-Squared $p < 0.001$), see Table S3).
348 High concentrations of proinsulin indicates high insulin secretion and hence diminished
349 peripheral insulin sensitivity resulting in a number of metabolic conditions, compromising
350 muscle strength and physical performance (Segerström et al., 2011). Proinsulin was the most
351 important feature of phenotype discrimination and corresponded inversely with the abundance
352 of *Bifidobacterium adolescentis* and several species of *Christensenella*, and
353 Ruminococcaceae (Figure 5a), strongly indicating that GM-proinsulin interactions could be
354 mediators of fitness phenotype. *Bifidobacterium* species (including *B. adolescentis*) have
355 previously been described as promoters of adiponectin and decreasing expression of
356 interleukin-6, both playing prominent roles in metabolic derangements associated with
357 glucose regulation and fatty acid oxidation (Su et al., 2015; Straub & Scherer 2019; Aoki et
358 al., 2017). *Christensenella minuta* (another Clostridiales member) is enriched in individuals
359 with low BMI and has been demonstrated to reduce weight gain and adiposity in mice
360 (Goodrich et al., 2014). Furthermore, while playing a protective role against inflammation,
361 some Clostridiales members act as promoters of regulatory T-cells by interacting with toll-
362 like receptors 2 (TLR2) on intestinal epithelial cells (Kashiwagi et al., 2015). Contrarily,
363 species of Enterobacterales have been consistently linked with insulin resistance and
364 inflammatory responses (Fei & Zhao 2013; Hoarau et al., 2016; Khan et al., 2014), and by
365 means of cell epitopes (i.e. LPS) they interact with TLRs triggering pathogen recognition,
366 low-grade inflammation (Franceschi & Campisi, 2014) and fat accumulation in adipose tissue
367 that ultimately influence muscle strength (Boulangé et al., 2016).

368 In summary, our findings suggest that dietary patterns underlie mechanisms of
369 physical phenotype differentiation among well-functioning community dwelling older adults,
370 particularly as a driver of GM and glucose metabolism interactions. Despite the limitations of
371 this study related to its inherent cross-sectional nature, the results provide strong evidence

372 emphasizing the central role of diet towards the onset of physical deterioration and its
373 implications prior to clinical manifestations of frailty, e.g. muscle composition and
374 diminished strength (Xue, 2011). Many of the dietary, GM and metabolomic signatures seen
375 in frail older adults (Claesson et al., 2012; Bodogai et al., 2018; Kong et al., 2016; Lustgarten
376 et al., 2014) are already evident in the non-frail, community-dwelling older-adults of low-
377 fitness of this study, pointing at the importance of early intervention strategies, also in this
378 age group. Thus, in view of these findings, developing strategies to improve awareness and
379 adherence to dietary recommendations (complying with dietary reference intakes or even with
380 personalized nutrition (Zeevi et al., 2015)), targeting the regulation of GM and host
381 metabolome interactions, can open opportunities to delay the comorbidities of aging.

382 **4. EXPERIMENTAL PROCEDURES**

383 **4.1 Study Participants**

384 Procedures of the CALM project (Clinical Trials NCT02115698) were approved by
385 the Danish Regional Committees of the Capital Region (H-4-2013-070), performed according
386 to the Declaration of Helsinki II and the experimental designed followed as previously
387 described (Bechshøft et al., 2016). For the current study, two hundred and seven subjects (65+
388 years of age) were selected at baseline of the CALM intervention project following the
389 criteria described in Bechshøft et al.,(Bechshøft et al., 2016). Participants were not allowed to
390 take part in any organized sports or resistance training more than once a week, did not suffer
391 from defined metabolic-, tissue-, or gastro-intestinal disorders, nor were prescribed antibiotics
392 3 months prior sample collection and enrollment.

393 **4.2 Samples and metadata collection**

394 At baseline, participants completed a 3-day weighted food record where food and
395 beverage intake were registered for 3-consecutive days (Wednesday to Friday). Dietary
396 information was typed into the electronic dietary assessment tool, VITAKOST™ (MADLOG

397 APS, Kolding, Denmark), which uses the Danish Food Composition Databank (version 7.01;
398 Søborg; Denmark) to estimate individual energy and macronutrient intake.

399 Fecal and blood plasma samples were collected and handled according to the
400 following procedures: (i) fecal samples were kept at 4°C for maximum 48 h after voidance,
401 and stored at -60°C until further use; (ii) overnight-fasted-state (OFS) plasma-samples were
402 collected and deposited in heparin, centrifuged at 3,000×g for 10 min at 4°C, and then stored
403 at -60°C.

404 For screening of blood-biomarkers, the following tests were performed: complete
405 blood count (CBC), proinsulin-C-peptide (P-CP), glycosylated hemoglobin (HbA1c),
406 coagulation factor, estimate glomerular filtration rate (eGFR), thyroid-stimulating hormone
407 (TSH), and iron-ferritin test determined as described in Bechshøft et al., (Bechshøft et al.,
408 2016) For anthropometric and functional capacities, height (cm) and body-weight (kg) in OFS
409 were measured. Average fast-pace gait speed was measured on an indoor 400 m horizontal
410 track. Number of chair-stands in 30s from a standard table chair was recorded. Relative legs-
411 soft-tissue fat% (LSF%) was determined as an estimate of legs-soft-tissue fat-free and fat-
412 mass based on a dual energy x-ray absorptiometry (DXA) scan (Lunar iDXA Forma with
413 enCORE Software Platform version 15, GE Medical Systems Ultrasound & Primary Care
414 Diagnostics, Madison, WI, USA) performed on participants in overnight fasted state.

415

416 **4.3 Quantitative questionnaires on food habits**

417 Quantitative questionnaires contained information on food habits, perceptions and
418 preferences, as well as information about life style changes and dietary habits over the life
419 course (Bechshøft et al., 2016).

420 **4.4 GM and metabolomics**

421 Procedures for profiling and process GM and metabolomics data are described in
422 Supplementary Methods.

423 **4.5 Statistical Analyses**

424 Stratification of individuals was based on ABP measurements using the variables
425 described in Table S1. Collinear variables were initially removed, leaving chair-stand [30s-
426 test]), DXA scans (legs-soft-tissue fat% determined in both legs) and BMI as features with a
427 variance inflation factor (VIF) < 2 and r -coefficient < 0.5. Subjects were divided according to
428 sex, and a hierarchical clustering analysis of principal component analysis (Husson et al.,
429 2008) was performed on the selected variables (100 iterations).

430 For univariate data analyses, pairwise comparisons were carried out with unpaired
431 two-tailed Student's t -test, Pearson's coefficient was used for determining correlations and
432 Chi-Square test for evaluating groups distributions. For multivariate data analyses, the
433 influence of covariates (e.g. dietary components, BMI, etc.) on data blocks (GM and
434 metabolome) were assessed with (Constrained-) Correspondence Analysis with permutation
435 tests (1,000 permutations), as well as analysis of similarities (ANOSIM test, 999
436 permutations) on Bray-Curtis distances (implemented in the *Vegan* R-package (Oksanen et
437 al., 2015)).

438 Correlation of covariates with the same datasets were determined with regularized
439 canonical correlation (rCC) analysis using the *mixOmics* R-package (González et al., 2012).
440 rCC was crossed-validated (leave-one-out approach) with grids (lambda 1 & 2) of 0.05 to 1.0
441 and a length of 20.

442 Feature selection for combined datasets was performed with Random Forest. Dataset
443 was randomly divided 200x (200 subsets) into training (70%) and test sets (30%), keeping
444 this proportion over the number of subjects within each fitness group for every split. For a
445 given training set, the *party* R-package (Hothorn et al., 2016) was run for feature selection
446 using unbiased-trees (cforest_unbiased with 6,000 trees) and AUC-based variable
447 (varimpAUC with 100 permutations), and subsequently the selected variables were used to
448 predict (6,000 trees with 1,000 permutations) their corresponding test set using *randomForest*
449 R-package (Liaw & Wiener 2014). The features derived from the subset with a prediction rate

450 within 1 SD above the mean-prediction (based on the 200 subsets) were selected and
451 subsequently, subjected to sequential rounds of feature selection (following the same tuning
452 of unbiased-trees and AUC-based variable) until prediction could no longer improved.
453 Variation partitioning of stratifying variables (BMI, CS and LSF%) based on selected features
454 derived from the different datasets (i.e. GM, diet, host-metabolome, physical activity) was
455 performed using redundancy analysis (RDA) (Oksanen et al., 2015).

456 **ACKNOWLEDGEMENTS**

457 This project was supported by the University of Copenhagen-funded project “Counteracting
458 Age-related Loss of Skeletal Muscle (CALM)”, the Innovation Foundation Denmark-funded
459 project COUNTERSTRIKE (4105-00015B), stipends from the University of Copenhagen, as
460 well as a PhD-stipend from Universiti Malaysia Pahang, Malaysia and Ministry of Education,
461 Malaysia.

462 **AUTHOR CONTRIBUTIONS**

463 Conceptualization: D.S.N., J.L.C., S.B.E., L.H., A.P.J.; Methodology: D.S.N., J.L.C., S.B.E.,
464 L.H., A.P.J., A.J.L., T.J., S.R., R.L.B.; Formal Analysis: J.L.C., B.K., L.K., D.S.N., S.B.E.,
465 L.H.; Writing – Original Draft: J.L.C., D.S.N.; Investigation, review & editing: all authors;
466 Visualization: J.L.C., D.S.N.; Supervision: D.S.N., S.B.E., L.H.; Funding Acquisition:
467 D.S.N., S.B.E., L.H., A.P.J.

468 **CONFLICT OF INTEREST**

469 None declared.

470

471 **Data Availability**

472 Sequence data is available at the European Nucleotide Archive, accession number ENA:
473 PRJEB33008 ([dataset] Castro-Mejía et al., 2019). The remaining data that support the
474 findings of this study are available on request from the corresponding authors. The data are
475 not publicly available due to privacy or ethical restrictions.

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495 **REFERENCES**

- 496
- 497 Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., ... Koga, Y. (2017).
498 A proliferative probiotic *Bifidobacterium* strain in the gut ameliorates progression of
499 metabolic disorders via microbiota modulation and acetate elevation. *Scientific*
500 *Reports*, 7, 43522. <http://dx.doi.org/10.1038/srep43522>
- 501 Bechshøft, R.L., Reitelseder, S., Højfeldt, G., Castro-Mejía, J.L., Khakimov, B., Ahmad,
502 H.F., ... Holm L. (2016). Counteracting Age-related Loss of Skeletal Muscle Mass: a
503 clinical and ethnological trial on the role of protein supplementation and training load
504 (CALM Intervention Study): study protocol for a randomized controlled trial. *Trials*
505 17, 397. <https://doi.org/10.1186/s13063-016-1512-0>
- 506 Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., ... De Vos, W. (2010).
507 Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and
508 centenarians. *PLoS One*, 5, e10667, <https://doi.org/10.1371/journal.pone.0010667>
- 509 Black, A.E. (2000). Critical evaluation of energy intake using the Goldberg cut-off for energy
510 intake : basal metabolic rate . A practical guide to its calculation ., use and limitations.
511 *International Journal of Obesity*, 24, 1119–1130.
- 512 Bodogai, M., O'Connell, J., Kim, K., Kim, Y., Moritoh, K., Chen, C., ... Biragyn, A. (2018).
513 Commensal bacteria contribute to insulin resistance in aging by activating innate B1a
514 cells. *Science Translational Medicine*, 10, eaat4271.
515 <https://doi.org/10.1126/scitranslmed.aat4271>
- 516 Boulangé, C.L., Neves, A.L., Chilloux, J., Nicholson, J.K. & Dumas, M. (2016). Impact of
517 the gut microbiota on inflammation, obesity, and metabolic disease. *Genome Medicine*,
518 8, 42. <https://doi.org/10.1186/s13073-016-0303-2>.
- 519 [dataset]Castro-Mejía, J.L., Khakimov, B., Krych, L., Bülow, J., Bechshøft, R.L., Højfeldt,
520 G., ... Nielsen, D. (2019). Physical fitness in community dwelling older adults is linked
521 to dietary intake, gut microbiota and metabolomic signatures. European Nucleotide
522 Archive (ENA), accession number PRJEB33008.
- 523 Claesson, M.J., Jeffery, I.B., Conde, S., Power, S.E., O'Connor ,E.M., Cusack, S., ...
524 O'Toole, P.W. (2012). Gut microbiota composition correlates with diet and health in the
525 elderly. *Nature*, 488, 178–184. <https://doi.org/10.1038/nature11319>
- 526 Dowd, K.P., Harrington, D.M. & Donnelly, A.E. (2012). Criterion and Concurrent Validity of
527 the activPAL™ Professional Physical Activity Monitor in Adolescent Females. *PLoS*
528 *One*, 7, e47633. <https://doi.org/10.1371/journal.pone.0047633>
- 529 Fei, N. & Zhao, L. (2013). An opportunistic pathogen isolated from the gut of an obese
530 human causes obesity in germfree mice. *ISME Journa*, 7, 880–884.
531 <http://dx.doi.org/10.1038/ismej.2012.153>.
- 532 Franceschi, C. & Campisi, J. (2014). Chronic Inflammation (Inflammaging) and Its Potential
533 Contribution to Age-Associated Diseases. *Journals of Gerontology Series A*, 69, S4–9.
534 <https://doi.org/10.1093/gerona/glu057>
- 535 Fujisaka, S., Avila-Pacheco, J., Soto, M., Kostic, A., Dreyfuss, J.M., Pan, H., ... Kahn, C.R.
536 (2018). Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma
537 Metabolites. *Cell Reports*, 22, 3072–3086. <https://doi.org/10.1016/j.celrep.2018.02.060>

- 538 Gardner, D.G. & Shoback, D. (2011). *Greenspan's Basic & Clinical Endocrinology* (9th Ed).
539 McGraw-Hill Medical.
- 540 Giezenaar, C., Chapman, I., Luscombe-Marsh, N., Feinle-Bisset, C., Horowitz, M. & Soenen,
541 S. (2016). Ageing is associated with decreases in appetite and energy intake— A meta-
542 analysis in healthy adults. *Nutrients*, 8, 28. <https://doi.org/10.3390/nu8010028>
- 543 González, I., Cao, K.L., Davis, MJ & Déjean, S (2012). Visualising associations between
544 paired “omics” data sets. *BioData Minining*, 5, 19. <https://doi.org/10.1186/1756-0381-5-19>
- 545 Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., ... Ley, R.E.
546 (2014). Human genetics shape the gut microbiome. *Cell*, 159, 789–799.
547 <https://doi.org/10.1016/j.cell.2014.09.053>
- 549 Gopinath, B., Russell, J., Kifley, A., Flood, V.M. & Mitchell, P. (2016). Adherence to Dietary
550 Guidelines and Successful Aging Over 10 Years. *Journals of Gerontology Series A*, 71,
551 349–355. <https://doi.org/10.1093/gerona/glv189>
- 552 Guralnik, J.M., Simonsick, E.M., Ferrucci, L., Glynn, R.J., Berkman ,L.F., Blazer, D.G., ...
553 Wallace, R.B. (1994). A short physical performance battery assessing lower extremity
554 function: Association with self-reported disability and prediction of mortality and
555 nursing home admission. *Journal of Gerontology*, 49, 85–94.
- 556 Hoarau, G., Mukherjee, P.K., Gower-Rousseau, C., Hager, C., Chandra, J., Retuerto, M.A.,
557 ... Ghannoum, M.A (2016). Bacteriome and Mycobiome Interactions Underscore
558 Microbial Dysbiosis in Familial Crohn’s Disease. *MBio*, 7, pii: e01250-16.
559 <https://doi.org/10.1128/mBio.01250-16>
- 560 Holm, L., Jespersen, A.P., Nielsen, D.S., Frøst, M.B., Reitelseder, S., Jensen, T., ...
561 Damsholt, T .(2014). Hurrah for the increasing longevity: feasible strategies to
562 counteract age-related loss of skeletal muscle mass. *Scandinavian Journal of Medicine
563 and Science in Sports*, 25, 1–2. <https://doi.org/10.1111/sms.12415>
- 564 Hothorn, T., Hornik, K., Strobl, C. & Zeileis, A. (2019). Party: a laboratory for recursive
565 partytioning. *R Packag*.
- 566 Husson, F., Josse, J., Lê, S & Mazet, J. (2019). Package ‘FactoMineR.’ *R Packag*.
- 567 Jones, C.J., Rikli, R.E. & Beam, W.C. (1999). A 30-s chair-stand test as a measure of lower
568 body strength in community-residing older adults. *Research Quarterly for Exercise and
569 Sport*, 70, 113–119.
- 570 Kashiwagi, I., Morita, R., Schichita, T., Komai, K., Saeki, K & Matsumoto, M (2015). Smad2
571 and Smad3 Inversely Regulate TGF- b Autoinduction in Clostridium butyricum -
572 Activated Dendritic Cells. *Immunity* 43., 65–79.
573 <https://doi.org/10.1016/j.jimmuni.2015.06.010>
- 574 Khan, MT., Nieuwdorp, M & Bäckhed, F (2014). Microbial modulation of insulin sensitivity.
575 *Cell Metabolism*, 20, 753–760. <https://doi.org/10.1016/j.cmet.2014.07.006>
- 576 Khan, SS., Singer, BD & Vaughan, DE (2017). Molecular and physiological manifestations
577 and measurement of aging in humans. *Aging Cell*, 16, 624–633.
578 <https://doi.org/10.1111/acel.12601>
- 579 Kong, F., Hua Y., Zeng, B., Ning, R., Li, Y & Zhao, J (2016). Gut microbiota signatures of

- 580 longevity. *Current Biology*, 26, R832–R833. <https://doi.org/10.1016/j.cub.2016.08.015>
- 581 Liaw, A (2018). Breiman and Cutler's Random Forests for Classification andRegression. *R*
582 *Packag.*
- 583 Lustgarten, MS., Price, LL., Chalé, A & Fielding, RA (2014). Metabolites related to gut
584 bacterial metabolism., peroxisome proliferator-activated receptor-alpha activation., and
585 insulin sensitivity are associated with physical function in functionally-limited older
586 adults. *Aging Cell*, 13, 918–925. <https://doi.org/10.1111/ace.12251>
- 587 Morrison, DJ., Preston, T., Morrison, DJ & Preston, T (2016). Formation of short chain fatty
588 acids by the gut microbiota and their impact on human metabolism. *Gut Microbes*, 7,
589 189–200. <https://doi.org/10.1080/19490976.2015.1134082>
- 590 NIH (2011). *Global Health and Aging*. National Institute of Health.
- 591 Nordic Council of Ministers (2012). Nordic Nutrition Recommendations 2012. *Norden*.
- 592 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... Wagner,
593 H (2019). vegan: Community Ecology Package. *R Packag.*
- 594 Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, MV., Rothemund, S., ...
595 Stäubert, C. (2019). Metabolites of lactic acid bacteria present in fermented foods are
596 highly potent agonists of human hydroxycarboxylic acid receptor 3. *PLOS Genetics*, 15,
597 e1008145. <https://doi.org/10.1371/journal.pgen.1008145>
- 598 Schacht, S.R., Lind, M.V., Bechshøft, R.L., Højfeldt, G., Reitelseder, S., Jensen, T., ...
599 Tetens, I. (2019). Investigating Risk of Suboptimal Macro and Micronutrient Intake and
600 Their Determinants in Older Danish Adults with Specific Focus on Protein Intake—A
601 Cross-Sectional Study. *Nutrients*, 11, pii: E795. <https://doi.org/10.3390/nu11040795>
- 602 Segerström, Å.B., Elgzyri, T., Eriksson, K.F., Groop, L., Thorsson, O & Wollmer, P (2011).
603 Exercise capacity in relation to body fat distribution and muscle fibre distribution in
604 elderly male subjects with impaired glucose tolerance., type 2 diabetes and matched
605 controls. *Diabetes Research and Clinical Practice*, 94, 57–63.
606 <https://doi.org/10.1016/j.diabres.2011.05.022>
- 607 Straub, L.G. & Scherer, P.E. (2019). Metabolic Messengers: adiponectin. *Nature Metabolism*,
608 1, 334–339. <https://doi.org/10.1038/s42255-019-0041-z>
- 609 Su, X., Yan ,H., Huang, Y., Yun, H., Zeng, B., Wang, E., ... Yang, R. (2015). Expression of
610 FABP4., adipisin and adiponectin in Paneth cells is modulated by gut Lactobacillus.
611 *Scientific Reports*, 5, 18588. <https://doi.org/10.1038/srep18588>
- 612 Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin ,C.A., ... Viant, M.R.
613 (2007). Proposed minimum reporting standards for chemical analysis. *Metabolomics*, 3,
614 211–221. <https://doi.org/10.1007/s11306-007-0082-2>
- 615 Thaiss, C.A., Zmora, N., Levy, M. & Elinav, E. (2016). The microbiome and innate
616 immunity. *Nature*, 535, 65–74. <https://doi.org/10.1038/nature18847>
- 617 Tudor-Locke, C., Craig, C.L., Aoyagi, Y., Bell, R.C., Croteau, K.A., De Bourdeaudhuij, I., ...
618 Blair ,S.N. (2011). How many steps/day are enough? For older adults and special
619 populations. *International Journal of Behavioral Nutrition and Physical Activity*, 8, 80.
620 <https://doi.org/10.1186/1479-5868-8-80>

621 WHO (2000). Obesity: preventing and managing the global epidemic. World Health
622 Organization

623 Xue, Q.L. (2011). The Frailty Syndrome: Definition and Natural History. *Clinics in Geriatric*
624 *Medicine*, 27, 1–15. <https://doi.org/10.1016/j.cger.2010.08.009>

625 Yang, Y.J., Kim, M.K., Hwang, S.H., Ahn, Y., Shim, J.E. & Kim, D.H. (2010). Relative
626 validities of 3-day food records and the food frequency questionnaire. *Nutrition*
627 *Research in Practice*, 4, 142–148. <https://doi.org/10.4162/nrp.2010.4.2.142>

628 Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., ... Segal, E.
629 (2015). Personalized Nutrition by Prediction of Glycemic Responses. *Cell*, 163, 1079–
630 1095. <https://doi.org/10.1016/j.cell.2015.11.001>

631
632

633

634

635

636

637 **SUPPORTING INFORMATION**

638 Additional supporting information can be found in supplementary files.

639

- 640 • Figure S1. Data overview and dietary intake
- 641 • Figure S2. GM overview, cumulative- and core-species
- 642 • Figure S3. rCC analysis between GM and lifestyle components
- 643 • Figure S4. Metabolome correspondence and correlation
- 644 • Table S1. Subjects Stratification
- 645 • Table S2. Dietary evaluation
- 646 • Table S3. Proinsulin and HbA1c levels
- 647 • Supplementary Methods

648

649

650

651

652

653 **TABLES**

654 Table 1. Description of the study participants

Number of Participants (n)	207
Sex	
Men:Women	109:98
Age (y) Mean \pm SD	70.2 \pm 3.9
BMI (kg·m ⁻²) Mean \pm SD	25.7 \pm 3.8
BMI < 25	105
BMI \geq 25 < 30	75
BMI \geq 30	27
HbA _{1c} (mmol·mol ⁻¹)	
< 39 mmol·mol ⁻¹ (<5.7 ABG - mmol·l ⁻¹) ^a	167
39-46 mmol·mol ⁻¹ (5.7-6.4 ABG - mmol·l ⁻¹)	40

655

656 ^a HbA_{1c} values above 47 mmol·mol⁻¹ (6.5 mmol·l⁻¹ Average Blood Glucose - ABG) is a
657 criterion for diagnosis of T2D (Gardner & Shoback 2011).

658

659

660 Table 2. Within sex summary of ABP measurements used for stratification of phenotypes
661 (HF/P: high-fitness phenotypes, LF: low-fitness phenotypes).

Women

Functional-Parameter	HF/P	LF/P	p-value ^a	Refer. range	Ref. age
30s Chair-stand test	20.6 \pm 5.0	15.7 \pm 3.1	< 0.001	10–16 ^b	65-74y ^b
BMI	22.4 \pm 2.1	28.9 \pm 3.3	< 0.001		
LSF%	35.2 \pm 4.0	42.7 \pm 4.6	< 0.001		

Men

Functional-Parameter	HF/P	LF/P	p-value ^a	Refer. range	Ref. age
Chair-rise test	22.9 \pm 4.4	18.3 \pm 3.9	< 0.001	12–18 ^b	65-74y ^b
BMI	24.0 \pm 2.2	28.3 \pm 3.1	< 0.001		
LSF%	20.3 \pm 3.4	27.0 \pm 3.5	< 0.001		

662

663 ^a Comparison between phenotypes was performed by two-tailed Student's *t*-test.

664 ^b ref: (Jones et al., 1999; Guralnik et al., 1994)

665

666 **FIGURE LEGENDS**

667 **Figure 1. Stratification of fitness phenotypes**

668 (a) Stratification of subjects (n = 207) by hierarchical clustering analysis of principal
669 components analysis (HCA-PCA). Stratification data matrix: [obj x vars] = [207 x 3]. HCA-
670 PCA was performed within sexes and based on ABP measurements. HF/P: high-fitness (n =
671 116) and LF/P: low-fitness phenotypes (n = 91).

672 (b) ABP measurements distribution among phenotypes and sexes.

673 (c) 4-day activity monitoring displaying hours standing and steps on daily basis for both
674 phenotypes. 4-day activity data matrix: [obj x vars] = [196 x 2]

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693 **Figure 2. Dietary intake and distribution**

694 (a) Total energy consumption per kg-body-weight per day ($\text{Cal}\cdot\text{kg}\cdot\text{body-weight}^{-1}\cdot\text{day}^{-1}$)

695 (b) Distribution of Calories proportionally obtained from macronutrients intake in HF and LF

696 phenotypes.

697 (c) Intake of carbohydrates by quality and saturated free fatty acids ($\text{g}\cdot\text{kg}\cdot\text{body-weight}^{-1}\cdot\text{day}^{-1}$)

698).

699 (d) Pearson correlation between dietary fiber ($\text{g}\cdot\text{kg}\cdot\text{body-weight}^{-1}\cdot\text{day}^{-1}$) and BMI depicted

700 according to phenotypes category.

701 (e) Proportion of subjects complying with recommended carbohydrates distribution ranges.

702 The gray areas correspond to non-recommended ranges as suggested by the Nordic Nutrition

703 Recommendations.

704 (f) Proportion of subjects complying with recommended distribution ranges of dietary fiber

705 according to the Nordic Nutrition Recommendations.

706 Dietary data matrix: [obj x vars] = [181 x 11]

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721 **Figure 3. Dietary intake and fitness phenotypes is linked with species-level GM patterns**

722 (a) Gut microbiota (GM) composition determined through Correspondence Analysis of 16S

723 rRNA gene (V3-region) amplicons (summarized zOTUs at species level) determined in the

724 stool samples of the study participants.

725 (b) Correspondence Analysis revealed compositional GM differences between fitness

726 phenotypes. (c) Constrained Correspondence Analysis (CCA) displays discrimination of

727 phenotypes based on permutational test ($p = 0.03$, explained variance = 3.2%).

728 (d) Correspondence Analysis of GM composition depicting gradients of total energy

729 consumption ($\text{Cal} \cdot \text{kg-body-weight}^{-1} \cdot \text{day}^{-1}$), intake of (e) starch ($\text{g} \cdot \text{kg-body-weight}^{-1} \cdot \text{day}^{-1}$) and

730 (f) dietary fiber ($\text{g} \cdot \text{kg-body-weight}^{-1} \cdot \text{day}^{-1}$), (g) steps per day, and (h) BMI.

731 (i) rCC analysis depicting the relationship between gradients of energy consumption, starch

732 and dietary fiber intake, steps per day and BMI, and variations in the abundance of GM

733 members. Heatmap displays the correlation of 161 species with a minimum correlation

734 coefficient of $|0.2|r$ from 1st to 3rd components. Species are depicted based on family-level

735 phylogeny. Supplementary Figure 3 displays taxonomy at species level, as well as

736 correlations per canonical axis and explained variance between GM composition and lifestyle

737 covariates derived from rCC analysis.

738 ANOSIM tests were performed on Bray-Curtis distances. GM data matrix: [obj x vars] = [184

739 x 874]

740

741

742

743

744

745

746

747 **Figure 4. Profiling of host metabolome in relation to dietary intake**

748 (a) Correspondence Analysis on combined fecal-, plasma-metabolomes and clinical
749 biomarkers of the study participants. Significant differences due to sex were determined with
750 constrained correspondence analysis (CCA). Inset shows a partial Correspondence Analysis
751 after conditioning for the confounding effect of sex.

752 (b) Correspondence Analysis discriminates compositional differences in metabolomic profiles
753 between fitness phenotypes.

754 (c) Correspondence Analysis of metabolites in relation to total energy consumption ($\text{Cal}\cdot\text{kg}\cdot$
755 $\text{body-weight}^{-1}\cdot\text{day}^{-1}$), intake of (d) dietary fiber ($\text{g}\cdot\text{kg}\cdot\text{body-weight}^{-1}\cdot\text{day}^{-1}$), (e) starch ($\text{g}\cdot\text{kg}\cdot$
756 $\text{body-weight}^{-1}\cdot\text{day}^{-1}$) and (f) simple sugars ($\text{g}\cdot\text{kg}\cdot\text{body-weight}^{-1}\cdot\text{day}^{-1}$), (g) steps per day, (h)
757 hours standing, and (i) BMI.

758 (j) rCC analysis showing the relationship between gradients of energy consumption, dietary
759 fiber, starch and simple sugar intake, steps per day, hours standing and BMI, with variations
760 in metabolome composition. Heatmap displays the correlation of 34 clinical/metabolome
761 variables with a minimum correlation coefficient of $|0.2|r$ from 1st to 4th components.

762 Supplementary Figure 4 shows correlations per canonical axis as well as explained variance
763 between metabolome composition and lifestyle covariates derived from rCC analysis.

764 (k) Significantly (*t*-test, $p = 0.02$) different relative distributions in enterolactone determined
765 in fecal samples of HF and LF phenotypes

766 (l-m) Range of fecal SCFAs and O/B-CFAs concentrations sorted according to fitness
767 phenotype.

768 Metabolome data matrix: [obj x vars] = [184 x 335]

769

770

771

772

773

774 **Figure 5. Signatures discriminating physical phenotypes**

775 (a) Heatmap displaying mean centered normalized abundance of 56 features selected using
776 Random Forest towards discrimination of phenotypes and (b) their importance as determined
777 on the basis of Mean Decrease in Accuracy.
778 (c) Multidimensional scaling plot discriminates subjects' phenotype based on the selected
779 features.
780 (d) ROC curves and out-of-bag error rate (OOB) for Random Forest classifier based on the
781 selected variables, for combined datasets (all selected features), GM and metabolome, dietary
782 intake and physical activity
783 (e) Captured variance for fitness variables (BMI, chair-stand and LSF%) as a function of
784 selected features through redundancy analysis (RDA). Individual Explained Variance displays
785 the size effect of a given dataset, CE-Variance represents the cumulative explained variance
786 and CE-variance | physical-activity shows the accumulative explained variance conditioned
787 by physical activity. Pie charts summarize the total proportion of explained variance before
788 and after conditioning for physical activity.
789 Data matrix: [obj x vars] = [181 x 56]

Figure 1

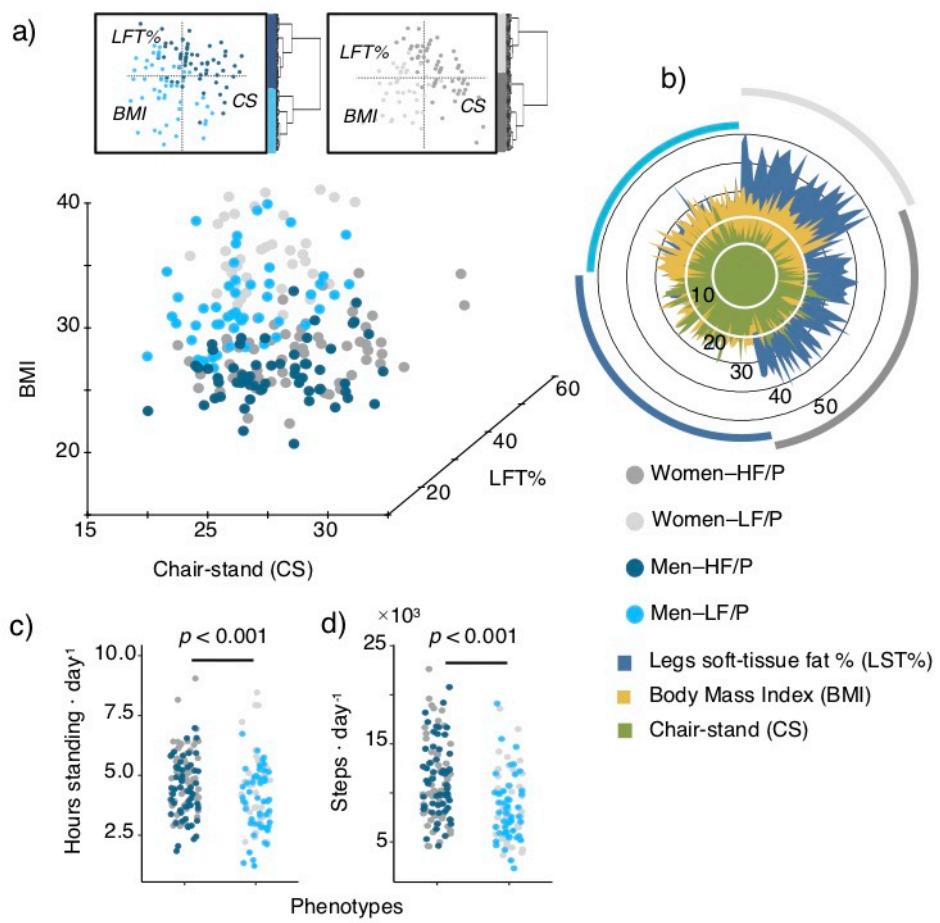
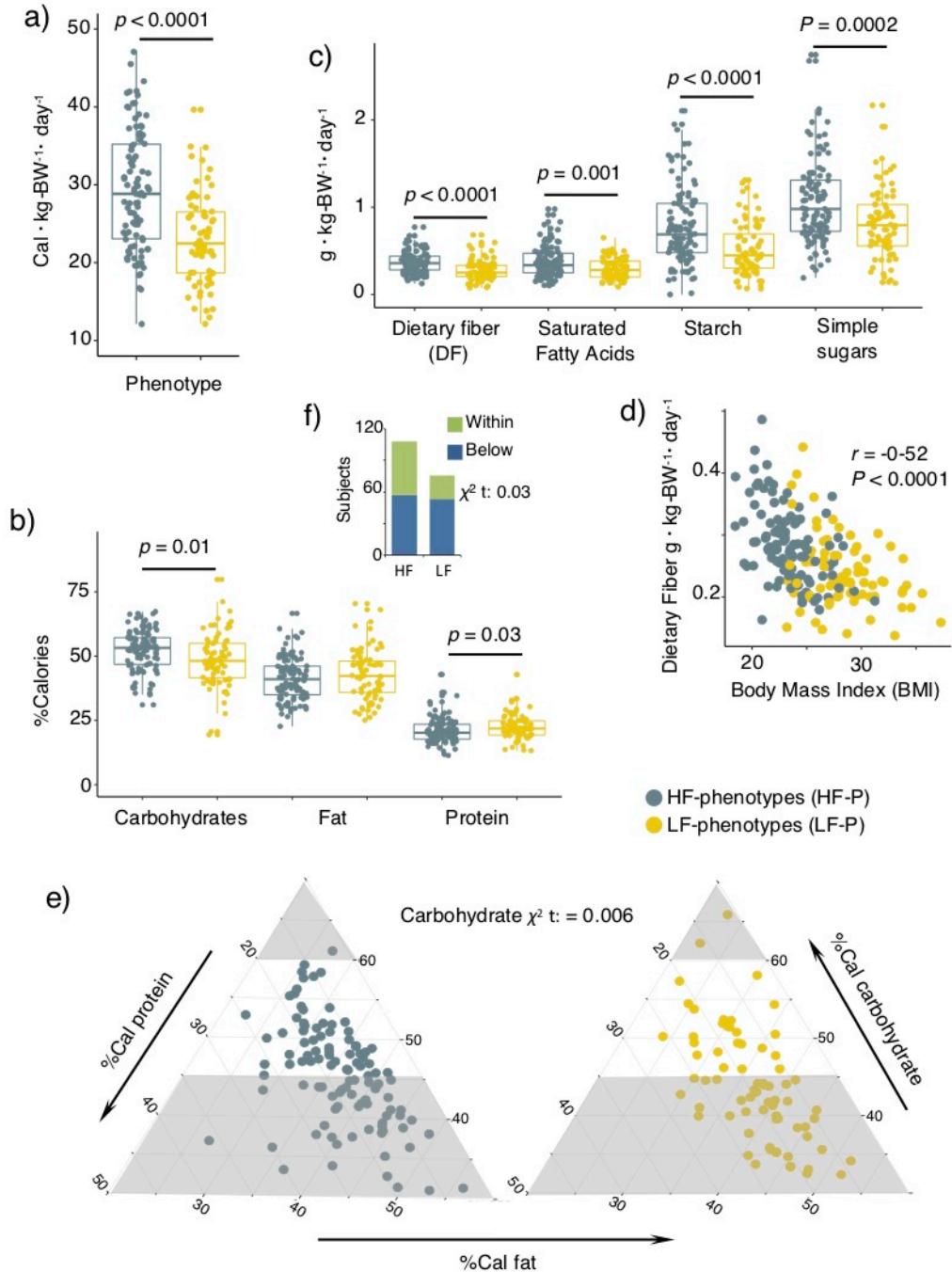
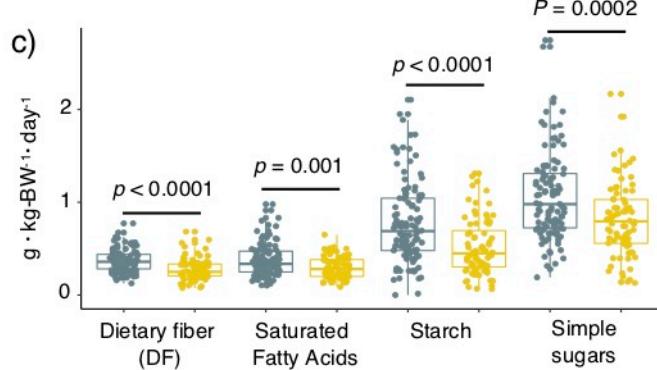
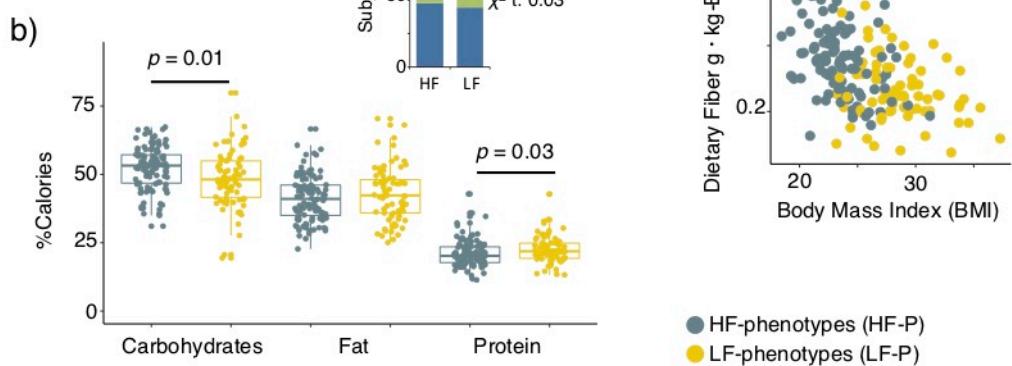
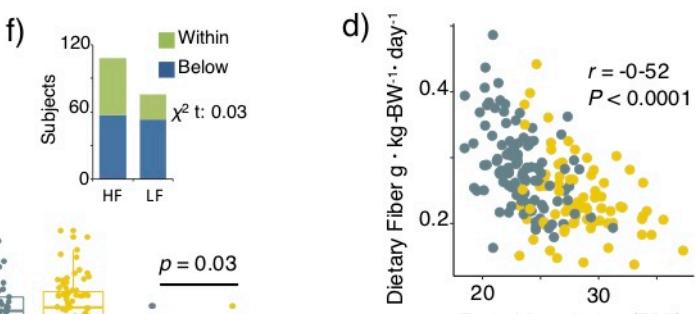
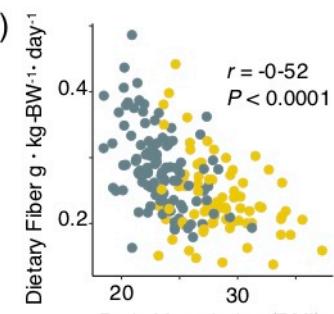


Figure 2



● HF-phenotypes (HF-P)
● LF-phenotypes (LF-P)

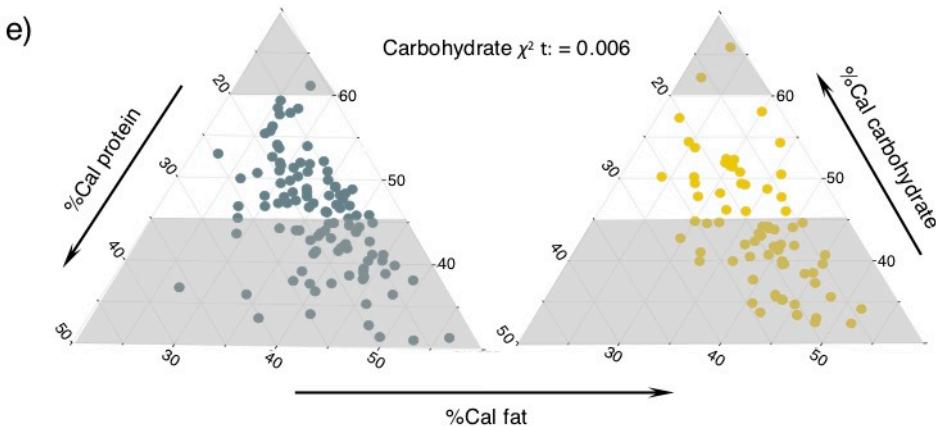


Figure 3

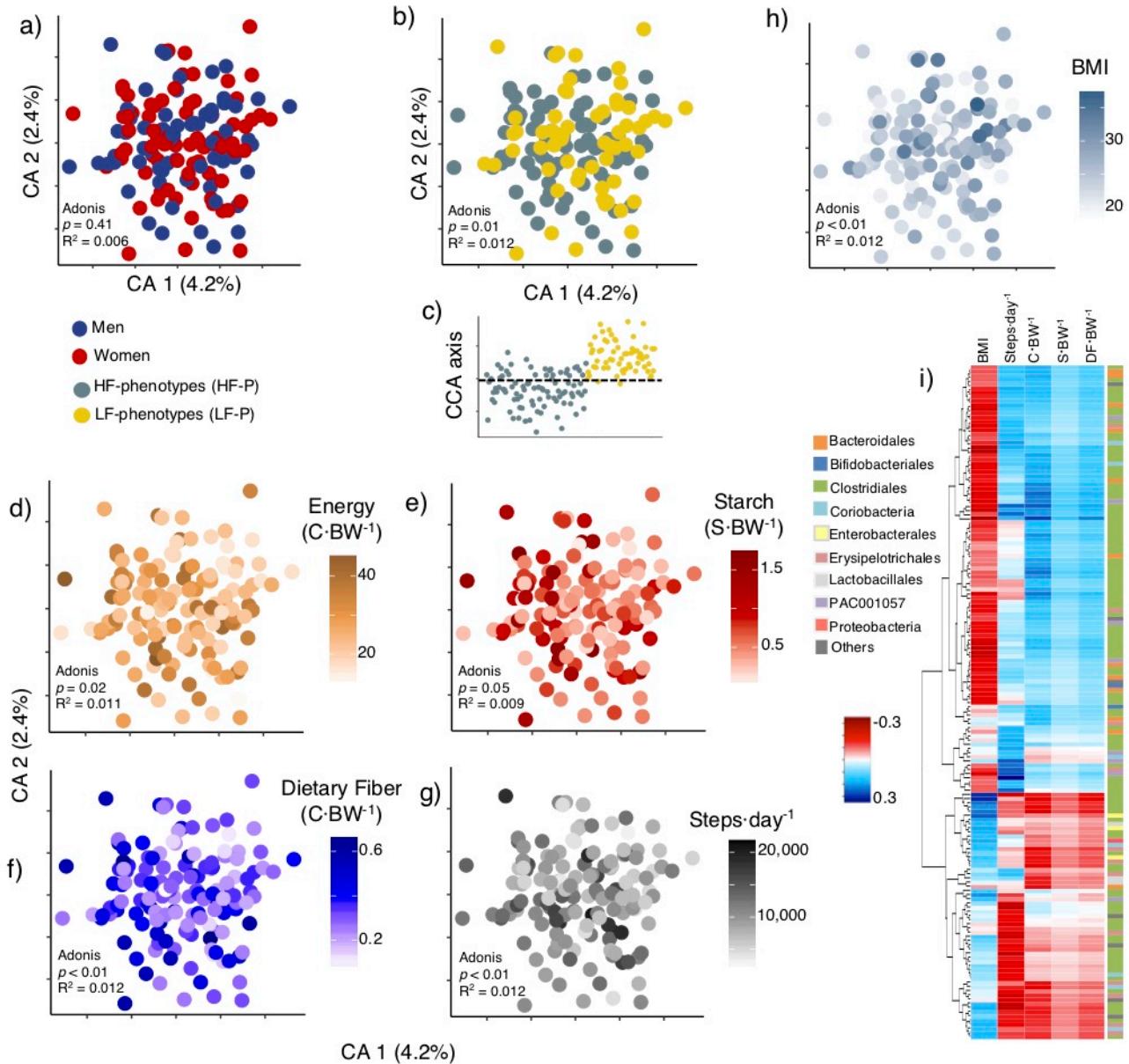


Figure 4

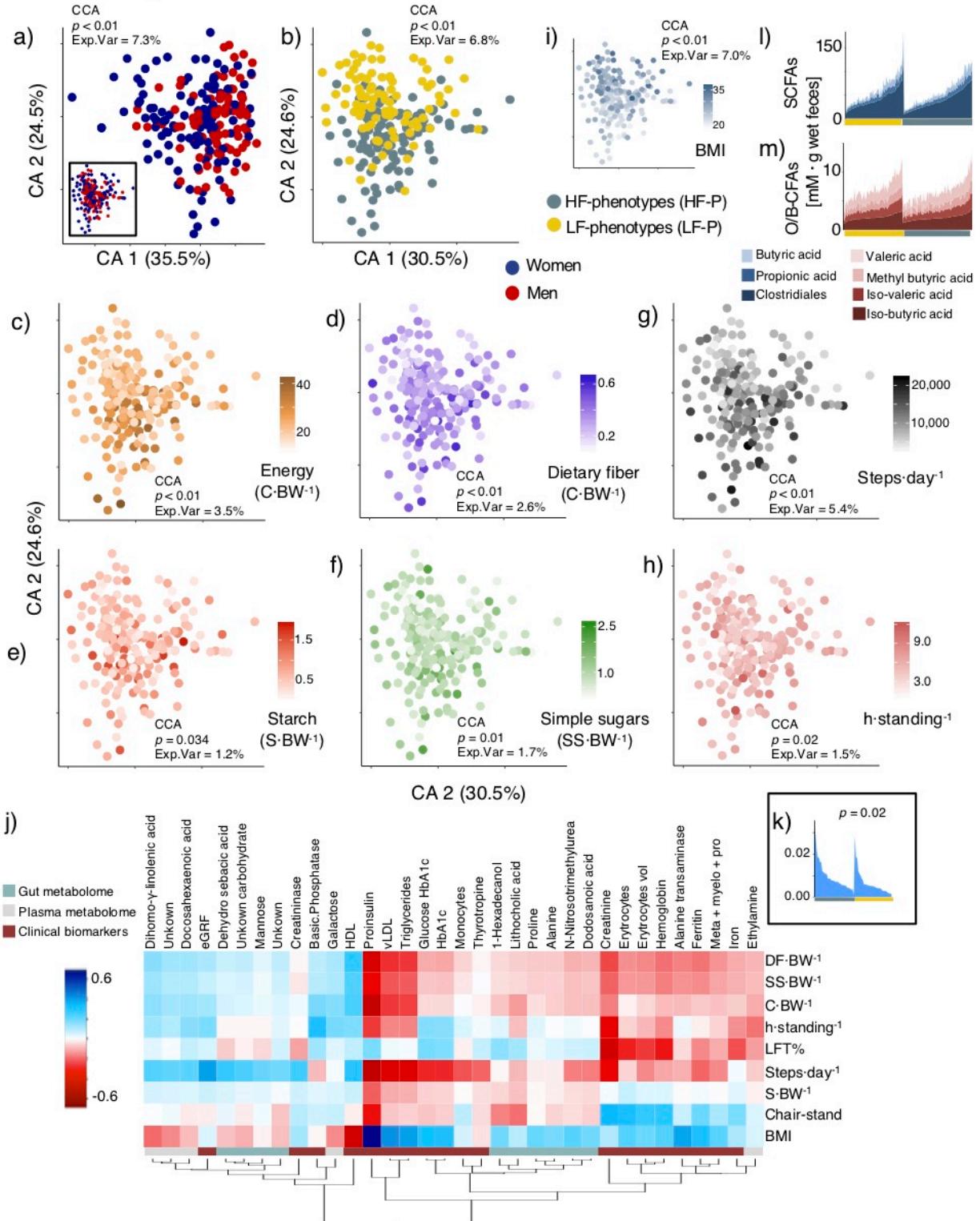
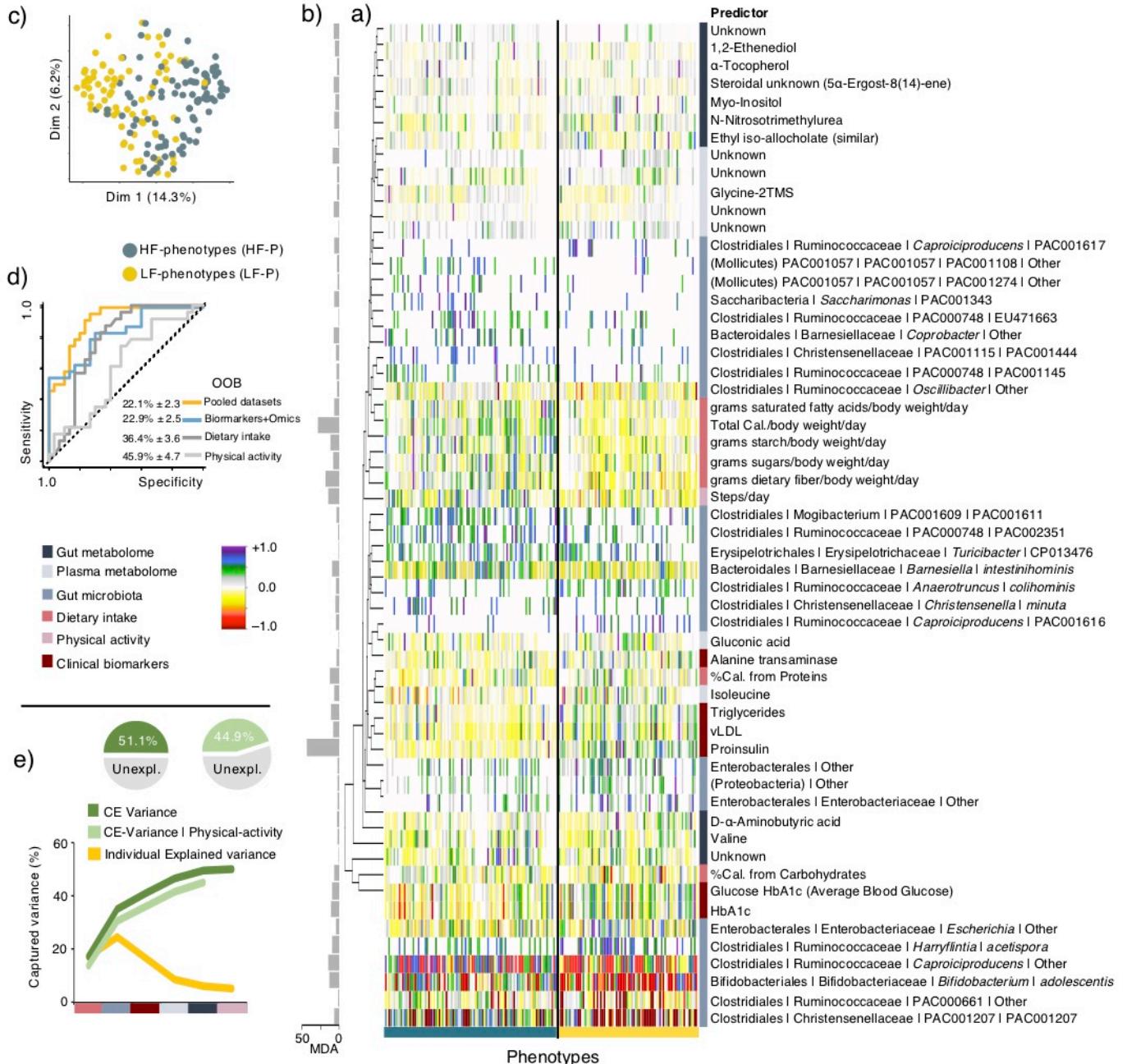


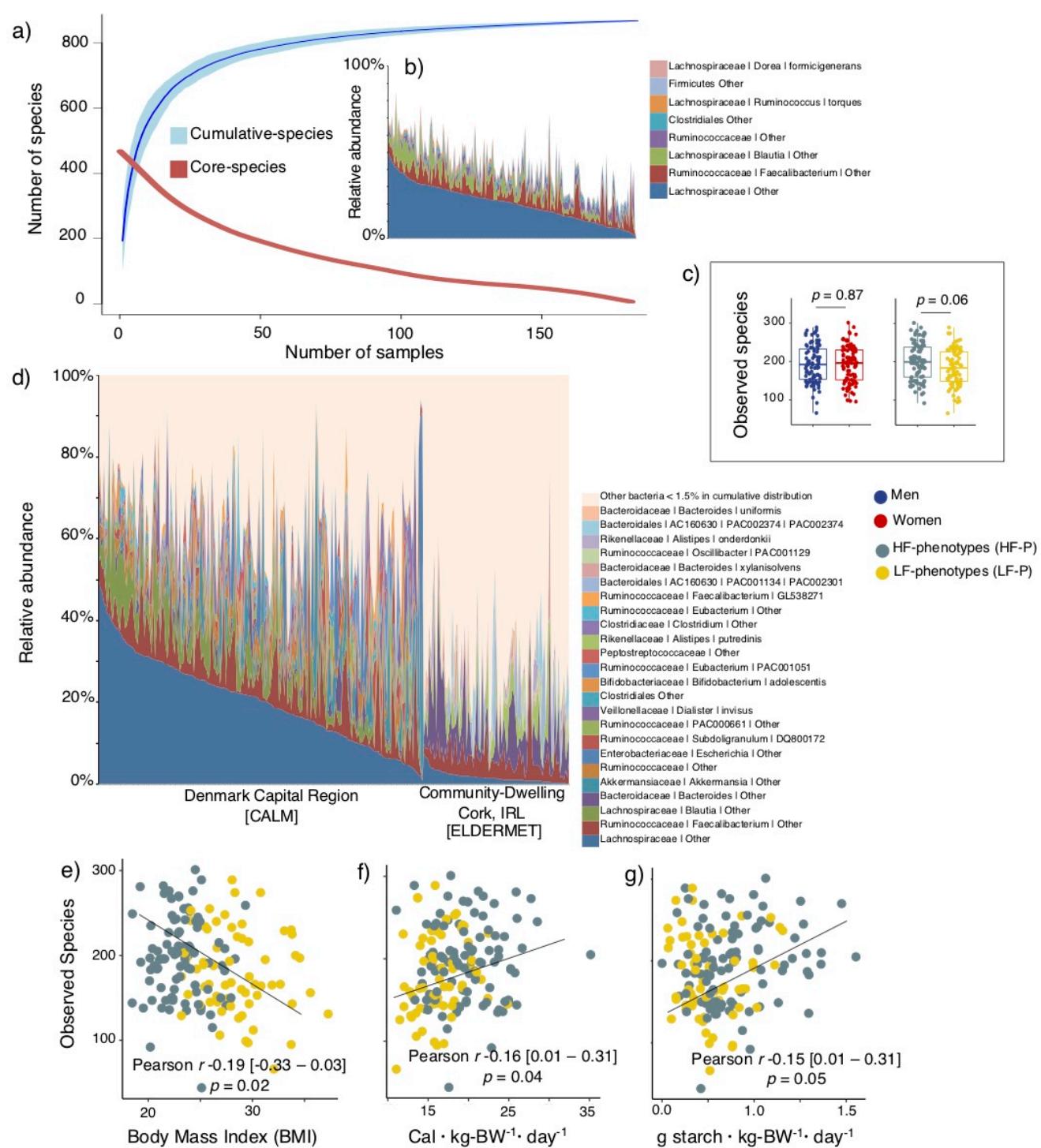
Figure 5





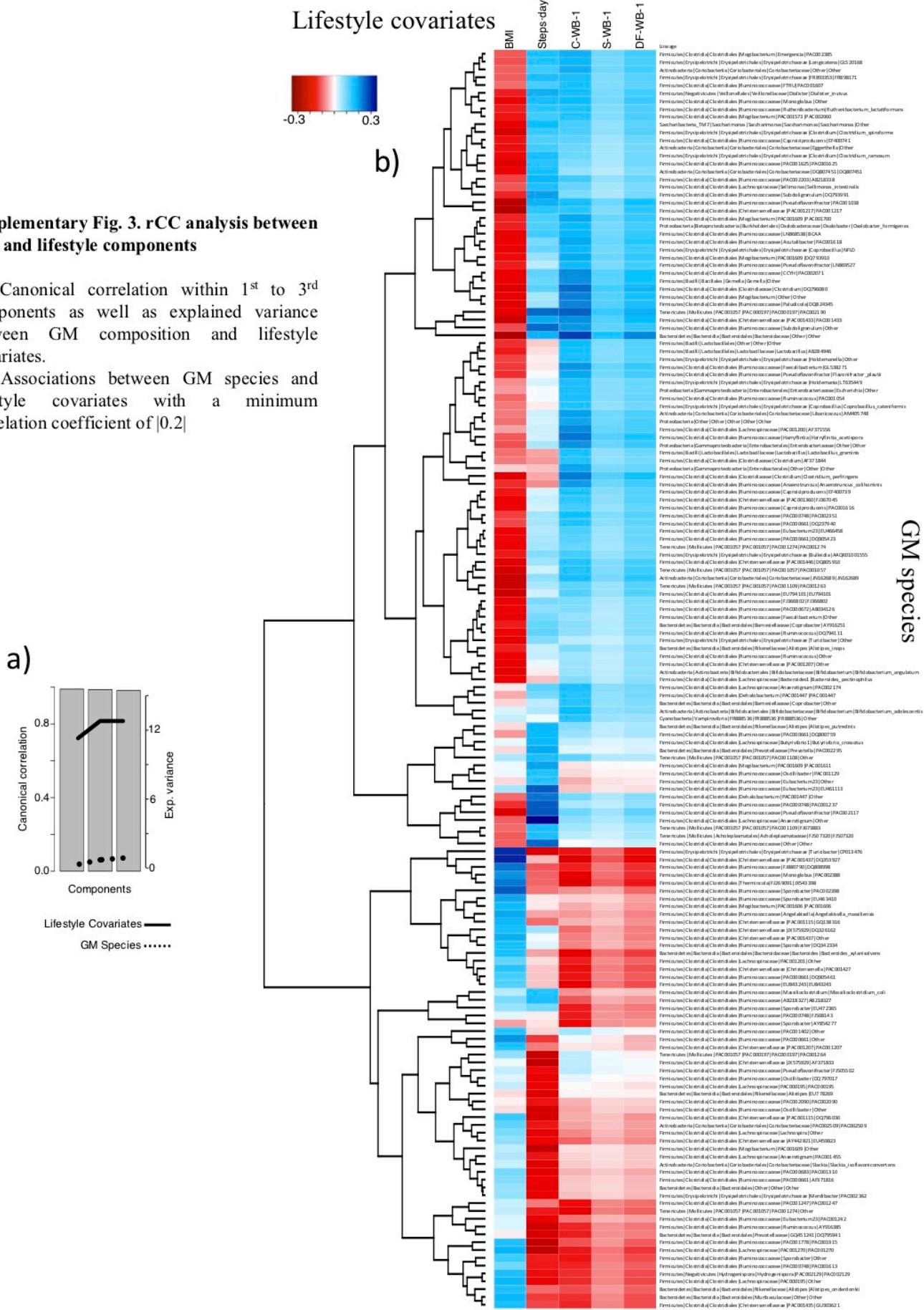
Supplementary Fig. 1. Subjects characterization and dietary intake

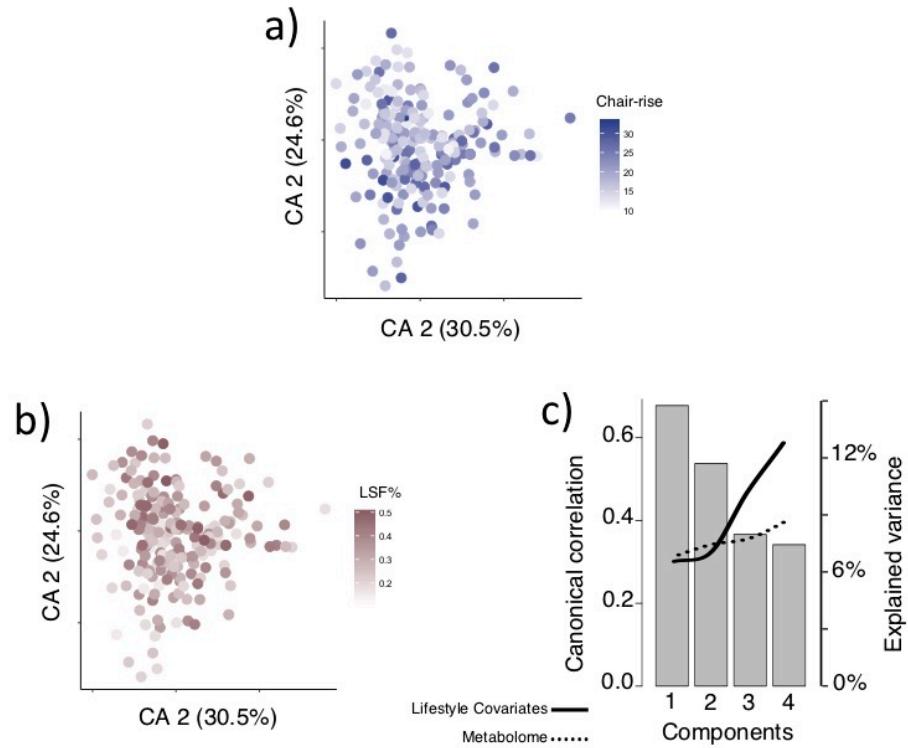
- Ring chart displays the proportion of variables used for every category at which individuals were characterized
- Distribution of daily macronutrient intake (g day^{-1}) normalized by the total energy intake (Cal)
- Correlation between energy intake ($\text{Cal} \cdot \text{kg-BW}^{-1} \cdot \text{day}^{-1}$) vs BMI
- Correlation between starch intake ($\text{g} \cdot \text{kg-BW}^{-1} \cdot \text{day}^{-1}$) vs BMI
- Correlation between simple sugars intake ($\text{g} \cdot \text{kg-BW}^{-1} \cdot \text{day}^{-1}$) vs BMI
- Correlation between energy intake ($\text{Cal} \cdot \text{kg-BW}^{-1} \cdot \text{day}^{-1}$) vs Chair-stand test
- Degree of agreement for food-choices questionnaires: healthy food in an important element of everyday life (HFI). This was evaluated on a scale of 1 – 5: 1: is not important, 5: is very important,



Supplementary Fig. 2. GM overview, cumulative- and core-species

- Cumulative- and core species comprised in the CALM study with increasing number of subjects.
- Relative abundance of core-species (phylotypes summarized to species level).
- Alpha diversity (of summarized zOTUs at species level) between sexes ($p = 0.42$) and phenotypes ($p = 0.04$) determined by Monte Carlo permutation (100) test.
- Distribution of species across the subjects of the CALM intervention (16S rRNA v3 region) and the community-dwellers of the ELDERMET study (16S rRNA v4 region, 454 pyro-sequencing). The publically available sequencing data from the ELDERMET study were retrieved and analyzed using the parameters described in methods.
- Correlation between observed species vs BMI
- Correlation between observed species vs Energy intake (Cal · kg-BW⁻¹ · day⁻¹)
- Correlation between observed species vs Simple sugars intake (g · kg-BW⁻¹ · day⁻¹)





Supplementary Fig. 4. Metabolome correspondence and correlation

- (a) Correspondence Analysis of metabolome in relation to chair-stand test and (b) LSF%
(c) Canonical correlation within 1st and 4th components as well as explained variance between metabolome profiling and lifestyle covariates.

1 **Fecal DNA extraction, 16S rRNA-gene amplicon sequencing**

2 Fecal samples were thawed at 4°C, re-suspended in ultrapure water (1:2 feces/water)
3 and homogenized in filter bags for 1 min at high speed (Lab Seward, BA7021). 1.5 ml of the
4 fecal slurry was centrifuged at 13,000×g for 10 min at room temperature and ~200 mg of the
5 fecal pellet was used for DNA extraction using the PowerSoil® DNA Isolation Kit (MOBIO
6 Laboratories, Carlsbad, CA, USA), basically following the instructions of the manufacturer, but
7 with minor modifications to increase lysis of bacterial cells: prior DNA extraction, samples
8 were placed into the PowerBead tubes and heat treated at 65°C for 10 min and then at 95°C for
9 10 min. Subsequently, solution C1 was added and bead-beating performed in FastPrep (MP
10 Biomedicals, Santa Ana, CA, USA) using 3 cycles of 15 s each, at a speed of 6.5 m s⁻¹. The
11 remaining DNA extraction procedure followed the manufacturer's instructions. Gut prokaryotic
12 composition was determined by NexSeq 500 based 16S rRNA gene-amplicon sequencing of the
13 V3 region amplified using primers designed with adapters for the Nextera Index Kit® (Illumina,
14 CA, USA): NXt_338_F: 5'- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG
15 ACW CCT ACG GGW GGC AGC AG -3' and NXt_518_R: 5'- GTC TCG TGG GCT CGG
16 AGA TGT GTA TAA GAG ACA GAT TAC CGC GGC TGC TGG -3'. Amplification profile
17 (1st PCR), barcoding (2nd PCR), amplicon library purification and sequencing were performed as
18 previously described (Pyndt Jørgensen et al. 2014).

19 **Analysis of high-throughput amplicon sequencing**

20 The raw dataset containing pair-ended reads with corresponding quality scores were
21 merged and trimmed using the following settings, -fastq_minovlen 100, -fastq_maxee 2.0, -
22 fastq_truncal 4, -fastq_minlen 130. Finding unique reads and deconvoluting from chimeric reads
23 and constructing *de-novo* zero-radius Operational Taxonomic Units (zOTU) was conducted using
24 the UNOISE pipeline (Edgar 2018) coupled to the EZtaxon 16S rRNA gene collection as a
25 reference database (Kim et al. 2012). Downstream analyses were based on a contingency table

26 rarefied to 17,000 sequences per sample and then normalized with cumulative sum scaling (CSS
27 (Paulson et al. 2013)).

28 **Metabolomics**

29 **Untargeted metabolomics of fecal slurries**

30 1 ml fecal homogenate (as described above) was mixed with 1 ml of Sterile PBS (5.7 mM
31 Na₂HPO₄, 24.3 mM NaH₂PO₄, 450 mM NaCl, pH 7.4), frozen in liquid nitrogen and freeze-
32 dried overnight. Twenty mg of each freeze-dried sample were re-suspended in 1 ml of 99.98%
33 methanol (containing 10 ppm palmitic-acid methyl ester and 10 ppm sorbitol as an internal
34 standards), vortexed and centrifuged for 30 min at 12,000×g at 4°C. Fifty µl of the supernatant
35 were then dried using a ScanVac (Labogene, Lyngé, Denmark) at 1,000 rpm for 3 h at 40°C.
36 Immediately after drying, samples were sealed with air tight magnetic lids into 2.0 ml GC-MS
37 vials and derivatized in two steps using a Dual-Rail MultiPurpose Sampler (MPS) (Gerstel,
38 Mülheim an der Ruhr, Germany), (i) addition of 10 µl of MEOX reagent (20 mg ml⁻¹
39 Methoxiamine hydrochloride in dry pyridine) followed by agitation at 45°C for 90 min by
40 mixing at 750 rpm, (ii) addition of 40 µl of TMS reagent, trimethylsilyl cyanide (TMSCN)
41 (Khakimov et al. 2013) followed by agitation at 45°C for 45 min by mixing at 750 rpm. All
42 steps involving sample derivatization and injection were automated using MPS, which was
43 equipped with a sample agitation unit. Immediately after derivatization, 1 µl of the derivatized
44 sample was injected into a cooled injection system (CIS4) (Gerstel, Mülheim an der Ruhr,
45 Germany) port in splitless mode. The septum purge flow and purge flow to split vent at 2.5 min
46 after injection were set to 25 and 15 ml min⁻¹, respectively. Initial temperature of the CIS4 port
47 was 45°C, and heated at 12°C s⁻¹ to 320°C (after 30 s of equilibrium time), where it was kept for
48 10 min. After heating, the CIS4 port was gradually cooled to 250°C at 5°C s⁻¹, and this
49 temperature was kept constant during the run. The GC-TOF-MS setup was made combining an
50 Agilent 7890B gas chromatograph (GC) (Agilent Technologies, California, USA) with a time-
51 of-flight mass spectrometer, HT Pegasus TOF-MS, (LECO Corporation, Saint Joseph, USA).

52 GC separation was performed on a Zebron ZB 5% Phenyl 95% Dimethylpolysiloxane column
53 (30 m with I.D. 250 μm and film thickness 0.25 μm) with a 5 m inactive guard column
54 (Phenomenex, Torrance, USA). A hydrogen generator, Precision Hydrogen Trace 500 (Peak
55 Scientific Instruments Ltd, Inchinnan, UK) was used to supply a carrier gas at a constant
56 column flow rate of 1.0 ml min^{-1} . The initial temperature of the GC oven was set to 40°C and
57 held for 2 min followed by heating at 10°C min^{-1} to 320°C and kept for an additional 6 min,
58 making the total run time 36 min. Mass spectra was recorded in the range of 45–600 m/z with a
59 scanning frequency of 10 scans sec^{-1} , and the MS detector and ion source was switched off
60 during the first 6.3 min of solvent delay time. The transfer line and ion source temperature were
61 set to 280°C and 250°C, respectively. The mass spectrometer was tuned according to
62 manufacturer's recommendation using perfluorotributylamine (PFTBA). MPS and GC-TOF-
63 MS were controlled using vendor software Maestro (Gerstel, Mülheim an der Ruhr, Germany)
64 and ChromaTOF (LECO Corporation, Saint Joseph, USA), respectively. Samples were
65 randomized prior to derivatization and GC–MS analysis. In order to monitor instrument
66 performance, a blank sample containing only derivatization reagent, a control sample (a pooled
67 sample), and an alkane mixture standard sample (all even C10-C40 alkanes at 50 mg L^{-1} in
68 hexane) were injected after every 10 real samples.
69 The raw GC-TOF-MS data was processed using Statistical Compare toolbox of the ChromaTOF
70 software (Version 4.50.8.0) with following settings; the raw data was used without smoothing
71 prior to peak deconvolution, baseline offset was set to 0.8, expected averaged peak width was
72 set to 1.5 sec, signal-to-noise was set to ≥ 10 , peak areas were calculate using deconvoluted mass
73 spectra (DT), common m/z ions of derivatization products were determined as 73, 75, and 147,
74 deconvoluted mass spectra were also used for peak identification using LECO-Fiehn and
75 NIST11 libraries. The library search was set to return top 10 hits with EI-MS match of $>75\%$
76 using normal-forward search and with a mass threshold of 20. Deconvoluted peaks were aligned
77 across all samples using following settings; retention time shift allowance of <3 sec, EI-MS
78 match of $>95\%$, mass threshold of >25 , and present in $>90\%$ of all pooled control samples.

79 **Targeted analysis of SCFA and O/B-CFA in fecal slurries**

80 Analysis of SCFA and O/B-CFA was performed on 0.5 ml of fecal homogenate mixed with 1
81 ml of 0.3M oxalic acid (containing 2 mM of 2 ethylbutyrate (Sigma-Aldrich) as the internal
82 standard). Samples were vortexed for 1 min, centrifuged at 20°C for 20 min at 12,000×g,
83 followed by filtration using a 0.45 µm centrifugal filter (Millipore UFC30HV00) and the
84 obtained aliquot was used for GC-MS analysis. The GC-MS consisted of an Agilent 7890A GC
85 and an Agilent 5973 series MSD. GC separation was performed on a Phenomenex Zebron ZB-
86 WAXplus column (30 m × 250 µm × 0.25 µm). A sample volume of 1 µl was injected into a
87 split/splitless inlet at 285°C using split mode at 2:1 split ratio. Septum purge flow and split flow
88 were set to 13 ml min⁻¹ and 2 ml min⁻¹, respectively. Hydrogen was used as carrier gas, at a
89 constant flow rate of 1.0 ml min⁻¹. The GC oven program was as follows: initial temperature
90 100°C, equilibration time 1.0 min, heat up to 120°C at the rate of 10°C min⁻¹, hold for 5 min,
91 then heat at the rate of 40°C min⁻¹ until 230°C and hold for 2 min. Mass spectra were recorded
92 in Selected Ion Monitoring (SIM) mode and m/z ions were detected at the dwell time of 50
93 msec: 41, 43, 45, 57, 60, 73, 74, 84. The detector was switched off during the 1 min of solvent
94 delay time. The transfer line, ion source and quadrupole temperatures were set to 230, 230 and
95 150°C, respectively. The mass spectrometer was tuned according to manufacturer's
96 recommendation using perfluorotributylamine (PFTBA). Dilution series of SCFA standards of
97 acetic, propionic, butyric, isobutyric, 2-methyl isobutyric, valeric and isovaleric acid (Sigma-
98 Aldrich) were prepared in concentrations of 1.000, 0.500, 0.250, 0.125, 0.060 and 0.030 mM for
99 the construction of standard curves for quantification. Initial inspection of the GC-MS data was
100 performed using MSD ChemStation software (Version E.02.02.1431, Agilent Technologies,
101 Inc., Germany). Mass spectra of SCFA were compared against the NIST11 library (NIST,
102 Maryland, USA). SCFA peak areas were integrated from SIM chromatograms using in-house
103 Matlab (Version. R2015a, The MathWorks, Inc., Massachusetts, USA) scripts. Two SCFA, 2-
104 methyl isobutyric acid and isovaleric acid, co-eluted at the retention time range of 4.22-4.45

105 min, thus peak areas were calculated by deconvoluting these peaks using *m/z* ions 74 for 2-
106 methyl isobutyric acid and 60 for isovaleric acid.

107 **Untargeted metabolomics of blood plasma**

108 A mixture of 100 μ l of plasma samples (thawed at room temperature) and 300 μ l of
109 MeOH:water (8:1, vol:vol and containing 10 ppm of sorbitol as internal standard) were vortexed
110 (highest speed) for 1 min. Thereafter, samples were incubated at 4°C for 15 min and centrifuged
111 at 16,000 \times g at 4°C for 10 min. Supernatants were passed through a 0.45 μ m centrifugal filter
112 (Millipore UFC30HV00) and 80 μ l aliquots were dried into 200 μ l glass inserts using a ScanVac
113 (Labogene, Lyngé, Denmark) at 40°C for 3 h at 1,000 rpm. Immediately after drying samples
114 were sealed with air tight magnetic lids into 2.0 ml GC-MS vials and derivatized in two steps
115 using MPS, (i) addition of 10 μ l of MEOX reagent (20 mg ml⁻¹ Methoxiamine hydrochloride in
116 dry pyridine) followed by agitation at 65°C for 60 min by mixing at 750 rpm, (ii) addition of 30
117 μ l of TMS reagent (TMSCN) followed by agitation at 65°C for 2 h by mixing at 750 rpm.
118 Immediately after derivatization, 1 μ l of the derivatized sample was injected into the GC-TOF-
119 MS as described for the fecal metabolomics. Sample injection, oven and mass spectrometer
120 parameters were similar to those for the fecal metabolomics with few modifications. The initial
121 temperature of the GC oven was set to 40°C and held for 2 min followed by heating at 12 °C
122 min⁻¹ to 260°C, and with a rate of 30°C min⁻¹ to 320°C and kept for an additional 5 min, making
123 the total run time 27.33 min. Mass spectra was recorded in the range of 45–500 m/z with a
124 scanning frequency of 8 scans sec⁻¹, and the MS detector and ion source was switched off during
125 the first 8.3 min of solvent delay time. The transfer line and ion source temperature were set to
126 290°C and 250°C, respectively. In order to monitor instrument performance, a blank sample
127 containing only derivatization reagent, a control sample (a pooled sample), and an alkane
128 mixture standard sample (all even C10-C40 alkanes at 50 mg L⁻¹ in hexane) were injected after
129 every 10 real samples. The raw GC-TOF-MS data was processed as described above for
130 untargeted fecal metabolomics.

131 **References**

- 132 Edgar, R.C. (2018) Updating the 97% identity threshold for 16S ribosomal RNA OTUs
133 A. *Bioinformatics* 34, 2371–2375. <https://doi.org/10.1093/bioinformatics/bty113>
- 134
- 135 Khakimov, B., Motawia ,M.S., Bak, S. & Engelsen, S.B. (2013) The use of
136 trimethylsilyl cyanide derivatization for robust and broad-spectrum high-
137 throughput gas chromatography-mass spectrometry based metabolomics.
138 *Analytical and Bioanalytical Chemistry*, 405, 9193–9205.
139 <https://doi.org/10.1007/s00216-013-7341-z>
- 140
- 141 Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., ... Chun, J. (2012)
142 Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with
143 phylotypes that represent uncultured species. *International Journal of Systematic
and Evolutionary Microbiology*, 62, 716–721. <https://doi.org/10.1099/ijss.0.038075-0>
- 146
- 147 Paulson, J.N., Stine, O.C., Bravo, H.C. & Pop, M. (2013) Differential abundance
148 analysis for microbial marker-gene surveys. *Nature Methods* 10, 1200–1202.
149 <https://doi.org/10.1038/nmeth.2658>
- 150
- 151 Pyndt Jørgensen, B., Hansen, J.T., Krych, L., Larsen, C., Klein, A.B., Nielsen, D.S., J...
152 Sørensen, D.B. (2014) A Possible Link between Food and Mood: Dietary Impact
153 on Gut Microbiota and Behavior in BALB/c Mice. *PLoS One* 9, e103398.
154 <https://doi.org/10.1371/journal.pone.0103398>
- 155