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Abstract

When humans age, changes in body composition arise along with lifestyle-associated
disorders influencing fitness and physical decline. Here we provide a comprehensive view of
dietary intake, physical activity, gut microbiota (GM) and host metabolome in relation to
physical fitness of 207 community dwelling subjects aged +65 years. Stratification on
anthropometric/body-composition/physical-performance measurements (ABPm) variables
identified two phenotypes (high/low-fitness) clearly linked to dietary intake, physical activity,
GM and host metabolome patterns. Strikingly, despite a higher energy intake high-fitness
subjects were characterized by leaner bodies and lower fasting proinsulin-C-peptide/blood
glucose levels in a mechanism likely driven by higher dietary-fiber intake, physical activity
and increased abundance of Bifidobacteriales and Clostridiales species in GM and associated
metabolites (i.e. enterolactone). These factors explained 50.1% of the individual variation in
physical fitness. We propose that targeting dietary strategies for modulation of GM and host
metabolome interactions may allow establishing therapeutic approaches to delay and possibly

revert comorbidities of aging.
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1. INTRODUCTION

Throughout the course of aging, physical impairment and changes in body
composition may arise along with a number of lifestyle-associated disorders influencing
physical decline and ultimately frailty (Xue, 2011; Holm et al., 2014). Aging inevitably
occurs in all organisms with genetics, epigenetics and environmental exposures (e.g. diet,
physical activity) being modulators of the bodily deterioration caused by biological age (Khan
et al., 2017). A number of guidelines toward dietary and daily physical activity
recommendations are currently available, however, adherence remains a significant challenge
(Gopinath et al., 2016). Further, food perception and dietary habits can be strongly altered
during the course of life, particularly those traits associated with the loss of appetite (declined
senses of smell and taste), occurrence of immune-senescence and deterioration of the gastro-
intestinal system (Giezenaar et al., 2016).

During the last decade, the gut microbiota (GM) has been recognized as a signaling
hub that integrates dietary habits with genetic and immune signals throughout life (Thaiss et
al., 2016; Peters et al., 2019). Many inflammatory and metabolic disorders, such as obesity,
diabetes and inflammatory reactions, are linked with GM dysbiosis (Boulangé et al., 2016).
Among Irish older subjects frailty has been linked with changing GM signatures (Claesson et
al., 2012) and age-related insulin resistance has been found to be regulated by the metabolic
activity (e.g. production of short-chain fatty acids — SCFA) of a number of Clostridiales
species (e.g. Clostridium IV, Ruminococcus, Saccharofermentans) and Akkermansia
muciniphila (Bodogai et al., 2018; Kong et al., 2016; Biagi et al., 2010). Further, low
abundance of these bacteria leads to increased leakage of proinflammatory epitopes from the
gut to the blood stream (due to leaky gut syndrome) activating monocytes inflammation and
subsequently impair insulin signaling in rodents (Bodogai et al., 2018).

It is well-established, that frail older adults are characterized by changed dietary
habits and altered GM and metabolic signatures relative to non-frail peers (Claesson et al.,

2012; Lustgarten et al., 2014), but whether similar signatures can be identified among non-


https://doi.org/10.1101/793612
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/793612; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139

available under aCC-BY-ND 4.0 International license.

Castro-Mejia et al.,

frail older adults of different physical capacity has, to the best of our knowledge, not been
investigated previously. A few studies have focused on frail individuals showing that a
reduced consumption of dietary fiber compromises the GM associated production of SCFA
required for maintenance of colonic epithelial cells and regulation of immune and
inflammatory responses (Kong et al., 2016; Biagi et al., 2010; Claesson et al., 2012).
Likewise, GM signatures were found to correspond with frailty-indexes in a large cohort of
older adults, whose GM composition were inherently driven by dietary patterns (Claesson et
al., 2012). Moreover, metabolites related to GM metabolism (e.g. p-cresol sulfate, indoxyl
sulfate), peroxisome proliferator-activated receptors-alpha activation, and insulin resistance
likely influence physical function in physically impaired older adults (Lustgarten et al., 2014).
Understanding how dietary intake and physical activity in non-frail older adults alter
the GM—metabolome axis, and ultimately the physical fitness and the risk of functional
decline, is of great clinical interest for the affected subjects as well as for the society.
Furthermore, identifying key components of such multifactorial processes may open
opportunities to therapeutically address and possibly treat and prevent the comorbidities of
aging (Khan et al., 2017). Based on this framework, we characterized dietary intake, daily
physical activity, GM and host metabolome in order to be able to explain physical fitness of
non-frail older subjects. To this end, we included 207 individuals (65+ years old, self-
supportive and apparently healthy) recruited through the Counteracting Age-related Loss of

skeletal Muscle mass (CALM) study (http://calm.ku.dk) (Bechsheft et al., 2016). Our findings

demonstrate that physical fitness and function corresponded to signatures of fasting proinsulin
and average blood glucose, and characterized by clear differences in energy and dietary fiber
intake, daily physical activity as well as differential abundance of GM members and a number

of fecal and plasma metabolites.
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140 2. RESULTS

141 2.1 Participants inclusion

142 Two hundred seven individuals were included in this cross-sectional baseline study
143 (Bechsheft et al., 2016). The recruited subjects are population-level representatives of

144 community dwelling, self-supportive and apparently healthy older adults living in the Danish
145  Capital Region with body mass index (BMI) ranging between 18.5 and 37.3 kg/m?* (Table 1).
146  Detailed inclusion criteria have been described previously (Bechsheft et al., 2016). From each
147  individual, data were obtained on detailed anthropometric, body-composition and physical-
148  performance measurements (ABPm), average daily physical activity, dietary intake and

149 preferences, GM composition, clinical biomarkers, as well as fecal- and plasma-metabolome

150  adding up to 1,232 analyzed features per subject (Figure Sla).

151 2.2 Stratification of subjects according to physical fitness and activity monitoring

152 Study participants were stratified based on non-collinear ABPm variables (Table S1;
153 Variance Inflation Factor, VIF < 2, r-coefficient < 0.5) into high- and low-physical fitness
154  phenotypes (level of physical capacity). The selected variables included chair-rise test [30s-
155  test]), BMI, and Dual-energy X-ray Absorptiometry (DXA) scans for body composition

156  (given by legs-soft-tissue fat% (LSF%)), determined as described previously in Bechsheft et
157  al., (2016).

158 For stratification, hierarchical clustering analysis of principal component analysis
159  (HCP-PCA(Husson et al., 2008)) within sexes was used to determine two fitness phenotypes
160  [high (HF) (n=116) and low (LF) (n=91) (Figure la, 1b, Table 2)]. All participants out-

161  performed the suggested ranges for frailty according to the chair-rise test (Jones et al., 1999;
162  Guralnik et al., 1994), while LF phenotypes on average had BMI ranges categorized as

163  overweight (WHO, 2000), as well as a greater deposition of fat mass in their legs (Figure 1b,
164  Table 2). Moreover, 4-day activity monitoring (Dowd et al., 2012) showed significant

165  differences (p < 0.001) between the two phenotypes. Longer standing periods (Figure 1c; HF
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166  mean: 4.6 + 1.3, LF mean: 4.2 £ 1.5) and a greater number of steps per day (Figure 1d; HF
167  mean: 11,129 + 3,861, LF mean: 8,814 + 3,595) were recorded among HF phenotypes. The
168  habitual daily activity for LF phenotypes was found to be within recommended ranges (taking
169  approximately 7,000-10,000 steps/day (Tudor-Locke et al., 2011)), but the LF subjects were

170  markedly outperformed by the HF subjects (Figure 1d).

171 2.3 Dietary food intake in relation to fitness-state

172 Using 3-day weighted food records (3d-WFR)(Schacht et al., 2019), the daily average
173 energy and macronutrients intake for each person were quantified to obtain an overall view on
174  the dietary intake. On average, the energy intake per person was 24.5 + 7.4 (range of 11.5 —
175  55.2) Cal-kg body weight'-day™. Protein contributed less of the energy intake (18.9% + 4.1,
176  range 9-36%) compared to the average energy intake of fat (36.7% =+ 7.3, 22-64%) and

177  carbohydrates (44.4% + 7.7, 17-66%) expressed as percentage of total energy intake.

178 Total energy consumption per kg body weight (Figure 2a) differed significantly (p <
179  0.001) between phenotypes, with an average daily intake of 29.3 Cal-kg body weight'-day
180  in HF phenotypes vs. 23.1 Cal-kg body weight'-day™ in LF phenotypes. The higher energy
181  intake among HF subjects was reflected in a larger fraction of energy (expressed as % energy)
182  from carbohydrates (p = 0.01) as compared to that of dietary protein (Figure 2b and Figure
183  S1b). The same pattern was also observed across daily average intake (g-kg body weight

184  !'-day") of dietary fiber (p < 0.0001), starch (p < 0.0001), simple sugars (p = 0.0002) and

185  saturated fatty acids (p = 0.0001) (Figure 2c). Moreover, significant (p < 0.0001) negative
186  correlations between BMI with dietary fiber consumption (» = -0.52) (Figure 2d) energy

187  intake (r = -0.52), starch (r = -0.35) and simple sugars (» = -0.35), as well as positive

188  associations between chair-stand test and energy intake (» = 0.25) were found (Figure S1c-f).
189  Questionnaires on food-choices showed that HF subjects to a higher degree than LF subjects

190  consider healthy food as an important element of their daily life (Figure S1g).
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A considerable proportion of subjects from both phenotypes did not comply with the
recommended minimum proportion of energy obtained from carbohydrates (Figure 2¢) and
dietary fiber intake (Figure 2f) as established by the Nordic Nutrition Recommendations
(Nordic Council of Ministers, 2012). Yet, the frequency of compliers-to-non-compliers was
significantly higher (carbohydrates: p = 0.006, dietary fiber: p = 0.03) in HF individuals.
Furthermore, using the Goldberg cut-off (Black, 2000), 46 under-reporters (UR) and 2 over-
reporters (OR) of energy intake were identified. Nonetheless, if excluded, individuals with
higher physical capability (HF phenotype) still had a higher energy (p < 0.001) and energy
from carbohydrates (p < 0.06) intake as compared to LF subjects (Table S2). Since UR and
OR subjects did not change the overall findings they were not excluded in downstream

analyses.

2.4 Characterization of GM and correspondence with fitness and diet

Sequencing of DNA extracted from stool samples yielded 11.3 million reads derived
from the 16S rRNA-gene V3-region with an average of 116,476 (48,872 SD) sequences per
subject. The analysis of amplicon-sequencing data generated 10,084 zOTUs (sequence
variants) summarized over 875 cumulative species (species richness) and 8 core-species
(defined as being present in all recruited subjects) among the study subjects (Figure S2a). The
relative abundance of core species varied between 18 — 84% (Supplementary Figure 2b).
Between sexes no significant differences in beta-diversity (Figure 3a) and alpha-diversity
(Figure S2c¢) were observed. Furthermore, regardless of sex, the study participants were
characterized by higher relative abundance of e.g. Lachnospiraceae spp., Akkermansia spp.,
Blautia spp., along with reduced proportions of Bacteroides spp. (Figure S2d) as compared to
the community-dwelling group of older adults recruited for the Irish ELDERMET study
(Claesson et al., 2012). This may reflect differences associated with dietary habits, age [mean

age: baseline-CALM 70 + 4y, ELDERMET 78 + 8y], and geographical location.
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A substantial higher alpha-diversity (p = 0.06, Observed Species) were observed
(Figure S2c) among HF phenotypes compared to LF phenotypes, as well as weak but
significant (p < 0.05) correlations of observed species with BMI, energy and starch intake
(Figure S2e-g). Correspondence analysis and analysis of similarities (ANOSIM) on Bray-
Curtis (weighted beta-diversity) distance metric calculated from species-level abundance
showed significant correspondence (p = 0.04) and dissimilarities (p = 0.01) in GM
composition in connection with the two physical phenotypes (Figure 3b-c).

Also, GM composition was clearly associated with (p < 0.05) gradients of energy
consumption (Figure 3d), starch (Figure 3e), dietary fiber (Figure 3f) steps per day (Figure
3g) and BMI (Figure 3h) reflecting fitness phenotypes. Using regularized canonical
correlation (rCC) analysis associations between those lifestyle covariates (e.g. dietary factors
and physical activity) with 161 microbial species were disclosed (Figure 31, Figure S3)
explaining <5% and 13% of the total variance of the microbiota and lifestyle covariates,
respectively (Figure S3a). The strongest associations (those > |0.2|r, number of species in
brackets) were observed for Bacteroidales (12), Bifidobacteriales (2), Clostridiales (106),
Coriobacteria (7), Enterobacterales (3), Erysipelotrichales (12), Lactobacillales (3),
PAC001057 (Mollicutes members) (8), Proteobacteria (1) and other orders (7) (Figure S3b).
Increased intake of energy, starch, dietary fiber, as well as steps per day correlated positively
with the relative abundance of up to 103 of those species (e.g. higher Bifidobacteriales
abundance) and correlated negatively with BMI (e.g. Proteobacteria being signatures for high

BMI) (Figure 3i, Figure S3b).

2.5 Host metabolic state in relation to fitness and dietary intake

Untargeted Gas Chromatography-Mass Spectrometry (GC-MS) metabolomics of
human fecal extracts and blood plasma as well as targeted SCFA analysis using GC-MS
generated a total of 304 analytes (181 analytes in the fecal and 123 analytes in the plasma

metabolome). Nearly half of the metabolites variables were identified, either at level 1 or
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level 2 according to the Metabolomics Standards Initiatives (Sumner et al., 2007). These
metabolites were monosaccharides, amino acids, organic acids, sterols and long-, and short
chain fatty acids. In addition, 31 biomarkers for immunological function, renal and liver
function, as well as glucose and lipid metabolism were acquired through blood clinical
profiling.

Correspondence analysis on the combined metabolome blocks showed weak
discrimination of sexes (Figure 4a) and pronounced discrimination between fitness phenotype
(Figure 4b) based on their metabolic profile. Variations in metabolome composition
corresponded clearly (p < 0.05) with energy intake and consumption of dietary fiber, starch,
simple sugars (Figure 4c-f), as well as steps per day and hours-standing-per-day (Figure 4g-h,
including stratifying variables: BMI (Figure 4i), chair-stand and LFT%, Figure S4a-b).
Likewise, rCC analysis showed significant associations between lifestyle covariates and 34
clinical/metabolic variables (Figure 4j), explaining 9% and 15% of the total variance of the
metabolome and lifestyle covariates, respectively (Figure S4c). The strongest associations (>
|0.2|r) were observed for 19 clinical biomarkers, 10 gut metabolites and 5 plasma metabolites
(Figure 4j). Increased intake of energy, starch, dietary fiber (or dietary covariates), as well as
steps per day correlated positively with mono- and di-saccharides and negatively with amino
acids (Pro, Ala, Trp), glucose metabolism parameters (proinsulin, glucose HbAlc, HbAlc),
lipid metabolism (triglycerides, vLDL) and renal function (creatinine, inversely to estimate
glomerular filtration rate (¢GFR)) measurements, primary bile acids (lithocholic acid) and N-
Nitrosotrimethylurea (Figure 4j). Moreover, a higher proportion of enterolactone in the fecal
metabolome of HF subjects were also found (Figure 4k). Remarkably, the concentrations of
SCFA as well as other/branched-chain fatty acids (O/B-CFA) in the fecal samples did not

differ according to phenotypes (p > 0.13) or dietary intake factors (Figure 41-m).

10
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267 2.6 Dietary intake, gut microbiota and metabolic signatures explain fitness levels

268  independently from physical activity

269 Characterization of subjects after variable selection based on Random Forest and
270  backward elimination procedure selected 55 variables (Figure 5a) with different levels of
271 importance (Figure 5b) that discriminate the two phenotypes with a high level of accuracy
272  (Figure 5c-d). The features included 25 bacterial species belonging to 7 bacterial orders

273 (Clostridiales, Saccharibacteria, Bacteroidales, PAC001057, Enterobacterales,

274  Erysipelotrichales and Bifidobacteriales), seven dietary components (energy, saturated fatty
275  acids, simple sugars, starch and dietary fiber intake, and energy derived from proteins and
276  carbohydrates); five clinical biomarkers (alanine transaminase, triglycerides, vLDL, fasting
277  proinsulin, average blood glucose/HbA Ic¢). In addition, seven plasma metabolites (amino
278  acids and organic acids), ten fecal metabolites (sugar alcohols, amino acids, primary bile
279  acids and urea) and physical activity (steps per day) were also tabbed (Figure 5a).

280 Discrimination of the two phenotypes based on all the selected features (combined
281  datasets) had the highest level of accuracy (22% out-of-bag error rate, OOB), followed GM
282  and clinical/metabolome features (23% OOB), dietary intake (36% OOB) and physical

283  activity parameters (46% OOB) (Figure 5d). Through redundancy analysis (RDA) the effect
284  of the selected variables (within blocks) on the stratifying variables it was found that GM had
285  the largest explanatory power (24.7%), followed by dietary intake (17.3%), clinical

286  biomarkers (16.8%), gut metabolome (8.8%), plasma metabolome (6.2%) and physical

287  activity (5.2%) (Figure 5¢). Notably, the cumulative explained variance conferred by the pool
288  of selected features reached 50.1%, and even after conditioning the effect of physical activity

289  over the stratifying variables, the cumulative explained variance reached up to 44.9% (Figure

290 5f).

11
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291 3. DISCUSSION

292 The number of older-adults over the age of 65 will increase by more than 50%

293 worldwide over the next three decades (NIH 2011), potentially with huge implications for the
294 health and economy of the implicated individuals and society as a whole. With this,

295  understanding the physical mechanisms and lifestyle conditions linked to fitness and

296  independence in older adults becomes a relevant field of research.

297 Despite the homogeneity of the recruited subjects (all non-frail and without serious
298  disease) noticeable differences in fitness level was observed and based on non-collinear

299  ABPm variables (chair-rise test, BMI and DXA-scan based body composition), two fitness
300  phenotypes (LF and HF) were identified. Neither of the fitness types were frail (Guralnik et
301 al., 1994) , nevertheless dietary, GM and host metabolome factors were found to clearly

302  discriminate between the two fitness types. HF subjects were characterized by a higher

303  consumption of foods of plant origin as also reflected by their higher levels of total

304  carbohydrates (i.e. starch, simple sugars) and dietary fiber, accompanied by a higher

305  adherence to the recommended intake of carbohydrates and dietary fiber intake given by the
306  Nordic Nutrition Recommendations (Nordic Council of Ministers 2012). These differences
307  were observed in spite of the methodological limitations of 3d-WFR to capturing long term
308  variability (Yang et al., 2010). Furthermore, whether awareness of dietary guidelines

309 influenced the selection of dietary choices in the study participants remains to be investigated,
310  but it is worth mentioning that HF subjects consider healthy food as an important component
311  in their life as also described by Schacht et al., (Schacht et al., 2019).

312 The GM community and host metabolome clearly discriminated between the HF and
313  LF phenotypes and was largely associated with the consumption of total energy, and plant
314  derived nutrients (such as starch and dietary fibers as well as enterolactone, all being higher in
315  HF subjects). A number of features (Figure 5a) selected from GM, host metabolome, dietary
316  intake and daily physical activity were able to strongly discriminate and explain variation

317  between phenotypes, thereby indicating their strong association with physical function. Daily

12
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physical activity showed the lowest power towards phenotypic differentiation (in spite of the
high validity of the method for activity monitoring (Dowd et al., 2012)) and explaining only
5% of the phenotypic variance. Albeit conditioning for physical activity, the remaining set of
selected features explained up to 45% of the total variance of the stratifying variables. In
particular dietary intake (17% of explained variance), GM composition (24%) and host
metabolome (25%) signatures are important drivers of phenotypic differentiation (Figure 5),
and also described in animal models (Fujisaka et al., 2018). Accordingly, HF subjects showed
a higher proportion of GM members commonly known for their protective roles, such as
Bifidobacterium adolescentis and Christensenella species (Goodrich et al., 2014), and whose
abundance corresponded negatively with glucose and lipid metabolism biomarkers
(proinsulin, HbAlc, vLDL, triglycerides). Contrarily, LF phenotypes had increased levels of
the same biomarkers and a higher relative abundance of pro-inflammatory microbial members
in the gut, as for example Enterobacterales (Fei & Zhao 2013; Hoarau et al., 2016; Khan et
al., 2014).

SCFAs derived from GM activity have been identified as signaling molecules
responsible for maintenance of the integrity of colonic epithelium, glucose homeostasis, lipid
metabolism and appetite regulation (Morrison et al., 2016). Claesson et al., (Claesson et al.,
2012) reported higher SCFA concentrations (acetate, butyrate and propionate) in the fecal
metabolome of older adults living as community-dwellers compared to frail individuals living
in residential care. Moreover, decreasing concentrations of these SCFAs were associated with
advanced levels of frailty given by diet and specific transitions in GM composition (Claesson
et al., 2012). However, in the present study no correlations between fecal SCFA and O/B-
CFA concentrations with neither macronutrient distribution or fitness phenotype were found.
This suggest that levels of physical function amidst healthy older adults may not be primarily
dependent upon changes in the production of these compounds. Instead, this could be due to
signals of glucose metabolism deterioration as reflected by significantly (p < 0.001) higher

proinsulin levels and higher average blood glucose (determined by HbAlc-levels) in the LF
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phenotypes (1/116 HF and 20/91 LF subjects had higher than normal ranges of proinsulin
(Chi-Squared p < 0.001), 10/116 HF and 30/91 LF had higher ranges than those
recommended for HbA1c (Gardner & Shoback 2011) (Chi-Squared p < 0.001), see Table S3).
High concentrations of proinsulin indicates high insulin secretion and hence diminished
peripheral insulin sensitivity resulting in a number of metabolic conditions, compromising
muscle strength and physical performance (Segerstrom et al., 2011). Proinsulin was the most
important feature of phenotype discrimination and corresponded inversely with the abundance
of Bifidobacterium adolescentis and several species of Christensenella, and
Ruminococcaceae (Figure 5a), strongly indicating that GM-proinsulin interactions could be
mediators of fitness phenotype. Bifidobacterium species (including B. adolescentis) have
previously been described as promoters of adiponectin and decreasing expression of
interleukin-6, both playing prominent roles in metabolic derangements associated with
glucose regulation and fatty acid oxidation (Su et al., 2015; Straub & Scherer 2019; Aoki et
al., 2017). Christensenella minuta (another Clostridiales member) is enriched in individuals
with low BMI and has been demonstrated to reduce weight gain and adiposity in mice
(Goodrich et al., 2014). Furthermore, while playing a protective role against inflammation,
some Clostridiales members act as promoters of regulatory T-cells by interacting with toll-
like receptors 2 (TLR2) on intestinal epithelial cells (Kashiwagi et al., 2015). Contrarily,
species of Enterobacterales have been consistently linked with insulin resistance and
inflammatory responses (Fei & Zhao 2013; Hoarau et al., 2016; Khan et al., 2014), and by
means of cell epitopes (i.e. LPS) they interact with TLRs triggering pathogen recognition,
low-grade inflammation (Franceschi & Campisi, 2014) and fat accumulation in adipose tissue
that ultimately influence muscle strength (Boulangé et al., 2016).

In summary, our findings suggest that dietary patterns underlie mechanisms of
physical phenotype differentiation among well-functioning community dwelling older adults,
particularly as a driver of GM and glucose metabolism interactions. Despite the limitations of

this study related to its inherent cross-sectional nature, the results provide strong evidence
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emphasizing the central role of diet towards the onset of physical deterioration and its
implications prior to clinical manifestations of frailty, e.g. muscle composition and
diminished strength (Xue, 2011). Many of the dietary, GM and metabolomic signatures seen
in frail older adults (Claesson et al., 2012; Bodogai et al., 2018; Kong et al., 2016; Lustgarten
et al., 2014) are already evident in the non-frail, community-dwelling older-adults of low-
fitness of this study, pointing at the importance of early intervention strategies, also in this
age group. Thus, in view of these findings, developing strategies to improve awareness and
adherence to dietary recommendations (complying with dietary reference intakes or even with
personalized nutrition (Zeevi et al., 2015)), targeting the regulation of GM and host

metabolome interactions, can open opportunities to delay the comorbidities of aging.

4. EXPERIMENTAL PROCEDURES

4.1 Study Participants

Procedures of the CALM project (Clinical Trials NCT02115698) were approved by
the Danish Regional Committees of the Capital Region (H-4-2013-070), performed according
to the Declaration of Helsinki II and the experimental designed followed as previously
described (Bechshgft et al., 2016). For the current study, two hundred and seven subjects (65+
years of age) were selected at baseline of the CALM intervention project following the
criteria described in Bechsheft et al.,(Bechsheft et al., 2016). Participants were not allowed to
take part in any organized sports or resistance training more than once a week, did not suffer
from defined metabolic-, tissue-, or gastro-intestinal disorders, nor were prescribed antibiotics

3 months prior sample collection and enrollment.

4.2 Samples and metadata collection
At baseline, participants completed a 3-day weighted food record where food and
beverage intake were registered for 3-consecutive days (Wednesday to Friday). Dietary

information was typed into the electronic dietary assessment tool, VITAKOST™ (MADLOG
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APS, Kolding, Denmark), which uses the Danish Food Composition Databank (version 7.01;
Seborg; Denmark) to estimate individual energy and macronutrient intake.

Fecal and blood plasma samples were collected and handled according to the
following procedures: (i) fecal samples were kept at 4°C for maximum 48 h after voidance,
and stored at -60°C until further use; (ii) overnight-fasted-state (OFS) plasma-samples were
collected and deposited in heparin, centrifuged at 3,000xg for 10 min at 4°C, and then stored
at -60°C.

For screening of blood-biomarkers, the following tests were performed: complete
blood count (CBC), proinsulin-C-peptide (P-CP), glycosylated hemoglobin (HbAlc),
coagulation factor, estimate glomerular filtration rate (eGFR), thyroid-stimulating hormone
(TSH), and iron-ferritin test determined as described in Bechshoft et al., (Bechshoft et al.,
2016) For anthropometric and functional capacities, height (cm) and body-weight (kg) in OFS
were measured. Average fast-pace gait speed was measured on an indoor 400 m horizontal
track. Number of chair-stands in 30s from a standard table chair was recorded. Relative legs-
soft-tissue fat% (LSF%) was determined as an estimate of legs-soft-tissue fat-free and fat-
mass based on a dual energy x-ray absorptiometry (DXA) scan (Lunar iDXA Forma with
enCORE Software Platform version 15, GE Medical Systems Ultrasound & Primary Care

Diagnostics, Madison, WI, USA) performed on participants in overnight fasted state.

4.3 Quantitative questionnaires on food habits

Quantitative questionnaires contained information on food habits, perceptions and
preferences, as well as information about life style changes and dietary habits over the life

course (Bechsheft et al., 2016).

4.4 GM and metabolomics

Procedures for profiling and process GM and metabolomics data are described in

Supplementary Methods.
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423 4.5 Statistical Analyses

424 Stratification of individuals was based on ABP measurements using the variables
425  described in Table S1. Collinear variables were initially removed, leaving chair-stand [30s-
426  test]), DXA scans (legs-soft-tissue fat% determined in both legs) and BMI as features with a
427  variance inflation factor (VIF) < 2 and r-coefficient < 0.5. Subjects were divided according to
428  sex, and a hierarchical clustering analysis of principal component analysis (Husson et al.,
429  2008) was performed on the selected variables (100 iterations).

430 For univariate data analyses, pairwise comparisons were carried out with unpaired
431  two-tailed Student’s z-test, Pearson’s coefficient was used for determining correlations and
432 Chi-Square test for evaluating groups distributions. For multivariate data analyses, the

433 influence of covariates (e.g. dietary components, BMI, etc.) on data blocks (GM and

434  metabolome) were assessed with (Constrained-) Correspondence Analysis with permutation
435  tests (1,000 permutations), as well as analysis of similarities (ANOSIM test, 999

436  permutations) on Bray-Curtis distances (implemented in the Vegan R-package (Oksanen et
437  al., 2015)).

438 Correlation of covariates with the same datasets were determined with regularized
439  canonical correlation (rCC) analysis using the mixOmics R-package (Gonzalez et al., 2012).
440  rCC was crossed-validated (leave-one-out approach) with grids (lambda 1 & 2) of 0.05 to 1.0
441  and a length of 20.

442 Feature selection for combined datasets was performed with Random Forest. Dataset
443  was randomly divided 200x (200 subsets) into training (70%) and test sets (30%), keeping
444 this proportion over the number of subjects within each fitness group for every split. For a
445  given training set, the party R-package (Hothorn et al., 2016) was run for feature selection
446  using unbiased-trees (cforest unbiased with 6,000 trees) and AUC-based variable

447  (varimpAUC with 100 permutations), and subsequently the selected variables were used to
448  predict (6,000 trees with 1,000 permutations) their corresponding test set using randomForest

449  R-package (Liaw & Wiener 2014). The features derived from the subset with a prediction rate
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450  within 1 SD above the mean-prediction (based on the 200 subsets) were selected and

451  subsequently, subjected to sequential rounds of feature selection (following the same tuning
452  of unbiased-trees and AUC-based variable) until prediction could no longer improved.

453  Variation partitioning of stratifying variables (BMI, CS and LSF%) based on selected features
454  derived from the different datasets (i.e. GM, diet, host-metabolome, physical activity) was

455  performed using redundancy analysis (RDA) (Oksanen et al., 2015).
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Data Availability

Sequence data is available at the European Nucleotide Archive, accession number ENA:
PRJEB33008 ([dataset] Castro-Mejia et al., 2019). The remaining data that support the
findings of this study are available on request from the corresponding authors. The data are

not publicly available due to privacy or ethical restrictions.
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SUPPORTING INFORMATION

Additional supporting information can be found in supplementary files.

e Figure S1. Data overview and dietary intake

e Figure S2. GM overview, cumulative- and core-species

e Figure S3. rCC analysis between GM and lifestyle components
e Figure S4. Metabolome correspondence and correlation

e Table S1. Subjects Stratification

e Table S2. Dietary evaluation

e Table S3. Proinsulin and HbAlc levels

e Supplementary Methods
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652
653 TABLES
654  Table 1. Description of the study participants
Number of Participants (n) 207
Sex
Men:Women 109:98
Age (y) Mean + SD 70.2+39
BMI (kg-m*) Mean = SD 25.7+3.8
BMI < 25 105
BMI > 25 <30 75
BMI > 30 27
HbAlc (mmol-mol™)
<39 mmol-mol™ (<5.7 ABG - mmol-1")? 167
39-46 mmol-mol” (5.7-6.4 ABG - mmol-1'") 40
655
656  *HbA,. values above 47 mmol-mol” (6.5 mmol-1" Average Blood Glucose - ABG) is a
657  criterion for diagnosis of T2D (Gardner & Shoback 2011).
658
659
660  Table 2. Within sex summary of ABP measurements used for stratification of phenotypes
661  (HF/P: high-fitness phenotypes, LF: low-fitness phenotypes).
Women
Functional-Parameter ~ HF/P LF/P p-value® Refer. range  Ref. age
30s Chair-stand test 20.6£5.0 15.7+3.1 <0.001  10-16 65-74y °
BMI 224+2.1 289+33 <0.001
LSF% 352+4.0 42.7+4.6 <0.001
Men
Functional-Parameter ~ HF/P LF/P p-value® Refer. range  Ref. age
Chair-rise test 229+44 183+3.9 <0.001  12-18° 65-74y"°
BMI 240+£22 28.3+3.1 <0.001
LSF% 203+£34 27.0+3.5 <0.001
662
663  * Comparison between phenotypes was performed by two-tailed Student’s #-test.

664

b ref: (Jones et al., 1999; Guralnik et al., 1994)
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665

666 FIGURE LEGENDS

667  Figure 1. Stratification of fitness phenotypes

668  (a) Stratification of subjects (n = 207) by hierarchical clustering analysis of principal
669  components analysis (HCA-PCA). Stratification data matrix: [obj x vars] =[207 x 3]. HCA-
670  PCA was performed within sexes and based on ABP measurements. HF/P: high-fitness (n =
671  116) and LF/P: low-fitness phenotypes (n = 91).

672  (b) ABP measurements distribution among phenotypes and sexes.

673  (c) 4-day activity monitoring displaying hours standing and steps on daily basis for both
674  phenotypes. 4-day activity data matrix: [obj x vars] = [196 x 2]

675

676

677

678

679

680

681

682
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685
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687

688

689
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Figure 2. Dietary intake and distribution

(a) Total energy consumption per kg-body-weight per day (Cal-kg-body-weight'-day™)

(b) Distribution of Calories proportionally obtained from macronutrients intake in HF and LF
phenotypes.

(c) Intake of carbohydrates by quality and saturated free fatty acids (g-kg-body-weight'-day”
1)‘

(d) Pearson correlation between dietary fiber (g-kg-body-weight'-day™') and BMI depicted
according to phenotypes category.

(e) Proportion of subjects complying with recommended carbohydrates distribution ranges.
The gray areas correspond to non-recommended ranges as suggested by the Nordic Nutrition
Recommendations.

(f) Proportion of subjects complying with recommended distribution ranges of dietary fiber
according to the Nordic Nutrition Recommendations.

Dietary data matrix: [obj x vars] =[181 x 11]
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Figure 3. Dietary intake and fitness phenotypes is linked with species-level GM patterns
(a) Gut microbiota (GM) composition determined through Correspondence Analysis of 16S
rRNA gene (V3-region) amplicons (summarized zOTUs at species level) determined in the
stool samples of the study participants.

(b) Correspondence Analysis revealed compositional GM differences between fitness
phenotypes. (c) Constrained Correspondence Analysis (CCA) displays discrimination of
phenotypes based on permutational test (p = 0.03, explained variance = 3.2%).

(d) Correspondence Analysis of GM composition depicting gradients of total energy
consumption (Cal-kg-body-weight'-day™), intake of (e) starch (g-kg-body-weight'-day™) and
(f) dietary fiber (g-kg-body-weight'-day™), (g) steps per day, and (h) BML

(1) rCC analysis depicting the relationship between gradients of energy consumption, starch
and dietary fiber intake, steps per day and BMI, and variations in the abundance of GM
members. Heatmap displays the correlation of 161 species with a minimum correlation
coefficient of |0.2]r from 1* to 3™ components. Species are depicted based on family-level
phylogeny. Supplementary Figure 3 displays taxonomy at species level, as well as
correlations per canonical axis and explained variance between GM composition and lifestyle
covariates derived from rCC analysis.

ANOSIM tests were performed on Bray-Curtis distances. GM data matrix: [obj x vars] = [184

x 874]

27


https://doi.org/10.1101/793612
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/793612; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Castro-Mejia et al.,

745

746

747  Figure 4. Profiling of host metabolome in relation to dietary intake

748  (a) Correspondence Analysis on combined fecal-, plasma-metabolomes and clinical

749  biomarkers of the study participants. Significant differences due to sex were determined with
750  constrained correspondence analysis (CCA). Inset shows a partial Correspondence Analysis
751  after conditioning for the cofounding effect of sex.

752 (b) Correspondence Analysis discriminates compositional differences in metabolomic profiles
753  between fitness phenotypes.

754  (c) Correspondence Analysis of metabolites in relation to total energy consumption (Cal-kg-
755  body-weight'-day™), intake of (d) dietary fiber (g-kg-body-weight'-day™), (e) starch (g-kg-
756  body-weight'-day™) and (f) simple sugars (g-kg-body-weight'-day™), (g) steps per day, (h)
757  hours standing, and (i) BMIL.

758  (j) rCC analysis showing the relationship between gradients of energy consumption, dietary
759  fiber, starch and simple sugar intake, steps per day, hours standing and BMI, with variations
760  in metabolome composition. Heatmap displays the correlation of 34 clinical/metabolome
761  variables with a minimum correlation coefficient of |0.2]r from 1* to 4™ components.

762  Supplementary Figure 4 shows correlations per canonical axis as well as explained variance
763  between metabolome composition and lifestyle covariates derived from rCC analysis.

764 (k) Significantly (¢-test, p = 0.02) different relative distributions in enterolactone determined
765  in fecal samples of HF and LF phenotypes

766 (1-m) Range of fecal SCFAs and O/B-CFAs concentrations sorted according to fitness

767  phenotype.

768  Metabolome data matrix: [obj x vars] = [184 x 335]

769

770

771

28


https://doi.org/10.1101/793612
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/793612; this version posted October 8, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

789

available under aCC-BY-ND 4.0 International license.

Castro-Mejia et al.,

Figure 5. Signatures discriminating physical phenotypes

(a) Heatmap displaying mean centered normalized abundance of 56 features selected using
Random Forest towards discrimination of phenotypes and (b) their importance as determined
on the basis of Mean Decrease in Accuracy.

(c) Multidimensional scaling plot discriminates subjects’ phenotype based on the selected
features.

(d) ROC curves and out-of-bag error rate (OOB) for Random Forest classifier based on the
selected variables, for combined datasets (all selected features), GM and metabolome, dietary
intake and physical activity

(e) Captured variance for fitness variables (BMI, chair-stand and LSF%) as a function of
selected features through redundancy analysis (RDA). Individual Explained Variance displays
the size effect of a given dataset, CE-Variance represents the cumulative explained variance
and CE-variance | physical-activity shows the accumulative explained variance conditioned
by physical activity. Pie charts summarize the total proportion of explained variance before
and after conditioning for physical activity.

Data matrix: [obj x vars] =[181 x 56]
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Supplementary Fig. 1. Subjects characterization and dietary intake

Chair-stand (30s)

(a) Ring chart displays the proportion of variables used for every category at which individuals were characterized
(b) Distribution of daily macronutrient intake (g day!') normalized by the total energy intake (Cal)

(c) Correlation between energy intake (Cal - kg-BW-!- day!) vs BMI

(d) Correlation between starch intake (g - kg-BW-!- day-!) vs BMI

(e) Correlation between simple sugars intake (g - kg-BW-!- day!) vs BMI

(f) Correlation between energy intake (Cal - kg-BW-!- day!) vs Chair-stand test

(g) Degree of agreement for food-choices questionnaires: healthy food in an important element of everyday life
(HFT). This was evaluated on a scale of 1 — 5. 1: is not important, 5: is very important,
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Supplementary Fig. 2. GM overview, cumulative- and core-species
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(a) Cumulative- and core species comprised in the CALM study with increasing number of subjects.
(b) Relative abundance of core-species (phylotypes summarized to species level).
(c) Alpha diversity (of summarized zOTUs at species level) between sexes (p = 0.42) and phenotypes (p = 0.04) determined

by Monte Carlo permutation (100) test.

(d) Distribution of species across the subjects of the CALM intervention (16S rRNA v3 region) and the community-dwellers
of the ELDERLMET study (16S rRNA v4 region, 454 pyro-sequencing). The publically available sequencing data from the
ELDERMENT study were retrieved and analyzed using the parameters described in methods.

(e) Correlation between observed species vs BMI
(f) Correlation between observed species vs Energy intake (Cal - kg-BW-!- day™)

(g) Correlation between observed species vs Simple sugars intake (g - kg-BW-!- day!)
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(a) Correspondence Analysis of metabolome in relation to chair-stand test and (b) LSF%
(c) Canonical correlation within 15 and 4" components as well as explained variance between
metabolome profiling and lifestyle covariates.
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Fecal DNA extraction, 16S rRNA-gene amplicon sequencing

Fecal samples were thawed at 4°C, re-suspended in ultrapure water (1:2 feces/water)
and homogenized in filter bags for 1 min at high speed (Lab Seward, BA7021). 1.5 ml of the
fecal slurry was centrifuged at 13,000xg for 10 min at room temperature and ~200 mg of the
fecal pellet was used for DNA extraction using the PowerSoil® DNA Isolation Kit (MOBIO
Laboratories, Carlsbad, CA, USA), basically following the instructions of the manufacturer, but
with minor modifications to increase lysis of bacterial cells: prior DNA extraction, samples
were placed into the PowerBead tubes and heat treated at 65°C for 10 min and then at 95°C for
10 min. Subsequently, solution C1 was added and bead-beating performed in FastPrep (MP
Biomedicals, Santa Ana, CA, USA) using 3 cycles of 15 s each, at a speed of 6.5 m s™'. The
remaining DNA extraction procedure followed the manufacturer’s instructions. Gut prokaryotic
composition was determined by NexSeq 500 based 16S rRNA gene-amplicon sequencing of the
V3 region amplified using primers designed with adapters for the Nextera Index Kit® (Illumina,
CA, USA): NXt 338 F:5’- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG
ACW CCT ACG GGW GGC AGC AG -3° and NXt 518 R: 5’- GTC TCG TGG GCT CGG
AGA TGT GTA TAA GAG ACA GAT TAC CGC GGC TGC TGG -3°. Amplification profile
(1% PCR), barcoding (2™ PCR), amplicon library purification and sequencing were performed as

previously described (Pyndt Jergensen et al. 2014).

Analysis of high-throughput amplicon sequencing

The raw dataset containing pair-ended reads with corresponding quality scores were
merged and trimmed using the following settings, -fastq minovlen 100, -fastq maxee 2.0, -
fastq_truncal 4, -fastq_minlen 130. Finding unique reads and deconvoluting from chimeric reads
and constructing de-novo zero-radius Operational Taxonomic Units (zOTU) was conducted using
the UNOISE pipeline (Edgar 2018) coupled to the EZtaxon 16S rRNA gene collection as a

reference database (Kim et al. 2012). Downstream analyses were based on a contingency table
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rarefied to 17,000 sequences per sample and then normalized with cumulative sum scaling (CSS

(Paulson et al. 2013)).

Metabolomics

Untargeted metabolomics of fecal slurries

1 ml fecal homogenate (as described above) was mixed with 1 ml of Sterile PBS (5.7 mM
Na,HPOs, 24.3 mM NaH»POj4, 450 mM NaCl, pH 7.4), frozen in liquid nitrogen and freeze-
dried overnight. Twenty mg of each freeze-dried sample were re-suspended in 1 ml of 99.98%
methanol (containing 10 ppm palmitic-acid methyl ester and 10 ppm sorbitol as an internal
standards), vortexed and centrifuged for 30 min at 12,000xg at 4°C. Fifty pl of the supernatant
were then dried using a ScanVac (Labogene, Lynge, Denmark) at 1,000 rpm for 3 h at 40°C.
Immediately after drying, samples were sealed with air tight magnetic lids into 2.0 ml GC-MS
vials and derivatized in two steps using a Dual-Rail MultiPurpose Sampler (MPS) (Gerstel,
Miilheim an der Ruhr, Germany), (i) addition of 10 ul of MEOX reagent (20 mg ml™!
Methoxiamine hydrochloride in dry pyridine) followed by agitation at 45°C for 90 min by
mixing at 750 rpm, (ii) addition of 40 ul of TMS reagent, trimethylsilyl cyanide (TMSCN)
(Khakimov et al. 2013) followed by agitation at 45°C for 45 min by mixing at 750 rpm. All
steps involving sample derivatization and injection were automated using MPS, which was
equipped with a sample agitation unit. Immediately after derivatization, 1 pl of the derivatized
sample was injected into a cooled injection system (CIS4) (Gerstel, Miilheim an der Ruhr,
Germany) port in splitless mode. The septum purge flow and purge flow to split vent at 2.5 min
after injection were set to 25 and 15 ml min™', respectively. Initial temperature of the CIS4 port
was 45°C, and heated at 12°C s to 320°C (after 30 s of equilibrium time), where it was kept for
10 min. After heating, the CIS4 port was gradually cooled to 250°C at 5°C s™', and this
temperature was kept constant during the run. The GC-TOF-MS setup was made combining an
Agilent 7890B gas chromatograph (GC) (Agilent Technologies, California, USA) with a time-

of-flight mass spectrometer, HT Pegasus TOF-MS, (LECO Corporation, Saint Joseph, USA).
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GC separation was performed on a Zebron ZB 5% Phenyl 95% Dimethylpolysiloxane column
(30 m with [.D. 250 pm and film thickness 0.25 pm) with a 5 m inactive guard column
(Phenomenex, Torrance, USA). A hydrogen generator, Precision Hydrogen Trace 500 (Peak
Scientific Instruments Ltd, Inchinnan, UK) was used to supply a carrier gas at a constant
column flow rate of 1.0 ml min™'. The initial temperature of the GC oven was set to 40°C and
held for 2 min followed by heating at 10°C min™' to 320°C and kept for an additional 6 min,
making the total run time 36 min. Mass spectra was recorded in the range of 45-600 m/z with a
scanning frequency of 10 scans sec™', and the MS detector and ion source was switched off
during the first 6.3 min of solvent delay time. The transfer line and ion source temperature were
set to 280°C and 250°C, respectively. The mass spectrometer was tuned according to
manufacturer’s recommendation using perfluorotributylamine (PFTBA). MPS and GC-TOF-
MS were controlled using vendor software Maestro (Gerstel, Miilheim an der Ruhr, Germany)
and ChromaTOF (LECO Corporation, Saint Joseph, USA), respectively. Samples were
randomized prior to derivatization and GC-MS analysis. In order to monitor instrument
performance, a blank sample containing only derivatization reagent, a control sample (a pooled
sample), and an alkane mixture standard sample (all even C10-C40 alkanes at 50 mg L' in
hexane) were injected after every 10 real samples.

The raw GC-TOF-MS data was processed using Statistical Compare toolbox of the ChromaTOF
software (Version 4.50.8.0) with following settings; the raw data was used without smoothing
prior to peak deconvolution, baseline offset was set to 0.8, expected averaged peak width was
set to 1.5 sec, signal-to-noise was set to >10, peak areas were calculate using deconvoluted mass
spectra (DT), common m/z ions of derivatization products were determined as 73, 75, and 147,
deconvoluted mass spectra were also used for peak identification using LECO-Fiehn and
NIST11 libraries. The library search was set to return top 10 hits with EI-MS match of >75%
using normal-forward search and with a mass threshold of 20. Deconvoluted peaks were aligned
across all samples using following settings; retention time shift allowance of <3 sec, EI-MS

match of >95%, mass threshold of >25, and present in >90% of all pooled control samples.
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Targeted analysis of SCFA and O/B-CFA in fecal slurries

Analysis of SCFA and O/B-CFA was performed on 0.5 ml of fecal homogenate mixed with 1
ml of 0.3M oxalic acid (containing 2 mM of 2 ethylbutyrate (Sigma-Aldrich) as the internal
standard). Samples were vortexed for 1 min, centrifuged at 20°C for 20 min at 12,000xg,
followed by filtration using a 0.45 um centrifugal filter (Millipore UFC30HV00) and the
obtained aliquot was used for GC-MS analysis. The GC-MS consisted of an Agilent 7890A GC
and an Agilent 5973 series MSD. GC separation was performed on a Phenomenex Zebron ZB-
WAXplus column (30 m x 250 um X 0.25 um). A sample volume of 1 pul was injected into a
split/splitless inlet at 285°C using split mode at 2:1 split ratio. Septum purge flow and split flow
were set to 13 ml min™' and 2 ml min™', respectively. Hydrogen was used as carrier gas, at a
constant flow rate of 1.0 ml min™'. The GC oven program was as follows: initial temperature
100°C, equilibration time 1.0 min, heat up to 120°C at the rate of 10°C min’, hold for 5 min,
then heat at the rate of 40°C min™ until 230°C and hold for 2 min. Mass spectra were recorded
in Selected lon Monitoring (SIM) mode and m/z ions were detected at the dwell time of 50
msec: 41, 43, 45, 57, 60, 73, 74, 84. The detector was switched off during the 1 min of solvent
delay time. The transfer line, ion source and quadrupole temperatures were set to 230, 230 and
150°C, respectively. The mass spectrometer was tuned according to manufacturer’s
recommendation using perfluorotributylamine (PFTBA). Dilution series of SCFA standards of
acetic, propionic, butyric, isobutyric, 2-methyl isobutyric, valeric and isovaleric acid (Sigma-
Aldrich) were prepared in concentrations of 1.000, 0.500, 0.250, 0.125, 0.060 and 0.030 mM for
the construction of standard curves for quantification. Initial inspection of the GC-MS data was
performed using MSD ChemStation software (Version E.02.02.1431, Agilent Technologies,
Inc., Germany). Mass spectra of SCFA were compared against the NIST11 library (NIST,
Maryland, USA). SCFA peak areas were integrated from SIM chromatograms using in-house
Matlab (Version. R2015a, The MathWorks, Inc., Massachusetts, USA) scripts. Two SCFA, 2-

methyl isobutyric acid and isovaleric acid, co-eluted at the retention time range of 4.22-4.45
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105  min, thus peak areas were calculated by deconvoluting these peaks using m/z ions 74 for 2-

106  methyl isobutyric acid and 60 for isovaleric acid.

107  Untargeted metabolomics of blood plasma

108 A mixture of 100 pl of plasma samples (thawed at room temperature) and 300 ul of

109  MeOH:water (8:1, vol:vol and containing 10 ppm of sorbitol as internal standard) were vortexed
110 (highest speed) for 1 min. Thereafter, samples were incubated at 4°C for 15 min and centrifuged
111 at 16,000xg at 4°C for 10 min. Supernatants were passed through a 0.45 um centrifugal filter
112 (Millipore UFC30HV00) and 80 pl aliquots were dried into 200 pl glass inserts using a ScanVac
113 (Labogene, Lynge, Denmark) at 40°C for 3 h at 1,000 rpm. Immediately after drying samples
114 were sealed with air tight magnetic lids into 2.0 ml GC-MS vials and derivatized in two steps
115 using MPS, (i) addition of 10 pl of MEOX reagent (20 mg ml-1 Methoxiamine hydrochloride in
116  dry pyridine) followed by agitation at 65°C for 60 min by mixing at 750 rpm, (ii) addition of 30
117  pl of TMS reagent (TMSCN) followed by agitation at 65°C for 2 h by mixing at 750 rpm.

118  Immediately after derivatization, 1 pl of the derivatized sample was injected into the GC-TOF-
119  MS as described for the fecal metabolomics. Sample injection, oven and mass spectrometer

120 parameters were similar to those for the fecal metabolomics with few modifications. The initial
121  temperature of the GC oven was set to 40°C and held for 2 min followed by heating at 12 °C
122 min to 260°C, and with a rate of 30°C min™' to 320°C and kept for an additional 5 min, making
123 the total run time 27.33 min. Mass spectra was recorded in the range of 45-500 m/z with a

124 scanning frequency of 8 scans sec”', and the MS detector and ion source was switched off during
125 the first 8.3 min of solvent delay time. The transfer line and ion source temperature were set to
126 290°C and 250°C, respectively. In order to monitor instrument performance, a blank sample
127  containing only derivatization reagent, a control sample (a pooled sample), and an alkane

128  mixture standard sample (all even C10-C40 alkanes at 50 mg L' in hexane) were injected after
129 every 10 real samples. The raw GC-TOF-MS data was processed as described above for

130 untargeted fecal metabolomics.
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