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Abstract 64 
 65 

When humans age, changes in body composition arise along with lifestyle-associated 66 

disorders influencing fitness and physical decline. Here we provide a comprehensive view of 67 

dietary intake, physical activity, gut microbiota (GM) and host metabolome in relation to 68 

physical fitness of 207 community dwelling subjects aged +65 years. Stratification on 69 

anthropometric/body-composition/physical-performance measurements (ABPm) variables 70 

identified two phenotypes (high/low-fitness) clearly linked to dietary intake, physical activity, 71 

GM and host metabolome patterns. Strikingly, despite a higher energy intake high-fitness 72 

subjects were characterized by leaner bodies and lower fasting proinsulin-C-peptide/blood 73 

glucose levels in a mechanism likely driven by higher dietary-fiber intake, physical activity 74 

and increased abundance of Bifidobacteriales and Clostridiales species in GM and associated 75 

metabolites (i.e. enterolactone). These factors explained 50.1% of the individual variation in 76 

physical fitness. We propose that targeting dietary strategies for modulation of GM and host 77 

metabolome interactions may allow establishing therapeutic approaches to delay and possibly 78 

revert comorbidities of aging.  79 
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1. INTRODUCTION 89 

Throughout the course of aging, physical impairment and changes in body 90 

composition may arise along with a number of lifestyle-associated disorders influencing 91 

physical decline and ultimately frailty (Xue, 2011; Holm et al., 2014). Aging inevitably 92 

occurs in all organisms with genetics, epigenetics and environmental exposures (e.g. diet,  93 

physical activity) being modulators of the bodily deterioration caused by biological age (Khan 94 

et al., 2017).  A number of guidelines toward dietary and daily physical activity 95 

recommendations are currently available, however, adherence remains a significant challenge 96 

(Gopinath et al., 2016). Further, food perception and dietary habits can be strongly altered 97 

during the course of life, particularly those traits associated with the loss of appetite (declined 98 

senses of smell and taste), occurrence of immune-senescence and deterioration of the gastro-99 

intestinal system (Giezenaar et al., 2016).  100 

During the last decade, the gut microbiota (GM) has been recognized as a signaling 101 

hub that integrates dietary habits with genetic and immune signals throughout life (Thaiss et 102 

al., 2016; Peters et al., 2019). Many inflammatory and metabolic disorders, such as obesity, 103 

diabetes and inflammatory reactions, are linked with GM dysbiosis (Boulangé et al., 2016). 104 

Among Irish older subjects frailty has been linked with changing GM signatures (Claesson et 105 

al., 2012) and age-related insulin resistance has been found to be regulated by the metabolic 106 

activity (e.g. production of short-chain fatty acids – SCFA) of a number of Clostridiales 107 

species (e.g. Clostridium IV, Ruminococcus, Saccharofermentans) and Akkermansia 108 

muciniphila (Bodogai et al., 2018; Kong et al., 2016; Biagi et al., 2010). Further, low 109 

abundance of these bacteria leads to increased leakage of proinflammatory epitopes from the 110 

gut to the blood stream (due to leaky gut syndrome) activating monocytes inflammation and 111 

subsequently impair insulin signaling in rodents (Bodogai et al., 2018). 112 

It is well-established, that frail older adults are characterized by changed dietary 113 

habits and altered GM and metabolic signatures relative to non-frail peers (Claesson et al., 114 

2012; Lustgarten et al., 2014), but whether similar signatures can be identified among non-115 
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frail older adults of different physical capacity has, to the best of our knowledge, not been 116 

investigated previously. A few studies have focused on frail individuals showing that a 117 

reduced consumption of dietary fiber compromises the GM associated production of SCFA 118 

required for maintenance of colonic epithelial cells and regulation of immune and 119 

inflammatory responses (Kong et al., 2016; Biagi et al., 2010; Claesson et al., 2012). 120 

Likewise, GM signatures were found to correspond with frailty-indexes in a large cohort of 121 

older adults, whose GM composition were inherently driven by dietary patterns (Claesson et 122 

al., 2012). Moreover, metabolites related to GM metabolism (e.g. p-cresol sulfate, indoxyl 123 

sulfate), peroxisome proliferator-activated receptors-alpha activation, and insulin resistance 124 

likely influence physical function in physically impaired older adults (Lustgarten et al., 2014). 125 

 Understanding how dietary intake and physical activity in non-frail older adults alter 126 

the GM–metabolome axis, and ultimately the physical fitness and the risk of functional 127 

decline, is of great clinical interest for the affected subjects as well as for the society. 128 

Furthermore, identifying key components of such multifactorial processes may open 129 

opportunities to therapeutically address and possibly treat and prevent the comorbidities of 130 

aging (Khan et al., 2017). Based on this framework, we characterized dietary intake, daily 131 

physical activity, GM and host metabolome in order to be able to explain physical fitness of 132 

non-frail older subjects.  To this end, we included 207 individuals (65+ years old, self-133 

supportive and apparently healthy) recruited through the Counteracting Age-related Loss of 134 

skeletal Muscle mass (CALM) study (http://calm.ku.dk) (Bechshøft et al., 2016). Our findings 135 

demonstrate that physical fitness and function corresponded to signatures of fasting proinsulin 136 

and average blood glucose, and characterized by clear differences in energy and dietary fiber 137 

intake, daily physical activity as well as differential abundance of GM members and a number 138 

of fecal and plasma metabolites. 139 
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2. RESULTS 140 

2.1 Participants inclusion  141 

Two hundred seven individuals were included in this cross-sectional baseline study 142 

(Bechshøft et al., 2016). The recruited subjects are population-level representatives of 143 

community dwelling, self-supportive and apparently healthy older adults living in the Danish 144 

Capital Region with body mass index (BMI) ranging between 18.5 and 37.3 kg/m2 (Table 1). 145 

Detailed inclusion criteria have been described previously (Bechshøft et al., 2016). From each 146 

individual, data were obtained on detailed anthropometric, body-composition and physical-147 

performance measurements (ABPm), average daily physical activity, dietary intake and 148 

preferences, GM composition, clinical biomarkers, as well as fecal- and plasma-metabolome 149 

adding up to 1,232 analyzed features per subject (Figure S1a).  150 

2.2 Stratification of subjects according to physical fitness and activity monitoring 151 

Study participants were stratified based on non-collinear ABPm variables (Table S1; 152 

Variance Inflation Factor, VIF < 2, r-coefficient < 0.5) into high- and low-physical fitness 153 

phenotypes (level of physical capacity). The selected variables included chair-rise test [30s-154 

test]), BMI, and Dual-energy X-ray Absorptiometry (DXA) scans for body composition 155 

(given by legs-soft-tissue fat% (LSF%)), determined as described previously in Bechshøft et 156 

al., (2016).  157 

For stratification, hierarchical clustering analysis of principal component analysis 158 

(HCP-PCA(Husson et al., 2008)) within sexes was used to determine two fitness phenotypes 159 

[high (HF) (n=116) and low (LF) (n=91) (Figure 1a, 1b, Table 2)]. All participants out-160 

performed the suggested ranges for frailty according to the chair-rise test (Jones et al., 1999; 161 

Guralnik et al., 1994),  while LF phenotypes on average had BMI ranges categorized as 162 

overweight (WHO, 2000), as well as a greater deposition of fat mass in their legs (Figure 1b, 163 

Table 2). Moreover, 4-day activity monitoring (Dowd et al., 2012) showed significant 164 

differences (p < 0.001) between the two phenotypes. Longer standing periods (Figure 1c; HF 165 
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mean: 4.6 ± 1.3, LF mean: 4.2 ± 1.5) and a greater number of steps per day (Figure 1d; HF 166 

mean: 11,129 ± 3,861, LF mean: 8,814 ± 3,595) were recorded among HF phenotypes. The 167 

habitual daily activity for LF phenotypes was found to be within recommended ranges (taking 168 

approximately 7,000-10,000 steps/day (Tudor-Locke et al., 2011)), but the LF subjects were 169 

markedly outperformed by the HF subjects (Figure 1d).   170 

2.3 Dietary food intake in relation to fitness-state 171 

Using 3-day weighted food records (3d-WFR)(Schacht et al., 2019), the daily average 172 

energy and macronutrients intake for each person were quantified to obtain an overall view on 173 

the dietary intake. On average, the energy intake per person was 24.5 ± 7.4 (range of 11.5 – 174 

55.2) Cal·kg body weight-1·day-1. Protein contributed less of the energy intake (18.9% ± 4.1, 175 

range 9-36%) compared to the average energy intake of fat (36.7% ± 7.3, 22-64%) and 176 

carbohydrates (44.4% ± 7.7, 17-66%) expressed as percentage of total energy intake.  177 

Total energy consumption per kg body weight (Figure 2a) differed significantly (p < 178 

0.001) between phenotypes, with an average daily intake of 29.3 Cal·kg body weight-1·day-1 179 

in HF phenotypes vs. 23.1 Cal·kg body weight-1·day-1 in LF phenotypes. The higher energy 180 

intake among HF subjects was reflected in a larger fraction of energy (expressed as % energy) 181 

from carbohydrates (p = 0.01) as compared to that of dietary protein (Figure 2b and Figure 182 

S1b). The same pattern was also observed across daily average intake (g·kg body weight-183 

1·day-1) of dietary fiber (p < 0.0001), starch (p < 0.0001), simple sugars (p = 0.0002) and 184 

saturated fatty acids (p = 0.0001) (Figure 2c). Moreover, significant (p < 0.0001) negative 185 

correlations between BMI with dietary fiber consumption (r = -0.52) (Figure 2d) energy 186 

intake (r = -0.52), starch (r = -0.35) and simple sugars (r = -0.35), as well as positive 187 

associations between chair-stand test and energy intake (r = 0.25) were found (Figure S1c-f). 188 

Questionnaires on food-choices showed that HF subjects to a higher degree than LF subjects 189 

consider healthy food as an important element of their daily life (Figure S1g). 190 
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A considerable proportion of subjects from both phenotypes did not comply with the 191 

recommended minimum proportion of energy obtained from carbohydrates (Figure 2e) and 192 

dietary fiber intake (Figure 2f) as established by the Nordic Nutrition Recommendations 193 

(Nordic Council of Ministers, 2012). Yet, the frequency of compliers-to-non-compliers was 194 

significantly higher (carbohydrates: p = 0.006, dietary fiber: p = 0.03) in HF individuals. 195 

Furthermore, using the Goldberg cut-off (Black, 2000), 46 under-reporters (UR) and 2 over-196 

reporters (OR) of energy intake were identified. Nonetheless, if excluded, individuals with 197 

higher physical capability (HF phenotype) still had a higher energy (p < 0.001) and energy 198 

from carbohydrates (p < 0.06) intake as compared to LF subjects (Table S2). Since UR and 199 

OR subjects did not change the overall findings they were not excluded in downstream 200 

analyses.  201 

2.4 Characterization of GM and correspondence with fitness and diet 202 

Sequencing of DNA extracted from stool samples yielded 11.3 million reads derived 203 

from the 16S rRNA-gene V3-region with an average of 116,476 (48,872 SD) sequences per 204 

subject. The analysis of amplicon-sequencing data generated 10,084 zOTUs (sequence 205 

variants) summarized over 875 cumulative species (species richness) and 8 core-species 206 

(defined as being present in all recruited subjects) among the study subjects (Figure S2a). The 207 

relative abundance of core species varied between 18 – 84% (Supplementary Figure 2b). 208 

Between sexes no significant differences in beta-diversity (Figure 3a) and alpha-diversity 209 

(Figure S2c) were observed. Furthermore, regardless of sex, the study participants were 210 

characterized by higher relative abundance of e.g. Lachnospiraceae spp., Akkermansia spp., 211 

Blautia spp., along with reduced proportions of Bacteroides spp. (Figure S2d) as compared to 212 

the community-dwelling group of older adults recruited for the Irish ELDERMET study 213 

(Claesson et al., 2012). This may reflect differences associated with dietary habits, age [mean 214 

age: baseline-CALM 70 ± 4y, ELDERMET 78 ± 8y], and geographical location. 215 
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A substantial higher alpha-diversity (p = 0.06, Observed Species) were observed 216 

(Figure S2c) among HF phenotypes compared to LF phenotypes, as well as weak but 217 

significant (p < 0.05) correlations of observed species with BMI, energy and starch intake 218 

(Figure S2e-g). Correspondence analysis and analysis of similarities (ANOSIM) on Bray-219 

Curtis (weighted beta-diversity) distance metric calculated from species-level abundance 220 

showed significant correspondence (p = 0.04) and dissimilarities (p = 0.01) in GM 221 

composition in connection with the two physical phenotypes (Figure 3b-c).  222 

Also, GM composition was clearly associated with (p < 0.05) gradients of energy 223 

consumption (Figure 3d), starch (Figure 3e), dietary fiber (Figure 3f) steps per day (Figure 224 

3g) and BMI (Figure 3h) reflecting fitness phenotypes. Using regularized canonical 225 

correlation (rCC) analysis associations between those lifestyle covariates (e.g. dietary factors 226 

and physical activity) with 161 microbial species were disclosed (Figure 3i, Figure S3) 227 

explaining <5% and 13% of the total variance of the microbiota and lifestyle covariates, 228 

respectively (Figure S3a). The strongest associations (those > |0.2|r, number of species in 229 

brackets) were observed for Bacteroidales (12), Bifidobacteriales (2), Clostridiales (106), 230 

Coriobacteria (7), Enterobacterales (3), Erysipelotrichales (12), Lactobacillales (3), 231 

PAC001057 (Mollicutes members) (8), Proteobacteria (1) and other orders (7) (Figure S3b). 232 

Increased intake of energy, starch, dietary fiber, as well as steps per day correlated positively 233 

with the relative abundance of up to 103 of those species (e.g. higher Bifidobacteriales 234 

abundance) and correlated negatively with BMI (e.g. Proteobacteria being signatures for high 235 

BMI) (Figure 3i, Figure S3b). 236 

 237 

2.5 Host metabolic state in relation to fitness and dietary intake 238 

Untargeted Gas Chromatography-Mass Spectrometry (GC-MS) metabolomics of 239 

human fecal extracts and blood plasma as well as targeted SCFA analysis using GC-MS 240 

generated a total of 304 analytes (181 analytes in the fecal and 123 analytes in the plasma 241 

metabolome). Nearly half of the metabolites variables were identified, either at level 1 or 242 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/793612doi: bioRxiv preprint 

https://doi.org/10.1101/793612
http://creativecommons.org/licenses/by-nd/4.0/


Castro-Mejía et al., 

 10 

level 2 according to the Metabolomics Standards Initiatives (Sumner et al., 2007). These 243 

metabolites were monosaccharides, amino acids, organic acids, sterols and long-, and short 244 

chain fatty acids. In addition, 31 biomarkers for immunological function, renal and liver 245 

function, as well as glucose and lipid metabolism were acquired through blood clinical 246 

profiling.  247 

Correspondence analysis on the combined metabolome blocks showed weak 248 

discrimination of sexes (Figure 4a) and pronounced discrimination between fitness phenotype 249 

(Figure 4b) based on their metabolic profile. Variations in metabolome composition 250 

corresponded clearly (p < 0.05) with energy intake and consumption of dietary fiber, starch, 251 

simple sugars (Figure 4c-f), as well as steps per day and hours-standing-per-day (Figure 4g-h, 252 

including stratifying variables: BMI (Figure 4i), chair-stand and LFT%, Figure S4a-b). 253 

Likewise, rCC analysis showed significant associations between lifestyle covariates and 34 254 

clinical/metabolic variables (Figure 4j), explaining 9% and 15% of the total variance of the 255 

metabolome and lifestyle covariates, respectively (Figure S4c). The strongest associations (> 256 

|0.2|r) were observed for 19 clinical biomarkers, 10 gut metabolites and 5 plasma metabolites 257 

(Figure 4j). Increased intake of energy, starch, dietary fiber (or dietary covariates), as well as 258 

steps per day correlated positively with mono- and di-saccharides and negatively with amino 259 

acids (Pro, Ala, Trp), glucose metabolism parameters (proinsulin, glucose HbA1c, HbA1c), 260 

lipid metabolism (triglycerides, vLDL) and renal function (creatinine, inversely to estimate 261 

glomerular filtration rate (eGFR)) measurements, primary bile acids (lithocholic acid) and N-262 

Nitrosotrimethylurea (Figure 4j). Moreover, a higher proportion of enterolactone in the fecal 263 

metabolome of HF subjects were also found (Figure 4k). Remarkably, the concentrations of 264 

SCFA as well as other/branched-chain fatty acids (O/B-CFA) in the fecal samples did not 265 

differ according to phenotypes (p > 0.13) or dietary intake factors (Figure 4l-m).   266 
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2.6 Dietary intake, gut microbiota and metabolic signatures explain fitness levels 267 

independently from physical activity 268 

Characterization of subjects after variable selection based on Random Forest and 269 

backward elimination procedure selected 55 variables (Figure 5a) with different levels of 270 

importance (Figure 5b) that discriminate the two phenotypes with a high level of accuracy 271 

(Figure 5c-d). The features included 25 bacterial species belonging to 7 bacterial orders 272 

(Clostridiales, Saccharibacteria, Bacteroidales, PAC001057, Enterobacterales, 273 

Erysipelotrichales and Bifidobacteriales), seven dietary components (energy, saturated fatty 274 

acids, simple sugars, starch and dietary fiber intake, and energy derived from proteins and 275 

carbohydrates); five clinical biomarkers (alanine transaminase, triglycerides, vLDL, fasting 276 

proinsulin, average blood glucose/HbA1c). In addition, seven plasma metabolites (amino 277 

acids and organic acids), ten fecal metabolites (sugar alcohols, amino acids, primary bile 278 

acids and urea) and physical activity (steps per day) were also tabbed (Figure 5a).  279 

Discrimination of the two phenotypes based on all the selected features (combined 280 

datasets) had the highest level of accuracy (22% out-of-bag error rate, OOB), followed GM 281 

and clinical/metabolome features (23% OOB), dietary intake (36% OOB) and physical 282 

activity parameters (46% OOB) (Figure 5d). Through redundancy analysis (RDA) the effect 283 

of the selected variables (within blocks) on the stratifying variables it was found that GM had 284 

the largest explanatory power (24.7%), followed by dietary intake (17.3%), clinical 285 

biomarkers (16.8%), gut metabolome (8.8%), plasma metabolome (6.2%) and physical 286 

activity (5.2%) (Figure 5e). Notably, the cumulative explained variance conferred by the pool 287 

of selected features reached 50.1%, and even after conditioning the effect of physical activity 288 

over the stratifying variables, the cumulative explained variance reached up to 44.9% (Figure 289 

5f). 290 
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3. DISCUSSION 291 

The number of older-adults over the age of 65 will increase by more than 50% 292 

worldwide over the next three decades (NIH 2011), potentially with huge implications for the 293 

health and economy of the implicated individuals and society as a whole. With this, 294 

understanding the physical mechanisms and lifestyle conditions linked to fitness and 295 

independence in older adults becomes a relevant field of research.  296 

Despite the homogeneity of the recruited subjects (all non-frail and without serious 297 

disease) noticeable differences in fitness level was observed and based on non-collinear 298 

ABPm variables (chair-rise test, BMI and DXA-scan based body composition), two fitness 299 

phenotypes (LF and HF) were identified. Neither of the fitness types were frail (Guralnik et 300 

al., 1994) , nevertheless dietary, GM and host metabolome factors were found to clearly 301 

discriminate between the two fitness types. HF subjects were characterized by a higher 302 

consumption of foods of plant origin as also reflected by their higher levels of total 303 

carbohydrates (i.e. starch, simple sugars) and dietary fiber, accompanied by a higher 304 

adherence to the recommended intake of carbohydrates and dietary fiber intake given by the 305 

Nordic Nutrition Recommendations (Nordic Council of Ministers 2012). These differences 306 

were observed in spite of the methodological limitations of 3d-WFR to capturing long term 307 

variability (Yang et al., 2010). Furthermore, whether awareness of dietary guidelines 308 

influenced the selection of dietary choices in the study participants remains to be investigated, 309 

but it is worth mentioning that HF subjects consider healthy food as an important component 310 

in their life as also described by Schacht et al., (Schacht et al., 2019).  311 

The GM community and host metabolome clearly discriminated between the HF and 312 

LF phenotypes and was largely associated with the consumption of total energy, and plant 313 

derived nutrients (such as starch and dietary fibers as well as enterolactone, all being higher in 314 

HF subjects). A number of features (Figure 5a) selected from GM, host metabolome, dietary 315 

intake and daily physical activity were able to strongly discriminate and explain variation 316 

between phenotypes, thereby indicating their strong association with physical function. Daily 317 
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physical activity showed the lowest power towards phenotypic differentiation (in spite of the 318 

high validity of the method for activity monitoring (Dowd et al., 2012)) and explaining only 319 

5% of the phenotypic variance. Albeit conditioning for physical activity, the remaining set of 320 

selected features explained up to 45% of the total variance of the stratifying variables. In 321 

particular dietary intake (17% of explained variance), GM composition (24%) and host 322 

metabolome (25%) signatures are important drivers of phenotypic differentiation (Figure 5), 323 

and also described in animal models (Fujisaka et al., 2018). Accordingly, HF subjects showed 324 

a higher proportion of GM members commonly known for their protective roles, such as 325 

Bifidobacterium adolescentis and Christensenella species (Goodrich et al., 2014), and whose 326 

abundance corresponded negatively with glucose and lipid metabolism biomarkers 327 

(proinsulin, HbA1c, vLDL, triglycerides). Contrarily, LF phenotypes had increased levels of 328 

the same biomarkers and a higher relative abundance of pro-inflammatory microbial members 329 

in the gut, as for example Enterobacterales (Fei & Zhao 2013; Hoarau et al., 2016; Khan et 330 

al., 2014). 331 

SCFAs derived from GM activity have been identified as signaling molecules 332 

responsible for maintenance of the integrity of colonic epithelium, glucose homeostasis, lipid 333 

metabolism and appetite regulation (Morrison et al., 2016). Claesson et al., (Claesson et al., 334 

2012) reported higher SCFA concentrations (acetate, butyrate and propionate) in the fecal 335 

metabolome of older adults living as community-dwellers compared to frail individuals living 336 

in residential care. Moreover, decreasing concentrations of these SCFAs were associated with 337 

advanced levels of frailty given by diet and specific transitions in GM composition (Claesson 338 

et al., 2012). However, in the present study no correlations between fecal SCFA and O/B-339 

CFA concentrations with neither macronutrient distribution or fitness phenotype were found. 340 

This suggest that levels of physical function amidst healthy older adults may not be primarily 341 

dependent upon changes in the production of these compounds. Instead, this could be due to 342 

signals of glucose metabolism deterioration as reflected by significantly (p < 0.001) higher 343 

proinsulin levels and higher average blood glucose (determined by HbA1c-levels) in the LF 344 
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phenotypes (1/116 HF and 20/91 LF subjects had higher than normal ranges of proinsulin 345 

(Chi-Squared p < 0.001), 10/116 HF and 30/91 LF had higher ranges than those 346 

recommended for HbA1c (Gardner & Shoback 2011) (Chi-Squared p < 0.001), see Table S3). 347 

High concentrations of proinsulin indicates high insulin secretion and hence diminished 348 

peripheral insulin sensitivity resulting in a number of metabolic conditions, compromising 349 

muscle strength and physical performance (Segerström et al., 2011). Proinsulin was the most 350 

important feature of phenotype discrimination and corresponded inversely with the abundance 351 

of Bifidobacterium adolescentis and several species of Christensenella, and 352 

Ruminococcaceae (Figure 5a), strongly indicating that GM-proinsulin interactions could be 353 

mediators of fitness phenotype. Bifidobacterium species (including B. adolescentis) have 354 

previously been described as promoters of adiponectin and decreasing expression of 355 

interleukin-6, both playing prominent roles in metabolic derangements associated with 356 

glucose regulation and fatty acid oxidation (Su et al., 2015; Straub & Scherer 2019; Aoki et 357 

al., 2017). Christensenella minuta (another Clostridiales member) is enriched in individuals 358 

with low BMI and has been demonstrated to reduce weight gain and adiposity in mice 359 

(Goodrich et al., 2014).  Furthermore, while playing a protective role against inflammation, 360 

some Clostridiales members act as promoters of regulatory T-cells by interacting with toll-361 

like receptors 2 (TLR2) on intestinal epithelial cells (Kashiwagi et al., 2015). Contrarily, 362 

species of Enterobacterales have been consistently linked with insulin resistance and 363 

inflammatory responses (Fei & Zhao 2013; Hoarau et al., 2016; Khan et al., 2014), and by 364 

means of cell epitopes (i.e. LPS) they interact with TLRs triggering pathogen recognition, 365 

low-grade inflammation (Franceschi & Campisi, 2014) and fat accumulation in adipose tissue 366 

that ultimately influence muscle strength (Boulangé et al., 2016).   367 

In summary, our findings suggest that dietary patterns underlie mechanisms of 368 

physical phenotype differentiation among well-functioning community dwelling older adults, 369 

particularly as a driver of GM and glucose metabolism interactions. Despite the limitations of 370 

this study related to its inherent cross-sectional nature, the results provide strong evidence 371 
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emphasizing the central role of diet towards the onset of physical deterioration and its 372 

implications prior to clinical manifestations of frailty, e.g. muscle composition and 373 

diminished strength (Xue, 2011). Many of the dietary, GM and metabolomic signatures seen 374 

in frail older adults (Claesson et al., 2012; Bodogai et al., 2018; Kong et al., 2016; Lustgarten 375 

et al., 2014) are already evident in the non-frail, community-dwelling older-adults of low-376 

fitness of this study, pointing at the importance of early intervention strategies, also in this 377 

age group. Thus, in view of these findings, developing strategies to improve awareness and 378 

adherence to dietary recommendations (complying with dietary reference intakes or even with 379 

personalized nutrition (Zeevi et al., 2015)), targeting the regulation of GM and host 380 

metabolome interactions, can open opportunities to delay the comorbidities of aging. 381 

4. EXPERIMENTAL PROCEDURES 382 

4.1 Study Participants 383 

Procedures of the CALM project (Clinical Trials NCT02115698) were approved by 384 

the Danish Regional Committees of the Capital Region (H-4-2013-070), performed according 385 

to the Declaration of Helsinki II and the experimental designed followed as previously 386 

described (Bechshøft et al., 2016). For the current study, two hundred and seven subjects (65+ 387 

years of age) were selected at baseline of the CALM intervention project following the 388 

criteria described in Bechshøft et al.,(Bechshøft et al., 2016). Participants were not allowed to 389 

take part in any organized sports or resistance training more than once a week, did not suffer 390 

from defined metabolic-, tissue-, or gastro-intestinal disorders, nor were prescribed antibiotics 391 

3 months prior sample collection and enrollment. 392 

4.2 Samples and metadata collection 393 

At baseline, participants completed a 3-day weighted food record where food and 394 

beverage intake were registered for 3-consecutive days (Wednesday to Friday). Dietary 395 

information was typed into the electronic dietary assessment tool, VITAKOST™ (MADLOG 396 
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APS, Kolding, Denmark), which uses the Danish Food Composition Databank (version 7.01; 397 

Søborg; Denmark) to estimate individual energy and macronutrient intake. 398 

Fecal and blood plasma samples were collected and handled according to the 399 

following procedures: (i) fecal samples were kept at 4°C for maximum 48 h after voidance, 400 

and stored at -60°C until further use; (ii) overnight-fasted-state (OFS) plasma-samples were 401 

collected and deposited in heparin, centrifuged at 3,000×g for 10 min at 4°C, and then stored 402 

at -60°C. 403 

For screening of blood-biomarkers, the following tests were performed: complete 404 

blood count (CBC), proinsulin-C-peptide (P-CP), glycosylated hemoglobin (HbA1c), 405 

coagulation factor, estimate glomerular filtration rate (eGFR), thyroid-stimulating hormone 406 

(TSH), and iron-ferritin test determined as described in Bechshøft et al., (Bechshøft et al., 407 

2016) For anthropometric and functional capacities, height (cm) and body-weight (kg) in OFS 408 

were measured. Average fast-pace gait speed was measured on an indoor 400 m horizontal 409 

track. Number of chair-stands in 30s from a standard table chair was recorded. Relative legs-410 

soft-tissue fat% (LSF%) was determined as an estimate of legs-soft-tissue fat-free and fat-411 

mass based on a dual energy x-ray absorptiometry (DXA) scan (Lunar iDXA Forma with 412 

enCORE Software Platform version 15, GE Medical Systems Ultrasound & Primary Care 413 

Diagnostics, Madison, WI, USA) performed on participants in overnight fasted state.  414 

 415 

4.3 Quantitative questionnaires on food habits 416 

Quantitative questionnaires contained information on food habits, perceptions and 417 

preferences, as well as information about life style changes and dietary habits over the life 418 

course (Bechshøft et al., 2016).  419 

4.4 GM and metabolomics 420 

Procedures for profiling and process GM and metabolomics data are described in 421 

Supplementary Methods. 422 
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4.5 Statistical Analyses 423 
Stratification of individuals was based on ABP measurements using the variables 424 

described in Table S1. Collinear variables were initially removed, leaving chair-stand [30s-425 

test]), DXA scans (legs-soft-tissue fat% determined in both legs) and BMI as features with a 426 

variance inflation factor (VIF) < 2 and r-coefficient < 0.5. Subjects were divided according to 427 

sex, and a hierarchical clustering analysis of principal component analysis (Husson et al., 428 

2008) was performed on the selected variables (100 iterations).  429 

For univariate data analyses, pairwise comparisons were carried out with unpaired 430 

two-tailed Student’s t-test, Pearson’s coefficient was used for determining correlations and 431 

Chi-Square test for evaluating groups distributions. For multivariate data analyses, the 432 

influence of covariates (e.g. dietary components, BMI, etc.) on data blocks (GM and 433 

metabolome) were assessed with (Constrained-) Correspondence Analysis with permutation 434 

tests (1,000 permutations), as well as analysis of similarities (ANOSIM test, 999 435 

permutations) on Bray-Curtis distances (implemented in the Vegan R-package (Oksanen et 436 

al., 2015)). 437 

Correlation of covariates with the same datasets were determined with regularized 438 

canonical correlation (rCC) analysis using the mixOmics R-package (González et al., 2012). 439 

rCC was crossed-validated (leave-one-out approach) with grids (lambda 1 & 2) of 0.05 to 1.0 440 

and a length of 20.  441 

Feature selection for combined datasets was performed with Random Forest. Dataset 442 

was randomly divided 200x (200 subsets) into training (70%) and test sets (30%), keeping 443 

this proportion over the number of subjects within each fitness group for every split. For a 444 

given training set, the party R-package (Hothorn et al., 2016) was run for feature selection 445 

using unbiased-trees (cforest_unbiased with 6,000 trees) and AUC-based variable 446 

(varimpAUC with 100 permutations), and subsequently the selected variables were used to 447 

predict (6,000 trees with 1,000 permutations) their corresponding test set using randomForest 448 

R-package (Liaw & Wiener 2014). The features derived from the subset with a prediction rate 449 
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within 1 SD above the mean-prediction (based on the 200 subsets) were selected and 450 

subsequently, subjected to sequential rounds of feature selection (following the same tuning 451 

of unbiased-trees and AUC-based variable) until prediction could no longer improved. 452 

Variation partitioning of stratifying variables (BMI, CS and LSF%) based on selected features 453 

derived from the different datasets (i.e. GM, diet, host-metabolome, physical activity) was 454 

performed using redundancy analysis (RDA) (Oksanen et al., 2015). 455 
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SUPPORTING INFORMATION 637 

Additional supporting information can be found in supplementary files. 638 

 639 

• Figure S1. Data overview and dietary intake 640 

• Figure S2. GM overview, cumulative- and core-species 641 

• Figure S3. rCC analysis between GM and lifestyle components 642 

• Figure S4. Metabolome correspondence and correlation 643 

• Table S1. Subjects Stratification 644 

• Table S2. Dietary evaluation 645 

• Table S3. Proinsulin and HbA1c levels 646 

• Supplementary Methods 647 

 648 

 649 

 650 
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 652 

TABLES 653 

Table 1. Description of the study participants 654 

Number of Participants (n) 207 
Sex   
   Men:Women  109:98 
Age (y) Mean ± SD 70.2 ± 3.9 
BMI (kg·m2) Mean ± SD 25.7 ± 3.8 
   BMI < 25 105 
   BMI ≥ 25 < 30 75 
   BMI ≥ 30 27 
HbA1c (mmol·mol-1)  
   < 39 mmol·mol-1 (<5.7 ABG - mmol·l-1) a 167 
   39-46 mmol·mol-1 (5.7-6.4 ABG - mmol·l-1) 40 

 655 

a HbA1c values above 47 mmol·mol-1 (6.5 mmol·l-1 Average Blood Glucose - ABG) is a 656 

criterion for diagnosis of T2D (Gardner & Shoback 2011). 657 

 658 

 659 

Table 2. Within sex summary of ABP measurements used for stratification of phenotypes 660 

(HF/P: high-fitness phenotypes, LF: low-fitness phenotypes). 661 

Women         
Functional-Parameter HF/P LF/P p-valuea Refer. range Ref. age 
30s Chair-stand test 20.6 ± 5.0 15.7 ± 3.1 < 0.001 10–16b 65-74y b 
BMI 22.4 ± 2.1 28.9 ± 3.3 < 0.001   
LSF% 35.2 ± 4.0 42.7 ± 4.6 < 0.001     
      
Men         
Functional-Parameter HF/P LF/P p-valuea Refer. range Ref. age 
Chair-rise test 22.9 ± 4.4 18.3 ± 3.9 < 0.001 12–18b 65-74y b 
BMI 24.0 ± 2.2 28.3 ± 3.1 < 0.001   
LSF% 20.3 ± 3.4 27.0 ± 3.5 < 0.001     

 662 

a Comparison between phenotypes was performed by two-tailed Student’s t-test. 663 

b ref: (Jones et al., 1999; Guralnik et al., 1994) 664 
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 665 

FIGURE LEGENDS 666 

Figure 1. Stratification of fitness phenotypes 667 

(a) Stratification of subjects (n = 207) by hierarchical clustering analysis of principal 668 

components analysis (HCA-PCA). Stratification data matrix: [obj x vars] = [207 x 3]. HCA-669 

PCA was performed within sexes and based on ABP measurements. HF/P: high-fitness (n = 670 

116) and LF/P: low-fitness phenotypes (n = 91).  671 

(b) ABP measurements distribution among phenotypes and sexes. 672 

(c) 4-day activity monitoring displaying hours standing and steps on daily basis for both 673 

phenotypes. 4-day activity data matrix: [obj x vars] = [196 x 2] 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 
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 691 

 692 

Figure 2. Dietary intake and distribution 693 

(a) Total energy consumption per kg-body-weight per day (Cal·kg-body-weight-1·day-1) 694 

(b) Distribution of Calories proportionally obtained from macronutrients intake in HF and LF 695 

phenotypes.  696 

(c) Intake of carbohydrates by quality and saturated free fatty acids (g·kg-body-weight-1·day-697 

1). 698 

(d) Pearson correlation between dietary fiber (g·kg-body-weight-1·day-1) and BMI depicted 699 

according to phenotypes category.  700 

(e) Proportion of subjects complying with recommended carbohydrates distribution ranges. 701 

The gray areas correspond to non-recommended ranges as suggested by the Nordic Nutrition 702 

Recommendations. 703 

(f) Proportion of subjects complying with recommended distribution ranges of dietary fiber 704 

according to the Nordic Nutrition Recommendations. 705 

Dietary data matrix: [obj x vars] = [181 x 11] 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 
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 718 

 719 

 720 

Figure 3. Dietary intake and fitness phenotypes is linked with species-level GM patterns 721 

(a) Gut microbiota (GM) composition determined through Correspondence Analysis of 16S 722 

rRNA gene (V3-region) amplicons (summarized zOTUs at species level) determined in the 723 

stool samples of the study participants.  724 

(b) Correspondence Analysis revealed compositional GM differences between fitness 725 

phenotypes. (c) Constrained Correspondence Analysis (CCA) displays discrimination of 726 

phenotypes based on permutational test (p = 0.03, explained variance = 3.2%). 727 

(d) Correspondence Analysis of GM composition depicting gradients of total energy 728 

consumption (Cal·kg-body-weight-1·day-1), intake of (e) starch (g·kg-body-weight-1·day-1) and 729 

(f) dietary fiber (g·kg-body-weight-1·day-1), (g) steps per day, and (h) BMI. 730 

(i) rCC analysis depicting the relationship between gradients of energy consumption, starch 731 

and dietary fiber intake, steps per day and BMI, and variations in the abundance of GM 732 

members. Heatmap displays the correlation of 161 species with a minimum correlation 733 

coefficient of |0.2|r from 1st to 3rd components. Species are depicted based on family-level 734 

phylogeny. Supplementary Figure 3 displays taxonomy at species level, as well as 735 

correlations per canonical axis and explained variance between GM composition and lifestyle 736 

covariates derived from rCC analysis. 737 

ANOSIM tests were performed on Bray-Curtis distances. GM data matrix: [obj x vars] = [184 738 

x 874] 739 

 740 

 741 

 742 

 743 

 744 
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 745 

 746 

Figure 4. Profiling of host metabolome in relation to dietary intake 747 

(a) Correspondence Analysis on combined fecal-, plasma-metabolomes and clinical 748 

biomarkers of the study participants. Significant differences due to sex were determined with 749 

constrained correspondence analysis (CCA). Inset shows a partial Correspondence Analysis 750 

after conditioning for the cofounding effect of sex. 751 

(b) Correspondence Analysis discriminates compositional differences in metabolomic profiles 752 

between fitness phenotypes.  753 

(c) Correspondence Analysis of metabolites in relation to total energy consumption (Cal·kg-754 

body-weight-1·day-1), intake of (d) dietary fiber (g·kg-body-weight-1·day-1), (e) starch (g·kg-755 

body-weight-1·day-1) and (f) simple sugars (g·kg-body-weight-1·day-1), (g) steps per day, (h) 756 

hours standing, and (i) BMI. 757 

(j) rCC analysis showing the relationship between gradients of energy consumption, dietary 758 

fiber, starch and simple sugar intake, steps per day, hours standing and BMI, with variations 759 

in metabolome composition. Heatmap displays the correlation of 34 clinical/metabolome 760 

variables with a minimum correlation coefficient of |0.2|r from 1st to 4th components. 761 

Supplementary Figure 4 shows correlations per canonical axis as well as explained variance 762 

between metabolome composition and lifestyle covariates derived from rCC analysis. 763 

(k) Significantly (t-test, p = 0.02) different relative distributions in enterolactone determined 764 

in fecal samples of HF and LF phenotypes 765 

(l-m) Range of fecal SCFAs and O/B-CFAs concentrations sorted according to fitness 766 

phenotype. 767 

Metabolome data matrix: [obj x vars] = [184 x 335] 768 

 769 

 770 

 771 
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 772 

 773 

Figure 5. Signatures discriminating physical phenotypes 774 

(a) Heatmap displaying mean centered normalized abundance of 56 features selected using 775 

Random Forest towards discrimination of phenotypes and (b) their importance as determined 776 

on the basis of Mean Decrease in Accuracy.  777 

(c) Multidimensional scaling plot discriminates subjects’ phenotype based on the selected 778 

features. 779 

(d) ROC curves and out-of-bag error rate (OOB) for Random Forest classifier based on the 780 

selected variables, for combined datasets (all selected features), GM and metabolome, dietary 781 

intake and physical activity 782 

(e) Captured variance for fitness variables (BMI, chair-stand and LSF%) as a function of 783 

selected features through redundancy analysis (RDA). Individual Explained Variance displays 784 

the size effect of a given dataset, CE-Variance represents the cumulative explained variance 785 

and CE-variance | physical-activity shows the accumulative explained variance conditioned 786 

by physical activity. Pie charts summarize the total proportion of explained variance before 787 

and after conditioning for physical activity. 788 

Data matrix: [obj x vars] = [181 x 56] 789 
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Fecal DNA extraction, 16S rRNA-gene amplicon sequencing 1 

Fecal samples were thawed at 4°C, re-suspended in ultrapure water (1:2 feces/water) 2 

and homogenized in filter bags for 1 min at high speed (Lab Seward, BA7021). 1.5 ml of the 3 

fecal slurry was centrifuged at 13,000×g for 10 min at room temperature and ~200 mg of the 4 

fecal pellet was used for DNA extraction using the PowerSoil® DNA Isolation Kit (MOBIO 5 

Laboratories, Carlsbad, CA, USA), basically following the instructions of the manufacturer, but 6 

with minor modifications to increase lysis of bacterial cells: prior DNA extraction, samples 7 

were placed into the PowerBead tubes and heat treated at 65°C for 10 min and then at 95°C for 8 

10 min. Subsequently, solution C1 was added and bead-beating performed in FastPrep (MP 9 

Biomedicals, Santa Ana, CA, USA) using 3 cycles of 15 s each, at a speed of 6.5 m s
-1

. The 10 

remaining DNA extraction procedure followed the manufacturer’s instructions. Gut prokaryotic 11 

composition was determined by NexSeq 500 based 16S rRNA gene-amplicon sequencing of the 12 

V3 region amplified using primers designed with adapters for the Nextera Index Kit® (Illumina, 13 

CA, USA): NXt_338_F: 5’- TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG 14 

ACW CCT ACG GGW GGC AGC AG -3’ and NXt_518_R: 5’- GTC TCG TGG GCT CGG 15 

AGA TGT GTA TAA GAG ACA GAT TAC CGC GGC TGC TGG -3’. Amplification profile 16 

(1
st
 PCR), barcoding (2

nd
 PCR), amplicon library purification and sequencing were performed as 17 

previously described (Pyndt Jørgensen et al. 2014).   18 

Analysis of high-throughput amplicon sequencing 19 

The raw dataset containing pair-ended reads with corresponding quality scores were 20 

merged and trimmed using the following settings, -fastq_minovlen 100, -fastq_maxee 2.0, -21 

fastq_truncal 4, -fastq_minlen 130. Finding unique reads and deconvoluting from chimeric reads 22 

and constructing de-novo zero-radius Operational Taxonomic Units (zOTU) was conducted using 23 

the UNOISE pipeline (Edgar 2018) coupled to the EZtaxon 16S rRNA gene collection as a 24 

reference database (Kim et al. 2012). Downstream analyses were based on a contingency table 25 
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rarefied to 17,000 sequences per sample and then normalized with cumulative sum scaling (CSS 26 

(Paulson et al. 2013)).  27 

Metabolomics 28 

Untargeted metabolomics of fecal slurries 29 

1 ml fecal homogenate (as described above) was mixed with 1 ml of Sterile PBS (5.7 mM 30 

Na2HPO4, 24.3 mM NaH2PO4, 450 mM NaCl, pH 7.4), frozen in liquid nitrogen and freeze-31 

dried overnight. Twenty mg of each freeze-dried sample were re-suspended in 1 ml of 99.98% 32 

methanol (containing 10 ppm palmitic-acid methyl ester and 10 ppm sorbitol as an internal 33 

standards), vortexed and centrifuged for 30 min at 12,000×g at 4°C. Fifty µl of the supernatant 34 

were then dried using a ScanVac (Labogene, Lynge, Denmark) at 1,000 rpm for 3 h at 40°C. 35 

Immediately after drying, samples were sealed with air tight magnetic lids into 2.0 ml GC-MS 36 

vials and derivatized in two steps using a Dual-Rail MultiPurpose Sampler (MPS) (Gerstel, 37 

Mülheim an der Ruhr, Germany), (i) addition of 10 µl of MEOX reagent (20 mg ml
-1

 38 

Methoxiamine hydrochloride in dry pyridine) followed by agitation at 45°C for 90 min by 39 

mixing at 750 rpm, (ii) addition of 40 µl of TMS reagent, trimethylsilyl cyanide (TMSCN) 40 

(Khakimov et al. 2013) followed by agitation at 45°C for 45 min by mixing at 750 rpm. All 41 

steps involving sample derivatization and injection were automated using MPS, which was 42 

equipped with a sample agitation unit. Immediately after derivatization, 1 μl of the derivatized 43 

sample was injected into a cooled injection system (CIS4) (Gerstel, Mülheim an der Ruhr, 44 

Germany) port in splitless mode. The septum purge flow and purge flow to split vent at 2.5 min 45 

after injection were set to 25 and 15 ml min
-1

, respectively. Initial temperature of the CIS4 port 46 

was 45°C, and heated at 12°C s
-1

 to 320°C (after 30 s of equilibrium time), where it was kept for 47 

10 min. After heating, the CIS4 port was gradually cooled to 250°C at 5°C s
-1

, and this 48 

temperature was kept constant during the run. The GC-TOF-MS setup was made combining an 49 

Agilent 7890B gas chromatograph (GC) (Agilent Technologies, California, USA) with a time-50 

of-flight mass spectrometer, HT Pegasus TOF-MS, (LECO Corporation, Saint Joseph, USA). 51 
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GC separation was performed on a Zebron ZB 5% Phenyl 95% Dimethylpolysiloxane column 52 

(30 m with I.D. 250 μm and film thickness 0.25 μm) with a 5 m inactive guard column 53 

(Phenomenex, Torrance, USA). A hydrogen generator, Precision Hydrogen Trace 500 (Peak 54 

Scientific Instruments Ltd, Inchinnan, UK) was used to supply a carrier gas at a constant 55 

column flow rate of 1.0 ml min
-1

. The initial temperature of the GC oven was set to 40°C and 56 

held for 2 min followed by heating at 10°C min
-1

 to 320°C and kept for an additional 6 min, 57 

making the total run time 36 min. Mass spectra was recorded in the range of 45–600 m/z with a 58 

scanning frequency of 10 scans sec
-1

, and the MS detector and ion source was switched off 59 

during the first 6.3 min of solvent delay time. The transfer line and ion source temperature were 60 

set to 280°C and 250°C, respectively. The mass spectrometer was tuned according to 61 

manufacturer’s recommendation using perfluorotributylamine (PFTBA). MPS and GC-TOF-62 

MS were controlled using vendor software Maestro (Gerstel, Mülheim an der Ruhr, Germany) 63 

and ChromaTOF (LECO Corporation, Saint Joseph, USA), respectively. Samples were 64 

randomized prior to derivatization and GC–MS analysis. In order to monitor instrument 65 

performance, a blank sample containing only derivatization reagent, a control sample (a pooled 66 

sample), and an alkane mixture standard sample (all even C10-C40 alkanes at 50 mg L
-1

 in 67 

hexane) were injected after every 10 real samples.  68 

The raw GC-TOF-MS data was processed using Statistical Compare toolbox of the ChromaTOF 69 

software (Version 4.50.8.0) with following settings; the raw data was used without smoothing 70 

prior to peak deconvolution, baseline offset was set to 0.8, expected averaged peak width was 71 

set to 1.5 sec, signal-to-noise was set to ≥10, peak areas were calculate using deconvoluted mass 72 

spectra (DT), common m/z ions of derivatization products were determined as 73, 75, and 147,  73 

deconvoluted mass spectra were also used for peak identification using LECO-Fiehn and 74 

NIST11 libraries. The library search was set to return top 10 hits with EI-MS match of >75% 75 

using normal-forward search and with a mass threshold of 20. Deconvoluted peaks were aligned 76 

across all samples using following settings; retention time shift allowance of <3 sec, EI-MS 77 

match of >95%, mass threshold of >25, and present in >90% of all pooled control samples.   78 
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Targeted analysis of SCFA and O/B-CFA in fecal slurries 79 

Analysis of SCFA and O/B-CFA was performed on 0.5 ml of fecal homogenate mixed with 1 80 

ml of 0.3M oxalic acid (containing 2 mM of 2 ethylbutyrate (Sigma-Aldrich) as the internal 81 

standard). Samples were vortexed for 1 min, centrifuged at 20°C for 20 min at 12,000×g, 82 

followed by filtration using a 0.45 µm centrifugal filter (Millipore UFC30HV00) and the 83 

obtained aliquot was used for GC-MS analysis.  The GC-MS consisted of an Agilent 7890A GC 84 

and an Agilent 5973 series MSD. GC separation was performed on a Phenomenex Zebron ZB-85 

WAXplus column (30 m × 250 μm × 0.25 μm). A sample volume of 1 μl was injected into a 86 

split/splitless inlet at 285°C using split mode at 2:1 split ratio. Septum purge flow and split flow 87 

were set to 13 ml min
-1

 and 2 ml min
-1

, respectively. Hydrogen was used as carrier gas, at a 88 

constant flow rate of 1.0 ml min
-1

. The GC oven program was as follows: initial temperature 89 

100°C, equilibration time 1.0 min, heat up to 120°C at the rate of 10°C min
-1

, hold for 5 min, 90 

then heat at the rate of 40°C min
-1

 until 230°C and hold for 2 min. Mass spectra were recorded 91 

in Selected Ion Monitoring (SIM) mode and m/z ions were detected at the dwell time of 50 92 

msec: 41, 43, 45, 57, 60, 73, 74, 84. The detector was switched off during the 1 min of solvent 93 

delay time. The transfer line, ion source and quadrupole temperatures were set to 230, 230 and 94 

150°C, respectively. The mass spectrometer was tuned according to manufacturer’s 95 

recommendation using perfluorotributylamine (PFTBA). Dilution series of SCFA standards of 96 

acetic, propionic, butyric, isobutyric, 2-methyl isobutyric, valeric and isovaleric acid (Sigma-97 

Aldrich) were prepared in concentrations of 1.000, 0.500, 0.250, 0.125, 0.060 and 0.030 mM for 98 

the construction of standard curves for quantification. Initial inspection of the GC-MS data was 99 

performed using MSD ChemStation software (Version E.02.02.1431, Agilent Technologies, 100 

Inc., Germany). Mass spectra of SCFA were compared against the NIST11 library (NIST, 101 

Maryland, USA). SCFA peak areas were integrated from SIM chromatograms using in-house 102 

Matlab (Version. R2015a, The MathWorks, Inc., Massachusetts, USA) scripts. Two SCFA, 2-103 

methyl isobutyric acid and isovaleric acid, co-eluted at the retention time range of 4.22-4.45 104 
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min, thus peak areas were calculated by deconvoluting these peaks using m/z ions 74 for 2-105 

methyl isobutyric acid and 60 for isovaleric acid.  106 

Untargeted metabolomics of blood plasma 107 

A mixture of 100 µl of plasma samples (thawed at room temperature) and 300 µl of 108 

MeOH:water (8:1, vol:vol and containing 10 ppm of sorbitol as internal standard) were vortexed 109 

(highest speed) for 1 min. Thereafter, samples were incubated at 4°C for 15 min and centrifuged 110 

at 16,000×g at 4°C for 10 min. Supernatants were passed through a 0.45 µm centrifugal filter 111 

(Millipore UFC30HV00) and 80 μl aliquots were dried into 200 μl glass inserts using a ScanVac 112 

(Labogene, Lynge, Denmark) at 40°C for 3 h at 1,000 rpm. Immediately after drying samples 113 

were sealed with air tight magnetic lids into 2.0 ml GC-MS vials and derivatized in two steps 114 

using MPS, (i) addition of 10 µl of MEOX reagent (20 mg ml-1 Methoxiamine hydrochloride in 115 

dry pyridine) followed by agitation at 65°C for 60 min by mixing at 750 rpm, (ii) addition of 30 116 

µl of TMS reagent (TMSCN) followed by agitation at 65°C for 2 h by mixing at 750 rpm. 117 

Immediately after derivatization, 1 μl of the derivatized sample was injected into the GC-TOF-118 

MS as described for the fecal metabolomics. Sample injection, oven and mass spectrometer 119 

parameters were similar to those for the fecal metabolomics with few modifications. The initial 120 

temperature of the GC oven was set to 40°C and held for 2 min followed by heating at 12 °C 121 

min
-1

 to 260°C, and with a rate of 30°C min
-1

 to 320°C and kept for an additional 5 min, making 122 

the total run time 27.33 min. Mass spectra was recorded in the range of 45–500 m/z with a 123 

scanning frequency of 8 scans sec
-1

, and the MS detector and ion source was switched off during 124 

the first 8.3 min of solvent delay time. The transfer line and ion source temperature were set to 125 

290°C and 250°C, respectively. In order to monitor instrument performance, a blank sample 126 

containing only derivatization reagent, a control sample (a pooled sample), and an alkane 127 

mixture standard sample (all even C10-C40 alkanes at 50 mg L
-1

 in hexane) were injected after 128 

every 10 real samples. The raw GC-TOF-MS data was processed as described above for 129 

untargeted fecal metabolomics. 130 
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